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Abstract In this paper we study the average cost criterion induced by the regular utility
function (U -average cost criterion) for continuous-time Markov decision processes. This
criterion is a generalization of the risk-sensitive average cost and expected average cost cri-
teria. We first introduce an auxiliary risk-sensitive first passage optimization problem and
obtain the properties of the corresponding optimal value function under the slight condi-
tions. Then we show that the pair of the optimal value functions of the risk-sensitive average
cost criterion and the risk-sensitive first passage criterion is a solution to the optimality equa-
tion of the risk-sensitive average cost criterion allowing the risk-sensitivity parameter to take
any nonzero value. Moreover, we have that the optimal value function of the risk-sensitive
average cost criterion is continuous with respect to the risk-sensitivity parameter. Finally,
we give the connections between the U -average cost criterion and the average cost criteria
induced by the identity function and the exponential utility function, and prove the exis-
tence of a U -average optimal deterministic stationary policy in the class of all randomized
Markov policies.

Keywords Continuous-time Markov decision processes · Regular utility function ·
U -average cost criterion · Optimal policy

1 Introduction

Continuous-timeMarkov decision processes (CTMDPs) have rich applications in the queue-
ing systems, inventory management, telecommunication, the control of the epidemic, etc;
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see, for instance, Puterman (1994), Kitaev and Rykov (1995), Guo and Hernandez-Lerma
(2009), Guo et al. (2012) and the references therein. The average cost criterion is a
common optimality criterion in the CTMDPs, which includes the expected average cost
and the risk-sensitive average cost criteria. For the expected average cost criterion, the
decision-maker is supposed to be risk-neutral and there exists a vast amount of literature;
see, for instance, Puterman (1994), Kitaev and Rykov (1995), Guo and Hernandez-Lerma
(2009), Guo et al. (2012), Wei and Chen (2014) and the extensive references therein. For
the risk-sensitive average cost criterion, the exponential utility function is employed to
characterize the risk preferences of the decision-maker. More specifically, when the risk-
sensitivity parameter of the exponential utility function takes positive (negative) values,
the decision-maker is risk-averse (risk-seeking). Although the risk-sensitive average cost
criterion for the discrete-time MDPs has been widely studied (see, for instance, Cavazos-
Cadena and Fernandez-Gaucherand (2005), Cavazos-Cadena (2010) and Cavazos-Cadena
and Hernandez-Hernandez (2011) for the countable state space and Jaśkiewicz (2007) and
Di Masi and Stettner (2007) for the uncountable state space), there exists a handful of liter-
ature on this criterion for the CTMDPs. Ghosh and Saha (2014) and Wei and Chen (2016)
investigate the risk-sensitive average cost criterion with a positive risk-sensitivity parame-
ter for the CTMDPs and obtain the existence of optimal policies via the optimality equation
approach. Moreover, to the best of our knowledge, there is no existing literature dealing
with the risk-sensitive average cost criterion which allows the risk-sensitivity parameter to
take negative values for the CTMDPs.

On the other hand, the risk preferences of the decision-maker may be described neither
by the identity function nor by the exponential utility function in the real-world applica-
tions. Except the identity function and the exponential utility function, there are other utility
functions to describe the risk preferences of the decision-maker, such as the logarithmic
utility function, the power utility function, etc. Thus, it is desirable for us to consider the
average cost criterion induced by the general utility function. For the discrete-time MDPs,
Bäuerle and Rieder (2014) discusses the average cost criterion induced by the power utility
function and Cavazos-Cadena and Hernández-Hernández (2016) studies the average cost
criterion induced by the regular utility function which is referred to as the U -average cost
criterion for simplicity. The U -average cost criterion includes the expected average cost cri-
terion induced by the identity function, the risk-sensitive average cost criterion induced by
the exponential utility function and the average cost criterion induced by the logarithmic
and power utility functions. For the CTMDPs, as far as we can tell, the discussions on the
average cost criterion only focus on the expected average cost and risk-sensitive average
cost criteria.

In this paper we study the U -average cost criterion for the CTMDPs. The state space is
a finite set and the action space is a Borel space. Since the existence of optimal policies
for the U -average cost criterion is closely connected with the risk-sensitive average cost
criterion allowing the risk-sensitivity parameter to take any nonzero value, we need to inves-
tigate the risk-sensitive average cost criterion at first. Under the optimality conditions of the
paper (i.e., the standard continuity-compactness condition and the irreducibility condition),
we first show that the simultaneous Doeblin condition holds (see Theorem 3.1). The simul-
taneous Doeblin condition plays a crucial role in establishing the existence of a solution
to the risk-sensitive average cost optimality equation. Then we introduce an auxiliary risk-
sensitive first passage optimization problem and obtain the properties of the corresponding
optimal value function (see Theorem 3.2). Basing on Theorem 3.2, we have that the pair of
the optimal value functions of the risk-sensitive average cost criterion and the risk-sensitive
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first passage criterion is a solution to the optimality equation of the risk-sensitive average
cost criterion allowing the risk-sensitivity parameter to take any nonzero value (see Theo-
rem 3.3), which generalizes the results in Ghosh and Saha (2014) and Wei and Chen (2016)
only allowing the risk-sensitivity parameter to take positive values (see Remarks 3.3 and
3.4). It should be noted that the extension is nontrivial. Moreover, we prove that the opti-
mal value function of the risk-sensitive average cost criterion is continuous with respect to
the risk-sensitivity parameter (see Theorem 3.4). Finally, using the results on the expected
average cost and risk-sensitive average cost criteria, we show that there exists an optimal
deterministic stationary policy in the class of all randomized Markov policies for the U -
average cost criterion. Moreover, we have that the optimal value function and the set of
all optimal stationary policies for the U -average cost criterion coincide with those for the
average cost criterion induced either by the identity function or by the exponential utility
function with some risk-sensitivity parameter (see Theorem 4.1).

The rest of this paper is organized as follows. In Section 2, we introduce the control
model and the optimality criterion. In Section 3, we present the results on the simultaneous
Doeblin condition, the risk-sensitive first passage criterion and the risk-sensitive average
cost criterion, whose proofs are given in Sections 5–7. In Section 4, we state and prove the
main results on the U -average cost criterion. In Section 8, we conclude with some remarks.

2 Preliminaries

In this section, we introduce the control model and the average cost criterion induced by the
regular utility function for the CTMDPs. The control model in this paper is given by

M := {S,A, (A(i), i ∈ S), q(j |i, a), c(i, a)}.
• The state space S is a finite set endowed with the discrete topology.
• The action space A is a Borel space with the Borel σ -algebra B(A).
• The set of all admissible actions in state i ∈ S denoted by A(i) is a Borel-measurable

subset of A. Moreover, we set K := {(i, a)|i ∈ S, a ∈ A(i)} which stands for the set of
all admissible state-action pairs.

• The real-valued measurable transition rate q(j |i, a) satisfies q(j |i, a) ≥ 0 for all
(i, a) ∈ K and j �= i, and is conservative (i.e.,

∑
j∈S q(j |i, a) = 0 for all (i, a) ∈ K).

• The positive real-valued cost rate function c(i, a) is measurable in a ∈ A(i) for each
i ∈ S.

The evolution of a CTMDP is intuitively described as follows. The state of the dynamical
system is observed continuously by a decision-maker. When the state of the system occupies
i ∈ S, the decision-maker takes an action a from the set of all admissible actions A(i). As
a result of this action, a cost is incurred at the rate c(i, a), and the system stays at state i for
a random time following the exponential distribution and then jumps to a new state j �= i

according to some distribution (see Proposition B.8 in Guo and Hernández-Lerna (2009,
p.205) for the explicit expressions of the corresponding distributions). When the state of the
system transits to the state j , the above procedure is repeated.

Below we formally give a mathematical description.
Let S∞ := S ∪ {i∞} with an isolated point i∞ /∈ S, R+ := (0,+∞), �0 := (S ×

R+)∞, � := �0 ∪ {(i0, θ1, i1, . . . , θm−1, im−1,∞, i∞,∞, i∞, . . .)|i0 ∈ S, il ∈ S, θl ∈
R+ for each 1 ≤ l ≤ m − 1, m ≥ 2}, and F be the Borel σ -algebra of �. For each
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ω = (i0, θ1, i1, . . .) ∈ �, define X0(ω) := i0, T0(ω) := 0, Xm(ω) := im, Tm(ω) :=
θ1 + θ2 + · · · + θm for m ≥ 1, T∞(ω) := limm→∞ Tm(ω), and the state process

ξt (ω) :=
∑

m≥0

I{Tm≤t<Tm+1}im + I{t≥T∞}i∞ for t ≥ 0,

where ID denotes the indicator function of a set D. The process after T∞ is regarded to be
absorbed in the state i∞. Hence, we write q(i∞|i∞, a∞) = 0, c(i∞, a∞) = 0, A(i∞) :=
{a∞}, A∞ := A ∪ {a∞}, where a∞ is an isolated point. Let Ft := σ({Tm ≤ s,Xm =
i} : i ∈ S, s ≤ t, m ≥ 0) for t ≥ 0, Fs− := ∨

0≤t<s Ft , and P := σ({D × {0},D ∈
F0} ∪ {D × (s,∞),D ∈ Fs−, s > 0}) which denotes the σ -algebra of predictable sets on
� × [0, ∞) related to {Ft }t≥0.

Before giving the optimality criterion, we need to introduce the following definition of a
randomized Markov policy.

Definition 2.1 A P-measurable transition probability π(·|ω, t) on (A∞,B(A∞)), concen-
trated on A(ξt−(ω)) is called a randomized Markov policy if there exists a kernel ϕ on A∞
given S∞ × [0, ∞) such that π(·|ω, t) = ϕ(·|ξt−(ω), t). A policy π is said to be determin-
istic stationary if there exists a function f on S∞ satisfying f (i) ∈ A(i) for all i ∈ S∞ and
π(·|ω, t) = δf (ξt−(ω))(·), where δx(·) is the Dirac measure concentrated at the point x.

Let 
 and F be the set of all randomized Markov policies and the set of all deterministic
stationary policies, respectively.

Given an arbitrary initial state i ∈ S and any policy π ∈ 
, employing Theorem 4.27 in
Kitaev and Rykov (1995), we obtain the existence of a unique probability measure denoted
by P π

i on (�,F). The notation Eπ
i represents the expectation operator with respect to P π

i .
Let U be the set of all the real-valued utility functions U on R+ satisfying the following

properties: (i) U has continuous derivatives up to second order; (ii) the first derivative U ′(x)

is positive for all x ∈ R+. For any U ∈ U , the Arrow-Pratt risk-sensitivity function AU

is defined by AU(x) := U ′′(x)
U ′(x)

for all x ∈ R+, where U ′′ denotes the second derivative
of U . Below we give the definition of a regular utility function in Cavazos-Cadena and
Hernández-Hernández (2016).

Definition 2.2 A utility function U ∈ U is said to be regular if λU := limx→∞ AU(x)

exists in R := (−∞,∞). The constant λU is called the asymptotic risk-sensitivity
parameter of the regular utility function U .

Let Ur be the set of all the regular utility functions in U . For any U ∈ Ur , i ∈ S and
π ∈ 
, the average cost criterion induced by the regular utility function U is defined by

JU (i, π) := lim sup
T →∞

1

T
U−1

(

Eπ
i

[

U

(∫ T

0

∫

A

c(ξt , a)π(da|ξt , t)dt

)])

, (2.1)

where U−1 denotes the inverse function of U . In the following, we refer to the average cost
criterion defined in Eq. 2.1 as the U -average cost criterion for simplicity.

Remark 2.1 Let Y := ∫ T

0

∫
A

c(ξt , a)π(da|ξt , t)dt be the total cost incurred during the
finite time interval [0, T ]. The quantity U−1(Eπ

i [U(Y )]) stands for the certainty equivalent
of Y with respect to the utility function U and the decision-maker is indifferent between
paying the random cost Y or the certainty equivalent of Y ; see the detailed discussions in
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Cavazos-Cadena and Fernandez-Gaucherand (2005), Cavazos-Cadena (2010), Cavazos-
Cadena and Hernandez-Hernandez (2011), Bauerle and Rieder (2014), and Cavazos-Cadena
and Hernandez-Hernandez (2016).

Definition 2.3 A policy π∗ ∈ 
 is said to be U -average optimal if

JU (i, π∗) = inf
π∈


JU(i, π) =: J ∗
U(i)

for all i ∈ S. The function J ∗
U on S is referred to as the optimal value function of the

U -average cost criterion.

Finally, we introduce the expected average cost and risk-sensitive average cost criteria
which are the particular cases of the U -average cost criterion and play an important role in
proving the existence of U -average optimal policies.

For each real number λ ∈ R, define the real-valued function Vλ on R+ as follows:

Vλ(x) =
⎧
⎨

⎩

eλx, if λ > 0,
x, if λ = 0,
−eλx, if λ < 0,

(2.2)

for all x ∈ R+. It is obvious that Vλ belongs to Ur for all λ ∈ R. Then for each λ �= 0, i ∈ S

and π ∈ 
, by Eq. 2.1 we have

JVλ(i, π) = lim sup
T →∞

1

λT
lnEπ

i

[
eλ

∫ T
0

∫
A c(ξt ,a)π(da|ξt ,t)dt

]
,

which is induced by the exponential utility function and called the risk-sensitive average
cost criterion in Ghosh and Saha (2014) and Wei and Chen (2016). For λ = 0, Eq. 2.1 gives

JV0(i, π) = lim sup
T →∞

1

T
Eπ

i

[∫ T

0

∫

A

c(ξt , a)π(da|ξt , t)dt

]

for all i ∈ S and π ∈ 
, which is induced by the identity function and referred to as
the expected average cost criterion; see, for instance, Puterman (1994), Kitaev and Rykov
(1995), Guo and Hernandez-Lerma (2009), Guo et al. (2012), and Wei and Chen (2014).
Hence, the Vλ-average cost criterion contains the expected average cost and risk-sensitive
average cost criteria.

3 The Vλ-average cost criterion

In this section, we aim to give the optimality conditions for the existence of Vλ-average
optimal policies and establish the existence of a solution to the optimality equation of the
Vλ-average cost criterion. Since the existence of optimal policies and the optimality equation
for the V0-average cost criterion (i.e., the expected average cost criterion) have been well
studied (see Puterman (1994), Kitaev and Rykov (1995), Guo and Hernández-Lerma (2009),
and Wei and Chen (2014) and the references therein), we mainly focus on the Vλ-average
cost criterion for all λ �= 0 (i.e., the risk-sensitive average cost criterion) below. To do so,
we introduce the following assumption in Wei and Chen (2016), i.e., the usual continuity-
compactness condition and the irreducibility condition.

Assumption 3.1 (i) For each i ∈ S, the set A(i) is compact.
(ii) For each i, j ∈ S, the functions c(i, a) and q(j |i, a) are continuous in a ∈ A(i).
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(iii) For each f ∈ F , the continuous-time Markov chain associated with the transition
rate q(·|·, f ) is irreducible, which means that for any two states i �= j , there exist
different states j1 = i, j2, . . ., jm such that q(j2|j1, f ) · · · q(j |jm, f ) > 0, where
we write q(j |i, f ) := q(j |i, f (i)).

Remark 3.1 For each f ∈ F , f can be viewed as
∏

i∈S f (i) ∈ ∏
i∈S A(i). Thus, by

Assumption 3.1(i) and the Tychonoff theorem, we have that F is compact and metrizable.
Fix any state z ∈ S throughout the paper. Define

τz := inf{t ≥ T1 : ξt = z} with the convention that inf ∅ := ∞.

τz is the time of the first entry into the state z after the first transition has occurred. Under
Assumption 3.1, the following result indicates that the simultaneous Doeblin condition (i.e.,
the statement of Theorem 3.1(b)) for the CTMDPs holds.

Theorem 3.1 Suppose that Assumption 3.1 is satisfied. Then the following assertions hold.

(a) There exists a constant L ∈ R+ such that Ef
i [τz] ≤ L for all i ∈ S and f ∈ F .

(b) There exist constants t0 ∈ R+ and α ∈ (0, 1) such that P f
i (τz > t0) ≤ α for all i ∈ S

and f ∈ F .

Proof See Section 5.

Remark 3.2 The assertion of part (a) is equivalent to that of part (b). Indeed, from the proof
of Theorem 3.1, we see that part (a) implies part (b). On the other hand, suppose that part
(b) holds. Then by an induction argument, we have P

f
i (τz > mt0) ≤ αm for all i ∈ S,

f ∈ F and m = 1, 2, . . .. Thus, employing the last inequality and Lemma 3.4 in Kallenberg
(2012, p.49), we obtain

E
f
i [τz] =

∫ ∞

0
P

f
i (τz >t)dt =

∞∑

m=0

∫ (m+1)t0

mt0

P
f
i (τz >t)dt ≤ t0

∞∑

m=0

P
f
i (τz > mt0) ≤ t0

1 − α

for all i ∈ S and f ∈ F . Hence, part (b) implies that part (a) holds with L = t0
1−α

.
To obtain the existence of a solution to the optimality equation of the risk-sensitive aver-

age cost criterion, we need to introduce the following auxiliary risk-sensitive first passage
optimization problem which is of interest on its own.

For each i ∈ S and f ∈ F , we set c(i, f ) := c(i, f (i)). For each g ∈ R, λ �= 0,
i ∈ S and f ∈ F , the risk-sensitive first passage criterion hg,λ(i, f ) and the corresponding
optimal value function h∗

g,λ(·) on S are given by

hg,λ(i, f ) := 1

λ
lnE

f
i

[
eλ

∫ τz
0 (c(ξt ,f )−g)dt

]
and h∗

g,λ(i) := inf
f ∈F

hg,λ(i, f ), (3.1)

respectively. Let Gλ :=
{
g ∈ R : h∗

g,λ(z) ≤ 0
}

for all λ > 0 and Gλ :=
{
g ∈ R : h∗

g,λ(z) ≥ 0
}
for all λ < 0. Moreover, we define

g∗
λ :=

{
infGλ, if λ > 0,
supGλ, if λ < 0.

(3.2)

Then we have the following assertions on the risk-sensitive first passage criterion.



Discrete Event Dyn Syst (2017) 27:501–524 507

Theorem 3.2 Under Assumption 3.1, the following statements hold for all λ �= 0.

(a) The set Gλ is nonempty.
(b) For each g ∈ R and f ∈ F , the function hg,λ(·, f ) on S satisfies the following

equations
{

eλhg,λ(i,f ) = Q(i, f, g, λ)
(
q(z|i, f ) + ∑

j∈S\{i,z} eλhg,λ(j,f )q(j |i, f )
)

eλhg,λ(z,f ) = Q(z, f, g, λ)
∑

j∈S\{z} eλhg,λ(j,f )q(j |z, f )

for all i ∈ S\{z}, where we set Q(i, f, g, λ) := ∫ ∞
0 eλ(c(i,f )−g)s+q(i|i,f )sds and make

a convention that 0 · ∞ := 0.
(c) For each g ∈ Gλ, the function h∗

g,λ on S satisfies the following equations
⎧
⎪⎨

⎪⎩

e
λh∗

g,λ(i) =sgn(λ) inf
a∈A(i)

{
sgn(λ)Q(i,a,g,λ)

(
q(z|i,a)+∑

j∈S\{i,z}e
λh∗

g,λ(j)
q(j|i,a)

)}

e
λh∗

g,λ(z) = sgn(λ) inf
a∈A(z)

{
sgn(λ)Q(z, a, g, λ)

∑
j∈S\{z} e

λh∗
g,λ(j)

q(j |z, a)
}

(3.3)

for all i ∈ S \ {z}, where we set Q(i, a, g, λ) := ∫ ∞
0 eλ(c(i,a)−g)s+q(i|i,a)sds and

sgn(λ) is the sign function, i.e., if λ > 0, sgn(λ) = 1; if λ < 0, sgn(λ) = −1.
Moreover, there exists a policy f ∗

g,λ ∈ F with f ∗
g,λ(i) ∈ A(i) attaining the minimum of

Eq. 3.3, and for any f ∗
g,λ ∈ F with f ∗

g,λ(i) ∈ A(i) attaining the minimum of Eq. 3.3,
we have hg,λ(i, f

∗
g,λ) = h∗

g,λ(i) ∈ R and Q(i, f ∗
g,λ, g, λ) < ∞ for all i ∈ S.

(d) We have g∗
λ ∈ Gλ and h∗

g∗
λ,λ

(z) = 0.

Proof See Section 6.

Remark 3.3 The equations in Eq. 3.3 are referred to as the optimality equations of the
risk-sensitive first passage criterion. The statements of Theorem 3.2 hold for an arbitrary
risk-sensitivity parameter λ �= 0 and extend the results in Wei and Chen (2016) for any
λ > 0. Moreover, as can be seen in the proof of Theorem 3.2, the treatment of the case
λ < 0 is more difficult than that of the case λ > 0. Hence, the extension is nontrivial.

Let B(S) be the set of all real-valued functions on S. Below we state the optimality
equation and the existence of optimal policies for the risk-sensitive average cost criterion.

Theorem 3.3 Suppose that Assumption 3.1 is satisfied. For each λ �= 0, let g∗
λ and h∗

g∗
λ,λ

be

as in Eqs. 3.1 and 3.2. Then the following assertions hold.

(a) The pair (g∗
λ, h∗

g∗
λ,λ

) ∈ R × B(S) satisfies the following optimality equation

λg∗
λe

λh∗
g∗
λ
,λ

(i) =sgn(λ) inf
a∈A(i)

⎧
⎨

⎩
sgn(λ)

⎛

⎝λc(i, a)e
λh∗

g∗
λ
,λ

(i)+
∑

j∈S

e
λh∗

g∗
λ
,λ

(j)
q(j |i, a)

⎞

⎠

⎫
⎬

⎭

(3.4)

for all i ∈ S. Moreover, there exists f ∗
λ ∈ F with f ∗

λ (i) ∈ A(i) attaining the minimum
of Eq. 3.4.

(b) For any f ∗
λ ∈ F with f ∗

λ (i) ∈ A(i) attaining the minimum of Eq. 3.4, we have

J ∗
Vλ

(i) = JVλ(i, f
∗
λ ) = lim

T →∞
1

λT
lnE

f ∗
λ

i

[
eλ

∫ T
0 c(ξt ,f

∗
λ )dt

]
= g∗

λ

for all i ∈ S. Hence, the policy f ∗
λ is Vλ-average optimal.
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Proof The assertions follow from the above Theorem 3.2, the Feynman-Kac formula and
the similar techniques of Theorem 3.2 in Wei and Chen (2016).

Remark 3.4 Theorem 3.3 establishes the existence of a solution to the optimality equa-
tion and the existence of an optimal stationary policy for the Vλ-average cost criterion with
an arbitrary risk-sensitivity parameter λ �= 0, which generalizes those in Ghosh and Saha
(2014) and Wei and Chen (2016). More precisely, the risk-sensitivity parameter λ is positive
in Ghosh and Saha (2014) and Wei and Chen (2016) and satisfies some additional condition
that λmax(i,a)∈K c(i, a) < b (for some constant b > 0) in Ghosh and Saha (2014). More-
over, to the best of our knowledge, the risk-sensitive average cost criterion with a negative
risk-sensitivity parameter has not been studied in the existing literature.

Finally, we give the following statement on the continuity of J ∗
Vλ

(i) in λ ∈ R, which
plays a crucial role in the study on the existence of U -average optimal policies.

Theorem 3.4 Suppose that Assumption 3.1 holds. Then for each i ∈ S, J ∗
Vλ

(i) is continuous
in λ ∈ R.

Proof See Section 7.

4 The existence of U -average optimal policies

In this section, we show the existence of optimal policies for the U -average cost criterion
induced by a regular utility function U with the asymptotic risk-sensitivity parameter λU .

Below we state the main results on the U -average cost criterion.

Theorem 4.1 Suppose that Assumption 3.1 is satisfied. Let g∗
λU

be as in Eq. 3.2 with λU in
lieu of λ for all λU �= 0 and g∗

0 := limλ→0 g∗
λ. Then the following assertions hold.

(a) J ∗
U(i) = J ∗

VλU
(i) = g∗

λU
for all i ∈ S.

(b) Foreachf ∈ F and i ∈ S,JU (i,f) = JVλU
(i,f) = limT →∞ 1

λU T
lnE

f
i

[
eλU

∫ T
0 c(ξt ,f )dt

]

for all λU �= 0 and JU (i, f ) = JV0(i, f ) = limT →∞ 1
T

E
f
i

[∫ T

0 c(ξt , f )dt
]
for λU =

0. Moreover, the limits are independent of the state i ∈ S.
(c) For any λU �= 0 and f ∗

λU
∈ F attaining the minimum of Eq. 3.4 with λU in lieu

of λ, we have J ∗
U(i) = JU(i, f ∗

λU
) = g∗

λU
for all i ∈ S. For λU = 0, there exist

(g∗
0 , h0) ∈ R × B(S) and a policy f ∗

0 ∈ F satisfying

g∗
0 = inf

a∈A(i)

⎧
⎨

⎩
c(i, a) +

∑

j∈S

h0(j)q(j |i, a)

⎫
⎬

⎭
(4.1)

= c(i, f ∗
0 ) +

∑

j∈S

h0(j)q(j |i, f ∗
0 )

for all i ∈ S. Moreover, for any f ∗
0 ∈ F attaining the minimum of Eq. 4.1, we have

J ∗
U(i) = J ∗

U(i, f ∗
0 ) = g∗

0 for all i ∈ S. Hence, the policy f ∗
λU

is U -average optimal.
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Proof (a) Fix any i ∈ S, π ∈ 
 and η > 0. The relation limx→∞ AU(x) = λU implies
that there exists a positive constant x0 satisfying

λU − η ≤ AU(x) ≤ λU + η for all x > x0. (4.2)

Note that min(i,a)∈K c(i, a) > 0. Thus, there exists a positive constant T ∗ such that

Y :=
∫ T

0

∫

A

c(ξt , a)π(da|ξt , t)dt > x0 for all T > T ∗.

Let VλU −η and VλU +η be the regular utility functions given by Eq. 2.2. Then we have

AVλU −η (x) = λU − η and AVλU +η (x) = λU + η for all x ∈ R+. (4.3)

Moreover, direct calculations yield that Eπ
i [U(Y )], Eπ

i [VλU −η(Y )] and
Eπ

i [VλU +η(Y )] are finite. Thus, employing Theorem 4.1 in Cavazos-Cadena and
Hernández-Hernández (2016), Eq. 4.2 and 4.3, we obtain JVλU −η (i, π) ≤ JU (i, π) ≤
JVλU +η (i, π), which gives

J ∗
VλU −η

(i) ≤ J ∗
U(i) ≤ J ∗

VλU +η
(i). (4.4)

Hence, letting η → 0 in Eq. 4.4 and using Theorems 3.3(b) and 3.4, we get the desired
result.

(b) Fix any f ∈ F . LetMf be the control model in which we take A(i) = {f (i)} for all
i ∈ S and the other components are the same as in the model M. Then it is obvious
that the modelMf satisfies Assumption 3.1. Thus, part (b) follows directly from part
(a), Lemma 3.1(b) in Guo and Hernández-Lerma (2009) and Theorem 3.3.

(c) By part (a), Theorem 7.8 in Guo and Hernández-Lerma (2009) and Theorem 3.3 we
have J ∗

U(i) = J ∗
VλU

(i) = JVλU
(i, f ∗

λU
) = g∗

λU
for all i ∈ S, which together with part

(b) implies the assertion.

Remark 4.1 (a) Theorem 4.1 indicates that the optimal value function of the U -average
cost criterion induced by a regular utility function U with the asymptotic risk-
sensitivity parameter λU is a constant and equals the optimal value function of the
VλU

-average cost criterion. Moreover, the set of all U -average optimal stationary poli-
cies coincides with the set of all VλU

-average optimal stationary policies. Hence, we
can compute a U -average optimal policy and the optimal value function of the U -
average cost criterion via the policy iteration algorithms given in Ghosh and Saha
(2014) for the risk-sensitive average cost criterion with the risk-sensitivity parame-
ter λU �= 0 or in Guo and Hernández-Lerma (2009) for the expected average cost
criterion with λU = 0.

(b) Besides the risk-sensitive average cost criterion induced by the exponential utility
function and the expected average cost criterion induced by the identity function, the
U -average cost criterion includes other average cost criteria, such as those induced by
the logarithmic utility function W(x) = ln x and the power utility function Uβ(x) :=
xβ (β > 0) for all x ∈ R+. Obviously, we have that the utility functions W and Uβ

are regular with the asymptotic risk-sensitivity parameters λW = λUβ = 0. Thus,
Theorem 4.1 implies J ∗

W (i) = J ∗
Uβ

(i) = g∗
0 for all i ∈ S. That is, under Assumption

3.1, the optimal value functions J ∗
W and J ∗

Uβ
are independent of the state variable,

and equal the optimal value function of the expected average cost criterion which is
risk-neutral.
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5 Proof of Theorem 3.1

In this section, we give the proof of Theorem 3.1.

Proof (a) By Assumption 3.1(iii) and the finiteness of S, for each f ∈ F , the continuous-
time Markov chain associated with the transition rate q(·|·, f ) has a unique invariant
probability measure denoted by μf , which satisfies

∑
i∈S q(j |i, f )μf (i) = 0 for all

j ∈ S. Below we show that μf is continuous in f ∈ F . In fact, let {fn, n ≥ 1} ⊆ F

be an arbitrary sequence converging to f ∈ F . Note that 0 ≤ μfn(j) ≤ 1 for all j ∈ S

and n ≥ 1. Fix any i ∈ S and choose any convergent subsequence {μfnl
(i), l ≥ 1} of

{μfn(i), n ≥ 1}. Let liml→∞ μfnl
(i) =: μ(i). Moreover, there exists a subsequence

of {nl} (still denoted by {nl}) such that liml→∞ μfnl
(j) =: μ̃(j) for all j ∈ S and

μ̃(i) = μ(i). Thus, we have 0 ≤ μ̃(j) ≤ 1,
∑

j∈S μ̃(j) = 1, and

∑

k∈S

q(j |k, f )μ̃(k) = lim
l→∞

∑

k∈S

q(j |k, fnl
)μfnl

(k) = 0.

Hence, by the uniqueness of the invariant probability measure, we obtain μ̃(j) =
μf (j) for all j ∈ S. Therefore, the continuity of μf in f ∈ F follows from the fact
that any convergent subsequence {μfnl

(i), l ≥ 1} of {μfn(i), n ≥ 1} has the same
limit μf (i). Set

g̃ := sup
f ∈F

E
f
z

[∫ τz

0 (1 − Iz(ξt ))dt
]

E
f
z [τz]

.

Then direct calculations give

g̃ = sup
f ∈F

E
f
z

[∫ τz

T1
(1 − Iz(ξt ))dt

]

E
f
z [τz]

= sup
f ∈F

E
f
z [τz] − E

f
z [T1]

E
f
z [τz]

= sup
f ∈F

(
1 − μf (z)

)
,

where the last equality is due to Proposition 2.1 in Anderson (1991, p.213) and Propo-
sition B.8 in Guo and Hernández-Lerma (2009, p.205). Thus, by the compactness of
F and the continuity of μf (z) in f ∈ F , there exists f̃ ∈ F such that g̃ = 1−μf̃ (z).
Moreover, by Assumption 3.1(iii), we have 0 < μf̃ (z) ≤ 1, which implies 0 ≤ g̃ < 1.
Define

h̃(i) := E
f̃
i

[∫ τz

0
(1 − Iz(ξt ) − g̃)dt

]

for all i ∈ S.

Then we have

h̃(z) = 0 and h̃(i) ≥ 0 for all i ∈ S \ {z}. (5.1)

Next, we show that h̃ ∈ B(S) and

g̃ = sup
a∈A(i)

⎧
⎨

⎩
1 − Iz(i) +

∑

j∈S

h̃(j)q(j |i, a)

⎫
⎬

⎭
for all i ∈ S. (5.2)
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Indeed, for each i ∈ S \ {z}, by the strong Markov property, direct calculations yield

h̃(i) = E
f̃
i

[∫ τz

0
(1 − Iz(ξt ) − g̃)dtI{τz=T1}

]

+ E
f̃
i

[∫ τz

0
(1− Iz(ξt ) − g̃)dtI{τz>T1}

]

= (1 − g̃)E
f̃
i [T1I{τz=T1}] + (1 − g̃)E

f̃
i [T1I{τz>T1}]

+E
f̃
i

[

I{τz>T1}E
f̃
i

[∫ τz

T1

(1 − Iz(ξt ) − g̃)dt
∣
∣FT1

]]

= (1 − g̃)E
f̃
i [T1] + E

f̃
i [I{τz>T1}h̃(ξT1)]

= − 1 − g̃

q(i|i, f̃ )
−

∑

j∈S\{i,z}

h̃(j)q(j |i, f̃ )

q(i|i, f̃ )
, (5.3)

where the fourth equality follows from Proposition B.8 in Guo and Hernández-Lerma
(2009, p.205). Similarly, we have

h̃(z) = −g̃E
f̃
z [T1I{τz>T1}] + E

f̃
z [I{τz>T1}h̃(ξT1)]

= g̃

q(z|z, f̃ )
−

∑

j∈S\{z}

h̃(j)q(j |z, f̃ )

q(z|z, f̃ )
. (5.4)

For any i �= z, Assumption 3.1(iii) implies that there exist different states j1 = z,
j2, . . . , jm = i such that q(jn+1|jn, f̃ ) > 0 for all n = 1, 2, . . . , m − 1. Then by
Eq. 5.4 we obtain h̃(j2) < ∞, which together with Eq. 5.3 and an induction argument
gives h̃(i) < ∞ for all i ∈ S. Hence, we get h̃ ∈ B(S). Employing Eqs. 5.1, 5.3 and
5.4, we have

g̃ = 1 − Iz(i) +
∑

j∈S

h̃(j)q(j |i, f̃ ) (5.5)

≤ sup
a∈A(i)

⎧
⎨

⎩
1 − Iz(i) +

∑

j∈S

h̃(j)q(j |i, a)

⎫
⎬

⎭
(5.6)

for all i ∈ S. On the other hand, fix any (k, a) ∈ K and define

�(i) :=
{

g̃ − 1 + Iz(i) − ∑
j∈S h̃(j)q(j |i, a), if i = k,

0, otherwise.
(5.7)

Obviously, we get � ∈ B(S). Let f̂ ∈ F be a policy with f̂ (k) = a and f̂ (i) = f̃ (i)

for all i ∈ S \ {k}. Then by Eqs. 5.5 and 5.7, we obtain

g̃ = 1 − Iz(i) + �(i) +
∑

j∈S

h̃(j)q(j |i, f̂ )

for all i ∈ S. Thus, using the last equality and the Dynkin formula, we have

g̃T = E
f̂
i

[∫ T

0
(1 − Iz(ξt ) + �(ξt ))dt

]

+ E
f̂
i [̃h(ξT )] − h̃(i),

which together with the fact that h̃ ∈ B(S) gives

g̃ = lim
T →∞

1

T
E

f̂
i

[∫ T

0
(1 − Iz(ξt ) + �(ξt ))dt

]

= 1 − μf̂ (z) + �(k)μf̂ (k) (5.8)
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for all i ∈ S. Note that μf̂ (k) > 0 and g̃ ≥ 1 − μf̂ (z). Hence, by Eq. 5.8 we obtain
�(k) ≥ 0. Therefore, we get

g̃ ≥ sup
a∈A(i)

⎧
⎨

⎩
1 − Iz(i) +

∑

j∈S

h̃(j)q(j |i, a)

⎫
⎬

⎭

for all i ∈ S, which together with Eq. 5.6 implies Eq. 5.2. Fix any i ∈ S and f ∈ F

below. By Eqs. 5.1 and 5.2 we obtain

h̃(i) ≥ −1 − Iz(i) − g̃

q(i|i, f )
−

∑

j∈S\{i,z}

h̃(j)q(j |i, f )

q(i|i, f )
.

Then employing the last inequality, we have

h̃(ξTm) ≥ E
f
i

[∫ Tm+1

Tm

(1 − Iz(ξt ) − g̃)dt
∣
∣FTm

]

+ E
f
i

[
h̃(ξTm+1)I{τz>Tm+1}

∣
∣FTm

]

(5.9)
for all m = 0, 1, . . .. Thus, using Eq. 5.9 and an induction argument, we get

h̃(i) ≥ −1 − Iz(i) − g̃

q(i|i, f )
+ (1 − g̃)

n∑

l=1

E
f
i [θl+1I{τz>Tl}] + E

f
i

[
h̃(ξTn+1)I{τz>Tn+1}

]

for all n = 1, 2, . . ., which together with Eq. 5.1 yields

h̃(i) + 1 − Iz(i) − g̃

q(i|i, f )
≥ (1 − g̃)

∞∑

l=1

E
f
i [θl+1I{τz>Tl}].

Hence, by the last inequality we obtain

∞∑

l=2

E
f
i [θlI{τz≥Tl}] ≤ 1

1 − g̃

[

max
i∈S

h̃(i) − min
(i,a)∈K

g̃

q(i|i, a)

]

:= L1. (5.10)

Observe that

E
f
i [τz] =

∞∑

l=1

E
f
i [θlI{τz≥Tl}] = − 1

q(i|i, f )
+

∞∑

l=2

E
f
i [θlI{τz≥Tl}],

which together with Eq. 5.10 implies E
f
i [τz] ≤ L1 − min(i,a)∈K

1
q(i|i,a)

. Therefore,

the assertion holds with L := L1 − min(i,a)∈K
1

q(i|i,a)
.

(b) By part (a) we have

P
f
i (τz > t) ≤ E

f
i [τz]
t

≤ L

t

for all i ∈ S, f ∈ F and t > 0. Moreover, there exists t0 ∈ R+ such that L
t0

∈ (0, 1).

Hence, part (b) holds with α := L
t0
.

6 Proof of Theorem 3.2

In this section, we present the proof of Theorem 3.2.
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Proof The statements for the case λ > 0 follow from Theorem 3.1 in Wei and Chen (2016).
Below we only need to prove the case λ < 0.

(a) Set M̃ := min(i,a)∈K c(i, a). Thus, we obtain hM̃,λ(i, f ) ≥ 0 for all i ∈ S and f ∈ F ,
which gives h∗̃

M,λ
(z) ≥ 0. Therefore, the set Gλ is nonempty.

(b) From the proof of Theorem 3.1(b) in Wei and Chen (2016), we see that part (b) also
holds for the case λ < 0.

(c) Fix any g ∈ Gλ. Set c := max(i,a)∈K |c(i, a) − g|. For each i ∈ S \ {z}, f ∈ F and
m ≥ 1, direct calculations yield

eλhg,λ(z,f ) ≥ E
f
z

[
eλ

∫ τz
0 (c(ξt ,f )−g)dt I{ξTl

�=i,z,1≤l≤m−1,ξTm=i
}
]

= E
f
z

[
I{ξTl

�=i,z,1≤l≤m−1,ξTm=i
}eλ

∫ Tm
0 (c(ξt ,f )−g)dtE

f
z

[
e
λ
∫ τz
Tm

(c(ξt ,f )−g)dt
∣
∣FTm

]]

= eλhg,λ(i,f )E
f
z

[
I{ξTl

�=i,z,1≤l≤m−1,ξTm=i
}eλ

∫ Tm
0 (c(ξt ,f )−g)dt

]

≥ eλhg,λ(i,f )E
f
z

[
I{ξTl

�=i,z,1≤l≤m−1,ξTm=i
}eλcTm

]
,

which together with Eq. 3.1 and the definition of Gλ gives

eλhg,λ(i,f )E
f
z

[
I{ξTl

�=i,z,1≤l≤m−1,ξTm=i
}eλcTm

]
≤ e

λh∗
g,λ(z) ≤ 1. (6.1)

Suppose that supf ∈F eλhg,λ(i,f ) = ∞. Then there exists a sequence {fn, n ≥ 1} ⊆ F

such that eλhg,λ(i,fn) ≥ n for all n ≥ 1. Thus, by Eq. 6.1 we obtain

lim
n→∞ E

fn
z

[
I{ξTl

�=i,z,1≤l≤m−1,ξTm=i
}eλcTm

]
= 0 (6.2)

for all m ≥ 1. Because F is compact, there exists a subsequence of {fn, n ≥ 1}
(denoted by the same sequence) such that fn converges to some f ∈ F , i.e.,

fn(j) → f (j) for all j ∈ S as n → ∞. (6.3)

Moreover, for each m ≥ 1, by Proposition B.8 in Guo and Hernández-Lerma (2009,
p.205) we have

E
fn
z

[
I{ξTl

�=i,z,1≤l≤m−1,ξTm=i
}eλcTm

]

=
∑

j1∈S\{i},jl+1∈S\{jl ,i,z},l=1,2,...,m−2

(

− q(j1|z, fn)

q(z|z, fn) + λc

) m−2∏

l=1

(

− q(jl+1|jl, fn)

q(jl |jl, fn) + λc

)

×
(

− q(i|jm−1, fn)

q(jm−1|jm−1, fn) + λc

)

for all n ≥ 1, which together with Assumption 3.1(ii), Eqs. 6.2 and 6.3 implies

E
f
z

[
I{ξTl

�=i,z,1≤l≤m−1,ξTm=i
}eλcTm

]
= 0. (6.4)

On the other hand, Assumption 3.1(iii) gives that there exist different states k0 = z,
k1, . . ., km̃ = i such that q(kn+1|kn, f ) > 0 for all n = 0, 2, . . . , m̃ − 1. Thus, we get

E
f
z

[
I{ξTl

�=i,z,1≤l≤m̃−1,ξTm̃
=i

}eλcTm̃

]
≥

m̃−1∏

l=0

(

− q(kl+1|kl, f )

q(kl |kl, f ) + λc

)

> 0,
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which contradicts (6.4). Hence, we obtain

e
λh∗

g,λ(i) = sup
f ∈F

eλhg,λ(i,f ) < ∞ for all i ∈ S. (6.5)

By Eq. 3.1 and part (b), we have
{

e
λh∗

g,λ(i) ≥ Q(i, f, g, λ)
(
q(z|i, f ) + ∑

j∈S\{i,z} eλhg,λ(j,f )q(j |i, f )
)

e
λh∗

g,λ(z) ≥ Q(z, f, g, λ)
∑

j∈S\{z} eλhg,λ(j,f )q(j |z, f )
(6.6)

for all i ∈ S \ {z} and f ∈ F . Note that Theorem 3.1 implies

eλhg,λ(i,f ) ≥ E
f
i

[
eλmax(i,a)∈K |c(i,a)−g|τz

]
> 0 (6.7)

for all i ∈ S and f ∈ F . Thus, employing Eqs. 6.5–6.7 and Assumption 3.1(iii), we
get

eλhg,λ(i,f ) < ∞ and Q(i, f, g, λ) < ∞ for all i ∈ S and f ∈ F. (6.8)

Moreover, using Eq. 3.1 and part (b) again, we obtain
⎧
⎪⎨

⎪⎩

e
λh∗

g,λ(i) ≤ sup
a∈A(i)

{
Q(i, a, g, λ)

(
q(z|i, a) + ∑

j∈S\{i,z} e
λh∗

g,λ(j)
q(j |i, a)

)}

e
λh∗

g,λ(z) ≤ sup
a∈A(z)

{
Q(z, a, g, λ)

∑
j∈S\{z} e

λh∗
g,λ(j)

q(j |z, a)
} (6.9)

for all i ∈ S \ {z}. By Theorem 3.1(c) in Wei and Chen (2016), Assumption 3.1(ii)
and Eq. 6.5, we see that Q(i, a, g, λ)(q(z|i, a) + ∑

j∈S\{i,z} e
λh∗

g,λ(j)
q(j |i, a)) and

Q(z, a, g, λ)
∑

j∈S\{z} e
λh∗

g,λ(j)
q(j |z, a) in Eq. 6.9 are continuous in a ∈ A(i) and

a ∈ A(z), respectively. Thus, the Weierstrass theorem in Aliprantis and Border (2007,
p.40) and Assumption 3.1 imply that there exists f ∗

g,λ ∈ F with f ∗
g,λ(i) ∈ A(i)

attaining the maximum of Eq. 6.9, i.e.,
{

e
λh∗

g,λ(i) ≤ Q(i, f ∗
g,λ, g, λ)

(
q(z|i, f ∗

g,λ) + ∑
j∈S\{i,z} e

λh∗
g,λ(j)

q(j |i, f ∗
g,λ)

)

e
λh∗

g,λ(z) ≤ Q(z, f ∗
g,λ, g, λ)

∑
j∈S\{z} e

λh∗
g,λ(j)

q(j |z, f ∗
g,λ)

(6.10)

for all i ∈ S \ {z}. Hence, by Eq. 6.10, Proposition B.8 in Guo and Hernández-Lerma
(2009, p.205) and an induction argument, we have

e
λh∗

g,λ(i) ≤
n∑

m=1

E
f ∗

g,λ

i

[

e
λ
∫ Tm
0

(
c(ξt ,f

∗
g,λ)−g

)
dt

I{τz=Tm}
]

+E
f ∗

g,λ

i

[

e
λ
∫ Tn
0

(
c(ξt ,f

∗
g,λ)−g

)
dt

e
λh∗

g,λ(ξTn )
I{τz>Tn}

]

(6.11)

for all i ∈ S \ {z} and n = 1, 2, . . .. Furthermore, it follows from part (b) and the
similar arguments of Eq. 6.11 that

e
λhg,λ(i,f ∗

g,λ) =
n∑

m=1

E
f ∗

g,λ

i

[

e
λ
∫ Tm
0

(
c(ξt ,f

∗
g,λ)−g

)
dt

I{τz=Tm}
]

+E
f ∗

g,λ

i

[

e
λ
∫ Tn
0

(
c(ξt ,f

∗
g,λ)−g

)
dt

e
λhg,λ(ξTn ,f ∗

g,λ)
I{τz>Tn}

]
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for all i ∈ S \ {z} and n = 1, 2, . . .. Thus, employing the last equality and the fact that
mini∈S e

λhg,λ(i,f ∗
g,λ)

> 0, we obtain

lim inf
n→∞ E

f ∗
g,λ

i

[

e
λ
∫ Tn
0

(
c(ξt ,f

∗
g,λ)−g

)
dt

I{τz>Tn}
]

= 0 (6.12)

for all i ∈ S \ {z}. Hence, using Eqs. 6.11 and 6.12, we get

e
λh∗

g,λ(i) ≤ e
λhg,λ(i,f ∗

g,λ)+max
j∈S

e
λh∗

g,λ(j) lim inf
n→∞ E

f ∗
g,λ

i

[

e
λ
∫ Tn
0

(
c(ξt ,f

∗
g,λ)−g

)
dt

I{τz>Tn}
]

= e
λhg,λ(i,f ∗

g,λ)
,

which together with Eq. 3.1 implies

h∗
g,λ(i) = hg,λ(i, f

∗
g,λ) for all i ∈ S \ {z}. (6.13)

Thus, using Eqs. 6.6 and 6.13, we get

e
λh∗

g,λ(i) ≥ Q(i, f ∗
g,λ, g, λ)

⎛

⎝q(z|i, f ∗
g,λ) +

∑

j∈S\{i,z}
e
λh∗

g,λ(j)
q(j |i, f ∗

g,λ)

⎞

⎠

= sup
a∈A(i)

⎧
⎨

⎩
Q(i, a, g, λ)

⎛

⎝q(z|i, a) +
∑

j∈S\{i,z}
e
λh∗

g,λ(j)
q(j |i, a)

⎞

⎠

⎫
⎬

⎭
,

which together with Eq. 6.9 yields

e
λh∗

g,λ(i) = sup
a∈A(i)

⎧
⎨

⎩
Q(i, a, g, λ)

⎛

⎝q(z|i, a) +
∑

j∈S\{i,z}
e
λh∗

g,λ(j)
q(j |i, a)

⎞

⎠

⎫
⎬

⎭
(6.14)

for all i ∈ S \ {z}. Following the similar arguments of Eqs. 6.13 and 6.14, we have

h∗
g,λ(z) = hg,λ(z, f

∗
g,λ) and e

λh∗
g,λ(z) = sup

a∈A(z)

⎧
⎨

⎩
Q(z, a, g, λ)

∑

j∈S\{z}
e
λh∗

g,λ(j)
q(j |z, a)

⎫
⎬

⎭
.

(6.15)
Therefore, the function h∗

g,λ on S satisfies (3.3). Moreover, Eq. 6.7 gives

e
λh∗

g,λ(i) = e
λhg,λ(i,f ∗

g,λ)
> 0 for all i ∈ S. (6.16)

Hence, by Eqs. 6.5, 6.8, 6.13, 6.15 and 6.16, we see that for any f ∗
g,λ ∈ F with

f ∗
g,λ(i) ∈ A(i) attaining the minimum of Eq. 3.3, hg,λ(i, f

∗
g,λ) = h∗

g,λ(i) ∈ R and
Q(i, f ∗

g,λ, g, λ) < ∞ for all i ∈ S.

(d) Choose a sequence {gλ
n, n ≥ 1} ⊆ Gλ satisfying

gλ
n ≤ gλ

n+1 for all n ≥ 1 and lim
n→∞ gλ

n = g∗
λ. (6.17)

By Eqs. 3.1 and 6.17, we obtain

h∗
gλ

n,λ
(i) ≥ h∗

gλ
n+1,λ

(i) ≥ h∗
g∗
λ,λ(i) for all i ∈ S and n ≥ 1. (6.18)

Set Hλ(i) := limn→∞ h∗
gλ

n,λ
(i) for all i ∈ S. Then by the definition of Gλ and

Eq. 6.18, we have

Hλ(z) ≥ 0 and Hλ(i) ≥ h∗
g∗
λ,λ(i) for all i ∈ S. (6.19)
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Moreover, employing part (c), we get
⎧
⎪⎨

⎪⎩

e
λh∗

gλ
n,λ

(i) ≥ Q(i, f, gλ
n, λ)

(

q(z|i, f ) + ∑
j∈S\{i,z} e

λh∗
gλ
n,λ

(j)
q(j |i, f )

)

e
λh∗

gλ
n,λ

(z) ≥ Q(z, f, gλ
n, λ)

∑
j∈S\{z} e

λh∗
gλ
n,λ

(j)
q(j |z, f )

for all n ≥ 1, which together with the Fatou lemma gives
{

eλHλ(i) ≥ Q(i, f, g∗
λ, λ)

(
q(z|i, f ) + ∑

j∈S\{i,z} eλHλ(j)q(j |i, f )
)

eλHλ(z) ≥ Q(z, f, g∗
λ, λ)

∑
j∈S\{z} eλHλ(j)q(j |z, f )

(6.20)

for all i ∈ S \ {z} and f ∈ F . Thus, using Eq. 6.20 and the similar arguments of

Eq. 6.11, we obtain eλHλ(i) ≥ e
λhg∗

λ
,λ(i,f )

for all f ∈ F , which together with Eqs. 3.1
and 6.19 yields h∗

g∗
λ,λ

(z) = Hλ(z) ≥ 0. Hence, we obtain g∗
λ ∈ Gλ.

Suppose that h∗
g∗
λ,λ

(z) > 0. For each n ≥ 1, let γn := e
nλh∗

g∗
λ
,λ

(z)
. Then we have

γn ∈ (0, 1) for all n ≥ 1 and limn→∞ γn = 0. Employing Eq. 6.8 we get λc(i, f ) −
λg∗

λ + q(i|i, f ) < 0 for all i ∈ S and f ∈ F . For each n ≥ 1 and f ∈ F , define the
transition rate as follows:

pn(z|z, f ) := −γne
λhg∗

λ
,λ(z,f )

, pn(j |z, f ) := − γne
λhg∗

λ
,λ(j,f )

q(j |z, f )

λc(z, f ) − λg∗
λ + q(z|z, f )

for j ∈ S \{z},
(6.21)

and for any i ∈ S \ {z},

pn(i|i, f ) := −γne
λhg∗

λ
,λ(i,f )

, pn(z|i, f ) := − γnq(z|i, f )

λc(i, f ) − λg∗
λ + q(i|i, f )

, (6.22)

pn(j |i, f ) := − γne
λhg∗

λ
,λ(j,f )

q(j |i, f )

λc(i, f ) − λg∗
λ + q(i|i, f )

for j ∈ S \ {i, z}. (6.23)

For any initial state i ∈ S and any policy f ∈ F , the probability measure and expecta-
tion operator corresponding to the transition rate pn(·|·, f ) defined in Eqs. 6.21–6.23

are denoted by P
f

i,n and E
f

i,n. For any κ > 0 and n ≥ 1, define

Hκ,n(i, f ) := 1

λ
lnE

f

i,n

[
e−λκτz

]
for all i ∈ S and f ∈ F.

Note that Eq. 6.7 gives e
λhg∗

λ
,λ(i,f )

> 0 for all i ∈ S and f ∈ F . Employing Eq. 3.1

and part (c), we have mini∈S inff ∈F e
−λhg∗

λ
,λ(i,f ) = mini∈S e

−λh∗
g∗
λ
,λ

(i)
> 0. Then by

the fact that limn→∞ γn = 0, there exists a positive integer n1 such that

γn1 < min
(i,a)∈K

(
λg∗

λ − λc(i, a) − q(i|i, a)
)

and (6.24)

γn1 ≤ min
(i,a)∈K

(
λg∗

λ − λc(i, a) − q(i|i, a)
) × min

i∈S
inf
f ∈F

e
−λhg∗

λ
,λ(i,f )

≤ (
λg∗

λ − λc(i, f ) − q(i|i, f )
)
e
−λhg∗

λ
,λ(i,f )

(6.25)
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for all i ∈ S and f ∈ F . Moreover, we have that there exists f 1 ∈ F satisfying
hg∗

λ,λ(i, f
1) = supf ∈F hg∗

λ,λ(i, f ) =: hg∗
λ,λ(i) for all i ∈ S. In fact, by part (b) we get

⎧
⎪⎪⎨

⎪⎪⎩

e
λhg∗

λ
,λ(i) ≥ infa∈A(i)

{

Q(i, a, g, λ)

(

q(z|i, a) + ∑
j∈S\{i,z} e

λhg∗
λ
,λ(j)

q(j |i, a)

)}

e
λhg∗

λ
,λ(z) ≥ infa∈A(z)

{

Q(z, a, g, λ)
∑

j∈S\{z} e
λhg∗

λ
,λ(j)

q(j |z, a)

} (6.26)

for all i ∈ S \ {z}. Then employing Assumption 3.1, Theorem 3.1(c) in Wei and Chen
(2016) and the Weierstrass theorem in Aliprantis and Border (2007, p.40), we obtain
the existence of f 1 ∈ F with f 1(i) ∈ A(i) attaining the minimum of Eq. 6.26, i.e,

⎧
⎪⎨

⎪⎩

e
λhg∗

λ
,λ(i) ≥ Q(i, f 1, g, λ)

(

q(z|i, f 1) + ∑
j∈S\{i,z} e

λhg∗
λ
,λ(j)

q(j |i, f 1)

)

e
λhg∗

λ
,λ(z) ≥ Q(z, f 1, g, λ)

∑
j∈S\{z} e

λhg∗
λ
,λ(j)

q(j |z, f 1)

(6.27)

for all i ∈ S \ {z}. Thus, using Eq. 6.27 and following the similar arguments of
Eq. 6.11, we have

e
λhg∗

λ
,λ(i) ≥

n∑

m=1

E
f 1

i

[
eλ

∫ Tm
0 (c(ξt ,f

1)−g∗
λ)dt I{τz=Tm}

]
+E

f 1

i

[

eλ
∫ Tn
0 (c(ξt ,f

1)−g∗
λ)dt e

λhg∗
λ
,λ(ξTn )

I{τz>Tn}
]

for all n = 1, 2, . . ., which gives hg∗
λ,λ(i) ≤ hg∗

λ,λ(i, f
1) for all i ∈ S \ {z}. Hence,

we get hg∗
λ,λ(i) = hg∗

λ,λ(i, f
1) for all i ∈ S \ {z}. Similarly, by Eq. 6.27 we can obtain

hg∗
λ,λ(z) = hg∗

λ,λ(z, f
1). Furthermore, by Eq. 6.7 we have

inf
f ∈F

e
λhg∗

λ
,λ(i,f ) = e

λ supf ∈F hg∗
λ
,λ(i,f ) = e

λhg∗
λ
,λ(i,f 1)

> 0, (6.28)

which implies ζ(i) := inff ∈F
1
λ
pn1

(i|i, f ) > 0 for all i ∈ S. Hence, for any κ ∈
(

0,min
i∈S

ζ(i)

)

=: On1 , by Eqs. 6.21–6.23 and the similar arguments of Theorem

3.1(b) in Wei and Chen (2016), we get

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

eλHκ,n1 (i,f ) = − 1

γn1 e
λh

g∗
λ
,λ

(i,f )+λκ

(
γn1 q(z|i,f )

λc(i,f )−λg∗
λ+q(i|i,f )

+ ∑

j∈S\{i,z}
γn1 e

λHκ,n1 (j,f )+λh
g∗
λ
,λ

(j,f )
q(j |i,f )

λc(i,f )−λg∗
λ+q(i|i,f )

)

eλHκ,n1 (z,f ) = − 1

γn1 e
λh

g∗
λ
,λ

(z,f )+λκ

∑

j∈S\{z}
γn1 e

λHκ,n1 (j,f )+λh
g∗
λ
,λ

(j,f )
q(j |z,f )

λc(z,f )−λg∗
λ+q(z|z,f )

(6.29)

for all i ∈ S \ {z} and f ∈ F . Below we show that there exist t̃0 ∈ R+ and α̃ ∈ (0, 1)
such that

P
f

i,n1
(τz > t̃0) ≤ α̃ for all i ∈ S and f ∈ F. (6.30)
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By Theorem 3.1 and an induction argument, we have P
f
i (τz > nt0) ≤ αn for all

n = 1, 2, . . ., which implies that there exists a positive integer n2 such that

0 < αn2 ≤ 1

3
and P

f
i (τz > n2t0) ≤ αn2 (6.31)

for all i ∈ S and f ∈ F . Let �1 := max(i,a)∈K(−q(i|i, a)). Then direct calculations
yield

P
f
i (Tm < n2t0) = P

f
i (θ1 + · · · + θm < n2t0)

=
∫

s1+···+sm<n2t0

∑

j1∈S\{i},jl+1∈S\{jl},l=1,...,m−1

eq(i|i,f )s1q(j1|i, f )

×
m−1∏

l=1

(
eq(jl |jl ,f )sl+1q(jl+1|jl, f )

)
dsm · · · ds1

≤ �m
1

∫

s1+···+sm<n2t0

dsm · · · ds1 = (�1n2t0)
m

m! (6.32)

for all i ∈ S and f ∈ F , where the second equality follows from Proposition
B.8 in Guo and Hernández-Lerma (2009, p.205). Thus, using Eq. 6.32 we obtain
limm→∞ supi∈S,f ∈F P

f
i (Tm < n2t0) = 0, which gives that there exists a positive

integer m∗ satisfying

P
f
i (Tm∗ < n2t0) ≤ αn2

2
for all i ∈ S and f ∈ F. (6.33)

For each f ∈ F , let {Yn, n = 0, 1, . . .} be the embedding Markov chain of the
continuous-time Markov chain associated with the transition rate q(·|·, f ) and define
τ1 := inf{n ≥ 1 : Yn = z}. Employing Eqs. 6.31 and 6.33 we get

P
f
i (τ1 ≤ m∗) = P

f
i (τz ≤ Tm∗ ) ≥ P

f
i (τz ≤ n2t0, Tm∗ ≥ n2t0)

≥ P
f
i (τz ≤ n2t0) + P

f
i (Tm∗ ≥ n2t0) − 1 ≥ 1

2
(6.34)

for all i ∈ S and f ∈ F . Let �2 := min(i,a)∈K

(
− γn1

λc(i,a)−λg∗
λ+q(i|i,a)

)
, �3 :=

mini∈S inff ∈F e
λhg∗

λ
,λ(i,f )

, and �4 := mini∈S inff ∈F pn1
(i|i, f ). Then Eq. 6.24 and

Theorem 3.2(c) imply �2 ∈ (0, 1) and �4 ∈ (−∞, 0). By Eqs. 3.1, 6.28 and the fact
that g∗

λ ∈ Gλ, we obtain

�3 = min
i∈S

e
λhg∗

λ
,λ(i,f 1)

> 0 and �3 ≤ e
λh∗

g∗
λ
,λ

(z) ≤ 1.
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Thus, for each i ∈ S, f ∈ F and m ≥ 1, direct calculations yield

P
f

i,n1
(τz ≤ n2t0)

≥ P
f

i,n1
(τz ≤ n2t0, τz ≤ Tm)

=
m∑

n=1

P
f

i,n1
(τz ≤ n2t0, τz = Tn)

=
m∑

n=1

∫

s1+···+sn≤n2t0

∑

j1∈S\{i,z},jl+1∈S\{jl ,z},l=1,2,...,n−2

e
pn1

(i|i,f )s1pn1
(j1|i, f )

×
n−2∏

l=1

e
pn1

(jl |jl ,f )sl+1pn1
(jl+1|jl , f )e

pn1
(jn−1|jn−1,f )snpn1

(z|jn−1, f )dsn · · · ds1

≥
m∑

n=1

∫

s1+···+sn≤n2t0

∑

j1∈S\{i,z},jl+1∈S\{jl ,z},l=1,2,...,n−2

�2�3e
�4s1eq(i|i,f )s1q(j1|i, f )

×
n−2∏

l=1

�2�3e
�4sl+1eq(jl |jl ,f )sl+1q(jl+1|jl, f )�2e

�4sn eq(jn−1|jn−1,f )snq(z|jn−1, f )dsn · · · ds1

=
m∑

n=1

(�2�3)
n−1�2

∫

s1+···+sn≤n2t0

∑

j1∈S\{i,z},jl+1∈S\{jl ,z},l=1,2,...,n−2

e�4(s1+···+sn)

×eq(i|i,f )s1q(j1|i, f )

n−2∏

l=1

eq(jl |jl ,f )sl+1q(jl+1|jl, f )eq(jn−1|jn−1,f )snq(z|jn−1, f )dsn · · · ds1

≥ (�2�3)
m−1�2e

�4n2t0

m∑

n=1

∫

s1+···+sn≤n2t0

∑

j1∈S\{i,z},jl+1∈S\{jl ,z},l=1,2,...,n−2

eq(i|i,f )s1q(j1|i, f )

×
n−2∏

l=1

eq(jl |jl ,f )sl+1q(jl+1|jl , f )eq(jn−1|jn−1,f )snq(z|jn−1, f )dsn · · · ds1

= (�2�3)
m−1�2e

�4n2t0P
f
i (τz ≤ n2t0, τz ≤ Tm), (6.35)

where the second equality follows from Proposition B.8 in Guo and Hernández-
Lerma (2009, p.205). Note that b := (�2�3)

m∗−1�2e
�4n2t0 ∈ (0, 1). Hence, using

Eqs. 6.31, 6.34 and 6.35, we have

P
f

i,n1
(τz ≤ n2t0) ≥ bP

f
i (τz ≤ n2t0, τz ≤ Tm∗)

= bP
f
i (τz ≤ n2t0, τ1 ≤ m∗)

≥ b[P f
i (τz ≤ n2t0) + P

f
i (τ1 ≤ m∗) − 1] ≥ 1

6
b

for all i ∈ S and f ∈ F . Therefore, Eq. 6.30 holds with t̃0 := n2t0 and α̃ := 1 − 1
6b.

Furthermore, employing Eq. 6.30 and an induction argument, we obtain

P
f

i,n1
(τz > ñt0) ≤ α̃n for all i ∈ S, f ∈ F and n = 1, 2, . . . . (6.36)
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Then for any κ0 ∈ On1 satisfying κ0 < ln α̃
λ̃t0

, i ∈ S and f ∈ F , by (6.36) we get

eλHκ0,n1 (i,f ) =
∞∑

m=0

E
f

i,n1

[
e−λκ0τz I{τz∈(m̃t0,(m+1)̃t0]}

]

≤
∞∑

m=0

e−λκ0(m+1)̃t0P
f

i,n1
(τz > m̃t0)

≤ e−λκ0̃t0

1 − α̃e−λκ0̃t0
.

Take any κ1 ∈ (0, κ0) satisfying κ1 < min(i,a)∈K

{
1
λ
[λc(i, a) − λg∗

λ + q(i|i, a)]
}
and

define H
∗
κ1,n1

(i, f ) := γn1e
λHκ1,n1 (i,f )+λhg∗

λ
,λ(i,f )

for all i ∈ S and f ∈ F . Thus,
using Eqs. 6.25 and 6.29, we have
⎧
⎨

⎩

H
∗
κ1,n1

(i, f ) ≥ − 1
λc(i,f )−λg∗

λ−λκ1+q(i|i,f )

(
γn1q(z|i, f ) + ∑

j∈S\{i,z} H
∗
κ1,n1

(j, f )q(j |i, f )
)

H
∗
κ1,n1

(z, f ) ≥ − 1
λc(z,f )−λg∗

λ−λκ1+q(z|z,f )

∑
j∈S\{z} H

∗
κ1,n1

(j, f )q(j |z, f )

for all i ∈ S\{z} and f ∈ F . Hence, by the last inequalities and the similar arguments

of Eq. 6.11, we obtain H
∗
κ1,n1

(i, f ) ≥ γn1e
λhg∗

λ
+κ1,λ(i,f )

for all i ∈ S and f ∈ F ,
which implies

e
λh∗

g∗
λ
,λ

(z)
sup
f ∈F

eλHκ1,n1 (z,f ) ≥ sup
f ∈F

e
λHκ1,n1 (z,f )+λhg∗

λ
,λ(z,f ) ≥ e

λh∗
g∗
λ
+κ1,λ

(z)
. (6.37)

Let {ρm,m ≥ 1} ⊆ (0, κ1) be a sequence satisfying limm→∞ ρm = 0. Note that
0 ≤ e−λρmt̃0 α̃ ≤ e−λκ0 t̃0 α̃ < 1 for all m ≥ 1. Then direct calculations give

0 ≤ sup
f ∈F

eλHρm,n1 (z,f ) − 1 = sup
f ∈F

∞∑

n=1

(−λρm)n

n! E
f

z,n1
[τn

z ]

= sup
f ∈F

∞∑

n=1

(−λρm)n

(n − 1)!
∫ ∞

0
tn−1P

f

z,n1
(τz > t)dt

= sup
f ∈F

∞∑

n=1

(−λρm)n

(n − 1)!
∞∑

l=0

∫ (l+1)̃t0

l̃t0

tn−1P
f

z,n1
(τz > t)dt

≤ sup
f ∈F

∞∑

n=1

(−λρmt̃0)
n

(n − 1)!
∞∑

l=0

(l + 1)n−1P
f

z,n1
(τz > l̃t0)

≤
∞∑

n=1

(−λρmt̃0)
n

(n − 1)!
∞∑

l=0

(l + 1)n−1α̃l

= −λρmt̃0e
−λρmt̃0

1 − α̃e−λρmt̃0
(6.38)

for all m ≥ 1, where the second equality is due to Lemma 3.4 in Kallenberg (2012,
p.49) and the last inequality follows from Eq. 6.36. Thus, employing Eq. 6.38 we

obtain limm→∞ supf ∈F eλHρm,n1 (z,f ) = 1. Hence, for any ε ∈ (0, e
−λh∗

g∗
λ
,λ

(z) − 1],
there exists a positive integer m0 such that supf ∈F e

λHρm0 ,n1 (z,f ) − 1 ≤ ε, which
together with Eq. 6.37 implies

e
λh∗

g∗
λ
+ρm0 ,λ

(z) ≤ e
λh∗

g∗
λ
,λ

(z)
sup
f ∈F

e
λHρm0 ,n1 (z,f ) ≤ 1. (6.39)
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Moreover, by Eq. 6.39 we have g∗
λ + ρm0 ∈ Gλ, which leads to a contradiction that

g∗
λ + ρm0 ≤ g∗

λ. Therefore, we get h
∗
g∗
λ,λ

(z) = 0.

7 Proof of Theorem 3.4

In this section, we prove Theorem 3.4.

Proof Fix any i ∈ S and π ∈ 
. For any λ1, λ2 > 0, we have

Eπ
i

[
eλ1

∫ T
0

∫
A c(ξt ,a)π(da|ξt ,t)dt

]
= Eπ

i

[
eλ2

∫ T
0

∫
A c(ξt ,a)π(da|ξt ,t)dt e(λ1−λ2)

∫ T
0

∫
A c(ξt ,a)π(da|ξt ,t)dt

]

≤ Eπ
i

[
eλ2

∫ T
0

∫
A c(ξt ,a)π(da|ξt ,t)dt

]
e|λ1−λ2|T max(i,a)∈K c(i,a)

and

Eπ
i

[
eλ1

∫ T
0

∫
A c(ξt ,a)π(da|ξt ,t)dt

]
≥ Eπ

i

[
eλ2

∫ T
0

∫
A c(ξt ,a)π(da|ξt ,t)dt

]
e−|λ1−λ2|T max(i,a)∈K c(i,a),

which give
|λ1J ∗

Vλ1
(i) − λ2J

∗
Vλ2

(i)| ≤ |λ1 − λ2| max
(i,a)∈K

c(i, a).

Thus, Theorem 3.3(b) and the last inequality yield that λg∗
λ is continuous in λ ∈ (0, ∞).

Hence, by Theorem 3.3(b) again, we obtain that J ∗
Vλ

(i) is continuous in λ ∈ (0, ∞).
Moreover, employing the same technique above, we can obtain the continuity of J ∗

Vλ
(i) in

λ ∈ (−∞, 0). Below we show that J ∗
Vλ

(i) is continuous in λ = 0. Take an arbitrary sequence
{λn, n ≥ 1} ⊆ (0, ∞) with limn→∞ λn = 0. For each n ≥ 1, let g∗

λn
and h∗

g∗
λn

,λn
be as in

Theorem 3.3 with λn in lieu of λ. Set h̃∗
g∗
λn

,λn
(i) := h∗

g∗
λn

,λn
(i) − minj∈S h∗

g∗
λn

,λn
(j) for all

n ≥ 1. Then for each n ≥ 1, we have h̃∗
g∗
λn

,λn
(i) ≥ 0 and there exists iλn ∈ S satisfying

h̃∗
g∗
λn

,λn
(iλn) = 0. Moreover, using Theorem 3.3(a), for each n ≥ 1, there exists f ∗

λn
∈ F

such that

λng
∗
λn

e
λnh̃∗

g∗
λn

,λn
(i) = inf

a∈A(i)

⎧
⎨

⎩
λnc(i, a)e

λnh̃∗
g∗
λn

,λn
(i)+

∑

j∈S

e
λnh̃∗

g∗
λn

,λn
(j)

q(j |i, a)

⎫
⎬

⎭
(7.1)

= λnc(i, f
∗
λn

)e
λnh̃∗

g∗
λn

,λn
(i) +

∑

j∈S

e
λnh̃∗

g∗
λn

,λn
(j)

q(j |i, f ∗
λn

). (7.2)

Note that Theorem 3.3(b) gives 0 ≤ g∗
λn

≤ max(i,a)∈K c(i, a) for all n ≥ 1. Thus, choose
any convergent subsequence {g∗

λnl
, l ≥ 1} of {g∗

λn
, n ≥ 1} and denote the corresponding

limit by

g := lim
l→∞ g∗

λnl
∈

[

0, max
(i,a)∈K

c(i, a)

]

. (7.3)

Furthermore, by the finiteness of S and the compactness of F and [0, ∞], there exists a
subsequence of {nl} (still denoted by {nl}) such that iλnl = i∗ ∈ S for all l ≥ 1 and the
limits of the sequences {̃h∗

g∗
λnl

,λnl

, l ≥ 1} and {f ∗
λnl

, l ≥ 1} exist. Set

h(j) := lim
l→∞ h̃∗

g∗
λnl

,λnl
(j) and f ∗(j) := lim

l→∞ f ∗
λnl

(j) for all j ∈ S. (7.4)

Then we have h(j) ≥ 0 for all j ∈ S and h(i∗) = 0. Below we show h(j) < ∞ for
all j ∈ S by an induction argument. For any j �= i∗, Assumption 3.1(iii) yields that there
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exist different states k1 = i∗, k2, . . . , km′ = j such that q(kn+1|kn, f
∗) > 0 for all n =

1, 2, . . . , m′ − 1. Observe that h(k1) = h(i∗) = 0. Thus, h(kn) < ∞ holds for n = 1.
Suppose that h(kn∗) < ∞ for some n∗ ∈ {1, 2, . . . , m′ − 1}. Employing Eq. 7.2 we obtain

g∗
λnl

e
λnl

h̃∗
g∗
λnl

,λnl
(kn∗ )

= c(kn∗ , f ∗
λnl

)e
λnl

h̃∗
g∗
λnl

,λnl
(kn∗ )

+
∑

j∈S

e
λnl

h̃∗
g∗
λnl

,λnl
(j)

− 1

λnl

q(j |kn∗ , f ∗
λnl

),

which together with the inequality ex − 1 ≥ x (x ≥ 0) gives

g∗
λnl

e
λnl

h̃∗
g∗
λnl

,λnl
(kn∗ )

≥ c(kn∗, f ∗
λnl

)e
λnl

h̃∗
g∗
λnl

,λnl
(kn∗ )

+ e

λnl
h̃∗
g∗
λnl

,λnl
(kn∗ )

−1
λnl

q(kn∗ |kn∗, f ∗
λnl

)

+h̃∗
g∗
λnl

,λnl

(kn∗+1)q(kn∗+1|kn∗, f ∗
λnl

)

for all l ≥ 1. Then letting l → ∞ in the both sides of the last inequality and using the
induction hypothesis, Assumption 3.1(ii), Eqs. 7.3 and 7.4, we get

g ≥ c(kn∗ , f ∗) + h(kn∗)q(kn∗ |kn∗ , f ∗) + h(kn∗+1)q(kn∗+1|kn∗ , f ∗),

which implies h(kn∗+1) < ∞. Hence, by induction we have h(kn) < ∞ for all n =
1, 2, . . . , m′. Therefore, we obtain h(j) ∈ [0, ∞) for all j ∈ S. By Eq. 7.1 we get

g∗
λnl

e
λnl

h̃∗
g∗
λnl

,λnl
(i)

≤ c(i, a)e
λnl

h̃∗
g∗
λnl

,λnl
(i)

+
∑

j∈S

e
λnl

h̃∗
g∗
λnl

,λnl
(j)

− 1

λnl

q(j |i, a)

for all l ≥ 1 and a ∈ A(i). Then the last inequality, Eqs. 7.3 and 7.4 yield

g ≤ c(i, a) +
∑

j∈S

h(j)q(j |i, a) for all a ∈ A(i). (7.5)

Thus, employing Eq. 7.5 and the Dynkin formula, we obtain

gT ≤ Eπ
i

[∫ T

0

∫

A

c(ξt , a)π(da|ξt , t)dt

]

+ Eπ
i [h(ξT )] − h(i)

for all T > 0, which gives
g ≤ J ∗

V0
(i). (7.6)

On the other hand, using Eq. 7.2 and the similar arguments of Eq. 7.6, we have

g = JV0(i, f
∗) ≥ J ∗

V0
(i). (7.7)

Then combining Eqs. 7.6 and 7.7, we get g = J ∗
V0

(i). Since all the convergent subse-
quences of {g∗

λn
, n ≥ 1} have the same limit J ∗

V0
(i), we obtain limn→∞ g∗

λn
= J ∗

V0
(i), which

together with Theorem 3.3(b) implies limn→∞ J ∗
Vλn

(i) = J ∗
V0

(i). Therefore, J ∗
Vλ

(i) is right-
continuous in λ = 0. Moreover, following the same technique above, we have that J ∗

Vλ
(i) is

left-continuous in λ = 0. Hence, we complete the proof of the theorem.

8 Concluding remarks

In this paper we have studied the U -average cost criterion for the CTMDPs with a finite
state space. Under the continuity-compactness condition and the irreducibility condition, we
have shown that the simultaneous Doeblin condition for the CTMDPs holds. Moreover, we
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have obtained the optimality equation of the auxiliary risk-sensitive first passage optimiza-
tion problem and the properties of the corresponding optimal value function for any nonzero
risk-sensitivity parameter. Then employing the obtained results on the risk-sensitive first
passage criterion, we have established the existence of a solution to the optimality equation
of the risk-sensitive average cost criterion allowing the risk-sensitivity parameter to take
any nonzero value. Furthermore, we have proven that the optimal value function of the risk-
sensitive average cost criterion is continuous with respect to the risk-sensitivity parameter.
Finally, we have given the connections between the U -average cost criterion and the aver-
age cost criteria induced by the identity function and the exponential utility function, from
which the existence of a U -average optimal deterministic stationary policy has been shown.
It should be mentioned that the optimality equation of the risk-sensitive average cost crite-
rion allowing the risk-sensitivity parameter to take any nonzero value plays a crucial role in
the study of the U -average cost criterion. Hence, when dealing with the U -average cost cri-
terion with a countable state space, the difficulty lies in finding the conditions under which
the optimality equation of the risk-sensitive average cost criterion holds for any nonzero
risk-sensitivity parameter. In addition, the CTMDPs with the bounded transition rates under
the expected discounted cost and expected average cost criteria can be transformed to the
equivalent discrete-time MDPs by the uniformization technique. Whether the uniformiza-
tion technique is applicable to the CTMDPs under the risk-sensitive average cost criterion
is a very interesting problem.
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