Discrete Event Dyn Syst (2017) 27:109-142 Mark
DOI 10.1007/510626-016-0231-8 @ CrossMar

Maximally permissive controlled system synthesis
for non-determinism and modal logic

A. C. van Hulst! - M. A. Reniers! - W. J. Fokkink?

Received: 1 August 2015 / Accepted: 31 August 2016 / Published online: 23 September 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We propose a new technique for controlled system synthesis on non-deterministic
automata for requirements in modal logic. Synthesis, as defined in this paper, restricts a
behavioral specification of the uncontrolled system such that it satisfies a given logical
expression, while adhering to the rules dictated by supervisory control such as maximal
permissiveness and controllability. The applied requirement formalism extends Hennessy-
Milner logic with the invariant and reachability modalities from Godel-Lob logic, and
is therefore able to express a broad range of control requirements, such as marker state
reachability and deadlock-freeness. This paper contributes to the field of control synthesis
by achieving maximal permissiveness in a non-deterministic context for control require-
ments in modal logic, and treatment of controllability via partial bisimulation. We present
a well-defined and complete derivation of the synthesis result, which is supported further
by computer-verified proofs created using the Coq proof assistant. The synthesis method is
also presented in algorithmic form, including an analysis of its computational complexity.
We show that the proposed synthesis theory allows full expressibility of Ramadge-Wonham
supervisory control theory and we illustrate its applicability in two small industrial case
studies, including an analysis with regard to scalability.

Keywords Controlled system synthesis - Modal logic - Non-determinism - Maximal
permissiveness - Controllability - Partial bisimulation

< A. C. van Hulst
allanvanhulst@gmail.com

M. A. Reniers
m.a.reniers @tue.nl

W. J. Fokkink
w.j.fokkink @vu.nl

Eindhoven University of Technology, Eindhoven, Netherlands

VU University Amsterdam, Amsterdam, Netherlands

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10626-016-0231-8&domain=pdf
mailto:allanvanhulst@gmail.com
mailto:m.a.reniers@tue.nl
mailto:w.j.fokkink@vu.nl

110 Discrete Event Dyn Syst (2017) 27:109-142

1 Introduction

This paper concerns the controlled system synthesis on non-deterministic automata for
requirements in modal logic. The controlled systems perspective treats the system under
control — the plant — and a system component which restricts the plant behavior — the
controller — as a single integrated entity. This means that we take a model of all possi-
ble plant behavior, and construct a new model which is constrained according to a logical
specification of desired behavior — the requirements. This resulting model represents the
controlled behavior of the plant, and is therefore referred to as the controlled system. The
automated generation, or synthesis, of such a restricted behavioral model incorporates a
number of concepts from supervisory control theory (Ramadge and Wonham 1987), which
guarantees that the generated model is a proper controlled system with regard to the origi-
nal plant specification. This includes a strict partitioning of behaviors into controllable and
uncontrollable events, such that synthesis does not disable accessible uncontrollable events,
thereby achieving controllability. In addition, synthesis preserves all behavior which does
not invalidate the requirements, thereby inducing maximal permissiveness. The synthesis
theory put forward in this paper further allows the expression of marker state reachability
and deadlock-freeness, which are often employed in supervisory control (Cassandras and
Lafortune 2008).

Starting point of the synthesis construction is a non-deterministic Kripke-structure with
labeled transitions, representing the uncontrolled plant model. Basic properties may be
assigned to states to capture state-based information, while event-labeled transitions cap-
ture system dynamics. The required controlled behavior is expressed using modal logic with
invariant and reachability operators.

A new transition relation is henceforth derived, by observing how the validity of modal
expressions in consecutive states relates to event labels. From this new behavioral relation,
transitions are removed if formulas assigned to target states do not satisfy a partial sat-
isfiability test, until a stable point is reached. Most of the theoretical work in this paper
involves a precise formulation of the mathematical structures involved, as well as proofs
to show termination and well-definedness of the applied construction. The required con-
trolled behavior is enforced by disallowing certain events, which coincides with the standard
approach in supervisory control theory (Ramadge and Wonham 1987), since system control
should not involve a fundamental adaptation of system properties; only existing behavior
may be disallowed.

The contribution of this paper is two-fold. First, it presents a new technique for max-
imally permissive controlled system synthesis in a non-deterministic context. Second,
it defines this synthesis for a modal logic which is able to capture a broad range of
requirements.

Regarding the first contribution, it should be noted that supervisory control is often
approached in a language-based setting using a deterministic model of both plant and con-
troller. Classic Ramadge-Wonham supervisory control theory is a well-researched example
of this setup (Ramadge and Wonham 1987). The resulting controller restricts the behav-
ior of the deterministic plant model, thereby ensuring that it operates according to the
requirements. The demand for control synthesis on non-deterministic models of behavior
is clearly present, as signified by a number of works on this topic (see for example Fabian
and Lennartson 1997 and Kumar and Shayman 1994). Non-determinism allows for a higher
level of abstraction in modeling discrete event systems, due to identification of similar
events (Cassandras and Lafortune 2008).

@ Springer

Discrete Event Dyn Syst (2017) 27:109-142 111

In this paper, we consider non-determinism in conjunction with maximal permissiveness;
a property which states that all non-invalidating behavior should be preserved, while achiev-
ing the control objective. This ensures that the controlled behavior stays as close as possible
to the intended operation of the system. Since maximal permissiveness is key in achieving
proper controlled behavior, we intend to improve upon previous efforts by defining con-
trolled system synthesis in a maximal way for non-deterministic models. Since maximal
permissiveness is limited or completely omitted in earlier work on control synthesis for non-
deterministic models, we intend to bridge this gap towards full coverage of control synthesis
in a non-deterministic setting.

We further illustrate controlled system synthesis on a non-deterministic model by the
example in Fig. 1. It consists of a system of conveyor belts for luggage handling at an
airport, and is loosely based on research done at Vanderlande Industries (Kamphuis 2013;
Jansen 2014). The state diagram shown in Fig. 1a models the uncontrolled operation of this
system. If the system is in normal operation (state NO), it repeatedly executes a move event.
However, as depicted in Fig. 1c, a small suitcase might get stuck, halting the system (state
ST). If the suitcase causing the obstruction is pulled loose by one of the travelers (event
release), the conveyor belt resumes normal operation. Also, one of the operators may release
the suitcase (state OP), stop the conveyor belt to make sure that everything is OK, and then
resume its normal operation. Note that the release event from the state ST may be caused
by two different situations. First, the traveler who owns the suitcase may free it from its
undesirable position, and subsequently leave the airport. Second, a different traveler, who

E O [release] [movel false

a move b move stuck
release
"""" release @ @ stuck
stuck
; ; release
sto, sto,
P resume stop P
stop
C
VI

Fig. 1 Control synthesis in a non-deterministic setting. A luggage conveyor belt, depicted in (c) is modeled
by the state diagram in (a). Controlled operation such that a release event is not directly followed by a move
event is shown in (b). This controlled system model satisfies the modal expression in the upper right corner
of the illustration. Note that the model in (b) incorporates a new state. Uncontrollable events are indicated
using dashed lines

@ Springer

112 Discrete Event Dyn Syst (2017) 27:109-142

does not own the suitcase, may pull it loose and — in good faith — put it back on the
conveyor belt. Since in the second situation, the suitcase still poses a threat to the desired
operation of the system, we wish to control the behavior of this system in such a way that a
release event can not be followed immediately by a move event, thereby forcing the system
to go through the SP state. This required behavior is formalized by the modal expression
U [release] [move] false; intuitively described as: invariantly, after every release, a move
event should not be allowed.

Figure 1b models the controlled operation of this system, and therefore satisfies
U [release] [move] false, while only behavior that invalidates this property has been dis-
allowed. Note that the adapted behavioral model incorporates a new state NO’, modeling
the new behavior of the NO state, after a release event has happened. One of the main
theoretical contributions of this paper is a mathematically sound way to derive such new
states.

Regarding the second contribution of this paper, a quick glance at the requirement for-
malism applied in this paper is provided in Fig. 1, where we used an invariant expression
to disallow occurrence of move events after a release. We define the synthesis theory
for a carefully chosen subset of Hennessy-Milner logic (Hennessy and Milner 1985),
and Godel-Lob logic (Alberucci and Facchini 2009). The choice to apply a restricted
formalism for control requirements is justified by the synthesis objectives of solution
uniqueness, maximal permissiveness and controllability. For instance, the p-calculus, which
is often applied in verification tasks such as symbolic model checking (McMillan 1993),
is too strong for obtaining unique and maximally permissive results for control synthesis
problems. For example, a state-model consisting of a single a-loop has no single finite-
state adaptation such that the expression uX.[a] X (i.e. every a-path is finite) becomes
satisfied.

Instead, we combined the invariant ((J f) and reachable (¢ f) modalities from Godel-
L6b logic (Alberucci and Facchini 2009) with the universal ([e] f) and existential (<e> f)
lookahead from Hennessy-Milner logic (Hennessy and Milner 1985). We restrict this
requirement formalism to state-based properties for the reachability operator, and we apply
the same restriction to one side of a disjunction. Figure 5 details an example which shows
that such a restriction is required to obtain unique synthesis results. This emphasis on
uniqueness is a de facto standard in control theory (Ramadge and Wonham 1987). Ear-
lier research shows that the restriction on disjunctive formulas and uniqueness of results
are orthogonal for pure Hennessy-Milner logic (van Hulst et al. 2014). That is, all max-
imally permissive control synthesis results, for unrestricted disjunctions, can be obtained
once the requirement for uniqueness is lifted. Two other important notions prevalent in con-
trol synthesis are marker state reachability and deadlock-freeness. To achieve flexibility in
this regard, we extended the requirement formalism such that both these properties may be
enforced in the synthesis result, if desired.

We provide short examples of requirements specific to the type of synthesis defined
in this paper. Safety-related properties, which model the absence of faulty behavior,
include deadlock-avoidance expressed as [JdIf (i.e., invariantly, deadlock-free). Further-
more, the logic may express safety-requirements of a more general nature, such as
O [send] O received, for some type of communicating system. In addition, we may use
the requirement formalism to express a limited class of fairness properties. Such as
O (busy v <lock>access), to describe the use of a particular resource in a distributed envi-
ronment. The requirement formalism extends to liveness expressions such as [finished,
to indicate that a path to a state marked as finished should always exist.

@ Springer

Discrete Event Dyn Syst (2017) 27:109-142 113

The remainder of this paper is set up as follows. We consider a number of related works
on control synthesis in Section 2. Preliminary definitions in Section 3 introduce basic for-
mal notions up to a point where we can define the synthesis problem in a formal way.
Section 4 details the synthesis method proposed in this paper, including a number of exam-
ples. Correctness theorems are subsequently developed in Section 5. Section 6 concerns
the effective computation of synthesis solutions, including an algorithm and an analysis of
its computational complexity. Section 7 compares the synthesis techniques in this paper
to Ramadge-Wonham supervisory control, by detailing how we can express a Ramadge-
Wonham controller synthesis problem using the proposed theories. A small industrial case
study is provided in Section 8 and a case-based analysis of the scalability of the synthe-
sis algorithm can be found in Section 9. Formal definitions and proofs for most of the
theoretical work in this paper are presented in computer-verified form by means of Coq
proofs.

2 Related work

This paper improves upon a previous conference publication (van Hulst et al. 2015) by
expanding the intuitive explanation of the synthesis setup, providing all proofs in detail, an
analysis of the synthesis method in algorithmic form, a detailed comparison to Ramadge-
Wonham supervisory control, and the inclusion of case studies. In addition, after a careful
study we fixed an apparent too restrictive definition of the synthesizability predicate in van
Hulst et al. (2015) which relates to properly achieving controllability.

Earlier work by the same authors concerning synthesis for modal logic includes a syn-
thesis method for Hennessy-Milner logic (van Hulst et al. 2014). The applied synthesis
technique in this paper is different in an important aspect. Due to a finite unfolding in van
Hulst et al. (2014) of part of the uncontrolled system into a tree-like structure, the recursive
method applied in van Hulst et al. (2014) is not compatible with invariant expressions. This
omission lead to the derivation of the new methodology as presented in this paper.

We analyze other related work along the lines of the three intended improvements in
this paper: 1) allowance of non-determinism in plant specifications, 2) expressiveness of the
requirement specification formalism, and 3) adherence to maximal permissiveness.

Ramadge-Wonham supervisory control theory (Ramadge and Wonham 1987) defines a
broadly embraced methodology for controller synthesis on deterministic plant models. It
identifies a number of key characteristics in the relationship between plant and controlled
system, such as controllability, marker state reachability, deadlock-freeness and maximal
permissiveness, which are inherited by the synthesis theory in this paper. The limitation to
deterministic plant specifications in Ramadge and Wonham (1987) allows the derivation of
a strictly separated unique and maximally permissive controller, but does not embrace the
increased abstraction and flexibility offered by a non-deterministic plant model.

Control synthesis for non-deterministic plant models and temporal specifications is con-
sidered by Pnueli and Rosner (1989) and extended further by Arnold et al. (2003), but
omits maximal permissiveness as a criterion for control synthesis. Follow-up research by
Arnold and Walukiewicz (2008) considers non-deterministic controllers, but limits the spec-
ification of desired behavior to alternating automata. Work by Kumar and Shayman (1994)
investigates non-deterministic controllers for non-blockingness. This approach is further
extended by Jiang and Kumar (2006) for CTL* control specifications, but it does not deliver
maximally permissive solutions.

@ Springer

114 Discrete Event Dyn Syst (2017) 27:109-142

Similar research to the work presented in this paper is carried out in Pinchinat (2005)
for control requirements in p-calculus. The methodology presented in Pinchinat (2005)
extracts a maximally permissive controller with regard to the simulation preorder. In addi-
tion, synthesis is defined to be compositional and an approach which uses iterative synthesis
steps based on state-labeling is studied. However, the work in Pinchinat (2005) is limited to
deterministic systems. Follow-up work in Pinchinat and Raclet (2005) does indeed incor-
porate non-deterministic plant specifications but a preceeding step in the synthesis process
in Pinchinat and Raclet (2005) reduces the aforementioned plant model to a deterministic
model. However, this step does not preserve a structural relationship between the synthesis
result and the plant model, while our approach does.

Work by Kupferman and Vardi (2000) investigates the adaptation of a behavioral specifi-
cation such that a -calculus expression becomes satisfied. This research is extended within
the context of control synthesis by Kupferman et al. (2000) using a tree-automata based
approach which is not maximally permissive. We find the same omission of maximal per-
missiveness in Moor and Davoren (2001), where safety and liveness properties in p-calculus
are synthesized for hybrid automata, in Wolff et al. (2013) where LTL-requirements are syn-
thesized for non-deterministic plant models, and in (Ostroff 1989), where safety properties
in real-time temporal logic are synthesized for non-deterministic plants.

A game theoretic approach to the synthesis of liveness goals stated in fluent temporal
logic is the subject of several works (D’Ippolito et al. 2010, 2013). However, the pruning-
based synthesis approach in D’Ippolito et al. (2010, 2013) is inadequate for control of non-
deterministic models, and only allows for synthesis under a weaker maximality criterion,
referred to as a best effort controller.

A detailed exposure of control synthesis for deterministic automata and CTL* specifi-
cations is given in (Ehlers et al. 2014). However, the work by Ehlers et al. (2014) asserts
that in general maximally permissive controllers do not exist, while this paper defines such
solutions for a reasonably expressive set of control requirements. Control synthesis via
quantified atomic properties in the w-calculus is applied by Pinchinat and Riedweg (2003),
but this treatment is limited to deterministic automata. Quotient-based control synthesis in
Basu and Kumar (2007) is based on the propositional p-calculus, but applies a tableau-based
synthesis method which does not result in a maximally permissive controlled system.

A comparison to work done in UPPAAL Tiga reveals interesting aspects regarding con-
trol synthesis from a mainly practical perspective. For instance, the work in Jessen et al.
(2007) considers synthesizing a controller for a climate control system, based on the logical
specification of both existing behavior (in the form of guards) and required behavior (in the
form of control requirements for safety and liveness). However, since the control-strategies
derived in Jessen et al. (2007) are defined as functions which deterministically choose either
a specific control action or a delay, non-deterministic handling of control is not incorpo-
rated in Jessen et al. (2007). Another example for control synthesis using UPPAAL Tiga is
detailed in Havelund et al. (1999), concerning the automated derivation of controllers for
power modules in audio and video systems. One particular aspect of the work in Havelund
et al. (1999), which also applies to UPPAAL-based control synthesis in a general compari-
son with the work in this paper, is the impossibility to nest the invariant operator in logical
expressions.

The interplay between the validity of modal expressions and transition removal in a con-
trol synthesis context is studied by Ziller and Schneider (2005), and the incremental effects
of transition removal upon the validity of u-calculus formulas is considered by Sokolsky and
Smolka (1994) and Cleaveland and Steffen (1993). Note that the latter two works study this

@ Springer

Discrete Event Dyn Syst (2017) 27:109-142 115

problem from a model-checking perspective. The limitations regarding control synthesis for
disjunctive expressions, as applied in this paper, have been observed earlier (Antoniotti and
Mishra 1995).

Work by Fabian and Lennartson (1997) first identified a simulation-type refinement rela-
tion to be used in control synthesis for non-deterministic automata. Also, research done by
Fainekos et al. (1994) for hybrid control synthesis and temporal logic applies a simulation-
type relation between plant and controlled system. Constraint-based synthesis for safety
properties in Pralet et al. (2010) also applies a simulation-type relation for this purpose. Par-
tial bisimulation as a means to express controllability is first described by Rutten (2000), and
a subtly different variant is applied by (Su 2008). Various ramifications surrounding partial
bisimulation and controllability are studied by Markovski (2011) from a process-theoretic
perspective.

3 Definitions

We assume a set £ of events and a set P of state-assignable basic properties. In addition,
we assume a partition of £ into controllable events C and uncontrollable events U/, such
that CUU = € and C N U = (. State-based properties are used to capture state-based
information, and are assigned to states using a labeling function. Events are used to capture
system dynamics, and represent actions occurring when the system switches between states.
Controllable events may be used to model actuator actions in the plant, while an uncontrol-
lable event may represent, for instance, a sensor reading or a user input. Basic properties
and events are used to model plant behavior in the form of a Kripke-structure (Bull and
Segerberg 2001) with labeled transitions, to be abbreviated as Kripke-LTS, as formalized
in Definition 1. It is essential for the well-definedness of the synthesis construction in this
paper that the transition relation in this Kripke-LTS is finite. This does not exclude loops or
other kinds of infinitary behavior; we solely assume finiteness of the transition relation as
far as its definition as a set of triples is concerned.

Definition 1 For state-space X, labeling function L : X +— 2P finite transition relation
—> C X x €& x X and initial state x € X, we define a Kripke-LTS as the four-tuple
(X, L, —>, x). The set of all Kripke-LTSes is denoted by /.

As usual, we will use the notation x %5 x’ to denote that (x, e, x') e—>. The reflexive-
transitive closure ;V>*, for s € £*, over transition relation —, is defined in the following

way: For all x € X it holds that (x, x) e—l>*, where 1 denotes the empty string; and if there
existe € £, s € £E* and y, x’ € X such that x N yandy oy then x —5*x’. In most
cases we will use an abstraction of this reflexive-transitive closure, without reference to a
particular s € £*. That is, x —>*x’ if and only if there exists an s € £* such that x Sy,

Partial bisimulation (Rutten 2000) is an adaptation of bisimulation such that controllable
events are simulated, while uncontrollable events are bisimulated. For plant specification
k € K and synthesis result s € K we require that s is related to k via partial bisim-
ulation. This signifies the fact that synthesis did not disallow any uncontrollable event,
which implies controllability in the context of supervisory control. Research in Markovski
(2011) details the nature of this partial bisimulation relation. If all events are controllable,
then partial bisimulation coincides with strong simulation. On the other hand, if all events

@ Springer

116 Discrete Event Dyn Syst (2017) 27:109-142

are uncontrollable, partial bisimulation coincides with strong bisimulation (van Glabbeek
1993).

Definition 2 For k' = (X', L', —',x') € Kand k = (X, L, —>, x) € K we say that
k' and k are related via partial bisimulation (notation k' < k) if there exists a relation
R € X’ x X such that (x/, x) € R and for all (y’, y) € R the following holds:

1. L'(y") = L(y); and

2. ify —5'7, fore € € and 7/ € X/, then there exists a z € X such that y — z and
(z,7) € R; and

3. ify %5 7, fore € U and 7 € X, then there exists a z/ € X’ such that y 2577 and
(z/,z) € R.

If the relation R € X’ x X is of particular importance we will use the notation k' <g k to
indicate that k" and k are related via partial bisimulation as witnessed by R.

Note that both partial bisimulation as formalized in Definition 2 (Rutten 2000) as well
as a variant which omits the requirement (z’, z) € R in the 3th clause in Definition 2 (Su
2008) have been described in the literature. An explicit choice is made in this paper to
apply partial bisimulation as introduced in Rutten (2000) due to the fact that it establishes a
stronger control relation beyond uncontrollable events.

Furthermore, coinductive expressions for behavioral equivalence are ofted considered in
conjunction with the preservation of logical properties. For instance, strong bisimulation
preserves p-calculus expressions (van Glabbeek 1993). Partial bisimulation is not applied
in this way in this paper. In particular, partial bisimulation does not preserve the logic for
control requirements defined below, and is only to be understood as a formulation for the
relationship between plant and controlled system.

Requirements are specified using a modal logic F given in Definition 4, which is built
upon the set of state-based formulas 5, in Definition 3.

Definition 3 The set of state-based formulas B is defined by the grammar:
B::=true|false | P|-B|BAB|BvEB

As indicated in Definition 3, state-based formulas are constructed from a straightforward
Boolean algebra which includes the basic expressions true and false, as well as a state-based
property test for p € P. Formulas in 3 are then combined using the standard Boolean
operators —, A and V.

Definition 4 The requirement specification logic F is defined by the grammar:

F::=B|FAF|BVF|IEIF|<C>F|OF|0B| <€>|dlf

We briefly consider the elements of the requirement logic F. Basic expressions B func-
tion as the building blocks in the modal logic F. Conjunction is included in unrestricted
form, while disjunctive formulas are restricted to those having a state-based formula from
B in the left-hand disjunct. This restriction guarantees unique synthesis solutions, since
it enables a local state-based test for retaining the appropriate transitions, as illustrated in
Fig. 5. The formula [e] f can be used to test whether f holds after every e-step, while
the formula <e> f is used to assess whether there exists an e-step after which f holds.

@ Springer

Discrete Event Dyn Syst (2017) 27:109-142 117

These two operators thereby follow their standard semantics from Hennessy-Milner logic
(Hennessy and Milner 1985). The restriction for the operator <e> to be limited to a con-
trollable event e € C relates to the specific synthesis for a formula <e> f and is detailed
in Fig. 6. An invariant formula OJ f tests whether f holds in every reachable state, while a
reachability expression ¢ b may be used to check whether there exists a path such that the
state-based formula b holds at some state on this path. Note that the argument of a reacha-
bility expression is restricted to a state-based formula b € B. This is due to the fact that a
reachability formula may be used to express a formula of type <e> f with e € U, which
leads to a problem concerning controllability, as illustrated in Fig. 6. The two operators [J
and ¢ are borrowed from Godel-Lob logic (Alberucci and Facchini 2009), and follow the
same semantics. As an addition to the formulas <e> f, we provide a universal existence test
<e>, which only tests whether an e-step exists. The argument e for the operator <e> may
be an unrestricted event e € £. The deadlock-freeness expression dif tests whether there
exists an outgoing step of the current state. Combined with the invariant operator, the for-
mula [Jdif may be used to include absence of deadlock in the enforced controlled behavior.
Deadlock-freeness is not defined as a state-based expression in B since it requires infor-
mation about the existence of outgoing transitions, which may have been removed during
synthesis. These notions of validity are formalized in Definition 5.

Definition 5 Validity of formulas in 3 with respect to K (notation: k |- b) is defined as
follows. Assume that k = (X,L,—>,x) € K, p € P and b,c € B in the following
derivation rules:
peLkx) kWb klIFb klFc kIEb k¢
k Ik true kIFp k- —=b kIEbAc klIkbve klEbve

Validity of formulas in F with respect to /C (notation: k E f) is defined in the following
way. Assume that k = (X, L, —>,x) € K,b € B,e € £,x' € X and f,g € F in the
following derivation rules:

kb kEf kEg kKED KE f
KED KE fAg KEbVf kEbV S
Vx - x (X,L,—,x)E f x5 x (X,L,—>,x)) Ef
X,L,—,x)E [el f X,L,—,x)F <e>f
Vx —*x" (X,L,—.,xYE [x —*x (X,L,—,xYEDb
X,L,—,x)EOf X,L,—,x)EO0b
x -5y x -5y

(X,L,—,x) F <e> (X, L,—,x) Edlf
We may now concisely formulate the synthesis problem in terms of the previous
definitions. This is the key problem which will be resolved in this paper.

Definition 6 Given k € IC and f € F, find s € K such that the following properties hold:
DskE f,2)s <k,3)Forallk’ < kand k' E f it holds that k¥’ < s; or determine that such
an s does not exist.

The three properties in Definition 6 are interpreted in the context of supervisory control

synthesis as follows. Property 1 (validity) states that the synthesis result satisfies the control
requirements. Property 2 (controllability) ensures that no accessible uncontrollable behavior

@ Springer

118 Discrete Event Dyn Syst (2017) 27:109-142

is disallowed during synthesis. Property 3 (maximality) states that synthesis removes the
least possible behavior, and thereby induces maximal permissiveness. That is, the behavior
of every alternative synthesis option (with regard to validity) is included in the behavior of
the synthesis result. For clarity, please note that the term behavior is used here and in the rest
of this paper to refer to the actual JC-model itself, and not to its language of event-sequences.

4 Synthesis

Given k = (X,L,—>,x) € K as plant specification, and control requirement f €
JF, we construct a new transition relation —C (X x F) x & x (X x F) over the
state-formula product space. This allows us to relate original states to expressions which
need to be satisfied at these states, thereby employing a separate reduction process on
the modal expressions in F. The newly created transition relation is henceforth sub-
jected to repeated transition removal, based upon a partial satisfiability test of formulas
assigned to target states, as illustrated abstractly in Fig. 2. In order to further substan-
tiate our claims, we first consider a number of examples. Particular emphasis is placed
on the applied reductions of modal expressions, which are henceforth formally stated in
Definition 8.

The model in Fig. 3a is adapted such that the expression [a] p becomes satisfied, result-
ing in the model shown in Fig. 3c. The initial state space, upon which transition removal
takes place, is shown in Fig. 3b. This intermediate solution is constructed by combining
the original initial state x with the formula [a] p, resulting in a new initial state. We then
observe how the validity of the expression [a] p relates to validity at succeeding states.
In this case, after an a-step, p must be satisfied, while after a b-step, the formula true
needs to hold. Transitions leading to state-formula pairs where the assigned formula can-
not be satisfied are now removed, and therefore omitted in Fig. 3c. For example, the step
(x, [al p) LN (x, p) is removed since property p cannot be satisfied in any state con-
structed from x, since p &€ L(x). The thus created transition relation over the state-formula
product space incorporates an embedded unfolding induced by the formula reductions. The

DAR G

Fig. 2 Abstraction of the synthesis process. The plant specification transition relation in (a) is augmented
with reductions of the control requirement in (b), which may induce an embedded unfolding. This new
transition relation is then subjected to repeated transition removal in steps (c—d), until a stable point has been
reached in (e)

@ Springer

Discrete Event Dyn Syst (2017) 27:109-142 119

Fig. 3 Synthesis for the control requirement [a] p upon the model in (a), resulting in the model in (¢). This
example illustrates the creation of a new transition relation over the state-formula product space, shown in
(b), the resulting embedded unfolding and subsequent transition removal upon (b)

model in Fig. 3a may also be adapted by directly removing the self-loop at state x. How-
ever, such a solution would clearly not be maximally permissive, while the adapted model
in Fig. 3c retains this looping behavior at a later stage.

A somewhat more complicated example is shown in Fig. 4. The model in Fig. 4a
is adapted such that it satisfies the control requirement [1(p A [algq), resulting in the
model shown in Fig. 4b. Note that invariant formulas reduce in such a way that the entire
invariant expression re-occurs at the next transition, while the formula under invariance is
reduced. To counteract infinite expansion, formulas are normalized by removing all double
conjuncts.

Figure 5 is provided to shed some light on the restrictions in . If the formula [a] p Vv

[a] g were to be synthesized upon the model in Fig. 5a, this would result in two different

b Yy
va(P/\ [a]q)}-x'
A a
u a
: Y
p € L(z), p,q € L(y) (y7D(p/\[G]q)/\q

Fig. 4 Synthesis for the control requirement [(p A [a] ¢) upon the model in (a), resulting in the model in
(b). Note that the invariant expression L (p A [a] g) re-occurs at succeeding states. Note that true conjuncts
are removed in this picture for compactness, but such removal is not neccessary for ensuring finiteness

@ Springer

120 Discrete Event Dyn Syst (2017) 27:109-142

a b c d
a
O O Oy O CYXITI e €X)
a

p € L(y), q € L(2)

Fig.5 Synthesis for [a] pV [a] g upon the model in (a) would result in two different maximally permissive
solutions shown in (b) and (c). Instead, we restrict control requirements such that the left-hand disjunct may
only contain elements from 13, as shown in (d)

maximally permissive solutions in Fig. 5b and c, which are essentially incomparable. We
therefore restrict the logic F in such a way that the left-hand disjunct must contain an
expression in B. The formula reductions of a left-hand expression b in bV f only reduce to
true if b holds at the starting state of a transition, which can be readily verified.

We may now consider a formal treatment of these formula reductions as provided in Def-
inition 8. Given the original plant transition relation — C X x £ x X, we will define a new
transition relation — (< (X x F) x £ x (X x F) which will serve as the synthesis start-
ing point. The specifics discussed in Fig. 5 regarding disjunctions require that the formula
reductions need to be defined in terms of both formulas and states, as can be seen in Def-
inition 8. As shown in Fig. 4, the number of formula reductions needs to be finite in order
to ensure the construction of a finite synthesis starting point —¢. For this purpose syn-
tactical sub-formulas as given in Definition 7 are applied in Definition 8 to inhibit infinite
expansion.

Definition 7 For k = (X, L, —>, x) and f € F we derive the set of sub-formulas of f in
state x (notation: sub (x, f)) by the rules below. Assume that f, g, h € F and b € B in the
following definition:
f esub(x,g) f € sub(x, h)
fesubx,f) fesub(x,gnh) fesub(x,gnh)

fesub(x,g) kb fesub(x,g)
fesub(x,bV g) fesub(x,0g)

Definition 8 We define the synthesis starting point — (< (X x F) x € x (X x F) Given
k=X,L,—,y) ek, f,g,f'g.,e F,be B,x,x' € Xand e, ¢ € &, we define the
synthesis starting point —¢ by the derivation rules shown below.

x - x/ klkb x5 &/ kKIFb (x, f) =0 (&, f)

(x,b) =0 (x, true) (x,bV f) —>¢ (x/, true) (x,bV f) =50 &', f))

(o, f) =0 (&, f) (x,8) —>0 (x'.g) g €sub(x', f)
(, f A g) —0 (X, f)
(x,) —>0 (&, f) (x,8) —>0 (x'.g) g Esub(x',)
(. fAQ ——>0 (&, [Ag)

e e e
x — x' x—x e#é x — x'

(x, el f) —e>0 &) (x, [e]f) —e>0 (x', true) (x, <e>f) —e>0 &',)

@ Springer

Discrete Event Dyn Syst (2017) 27:109-142 121

x = x, f) =0 &, f) e sub (', f)
(x,<e’>f) —€>0 (x/, true) x, 0780 —E>0 &, 0f)
(x, f) =0 &', f) f' &sub (', f) x5 x
O S0 @, OF A f) (x, Ob) —>0 (v, true)

e , e ,
X — X X — X

(x, <e'>) —e>0 (x’, true) (x,dIf) —e>0 (x', true)

We briefly consider the derivation rules in Definition 8. A basic formula b € B always
reduces to true. The details surrounding the reductions of the left-hand disjunct have been
considered in Fig. 5. The right-hand reduction in a disjunctive formula is directly inherited,
if the corresponding basic formula is not satisfied, as shown clearly in the third derivation
rule in Definition 8. Two different rules are required to define proper formula reductions
under conjunction. As shown in Definition 8, the two respective rules for each conjunct are
always inherited, but the right-hand reduct does not occur at the constructed target state if
it is a sub-formula of the left-hand reduct. This effectively inhibits unbounded expansion of
the reductions of invariant expressions. As detailed in Fig. 3a, a formula [e] f reduces to
f after an e-step, while it reduces to true after an ¢’ # e step. The reduction for a formula
<e> f is somewhat more involved. After every e-step, an attempt is made to satisfy this
formula, as signified by the reduction towards f. However, the original behavior after every
e-step is also copied, which induces maximal permissiveness, as shown in Fig. 6. This is
the key difference between the synthesis for a formula [e] f and a formula <e> f, which
explains why the sixth and eighth rule are different. Synthesis for an invariant formula 0] f
has been considered in Fig. 4. Both the invariant formula itself, as well as its underlying
reduct need to be present at the next state. The combination of reductions under conjunction
then assure that appropriate modal expressions appear at later stages. Two rules are required
for invariant formulas, as shown in Definition 8, to directly enforce the same type of nor-
malization for the target reducts as shown in the rules for conjunction. The formulas ¢ b,
for b € B, <e>, for e € £ and dIf each reduce to a true expression. Ensuring validity for
these formulas relies upon the partial satisfiability test which is applied during synthesis.

Formulas of type <e> f are synthesized in such a way that original behavior is left in
place. This is illustrated in Fig. 6. Synthesis for <a> [b] false A <a> [c]false upon the
model in Fig. 6a would not result in a maximally permissive solution if only the b and ¢
a b Cy, [b] false A true

a al c

¢ Xz
a a
x, <a>[b] false A\ <a>[c] false q y, true A true
BT i
b ¢ a (y, Lc] false N true 21, true A true
® © ONC)

(. W fatse L false) 1(y) = L(y1) = Liye)

Fig. 6 Synthesis for <a> [b] false N <a> [c] false upon the model in (a) is not maximally permissive if
only the b and c steps were removed from the y-state. Instead, we copy original behavior as shown in (b),
which is the correct maximal synthesis result if a € C. If a € U, then (c) is not a satisfying partial bisimulant
of (b)

@ Springer

122 Discrete Event Dyn Syst (2017) 27:109-142

steps were removed from the y-state. Instead, we leave original behavior in place as shown
in Fig. 6b, where new non-deterministic a-steps are introduced by applying Definition 8,
followed by transition removal. Note that this is only a viable solution if a € C. If a € U,
then the model in Fig. 6¢ is a satisfying partial bisimulant of Fig. 6a, but not of Fig. 6b.
Therefore, if a € U then Fig. 6b is not maximally permissive. We therefore applied the
restriction of ¢ € C in Definition 4, for formulas of type <e> f. The restriction that b €
B for formulas of type { b is founded on the same basis. The formula <a> [b] false A
<a> [c] false may be expressed as ¢ (—x Ay A —z1 A —za A [blfalse) A O (—x Ay A
—z1 A —z2 A [c]false) and has the same synthesis solution (modulo state names) as shown
in Fig. 6b. Consequently, the counterexample with regard to maximal permissiveness shown
in Fig. 6¢ applies.

We now consider the synthesizability condition for removal of a constructed step
x,) - (x’, f7). Aninitial and provably sound observation is to retain such steps if a sat-
isfying partial bisimulant exists at the target state. That is, we should not disallow a transition
(x, f) LN (x’, f/yifak’ € K exists such that k¥’ < (X, L, —, x") and k' & f’. However,
existence of such a satisfying partial bisimulant is not a practical way from a computa-
tional perspective to express whether a constructed target state (x’, /) should be retained
after a step (x, f) - f7). Instead, we rely upon an incremental approach where we
construct iterative transition relations — o, —>1, —>2, ... until a stable point has been
reached. We apply a synthesizability test (notation (x’, f') 1, f) to assess whether a con-
structed step (x, f) < (x’, f/) should be retained in step n of the iterative synthesis
process. Derivation rules for this test are listed in Definition 9, and are discussed in detail
thereafter.

When studying Definition 9, it might be helpful to take a glance at Definition 10, where
we apply Definition 9 to create succeeding iterations S’ I Sk'f}'l , Sk'f}'z, ... of the synthesis
result. We therefore have to define synthesizability in terms of a previously derived tran-
sition relation —>,,. Therefore, the transition relation —,C (X x F) x & x (X x F)
used in Definition 9 should be interpreted syntactically, without reference to a particular
n € N. Definition 9 relies upon the syntactical notion of sub-formulas, as provided in
Definition 7.

Definition 9 Fork = (X,L,—,y) e K,b e B, f, f1, f»,g8.8 € F,e€ £, x € X and
intermediary synthesis relation —,C (X x F) x £ x (X x F) we derive synthesizability
as follows:

kl-b @Ot fi (x,8) 1t o kb (x,8) tu f
(x,8) tn b x,8) M inf2 x, @) thbVf (x,@)MhbVf

(x,8) —>n (v,8) fesub(y,g) (., 8) tn f

(x,8) T [el f (x,8) th <e>f
(X,g) Tnf (.X,g) —): (y7g/) (X7L’—>7)’) ”_b
(x.8) T U f (x.8) tn Ob

(x,8) —=>n (¢, 8) (x,8) —=u (¥, &)
(x,8) T <e> (x, &) 1 dif

The first derivation rule in Definition 9 expresses how synthesizability for a basic formula
b € Bin (x, g) directly depends upon the validity of this formula at that particular state. If

@ Springer

Discrete Event Dyn Syst (2017) 27:109-142 123

both conjuncts fi and f> can be synthesized, then the combination fi A f5 is synthesizable
in (x, g). Synthesizability for disjunction is derived directly from its operands, as indicated
by the third and fourth rule. A formula [e] f is always synthesizable since every outgoing
e-step may be removed. However, during the transition removal phase we have to take into
account that e may be uncontrollable. For <e> f such that e € C, an example is considered
in Fig. 7. This example shows how multiple iterations of transition removal are required to
determine that the model in Fig. 7a can not be adapted to satisfy the formula <a>([a] p A
<a>q). Due to the introduction of a copy of the original behavior in the branch at the right-
hand side in Fig. 7b, it might seem that the formula <a>([a] p A <a>q) is still satisfiable,
since an outgoing a-step exists. Therefore, synthesizability for a formula of type <e> f
requires that f is a sub-formula of the formula assigned to the relevant step, as shown in
Definition 9.

Synthesizability for a formula [J f in a combined state (x, g) requires that f is synthe-
sizable in (x, g). The remaining expressions ¢ b, <e> and dIf are only synthesizable if they
can be directly satisfied. As justified by the intuition that no transition removal will make
such an expression more true.

We may now define the succeeding iterations in the computational approximations —> 1,
—>9, ..., for which —>(has already been given in Definition 8. The corresponding
synthesis results Sk{ 3 Sk% o - are also detailed in Definition 10.

Definition 10 Fork = (X, L, —, x), f € F and n € N, we define the n-th iteration Sk"f
in the computational synthesis process as follows:

Sty =X xF,Lxp, —n (x,)

Where Lxr(y, g) = L(y) forall y € X and g € F. The transition relation —, is defined
fory,y € X,g,g € F and e € £ as follows:

0,8 =, (V,8) ecl
0, 8) =1 (V. 8)

0, 8) —=n (v, 8) Yvel* : ¥, g) 550" 8" : (v, ¢") tu &
(. 8) —=nt1 0, g)

a e b >(x,<a>([alp A <a>q))17(3)
]l geLe) y N

@ [y, Lalp A <a>q] 17(2) y, true

a a a a

y

° 17(1) (z,p/\q] [z,p N\ true) 17/(1) [2, true)

Fig. 7 Synthesis for the control requirement <a>([a] p A <a>q) upon the model shown in (a), resulting
in (b). Synthesizability at each state for various iterations in the process of transition removal is indicated
using 1;, fori € {1, 2, 3}. This synthesis property necessitates the use of sub-formulas in the synthesizability
for formulas of type <e> f

@ Springer

124 Discrete Event Dyn Syst (2017) 27:109-142

The first rule in Definition 10 states that every uncontrollable step should be preserved.
The second rule expresses the actual synthesis functionality, where a transition is only
preserved if synthesizability holds at each state which is reachable by uncontrollable steps.

Transition removal in the succeeding iterations of the transition relation — ¢, —>1,
—>, ... proceeds until no more target states of individual transitions are considered candi-
dates for removal. That is, if the synthesizability predicate holds at every reachable state. If
a plant model k& € [has finitely many transition, this process is terminating. This premise
for completeness is formalized in Definition 11.

Definition 11 Fork = (X, L, —>,x) € K, f € F andn € N we say that Sk’ff is complete
if for all (x, f) —>* (x/, f7) it holds that (x', f") 1, f’.

If the condition of completeness as stated in Definition 11 can not be reached a solution
to the synthesis problem in Definition 6 does not exist.

5 Correctness

A number of proofs are required to establish the correctness of the synthesis theory proposed
in the previous section. Theorem 1 shows that the synthesis construction in Definition 10 is
terminating. We then proceed by proving that this synthesis construction satisfies the three
main results from Definition 6: validity (Theorem 2), controllability (Theorem 3) and max-
imal permissiveness (Theorem 4). The final result in this section is shown in Theorem 5,
where we prove that if a solution exists, it will be found. Figure 8 shows the dependencies
between the most important theorems and lemmas in this section. Computer verified defi-
nitions and proofs which have been created using the Coq proof assistant are available for
Theorems 2, 3 and 4 at the following resource:

https://github.com/ahulst/deds

The Cog-formalizations are formulated in terms of inductive predicates to achieve a formal-
ization which closely resembles the mathematical proofs stated below. This specific choice
has as a drawback that the proofs for Theorems 1 and 5 cannot be directly encoded in Coq.
An alternative setup of these Coq proofs where the synthesis construction would have been

[
Lemma 1 Lemma 3 Lemma 4

(sub-formulas) (part. bis. lemmas) (—0 and F)

Lemma 6

(U and —¢)

s Lemma 7

Lemma 2 Lemma 9
(=% implies 1)

(—n derivation)

(—0 target exists)

(N\
Theorem 1 Theorem 2 Theorem 3 Theorem 4 Theorem 5

(termination) (validity) (controllability) (maximality) (completeness)
N J

}

Fig. 8 A graphical illustration of the dependencies between the most important lemmas and theorems within
Section 5. In-going arrows represent a dependency to proof entity which the arrow originates from

@ Springer

https://github.com/ahulst/deds

Discrete Event Dyn Syst (2017) 27:109-142 125

encoded using recursive functions, as opposed to inductive predicates, would introduce sub-
stantial overhead to such an extend that correspondence between formal definitions and the
definitions in this paper would have been lost.

We first establish a number of technical results regarding sub-formulas as given in
Definition 7.

Lemma 1 For k = (X,L,—>,x) € K we have the following results regarding sub-
Sformulas:

(a) For f € sub(x, g)and k F g it holds that k E f;

(b) For f A g € sub(x,h) it holds that f € sub (x, h) and g € sub (x, h);

(c) For [e] f € sub(x,g) and (x,g) —>o (v, g) it holds that f € sub (y, g');
(d) ForbvV f € sub(x,g)andk |V bitholds that f € sub(x, g);

(e) ForU f € sub(x, g) it holds that f € sub (x, g);

(f)y ForOf € sub(x,g)and (x,g) 50 (v, &) it holds that O f € sub (v, g');
(g) For(x,h) 1, gand f € sub(x, g) it holds that (x, h) 1, f; and

(h) For f € sub(x, g) and g € sub (x, h) it holds that f € sub (x, h).

Proof These results can be obtained by induction towards the derivation depth in Defini-
tion 7. O

Theorem 1 The derivation of the synthesis result is finite.

Proof We prove the following result: if k = (X, L, —, x) € K, for finite —, then Sk(f ¥
has finitely many transitions. We therefore have to show that the number of transitions in
—> is finite. Every succeeding synthesis iteration removes steps until a stable point has
been reached. Finiteness of — is therefore sufficient to prove termination. Given that
— is finite, we will have to prove that the following set is finite:

() eX < Flx, f)—p @)

We prove this result directly by induction towards the structure of f. For the cases where
f=bor f=0b,forbe B,or f = <e>or f =dIf, the set {(x, f)}UX x {true} includes
all newly constructed states reachable by — ;. Note that this is an overapproximation but
still a finite set, if X is restricted to the states reachable by —>*.

If f = fi A f2, then by induction we derive the following sets:

Cr =, fHe X x F|(x, fi) —¢ &, [}

C = {(x', fHe X x F|(x, o) —¢ (&, [}
Subsequently, we will have to show that the set C; U {(y,g A h) | (y,8) € C1, (¥, h) €
C»} is finite. By induction towards the length of (x, f1 A f2) —>3 (y, f), we can show
that either (y, f) € Cj, if the fourth rule in Definition 8 was applied, or f' = g A h and

(y,g) € Cy and (y, h) € C,. The next case to consider in the induction proof is when
f =bvV g, forb € B. By induction, we derive the set:

C={(", fHeX xF|(x,g) —¢ &, g))

which is finite by induction. Henceforth, the set {(x, bV g)}UCUX X {true} is also finite. The
inductive cases for f = [e] f’ and f = <e> f’ are considered in parallel. By induction,

for each step (x, [e] f/) —>¢ (y, f) and for each step (x, <e> f') —>¢ (y, f’) a finite

@ Springer

126 Discrete Event Dyn Syst (2017) 27:109-142

set Cy can be derived by induction. These sets C, may then be combined under union and
combined with X X {true} to finitely define the set of states reachable under — .

The final case for the inductive proof is where f = [f/, which requires an additional
helper function D defined below. Assume that f € F, C € X x F and n € N in the
following inductive definition:

D(f,C,0) = X x{O f}
D(f,C,n+1) = D(f,C,n)U{(x,gAh) | (x,8) € D(f,C,n), h e C}

IfC ={(,f)eXxF]| (&, f)—{ &, f)) then the finite overapproximation
D(f, C,|C]), where |C| indicates the number of elements in C, contains all states reachable
from (x, O f) over —.

We first show that for all (x, O f) —>§ (x’, g) there exists an n € N such that g €
D(f, C,n). If we apply induction to the structure of g, there are two relevant cases: 1) if
g =0 f then (x, g) € D(f, C,0) and, 2) if g = g1 A g then there exists an n € N such that
(x', g1) € D(f, C, n) and since (x/, g) € C, it holds that (x’, g1 A g2) € D(f, C,n + 1).

Subsequently, we show the following: if (x,0f) —§ (x',g) then (x’,g) €
D(f, C,|C]). Clearly, as we just showed, there exists an n € N such that (x', g) €
D(f, C,n). However, if (x',g) € D(f,C,n) and n > |C| then the derivation rules in
Definition 8 show that g = g; A g and g & sub(x’, g1), if (x',g) & D(f,C,m)
for all m < n. However, for all (x, f) —§ (&, f') it holds that (x", f') e C.If
(x',g) € D(f,C,m) for all m < n then g has n different conjuncts and since n > |C]| it
holds that g, € sub (x', g1). O

If the synthesis result satisfies the completeness premise, and thus when the synthesiz-
ability predicate holds at every reachable state, then the synthesis result satisfies the control
requirement, as shown in Theorem 2.

Theorem 2 Ifk = (X,L,—>,x) € K, f € F andn € N, such that Sk'ff is complete, then
St Ef ‘
S

Proof We will prove the following theorem: for g € F such that f € sub (x, g) and S p
is complete then S t.g F f» which is sufficient since f € sub (x, f). We apply induction
towards the structure of f € F, thereby generalizing over g and x. Note that for each
inductive case we have (x, g) 1, g = (x, g) T» f, by Lemma 1(g).

If f = b, forb € B, then (x,g) 1, b and thus k & b, which implies S’ & b. If
f f1 A fo then fi € sub(x,g) and f, € sub(x, g), which leads to S”, E f1 and

’ g E f1 by induction. If f = b v f’ then we distinguish between two cases: 1) if k £ b
then Sﬁg E b, 2)if k ¥ b then by Lemma 1(d) it holds that f’ € sub (x, g), which by
induction leads to S JF S "

If f = [el f, then assume there exists a step (x, g) LN, (x’, g"), and define k' =
(X, L, —>,x’). Since (x, g) —e>0 (x’, &), by Definitions 10 and 8, it holds that f €
sub (x', g'), by Lemma 1(c). By the induction hypothesis for f’, we may now derive S} ., =
f’. Note that the induction premise for completeness for S k’f’g, follows from the assumption
of (x,g) —>, (x', g’) and Definition 11. If f = <e> f/, then by Definition 9 there exists
a step (x, g) <, &, g)) such that f/ € sub (x’, ¢’) and (X, L, —>, x’) E g/, where we

@ Springer

Discrete Event Dyn Syst (2017) 27:109-142 127

abbreviate k' = (X, L, —>, x/). Since S o is complete, we may apply induction to derive
Sk £

If f =0 f, then assume there exists a sequence of steps (x, g) —> (x', g) such that
f' € sub(x’, g’) by Lemma 1(e) and (f). Set k' = (X, L, —>, x’), then due to the assump-

tion of (x, g) —> (x, g, S o is complete which leads to S, ¢ E f’ by induction. For

the cases f = O b, forb € B, or f = <e> or f = dIf, the result Sk’fg E f follows directly
from (x, g) T f. O

Lemma?2 If f € F,e € £and x,y € X, such that x - y, there exists an f' € F such
that (x, f) =0 (y, f").

Proof By induction towards the structure of f. O

Controllability then follows directly from Lemma 2 and the construction in Definition 10,
as shown in Theorem 3.

Theorem 3 Ifk = (X,L,—>,x) € K, f € F andn € N then Sk"_f <k

Proof We will show that S =R k by defining R as follows:

R={((y.8).)|, /) —p (., &}

Clearly ((x, f), x) € R. Assume that ((y, g),y) € R. If (v,) —e>,, (z,g') then y 4z
by Definitions 10 and 8, such that ((z, g), z) € R.

If y —5 Z then by Lemma 2 there exists a formula-reduct (y, g) 0 (@, g’). Since
e € U it follows from the construction of —, in Definition 10 that (y, g) —e>,1 (z,g). O

Partial bisimulation is related to Definition 8 and Definition 7, but also implies validity
for formulas in B. These results are listed in Lemma 3.

Lemma3 Fork' = (X', L', —',x'Y e Kandk = (X, L, —>, x) € K, such that k' <k,
we have the following results:

(a) Forallb € Bit holds that k' |+ b if and only if k I b;

(b) Forall f, g € F it holds that f € sub (x', g) if and only if f € sub(x, g); and

(c) Fordll f, f' € Fande € £ and y € X it holds that (x, f) —> (v, f') if and only if
(x, f) == 0,).

Proof Result (a) is obtained by induction towards the structure of » € B in Definition 3,
result (b) is derived by induction towards the derivation depth in Definition 7, and result (c)
is shown by induction towards the derivation depth in Definition 8. O

Lemmas 4 and 5 detail how existence of a formula-reduct relates to validity. Lemma 5 can
be considered a specific instance of Lemma 4, where we require the sub-formula property.

Lemmad Fork = (X,L,—,x) € K, f € F,e € £and x' € X, such that x <5 ¥
there exists an f' € F such that (x, f) —>¢ (x', ') and (X, L, —>,x') E f'.

@ Springer

128 Discrete Event Dyn Syst (2017) 27:109-142

Proof By induction towards the structure of f € F. O

Lemma S5 Fork = (X,L,—,x) € K, e € £ and f, g € F such that <e> f € sub (x, g)

andk E g, there existx' € X and g’ € F such that (x, g) —>o (x', g') and f € sub (x', g')
and (X,L,—,xYE ¢

Proof By induction towards the derivation depth of <e> f € sub (x, g) in Definition 7,
using Lemma 4 for both cases for conjunction to cover the opposite conjunct (i.e. the case
not covered by induction). O

If (x, f) —e>0 (v, g) and (x, f) < (y,h) then g = h if e € U. This determinism
property gives rise to a specific result between formula-reducts and validity, as shown in
Lemma 6.

Lemma 6 Ifk = (X,L,—>,x) € K and (x, f) —e>0 &', f), fore e U, x’ € X and
f. f € F, suchthatk & f, it holds that (X, L, —,x') E f'.

Proof By induction towards the derivation depth of (x, f) 0 (',). O

Lemma 7 If (x, f) —>o (x', f'), then for all n € N it holds that (x, f) —>, (', f) if
forallm < n and for all v € U* and (X', f') —v>;"n(x”, ") it holds that (x", ") tm f".

Proof This result follows from the construction in Definition 10 if we apply strong
induction towards 7. O

Lemma 8 Ifk = (X,L,—,x) €e Kand k' = (X', L', —',x") € K, such that k' < k,
and if f, f' € F,n € Nand v € U*, such that (x, f) —U>Z(y, fand (X', L', —',x')E
f, then there exists an y' € X' such that x'{—'}*y" and (X', L', —',y) < (X, L, —
,y)and (X', L', —',y)E f.

Proof This result follows from Definition 2, Lemma 6 and induction towards the length of
v. O

Lemma 9 details an important result between the semantic notion of synthesizability (i.e.
existence of a satisfying partial bisimulant) and the syntactic notion as given in Definition 9.

Lemma9 Fork = (X,L,—>,x) € K, k' € K and for f, g € F, such that f € sub (x, g)
and k' & g, it holds that (x, g) T f.

Proof The proof is somewhat involved. We apply strong induction towards n, thereby gen-
eralizing over all other variables, and thereafter a nested induction towards the structure of
f» thereby generalizing over g, x and k’. A number of cases for f can be resolved directly
using the induction hypothesis for f, and do not depend upon the induction towards n.
These are the casesfor f =b e B, f = finfo, f=bV f,f=T[elfand f=0f'.
Lemma 1 is required to resolve these cases.

@ Springer

Discrete Event Dyn Syst (2017) 27:109-142 129

We now consider the other inductive cases for f, where we highlight the key differences
for the cases under the inductions n = 0 and n + 1. Assume that k' = (X’, L', —', x’) and
R C X’ x X such that k¥’ <y k.

If f = <e>f/, for e € C, then by Lemma 1(a) it holds that ¥’ F <e>f’. By
Lemma 5 there exists a step x' —> y’ and a formula-reduction (x’, g§) —>¢ (¥, g') such
that (X', L', —',y") £ g’ and f’' € sub(y', g’). By partial bisimulation there exists a
step x SN y such that (y’, y) € R. Definition 8 then allows the construction of a step
(x,8) —>¢ (v, g"). By the induction hypothesis for f’, we now derive (y, g’) 1, f'. For
the case n = 0, this is sufficient to derive that (x, g) 1, <e> f’. For the inductive case for
n, we apply Lemma 7 to construct a step (x, g) 5, (v, g). This requires that we prove
that for all m < n and v € U* such that (y, g') —*(z, g") it holds that (z, g") 1m &"-
This can be resolved by Lemma 8 and the induction hypothesis for .

The case for f = Ob, for b € B is essentially a generalization for the case for f =
<e> f/. If k' E { b then there exists a x’{—>'}*y’ such that (X', L', —', y’) E b, and by
Lemma 4 there exists a g’ € F such that (X', L', —’, y’) E g’. This allows us to construct
(x,9) —>Z‘) (y, g") by Definition 8, such that (X, L, —>, y) E b. For the inductive case
for n we then construct (x, g) —> (y, g’), which is sufficient to derive (x, g) 1, Ob.
The two remaining cases for f = <e> and f = dIf are essentially instances for the case
f=<e>f. O

The main result required for the maximality Theorem 4 has been established in Lemma 9.
We may now resolve this result directly.

Theorem 4 For k', k € K such that k' < k and k' & f, and for all n € N, it holds that
K <S"..
—_ k’f

Proof Assume k = (X,L,—>,x) and k¥’ = (X', L', —>, x’) and further assume that
R C X’ x X such that ¥’ <g k. We will show that k" <p S,éff where R’ is defined as:

R={0. 0.0, »eRAX . L, —'"y)Eg}
Clearly (x’, (x, f)) € R’ and for all (¥, (v, g)) € R’ it holds that L'(y") = Lxg(y, g).
If y -5’7 then by Lemma 4 there exists a (y/, g) —> (z/, g’) such that (X, L/, —>'

,z)) E g'. By partial bisimulation, there exists a step y —> z such that (z/,z) € R.
We then apply Lemma 7 and resolve that for all m < n and for all v € U* such that

(z,g) —U>jl(w, g’) it holds that (w, g”) 1, g” by application of Lemmas 8 and 9. We
then have (7/, (z, g")) € R'.

For the right-to-left case, assume (y, g) —e>n (z, g) for e € U. Since y LN z, there
exists a step y’ %577 such that (z/,z) € R. By Lemma 6, it holds that (X', L', —',7) F
g, and therefore (7, (z, g')) € R'. O

Theorem 5 shows that if a solution exists it will eventually be found by the synthesis
construction introduced before.

Theorem 5 If k', k € KC and f € F, such that k' < k and k' £ f, then there exists an
n € Nsuch that S;" ; is complete.

@ Springer

130 Discrete Event Dyn Syst (2017) 27:109-142

Proof Assume that k = (X, L, —>,x) and k¥’ = (X', L', —>’, x’). By Theorem 1 there
exists an n € N such that S,f ¥ is stable. Due to the construction in Definition 10, for all
(x, f) — 2 (v, f’) at least one of the following two observations holds:

1. There exist v, w € U* and s € C* such that (x, f) ﬂj(y, f; or

2. There exists u € U™* such that (x, f) —u>*(y, .

In the first case, by Definition 10 it holds that (y, f") 1, f’. For the second case, we
apply Lemma 8 to obtain an y’ € X’ such that x'{—"}*y" and (X', L', —', y') E f’ and
X', L',—',y) < (X, L, —>,y). By Lemma 9 it then holds that (y, f") 1, f’. It then
follows that S 7 is complete. O

6 Computation

We propose the algorithm in Fig. 9 as a direct implementation of the theoretical synthesis
construction introduced in Section 4, for which termination and correctness have already

1 procedure zero(— C X XEX X, (¢, f)e X X F, HC X X F)
2 returns —9C (X X F) X € X (X x F)
3 begin
4 set — :=0
5 if(x,f) € H
6 return()
7 for each (z, f) —=5¢ (¢, f')
8 set —0 = —0 U{(z, f) 0 (@, f)}
9 set —g := — U zero(—, (@', f), HU{(z, f)})
10 return —
11 end
12
13 procedure synthesis(k €K, f € F)
14 returns S,gff € K or false
15 begin
16 let k= (X,L,—,)
17 set —g := zero(—, (z, f), 0)
18 for eachn >0
19 set —p =0
20 setn :=0
21 repeat until —,,_1 = —,
22 for each (y,9) —n (v, 9)
23 ifeeld
24 set —rny1 1= —nq1 U{(y,9) i (v, 9')}
25 else if (y”,9") 1, ¢" for each v € U* and (v',g') —=%(y",g")
26 set —ni1 := —np1 U{(y,9) —=n (v, 9)}
27 setn :=n+1
28 set S = (X x F, Lxp, —n, (%, f))
29 if (2/, f') 1, f’ for each (z, f) —% (', f)
30 return Sk’ff
31 else
32 return false
33 end

Fig. 9 Algorithm for synthesis of a formula f € F, applied to the Kripke-LTS k € K. The synthesis starting
point —> is constructed using a recursive procedure. Following this step, the main synthesis procedure
applies the iterative process of transition removal until a stable point has been reached. The completeness
test then determines whether synthesis has been successful

@ Springer

Discrete Event Dyn Syst (2017) 27:109-142 131

been shown. What remains to be analyzed is the computational complexity of the pro-
posed algorithm, which is detailed in Theorem 6. We first analyze the key parts of this
algorithm.

For the first part of this algorithm, shown in lines 1-11 in Fig. 9, a somewhat different
approach compared to the theoretical setup in Definition 8 is applied, since these deriva-
tion rules can not be directly projected onto pseudo-code. Instead of a direct transformation

of each original transition x —%> x' into a combined transition (x, f) —>¢ (x', f'), we
use a recursive procedure zero where finiteness of formula expansion, as shown in Theo-
rem 1, is applied in order to obtain a finite set of connected transitions which constitute
—>¢. This means that once every outgoing transition of a certain state (x, f) has been
computed, these transitions, and successive transitions thereof, do not have to be computed
again. The test in line 5 in Fig. 9, determines whether the state (x, f) has been inspected
before.

The second part of the algorithm, shown in lines 13-33 in Fig. 9, applies the synthe-
sizability test repeatedly and removes the transitions to states for which this test fails.
This is done until a stable point is reached, as can be observed in line 21 in Fig. 9.
The completeness test in line 29 in Fig. 9 then determines whether synthesis has been
successful.

Note that the implementation of Definition 8 and Definition 9 is not shown here, since it
is assumed that these parts of the algorithm may be straightforwardly derived from their cor-
responding formal definitions. This includes the synthesizability test for which decidability
can be derived from Definition 9 as follows. Note that it is decidable whether a formula
of type b € B holds at a certain state, since the Boolean algebra 5 includes only the tests
for whether a label has been assigned to a particular state as well as the Boolean connec-
tives. It then follows that it is decidable if a formula of type { b holds at a certain state,
by traversing all states reachable over —>,, and