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Abstract We propose a new technique for controlled system synthesis on non-deterministic
automata for requirements in modal logic. Synthesis, as defined in this paper, restricts a
behavioral specification of the uncontrolled system such that it satisfies a given logical
expression, while adhering to the rules dictated by supervisory control such as maximal
permissiveness and controllability. The applied requirement formalism extends Hennessy-
Milner logic with the invariant and reachability modalities from Gödel-Löb logic, and
is therefore able to express a broad range of control requirements, such as marker state
reachability and deadlock-freeness. This paper contributes to the field of control synthesis
by achieving maximal permissiveness in a non-deterministic context for control require-
ments in modal logic, and treatment of controllability via partial bisimulation. We present
a well-defined and complete derivation of the synthesis result, which is supported further
by computer-verified proofs created using the Coq proof assistant. The synthesis method is
also presented in algorithmic form, including an analysis of its computational complexity.
We show that the proposed synthesis theory allows full expressibility of Ramadge-Wonham
supervisory control theory and we illustrate its applicability in two small industrial case
studies, including an analysis with regard to scalability.
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1 Introduction

This paper concerns the controlled system synthesis on non-deterministic automata for
requirements in modal logic. The controlled systems perspective treats the system under
control — the plant — and a system component which restricts the plant behavior — the
controller — as a single integrated entity. This means that we take a model of all possi-
ble plant behavior, and construct a new model which is constrained according to a logical
specification of desired behavior — the requirements. This resulting model represents the
controlled behavior of the plant, and is therefore referred to as the controlled system. The
automated generation, or synthesis, of such a restricted behavioral model incorporates a
number of concepts from supervisory control theory (Ramadge and Wonham 1987), which
guarantees that the generated model is a proper controlled system with regard to the origi-
nal plant specification. This includes a strict partitioning of behaviors into controllable and
uncontrollable events, such that synthesis does not disable accessible uncontrollable events,
thereby achieving controllability. In addition, synthesis preserves all behavior which does
not invalidate the requirements, thereby inducing maximal permissiveness. The synthesis
theory put forward in this paper further allows the expression of marker state reachability
and deadlock-freeness, which are often employed in supervisory control (Cassandras and
Lafortune 2008).

Starting point of the synthesis construction is a non-deterministic Kripke-structure with
labeled transitions, representing the uncontrolled plant model. Basic properties may be
assigned to states to capture state-based information, while event-labeled transitions cap-
ture system dynamics. The required controlled behavior is expressed using modal logic with
invariant and reachability operators.

A new transition relation is henceforth derived, by observing how the validity of modal
expressions in consecutive states relates to event labels. From this new behavioral relation,
transitions are removed if formulas assigned to target states do not satisfy a partial sat-
isfiability test, until a stable point is reached. Most of the theoretical work in this paper
involves a precise formulation of the mathematical structures involved, as well as proofs
to show termination and well-definedness of the applied construction. The required con-
trolled behavior is enforced by disallowing certain events, which coincides with the standard
approach in supervisory control theory (Ramadge and Wonham 1987), since system control
should not involve a fundamental adaptation of system properties; only existing behavior
may be disallowed.

The contribution of this paper is two-fold. First, it presents a new technique for max-
imally permissive controlled system synthesis in a non-deterministic context. Second,
it defines this synthesis for a modal logic which is able to capture a broad range of
requirements.

Regarding the first contribution, it should be noted that supervisory control is often
approached in a language-based setting using a deterministic model of both plant and con-
troller. Classic Ramadge-Wonham supervisory control theory is a well-researched example
of this setup (Ramadge and Wonham 1987). The resulting controller restricts the behav-
ior of the deterministic plant model, thereby ensuring that it operates according to the
requirements. The demand for control synthesis on non-deterministic models of behavior
is clearly present, as signified by a number of works on this topic (see for example Fabian
and Lennartson 1997 and Kumar and Shayman 1994). Non-determinism allows for a higher
level of abstraction in modeling discrete event systems, due to identification of similar
events (Cassandras and Lafortune 2008).
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In this paper, we consider non-determinism in conjunction with maximal permissiveness;
a property which states that all non-invalidating behavior should be preserved, while achiev-
ing the control objective. This ensures that the controlled behavior stays as close as possible
to the intended operation of the system. Since maximal permissiveness is key in achieving
proper controlled behavior, we intend to improve upon previous efforts by defining con-
trolled system synthesis in a maximal way for non-deterministic models. Since maximal
permissiveness is limited or completely omitted in earlier work on control synthesis for non-
deterministic models, we intend to bridge this gap towards full coverage of control synthesis
in a non-deterministic setting.

We further illustrate controlled system synthesis on a non-deterministic model by the
example in Fig. 1. It consists of a system of conveyor belts for luggage handling at an
airport, and is loosely based on research done at Vanderlande Industries (Kamphuis 2013;
Jansen 2014). The state diagram shown in Fig. 1a models the uncontrolled operation of this
system. If the system is in normal operation (state NO), it repeatedly executes a move event.
However, as depicted in Fig. 1c, a small suitcase might get stuck, halting the system (state
ST). If the suitcase causing the obstruction is pulled loose by one of the travelers (event
release), the conveyor belt resumes normal operation. Also, one of the operators may release
the suitcase (state OP), stop the conveyor belt to make sure that everything is OK, and then
resume its normal operation. Note that the release event from the state ST may be caused
by two different situations. First, the traveler who owns the suitcase may free it from its
undesirable position, and subsequently leave the airport. Second, a different traveler, who

a b

c

Fig. 1 Control synthesis in a non-deterministic setting. A luggage conveyor belt, depicted in (c) is modeled
by the state diagram in (a). Controlled operation such that a release event is not directly followed by a move
event is shown in (b). This controlled system model satisfies the modal expression in the upper right corner
of the illustration. Note that the model in (b) incorporates a new state. Uncontrollable events are indicated
using dashed lines
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does not own the suitcase, may pull it loose and — in good faith — put it back on the
conveyor belt. Since in the second situation, the suitcase still poses a threat to the desired
operation of the system, we wish to control the behavior of this system in such a way that a
release event can not be followed immediately by a move event, thereby forcing the system
to go through the SP state. This required behavior is formalized by the modal expression
�[release][move]false; intuitively described as: invariantly, after every release, a move
event should not be allowed.

Figure 1b models the controlled operation of this system, and therefore satisfies
�[release][move]false, while only behavior that invalidates this property has been dis-
allowed. Note that the adapted behavioral model incorporates a new state NO′, modeling
the new behavior of the NO state, after a release event has happened. One of the main
theoretical contributions of this paper is a mathematically sound way to derive such new
states.

Regarding the second contribution of this paper, a quick glance at the requirement for-
malism applied in this paper is provided in Fig. 1, where we used an invariant expression
to disallow occurrence of move events after a release. We define the synthesis theory
for a carefully chosen subset of Hennessy-Milner logic (Hennessy and Milner 1985),
and Gödel-Löb logic (Alberucci and Facchini 2009). The choice to apply a restricted
formalism for control requirements is justified by the synthesis objectives of solution
uniqueness, maximal permissiveness and controllability. For instance, the μ-calculus, which
is often applied in verification tasks such as symbolic model checking (McMillan 1993),
is too strong for obtaining unique and maximally permissive results for control synthesis
problems. For example, a state-model consisting of a single a-loop has no single finite-
state adaptation such that the expression μX.[a]X (i.e. every a-path is finite) becomes
satisfied.

Instead, we combined the invariant (� f ) and reachable (♦ f ) modalities from Gödel-
Löb logic (Alberucci and Facchini 2009) with the universal ([e]f ) and existential (<e>f )
lookahead from Hennessy-Milner logic (Hennessy and Milner 1985). We restrict this
requirement formalism to state-based properties for the reachability operator, and we apply
the same restriction to one side of a disjunction. Figure 5 details an example which shows
that such a restriction is required to obtain unique synthesis results. This emphasis on
uniqueness is a de facto standard in control theory (Ramadge and Wonham 1987). Ear-
lier research shows that the restriction on disjunctive formulas and uniqueness of results
are orthogonal for pure Hennessy-Milner logic (van Hulst et al. 2014). That is, all max-
imally permissive control synthesis results, for unrestricted disjunctions, can be obtained
once the requirement for uniqueness is lifted. Two other important notions prevalent in con-
trol synthesis are marker state reachability and deadlock-freeness. To achieve flexibility in
this regard, we extended the requirement formalism such that both these properties may be
enforced in the synthesis result, if desired.

We provide short examples of requirements specific to the type of synthesis defined
in this paper. Safety-related properties, which model the absence of faulty behavior,
include deadlock-avoidance expressed as � dlf (i.e., invariantly, deadlock-free). Further-
more, the logic may express safety-requirements of a more general nature, such as
�[send]♦ received, for some type of communicating system. In addition, we may use
the requirement formalism to express a limited class of fairness properties. Such as
� (busy ∨ <lock>access), to describe the use of a particular resource in a distributed envi-
ronment. The requirement formalism extends to liveness expressions such as �♦ finished,
to indicate that a path to a state marked as finished should always exist.
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The remainder of this paper is set up as follows. We consider a number of related works
on control synthesis in Section 2. Preliminary definitions in Section 3 introduce basic for-
mal notions up to a point where we can define the synthesis problem in a formal way.
Section 4 details the synthesis method proposed in this paper, including a number of exam-
ples. Correctness theorems are subsequently developed in Section 5. Section 6 concerns
the effective computation of synthesis solutions, including an algorithm and an analysis of
its computational complexity. Section 7 compares the synthesis techniques in this paper
to Ramadge-Wonham supervisory control, by detailing how we can express a Ramadge-
Wonham controller synthesis problem using the proposed theories. A small industrial case
study is provided in Section 8 and a case-based analysis of the scalability of the synthe-
sis algorithm can be found in Section 9. Formal definitions and proofs for most of the
theoretical work in this paper are presented in computer-verified form by means of Coq
proofs.

2 Related work

This paper improves upon a previous conference publication (van Hulst et al. 2015) by
expanding the intuitive explanation of the synthesis setup, providing all proofs in detail, an
analysis of the synthesis method in algorithmic form, a detailed comparison to Ramadge-
Wonham supervisory control, and the inclusion of case studies. In addition, after a careful
study we fixed an apparent too restrictive definition of the synthesizability predicate in van
Hulst et al. (2015) which relates to properly achieving controllability.

Earlier work by the same authors concerning synthesis for modal logic includes a syn-
thesis method for Hennessy-Milner logic (van Hulst et al. 2014). The applied synthesis
technique in this paper is different in an important aspect. Due to a finite unfolding in van
Hulst et al. (2014) of part of the uncontrolled system into a tree-like structure, the recursive
method applied in van Hulst et al. (2014) is not compatible with invariant expressions. This
omission lead to the derivation of the new methodology as presented in this paper.

We analyze other related work along the lines of the three intended improvements in
this paper: 1) allowance of non-determinism in plant specifications, 2) expressiveness of the
requirement specification formalism, and 3) adherence to maximal permissiveness.

Ramadge-Wonham supervisory control theory (Ramadge and Wonham 1987) defines a
broadly embraced methodology for controller synthesis on deterministic plant models. It
identifies a number of key characteristics in the relationship between plant and controlled
system, such as controllability, marker state reachability, deadlock-freeness and maximal
permissiveness, which are inherited by the synthesis theory in this paper. The limitation to
deterministic plant specifications in Ramadge and Wonham (1987) allows the derivation of
a strictly separated unique and maximally permissive controller, but does not embrace the
increased abstraction and flexibility offered by a non-deterministic plant model.

Control synthesis for non-deterministic plant models and temporal specifications is con-
sidered by Pnueli and Rosner (1989) and extended further by Arnold et al. (2003), but
omits maximal permissiveness as a criterion for control synthesis. Follow-up research by
Arnold and Walukiewicz (2008) considers non-deterministic controllers, but limits the spec-
ification of desired behavior to alternating automata. Work by Kumar and Shayman (1994)
investigates non-deterministic controllers for non-blockingness. This approach is further
extended by Jiang and Kumar (2006) for CTL∗ control specifications, but it does not deliver
maximally permissive solutions.
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Similar research to the work presented in this paper is carried out in Pinchinat (2005)
for control requirements in μ-calculus. The methodology presented in Pinchinat (2005)
extracts a maximally permissive controller with regard to the simulation preorder. In addi-
tion, synthesis is defined to be compositional and an approach which uses iterative synthesis
steps based on state-labeling is studied. However, the work in Pinchinat (2005) is limited to
deterministic systems. Follow-up work in Pinchinat and Raclet (2005) does indeed incor-
porate non-deterministic plant specifications but a preceeding step in the synthesis process
in Pinchinat and Raclet (2005) reduces the aforementioned plant model to a deterministic
model. However, this step does not preserve a structural relationship between the synthesis
result and the plant model, while our approach does.

Work by Kupferman and Vardi (2000) investigates the adaptation of a behavioral specifi-
cation such that a μ-calculus expression becomes satisfied. This research is extended within
the context of control synthesis by Kupferman et al. (2000) using a tree-automata based
approach which is not maximally permissive. We find the same omission of maximal per-
missiveness in Moor and Davoren (2001), where safety and liveness properties in μ-calculus
are synthesized for hybrid automata, in Wolff et al. (2013) where LTL-requirements are syn-
thesized for non-deterministic plant models, and in (Ostroff 1989), where safety properties
in real-time temporal logic are synthesized for non-deterministic plants.

A game theoretic approach to the synthesis of liveness goals stated in fluent temporal
logic is the subject of several works (D’Ippolito et al. 2010, 2013). However, the pruning-
based synthesis approach in D’Ippolito et al. (2010, 2013) is inadequate for control of non-
deterministic models, and only allows for synthesis under a weaker maximality criterion,
referred to as a best effort controller.

A detailed exposure of control synthesis for deterministic automata and CTL∗ specifi-
cations is given in (Ehlers et al. 2014). However, the work by Ehlers et al. (2014) asserts
that in general maximally permissive controllers do not exist, while this paper defines such
solutions for a reasonably expressive set of control requirements. Control synthesis via
quantified atomic properties in the μ-calculus is applied by Pinchinat and Riedweg (2003),
but this treatment is limited to deterministic automata. Quotient-based control synthesis in
Basu and Kumar (2007) is based on the propositional μ-calculus, but applies a tableau-based
synthesis method which does not result in a maximally permissive controlled system.

A comparison to work done in UPPAAL Tiga reveals interesting aspects regarding con-
trol synthesis from a mainly practical perspective. For instance, the work in Jessen et al.
(2007) considers synthesizing a controller for a climate control system, based on the logical
specification of both existing behavior (in the form of guards) and required behavior (in the
form of control requirements for safety and liveness). However, since the control-strategies
derived in Jessen et al. (2007) are defined as functions which deterministically choose either
a specific control action or a delay, non-deterministic handling of control is not incorpo-
rated in Jessen et al. (2007). Another example for control synthesis using UPPAAL Tiga is
detailed in Havelund et al. (1999), concerning the automated derivation of controllers for
power modules in audio and video systems. One particular aspect of the work in Havelund
et al. (1999), which also applies to UPPAAL-based control synthesis in a general compari-
son with the work in this paper, is the impossibility to nest the invariant operator in logical
expressions.

The interplay between the validity of modal expressions and transition removal in a con-
trol synthesis context is studied by Ziller and Schneider (2005), and the incremental effects
of transition removal upon the validity of μ-calculus formulas is considered by Sokolsky and
Smolka (1994) and Cleaveland and Steffen (1993). Note that the latter two works study this
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problem from a model-checking perspective. The limitations regarding control synthesis for
disjunctive expressions, as applied in this paper, have been observed earlier (Antoniotti and
Mishra 1995).

Work by Fabian and Lennartson (1997) first identified a simulation-type refinement rela-
tion to be used in control synthesis for non-deterministic automata. Also, research done by
Fainekos et al. (1994) for hybrid control synthesis and temporal logic applies a simulation-
type relation between plant and controlled system. Constraint-based synthesis for safety
properties in Pralet et al. (2010) also applies a simulation-type relation for this purpose. Par-
tial bisimulation as a means to express controllability is first described by Rutten (2000), and
a subtly different variant is applied by (Su 2008). Various ramifications surrounding partial
bisimulation and controllability are studied by Markovski (2011) from a process-theoretic
perspective.

3 Definitions

We assume a set E of events and a set P of state-assignable basic properties. In addition,
we assume a partition of E into controllable events C and uncontrollable events U , such
that C ∪ U = E and C ∩ U = ∅. State-based properties are used to capture state-based
information, and are assigned to states using a labeling function. Events are used to capture
system dynamics, and represent actions occurring when the system switches between states.
Controllable events may be used to model actuator actions in the plant, while an uncontrol-
lable event may represent, for instance, a sensor reading or a user input. Basic properties
and events are used to model plant behavior in the form of a Kripke-structure (Bull and
Segerberg 2001) with labeled transitions, to be abbreviated as Kripke-LTS, as formalized
in Definition 1. It is essential for the well-definedness of the synthesis construction in this
paper that the transition relation in this Kripke-LTS is finite. This does not exclude loops or
other kinds of infinitary behavior; we solely assume finiteness of the transition relation as
far as its definition as a set of triples is concerned.

Definition 1 For state-space X, labeling function L : X �→ 2P , finite transition relation
−→ ⊆ X × E × X and initial state x ∈ X, we define a Kripke-LTS as the four-tuple
(X,L, −→, x). The set of all Kripke-LTSes is denoted by K.

As usual, we will use the notation x
e−→ x′ to denote that (x, e, x′) ∈−→. The reflexive-

transitive closure
s−→∗, for s ∈ E∗, over transition relation −→, is defined in the following

way: For all x ∈ X it holds that (x, x) ∈ 1−→∗, where 1 denotes the empty string; and if there
exist e ∈ E , s ∈ E∗ and y, x′ ∈ X such that x

e−→ y and y
s−→∗x′, then x

es−→∗x′. In most
cases we will use an abstraction of this reflexive-transitive closure, without reference to a
particular s ∈ E∗. That is, x −→∗x′ if and only if there exists an s ∈ E∗ such that x

s−→∗x′.
Partial bisimulation (Rutten 2000) is an adaptation of bisimulation such that controllable

events are simulated, while uncontrollable events are bisimulated. For plant specification
k ∈ K and synthesis result s ∈ K we require that s is related to k via partial bisim-
ulation. This signifies the fact that synthesis did not disallow any uncontrollable event,
which implies controllability in the context of supervisory control. Research in Markovski
(2011) details the nature of this partial bisimulation relation. If all events are controllable,
then partial bisimulation coincides with strong simulation. On the other hand, if all events
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are uncontrollable, partial bisimulation coincides with strong bisimulation (van Glabbeek
1993).

Definition 2 For k′ = (X′, L′, −→′, x′) ∈ K and k = (X,L,−→, x) ∈ K we say that
k′ and k are related via partial bisimulation (notation k′ � k) if there exists a relation
R ⊆ X′ × X such that (x′, x) ∈ R and for all (y′, y) ∈ R the following holds:

1. L′(y′) = L(y); and
2. if y′ e−→′z′, for e ∈ E and z′ ∈ X′, then there exists a z ∈ X such that y

e−→ z and
(z′, z) ∈ R; and

3. if y
e−→ z, for e ∈ U and z ∈ X, then there exists a z′ ∈ X′ such that y′ e−→′z′ and

(z′, z) ∈ R.

If the relation R ⊆ X′ × X is of particular importance we will use the notation k′ �R k to
indicate that k′ and k are related via partial bisimulation as witnessed by R.

Note that both partial bisimulation as formalized in Definition 2 (Rutten 2000) as well
as a variant which omits the requirement (z′, z) ∈ R in the 3th clause in Definition 2 (Su
2008) have been described in the literature. An explicit choice is made in this paper to
apply partial bisimulation as introduced in Rutten (2000) due to the fact that it establishes a
stronger control relation beyond uncontrollable events.

Furthermore, coinductive expressions for behavioral equivalence are ofted considered in
conjunction with the preservation of logical properties. For instance, strong bisimulation
preserves μ-calculus expressions (van Glabbeek 1993). Partial bisimulation is not applied
in this way in this paper. In particular, partial bisimulation does not preserve the logic for
control requirements defined below, and is only to be understood as a formulation for the
relationship between plant and controlled system.

Requirements are specified using a modal logic F given in Definition 4, which is built
upon the set of state-based formulas B, in Definition 3.

Definition 3 The set of state-based formulas B is defined by the grammar:

B ::= true | false | P | ¬B | B ∧ B | B ∨ B

As indicated in Definition 3, state-based formulas are constructed from a straightforward
Boolean algebra which includes the basic expressions true and false, as well as a state-based
property test for p ∈ P . Formulas in B are then combined using the standard Boolean
operators ¬, ∧ and ∨.

Definition 4 The requirement specification logic F is defined by the grammar:

F ::= B | F ∧ F | B ∨ F | [E]F | <C>F | �F | ♦B | <E> | dlf

We briefly consider the elements of the requirement logic F . Basic expressions B func-
tion as the building blocks in the modal logic F . Conjunction is included in unrestricted
form, while disjunctive formulas are restricted to those having a state-based formula from
B in the left-hand disjunct. This restriction guarantees unique synthesis solutions, since
it enables a local state-based test for retaining the appropriate transitions, as illustrated in
Fig. 5. The formula [e]f can be used to test whether f holds after every e-step, while
the formula <e>f is used to assess whether there exists an e-step after which f holds.
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These two operators thereby follow their standard semantics from Hennessy-Milner logic
(Hennessy and Milner 1985). The restriction for the operator <e> to be limited to a con-
trollable event e ∈ C relates to the specific synthesis for a formula <e>f and is detailed
in Fig. 6. An invariant formula � f tests whether f holds in every reachable state, while a
reachability expression ♦ b may be used to check whether there exists a path such that the
state-based formula b holds at some state on this path. Note that the argument of a reacha-
bility expression is restricted to a state-based formula b ∈ B. This is due to the fact that a
reachability formula may be used to express a formula of type <e>f with e ∈ U , which
leads to a problem concerning controllability, as illustrated in Fig. 6. The two operators �
and ♦ are borrowed from Gödel-Löb logic (Alberucci and Facchini 2009), and follow the
same semantics. As an addition to the formulas <e>f , we provide a universal existence test
<e>, which only tests whether an e-step exists. The argument e for the operator <e> may
be an unrestricted event e ∈ E . The deadlock-freeness expression dlf tests whether there
exists an outgoing step of the current state. Combined with the invariant operator, the for-
mula � dlf may be used to include absence of deadlock in the enforced controlled behavior.
Deadlock-freeness is not defined as a state-based expression in B since it requires infor-
mation about the existence of outgoing transitions, which may have been removed during
synthesis. These notions of validity are formalized in Definition 5.

Definition 5 Validity of formulas in B with respect to K (notation: k � b) is defined as
follows. Assume that k = (X,L,−→, x) ∈ K, p ∈ P and b, c ∈ B in the following
derivation rules:

k � true

p ∈ L(x)

k � p

k �� b

k � ¬b

k � b k � c

k � b ∧ c

k � b

k � b ∨ c

k � c

k � b ∨ c

Validity of formulas in F with respect to K (notation: k � f ) is defined in the following
way. Assume that k = (X,L,−→, x) ∈ K, b ∈ B, e ∈ E , x′ ∈ X and f, g ∈ F in the
following derivation rules:

k � b

k � b

k � f k � g

k � f ∧ g

k � b

k � b ∨ f

k � f

k � b ∨ f

∀ x
e−→ x′ (X,L,−→, x′) � f

(X,L,−→, x) � [e]f

x
e−→ x′ (X,L, −→, x′) � f

(X,L,−→, x) � <e>f

∀ x −→∗x′ (X,L,−→, x′) � f

(X,L, −→, x) � � f

x −→∗x′ (X,L,−→, x′) � b

(X,L, −→, x) � ♦ b

x
e−→ x′

(X,L,−→, x) � <e>

x
e−→ x′

(X,L,−→, x) � dlf
We may now concisely formulate the synthesis problem in terms of the previous

definitions. This is the key problem which will be resolved in this paper.

Definition 6 Given k ∈ K and f ∈ F , find s ∈ K such that the following properties hold:
1) s � f , 2) s � k, 3) For all k′ � k and k′ � f it holds that k′ � s; or determine that such
an s does not exist.

The three properties in Definition 6 are interpreted in the context of supervisory control
synthesis as follows. Property 1 (validity) states that the synthesis result satisfies the control
requirements. Property 2 (controllability) ensures that no accessible uncontrollable behavior
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is disallowed during synthesis. Property 3 (maximality) states that synthesis removes the
least possible behavior, and thereby induces maximal permissiveness. That is, the behavior
of every alternative synthesis option (with regard to validity) is included in the behavior of
the synthesis result. For clarity, please note that the term behavior is used here and in the rest
of this paper to refer to the actual K-model itself, and not to its language of event-sequences.

4 Synthesis

Given k = (X,L,−→, x) ∈ K as plant specification, and control requirement f ∈
F , we construct a new transition relation −→⊆ (X × F) × E × (X × F) over the
state-formula product space. This allows us to relate original states to expressions which
need to be satisfied at these states, thereby employing a separate reduction process on
the modal expressions in F . The newly created transition relation is henceforth sub-
jected to repeated transition removal, based upon a partial satisfiability test of formulas
assigned to target states, as illustrated abstractly in Fig. 2. In order to further substan-
tiate our claims, we first consider a number of examples. Particular emphasis is placed
on the applied reductions of modal expressions, which are henceforth formally stated in
Definition 8.

The model in Fig. 3a is adapted such that the expression [a]p becomes satisfied, result-
ing in the model shown in Fig. 3c. The initial state space, upon which transition removal
takes place, is shown in Fig. 3b. This intermediate solution is constructed by combining
the original initial state x with the formula [a]p, resulting in a new initial state. We then
observe how the validity of the expression [a]p relates to validity at succeeding states.
In this case, after an a-step, p must be satisfied, while after a b-step, the formula true
needs to hold. Transitions leading to state-formula pairs where the assigned formula can-
not be satisfied are now removed, and therefore omitted in Fig. 3c. For example, the step
(x,[a]p)

a−→ (x, p) is removed since property p cannot be satisfied in any state con-
structed from x, since p �∈ L(x). The thus created transition relation over the state-formula
product space incorporates an embedded unfolding induced by the formula reductions. The

a b c d e

Fig. 2 Abstraction of the synthesis process. The plant specification transition relation in (a) is augmented
with reductions of the control requirement in (b), which may induce an embedded unfolding. This new
transition relation is then subjected to repeated transition removal in steps (c–d), until a stable point has been
reached in (e)
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a

c

b

Fig. 3 Synthesis for the control requirement [a]p upon the model in (a), resulting in the model in (c). This
example illustrates the creation of a new transition relation over the state-formula product space, shown in
(b), the resulting embedded unfolding and subsequent transition removal upon (b)

model in Fig. 3a may also be adapted by directly removing the self-loop at state x. How-
ever, such a solution would clearly not be maximally permissive, while the adapted model
in Fig. 3c retains this looping behavior at a later stage.

A somewhat more complicated example is shown in Fig. 4. The model in Fig. 4a
is adapted such that it satisfies the control requirement � (p ∧ [a]q), resulting in the
model shown in Fig. 4b. Note that invariant formulas reduce in such a way that the entire
invariant expression re-occurs at the next transition, while the formula under invariance is
reduced. To counteract infinite expansion, formulas are normalized by removing all double
conjuncts.

Figure 5 is provided to shed some light on the restrictions in F . If the formula [a]p ∨
[a]q were to be synthesized upon the model in Fig. 5a, this would result in two different

a b

Fig. 4 Synthesis for the control requirement � (p ∧ [a]q) upon the model in (a), resulting in the model in
(b). Note that the invariant expression � (p ∧ [a]q) re-occurs at succeeding states. Note that true conjuncts
are removed in this picture for compactness, but such removal is not neccessary for ensuring finiteness
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a b c d

Fig. 5 Synthesis for [a]p∨[a]q upon the model in (a) would result in two different maximally permissive
solutions shown in (b) and (c). Instead, we restrict control requirements such that the left-hand disjunct may
only contain elements from B, as shown in (d)

maximally permissive solutions in Fig. 5b and c, which are essentially incomparable. We
therefore restrict the logic F in such a way that the left-hand disjunct must contain an
expression in B. The formula reductions of a left-hand expression b in b ∨ f only reduce to
true if b holds at the starting state of a transition, which can be readily verified.

We may now consider a formal treatment of these formula reductions as provided in Def-
inition 8. Given the original plant transition relation −→⊆ X×E×X, we will define a new
transition relation −→0⊆ (X ×F) × E × (X ×F) which will serve as the synthesis start-
ing point. The specifics discussed in Fig. 5 regarding disjunctions require that the formula
reductions need to be defined in terms of both formulas and states, as can be seen in Def-
inition 8. As shown in Fig. 4, the number of formula reductions needs to be finite in order
to ensure the construction of a finite synthesis starting point −→0. For this purpose syn-
tactical sub-formulas as given in Definition 7 are applied in Definition 8 to inhibit infinite
expansion.

Definition 7 For k = (X,L,−→, x) and f ∈ F we derive the set of sub-formulas of f in
state x (notation: sub (x, f )) by the rules below. Assume that f, g, h ∈ F and b ∈ B in the
following definition:

f ∈ sub (x, f )

f ∈ sub (x, g)

f ∈ sub (x, g ∧ h)

f ∈ sub (x, h)

f ∈ sub (x, g ∧ h)

f ∈ sub (x, g) k �� b

f ∈ sub (x, b ∨ g)

f ∈ sub (x, g)

f ∈ sub (x,� g)

Definition 8 We define the synthesis starting point −→0⊆ (X ×F)×E × (X ×F) Given
k = (X,L,−→, y) ∈ K, f, g, f ′g,′ ∈ F , b ∈ B, x, x′ ∈ X and e, e′ ∈ E , we define the
synthesis starting point −→0 by the derivation rules shown below.

x
e−→ x′

(x, b)
e−→0 (x, true)

k � b x
e−→ x′

(x, b ∨ f )
e−→0 (x′, true)

k �� b (x, f )
e−→0 (x′, f ′)

(x, b ∨ f )
e−→0 (x′, f ′)

(x, f )
e−→0 (x′, f ′) (x, g)

e−→0 (x′, g′) g′ ∈ sub (x′, f ′)
(x, f ∧ g)

e−→0 (x′, f ′)
(x, f )

e−→0 (x′, f ′) (x, g)
e−→0 (x′, g′) g′ �∈ sub (x′, f ′)

(x, f ∧ g)
e−→0 (x′, f ′ ∧ g′)

x
e−→ x′

(x,[e]f )
e−→0 (x′, f )

x
e−→ x′ e �= e′

(x,[e′]f )
e−→0 (x′, true)

x
e−→ x′

(x,<e>f )
e−→0 (x′, f )
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x
e−→ x′

(x,<e′>f )
e−→0 (x′, true)

(x, f )
e−→0 (x′, f ′) f ′ ∈ sub (x′, f )

(x,� f )
e−→0 (x′,� f )

(x, f )
e−→0 (x′, f ′) f ′ �∈ sub (x′, f )

(x,� f )
e−→0 (x′,� f ∧ f ′)

x
e−→ x′

(x,♦ b)
e−→0 (x′, true)

x
e−→ x′

(x,<e′>)
e−→0 (x′, true)

x
e−→ x′

(x, dlf )
e−→0 (x′, true)

We briefly consider the derivation rules in Definition 8. A basic formula b ∈ B always
reduces to true. The details surrounding the reductions of the left-hand disjunct have been
considered in Fig. 5. The right-hand reduction in a disjunctive formula is directly inherited,
if the corresponding basic formula is not satisfied, as shown clearly in the third derivation
rule in Definition 8. Two different rules are required to define proper formula reductions
under conjunction. As shown in Definition 8, the two respective rules for each conjunct are
always inherited, but the right-hand reduct does not occur at the constructed target state if
it is a sub-formula of the left-hand reduct. This effectively inhibits unbounded expansion of
the reductions of invariant expressions. As detailed in Fig. 3a, a formula [e]f reduces to
f after an e-step, while it reduces to true after an e′ �= e step. The reduction for a formula
<e>f is somewhat more involved. After every e-step, an attempt is made to satisfy this
formula, as signified by the reduction towards f . However, the original behavior after every
e-step is also copied, which induces maximal permissiveness, as shown in Fig. 6. This is
the key difference between the synthesis for a formula [e]f and a formula <e>f , which
explains why the sixth and eighth rule are different. Synthesis for an invariant formula � f

has been considered in Fig. 4. Both the invariant formula itself, as well as its underlying
reduct need to be present at the next state. The combination of reductions under conjunction
then assure that appropriate modal expressions appear at later stages. Two rules are required
for invariant formulas, as shown in Definition 8, to directly enforce the same type of nor-
malization for the target reducts as shown in the rules for conjunction. The formulas ♦ b,
for b ∈ B, <e>, for e ∈ E and dlf each reduce to a true expression. Ensuring validity for
these formulas relies upon the partial satisfiability test which is applied during synthesis.

Formulas of type <e>f are synthesized in such a way that original behavior is left in
place. This is illustrated in Fig. 6. Synthesis for <a>[b]false ∧ <a>[c]false upon the
model in Fig. 6a would not result in a maximally permissive solution if only the b and c

a b c

Fig. 6 Synthesis for <a>[b]false ∧ <a>[c]false upon the model in (a) is not maximally permissive if
only the b and c steps were removed from the y-state. Instead, we copy original behavior as shown in (b),
which is the correct maximal synthesis result if a ∈ C. If a ∈ U , then (c) is not a satisfying partial bisimulant
of (b)
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steps were removed from the y-state. Instead, we leave original behavior in place as shown
in Fig. 6b, where new non-deterministic a-steps are introduced by applying Definition 8,
followed by transition removal. Note that this is only a viable solution if a ∈ C. If a ∈ U ,
then the model in Fig. 6c is a satisfying partial bisimulant of Fig. 6a, but not of Fig. 6b.
Therefore, if a ∈ U then Fig. 6b is not maximally permissive. We therefore applied the
restriction of e ∈ C in Definition 4, for formulas of type <e>f . The restriction that b ∈
B for formulas of type ♦ b is founded on the same basis. The formula <a>[b]false ∧
<a>[c]false may be expressed as ♦ (¬x ∧ y ∧ ¬z1 ∧ ¬z2 ∧ [b]false) ∧ ♦ (¬x ∧ y ∧
¬z1 ∧ ¬z2 ∧ [c]false) and has the same synthesis solution (modulo state names) as shown
in Fig. 6b. Consequently, the counterexample with regard to maximal permissiveness shown
in Fig. 6c applies.

We now consider the synthesizability condition for removal of a constructed step
(x, f )

e−→ (x′, f ′). An initial and provably sound observation is to retain such steps if a sat-
isfying partial bisimulant exists at the target state. That is, we should not disallow a transition
(x, f )

e−→ (x′, f ′) if a k′ ∈ K exists such that k′ � (X,L,−→, x′) and k′ � f ′. However,
existence of such a satisfying partial bisimulant is not a practical way from a computa-
tional perspective to express whether a constructed target state (x′, f ′) should be retained
after a step (x, f )

e−→ (x′, f ′). Instead, we rely upon an incremental approach where we
construct iterative transition relations −→0, −→1, −→2, . . . until a stable point has been
reached. We apply a synthesizability test (notation (x ′, f ′) ↑n f ′) to assess whether a con-
structed step (x, f )

e−→ (x′, f ′) should be retained in step n of the iterative synthesis
process. Derivation rules for this test are listed in Definition 9, and are discussed in detail
thereafter.

When studying Definition 9, it might be helpful to take a glance at Definition 10, where
we apply Definition 9 to create succeeding iterations S n

k,f , S n+1
k,f , S n+2

k,f , . . . of the synthesis
result. We therefore have to define synthesizability in terms of a previously derived tran-
sition relation −→n. Therefore, the transition relation −→n⊆ (X × F) × E × (X × F)

used in Definition 9 should be interpreted syntactically, without reference to a particular
n ∈ N. Definition 9 relies upon the syntactical notion of sub-formulas, as provided in
Definition 7.

Definition 9 For k = (X,L,−→, y) ∈ K, b ∈ B, f, f1, f2, g, g′ ∈ F , e ∈ E , x ∈ X and
intermediary synthesis relation −→n⊆ (X ×F) × E × (X ×F) we derive synthesizability
as follows:

k � b

(x, g) ↑n b

(x, g) ↑n f1 (x, g) ↑n f2

(x, g) ↑n f1 ∧ f2

k � b

(x, g) ↑n b ∨ f

(x, g) ↑n f

(x, g) ↑n b ∨ f

(x, g) ↑n [e]f

(x, g)
e−→n (y, g′) f ∈ sub (y, g′) (y, g′) ↑n f

(x, g) ↑n <e>f

(x, g) ↑n f

(x, g) ↑n � f

(x, g) −→∗
n (y, g′) (X, L, −→, y) � b

(x, g) ↑n ♦ b

(x, g)
e−→n (x′, g′)

(x, g) ↑n <e>

(x, g)
e−→n (x′, g′)

(x, g) ↑n dlf

The first derivation rule in Definition 9 expresses how synthesizability for a basic formula
b ∈ B in (x, g) directly depends upon the validity of this formula at that particular state. If
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both conjuncts f1 and f2 can be synthesized, then the combination f1 ∧ f2 is synthesizable
in (x, g). Synthesizability for disjunction is derived directly from its operands, as indicated
by the third and fourth rule. A formula [e]f is always synthesizable since every outgoing
e-step may be removed. However, during the transition removal phase we have to take into
account that e may be uncontrollable. For <e>f such that e ∈ C, an example is considered
in Fig. 7. This example shows how multiple iterations of transition removal are required to
determine that the model in Fig. 7a can not be adapted to satisfy the formula <a>([a]p ∧
<a>q). Due to the introduction of a copy of the original behavior in the branch at the right-
hand side in Fig. 7b, it might seem that the formula <a>([a]p∧<a>q) is still satisfiable,
since an outgoing a-step exists. Therefore, synthesizability for a formula of type <e>f

requires that f is a sub-formula of the formula assigned to the relevant step, as shown in
Definition 9.

Synthesizability for a formula � f in a combined state (x, g) requires that f is synthe-
sizable in (x, g). The remaining expressions ♦ b, <e> and dlf are only synthesizable if they
can be directly satisfied. As justified by the intuition that no transition removal will make
such an expression more true.

We may now define the succeeding iterations in the computational approximations −→1,
−→2, . . ., for which −→0 has already been given in Definition 8. The corresponding
synthesis results S 1

k,f , S 2
k,f , . . . are also detailed in Definition 10.

Definition 10 For k = (X,L, −→, x), f ∈ F and n ∈ N, we define the n-th iteration S n
k,f

in the computational synthesis process as follows:

S n
k,f = (X × F , LXF ,−→n, (x, f ))

Where LXF (y, g) = L(y) for all y ∈ X and g ∈ F . The transition relation −→n is defined
for y, y′ ∈ X, g, g′ ∈ F and e ∈ E as follows:

(y, g)
e−→n (y′, g′) e ∈ U

(y, g)
e−→n+1 (y′, g′)

(y, g)
e−→n (y′, g′) ∀ v ∈ U∗ : ∀ (y′, g′) v−→∗

n(y
′′, g′′) : (y′′, g′′) ↑n g′′

(y, g)
e−→n+1 (y′, g′)

a b

Fig. 7 Synthesis for the control requirement <a>([a]p ∧ <a>q) upon the model shown in (a), resulting
in (b). Synthesizability at each state for various iterations in the process of transition removal is indicated
using ↑i , for i ∈ {1, 2, 3}. This synthesis property necessitates the use of sub-formulas in the synthesizability
for formulas of type <e>f
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The first rule in Definition 10 states that every uncontrollable step should be preserved.
The second rule expresses the actual synthesis functionality, where a transition is only
preserved if synthesizability holds at each state which is reachable by uncontrollable steps.

Transition removal in the succeeding iterations of the transition relation −→0, −→1,
−→2, . . . proceeds until no more target states of individual transitions are considered candi-
dates for removal. That is, if the synthesizability predicate holds at every reachable state. If
a plant model k ∈ K has finitely many transition, this process is terminating. This premise
for completeness is formalized in Definition 11.

Definition 11 For k = (X,L,−→, x) ∈ K, f ∈ F and n ∈ N we say that S n
k,f is complete

if for all (x, f ) −→∗
n (x′, f ′) it holds that (x′, f ′) ↑n f ′.

If the condition of completeness as stated in Definition 11 can not be reached a solution
to the synthesis problem in Definition 6 does not exist.

5 Correctness

A number of proofs are required to establish the correctness of the synthesis theory proposed
in the previous section. Theorem 1 shows that the synthesis construction in Definition 10 is
terminating. We then proceed by proving that this synthesis construction satisfies the three
main results from Definition 6: validity (Theorem 2), controllability (Theorem 3) and max-
imal permissiveness (Theorem 4). The final result in this section is shown in Theorem 5,
where we prove that if a solution exists, it will be found. Figure 8 shows the dependencies
between the most important theorems and lemmas in this section. Computer verified defi-
nitions and proofs which have been created using the Coq proof assistant are available for
Theorems 2, 3 and 4 at the following resource:

https://github.com/ahulst/deds

The Coq-formalizations are formulated in terms of inductive predicates to achieve a formal-
ization which closely resembles the mathematical proofs stated below. This specific choice
has as a drawback that the proofs for Theorems 1 and 5 cannot be directly encoded in Coq.
An alternative setup of these Coq proofs where the synthesis construction would have been

Fig. 8 A graphical illustration of the dependencies between the most important lemmas and theorems within
Section 5. In-going arrows represent a dependency to proof entity which the arrow originates from

https://github.com/ahulst/deds
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encoded using recursive functions, as opposed to inductive predicates, would introduce sub-
stantial overhead to such an extend that correspondence between formal definitions and the
definitions in this paper would have been lost.

We first establish a number of technical results regarding sub-formulas as given in
Definition 7.

Lemma 1 For k = (X,L,−→, x) ∈ K we have the following results regarding sub-
formulas:

(a) For f ∈ sub (x, g) and k � g it holds that k � f ;
(b) For f ∧ g ∈ sub (x, h) it holds that f ∈ sub (x, h) and g ∈ sub (x, h);

(c) For [e]f ∈ sub (x, g) and (x, g)
e−→0 (y, g′) it holds that f ∈ sub (y, g′);

(d) For b ∨ f ∈ sub (x, g) and k �� b it holds that f ∈ sub (x, g);
(e) For � f ∈ sub (x, g) it holds that f ∈ sub (x, g);

(f) For � f ∈ sub (x, g) and (x, g)
e−→0 (y, g′) it holds that � f ∈ sub (y, g′);

(g) For (x, h) ↑n g and f ∈ sub (x, g) it holds that (x, h) ↑n f ; and
(h) For f ∈ sub (x, g) and g ∈ sub (x, h) it holds that f ∈ sub (x, h).

Proof These results can be obtained by induction towards the derivation depth in Defini-
tion 7.

Theorem 1 The derivation of the synthesis result is finite.

Proof We prove the following result: if k = (X,L,−→, x) ∈ K, for finite −→, then S 0
k,f

has finitely many transitions. We therefore have to show that the number of transitions in
−→0 is finite. Every succeeding synthesis iteration removes steps until a stable point has
been reached. Finiteness of −→0 is therefore sufficient to prove termination. Given that
−→ is finite, we will have to prove that the following set is finite:

{(x′, f ′) ∈ X × F | (x, f ) −→∗
0 (x′, f ′)}

We prove this result directly by induction towards the structure of f . For the cases where
f ≡ b or f ≡ ♦ b, for b ∈ B, or f ≡ <e> or f ≡ dlf , the set {(x, f )}∪X×{true} includes
all newly constructed states reachable by −→∗

0. Note that this is an overapproximation but
still a finite set, if X is restricted to the states reachable by −→∗.

If f ≡ f1 ∧ f2, then by induction we derive the following sets:

C1 = {(x′, f ′) ∈ X × F | (x, f1) −→∗
0 (x′, f ′)}

C2 = {(x′, f ′) ∈ X × F | (x, f2) −→∗
0 (x′, f ′)}

Subsequently, we will have to show that the set C1 ∪ {(y, g ∧ h) | (y, g) ∈ C1, (y, h) ∈
C2} is finite. By induction towards the length of (x, f1 ∧ f2) −→∗

0 (y, f ′), we can show
that either (y, f ′) ∈ C1, if the fourth rule in Definition 8 was applied, or f ′ ≡ g ∧ h and
(y, g) ∈ C1 and (y, h) ∈ C2. The next case to consider in the induction proof is when
f ≡ b ∨ g, for b ∈ B. By induction, we derive the set:

C = {(x′, f ′) ∈ X × F | (x, g) −→∗
0 (x′, g′)}

which is finite by induction. Henceforth, the set {(x, b∨g)}∪C∪X×{true} is also finite. The
inductive cases for f ≡ [e]f ′ and f ≡ <e>f ′ are considered in parallel. By induction,
for each step (x,[e]f ′) e−→0 (y, f ′) and for each step (x,<e>f ′) e−→0 (y, f ′) a finite
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set Cy can be derived by induction. These sets Cy may then be combined under union and
combined with X × {true} to finitely define the set of states reachable under −→0.

The final case for the inductive proof is where f ≡ � f ′, which requires an additional
helper function D defined below. Assume that f ∈ F , C ⊆ X × F and n ∈ N in the
following inductive definition:

D(f, C, 0) = X × {� f }
D(f,C, n + 1) = D(f, C, n) ∪ {(x, g ∧ h) | (x, g) ∈ D(f, C, n), h ∈ C}

If C = {(x′, f ′) ∈ X × F | (x, f ) −→∗
0 (x′, f ′)} then the finite overapproximation

D(f, C, |C|), where |C| indicates the number of elements in C, contains all states reachable
from (x,� f ) over −→∗

0.
We first show that for all (x,� f ) −→∗

0 (x′, g) there exists an n ∈ N such that g ∈
D(f, C, n). If we apply induction to the structure of g, there are two relevant cases: 1) if
g ≡ � f then (x, g) ∈ D(f, C, 0) and, 2) if g ≡ g1∧g2 then there exists an n ∈ N such that
(x′, g1) ∈ D(f,C, n) and since (x′, g2) ∈ C, it holds that (x′, g1 ∧ g2) ∈ D(f, C, n + 1).

Subsequently, we show the following: if (x,� f ) −→∗
0 (x′, g) then (x′, g) ∈

D(f, C, |C|). Clearly, as we just showed, there exists an n ∈ N such that (x′, g) ∈
D(f, C, n). However, if (x′, g) ∈ D(f,C, n) and n > |C| then the derivation rules in
Definition 8 show that g ≡ g1 ∧ g2 and g2 �∈ sub (x′, g1), if (x′, g) �∈ D(f, C,m)

for all m < n. However, for all (x, f ) −→∗
0 (x′, f ′) it holds that (x′, f ′) ∈ C. If

(x′, g) �∈ D(f,C, m) for all m < n then g has n different conjuncts and since n > |C| it
holds that g2 ∈ sub (x′, g1).

If the synthesis result satisfies the completeness premise, and thus when the synthesiz-
ability predicate holds at every reachable state, then the synthesis result satisfies the control
requirement, as shown in Theorem 2.

Theorem 2 If k = (X,L, −→, x) ∈ K, f ∈ F and n ∈ N, such that S n
k,f is complete, then

S n
k,f � f .

Proof We will prove the following theorem: for g ∈ F such that f ∈ sub (x, g) and S n
k,g

is complete then S n
k,g � f , which is sufficient since f ∈ sub (x, f ). We apply induction

towards the structure of f ∈ F , thereby generalizing over g and x. Note that for each
inductive case we have (x, g) ↑n g ⇒ (x, g) ↑n f , by Lemma 1(g).

If f ≡ b, for b ∈ B, then (x, g) ↑n b and thus k � b, which implies S n
k,g � b. If

f ≡ f1 ∧ f2 then f1 ∈ sub (x, g) and f2 ∈ sub (x, g), which leads to S n
k,g � f1 and

S n
k,g � f1 by induction. If f ≡ b ∨ f ′ then we distinguish between two cases: 1) if k � b

then S n
k,g � b, 2) if k �� b then by Lemma 1(d) it holds that f ′ ∈ sub (x, g), which by

induction leads to S n
k,g � f ′.

If f ≡ [e]f , then assume there exists a step (x, g)
e−→n (x′, g′), and define k′ =

(X,L, −→, x′). Since (x, g)
e−→0 (x′, g′), by Definitions 10 and 8, it holds that f ∈

sub (x′, g′), by Lemma 1(c). By the induction hypothesis for f ′, we may now derive S n
k′,g′ �

f ′. Note that the induction premise for completeness for S n
k′,g′ follows from the assumption

of (x, g)
e−→n (x′, g′) and Definition 11. If f ≡ <e>f ′, then by Definition 9 there exists

a step (x, g)
e−→n (x′, g′) such that f ′ ∈ sub (x′, g′) and (X,L,−→, x′) � g′, where we
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abbreviate k′ = (X,L,−→, x′). Since S n
k′,g′ is complete, we may apply induction to derive

S n
k′,g′ � f ′.

If f ≡ � f ′, then assume there exists a sequence of steps (x, g) −→∗
n (x′, g′) such that

f ′ ∈ sub (x′, g′) by Lemma 1(e) and (f). Set k′ = (X,L,−→, x′), then due to the assump-
tion of (x, g) −→∗

n (x′, g′), S n
k′,g′ is complete which leads to S n

k′,g′ � f ′ by induction. For
the cases f ≡ ♦ b, for b ∈ B, or f ≡ <e> or f ≡ dlf , the result S n

k,g � f follows directly
from (x, g) ↑n f .

Lemma 2 If f ∈ F , e ∈ E and x, y ∈ X, such that x
e−→ y, there exists an f ′ ∈ F such

that (x, f )
e−→0 (y, f ′).

Proof By induction towards the structure of f .

Controllability then follows directly from Lemma 2 and the construction in Definition 10,
as shown in Theorem 3.

Theorem 3 If k = (X,L,−→, x) ∈ K, f ∈ F and n ∈ N then S n
k,f � k.

Proof We will show that S n
k,f �R k by defining R as follows:

R = {((y, g), y) | (x, f ) −→∗
n (y, g)}

Clearly ((x, f ), x) ∈ R. Assume that ((y, g), y) ∈ R. If (y, g)
e−→n (z, g′) then y

e−→ z

by Definitions 10 and 8, such that ((z, g), z) ∈ R.
If y

e−→ z then by Lemma 2 there exists a formula-reduct (y, g)
e−→0 (z, g′). Since

e ∈ U it follows from the construction of −→n in Definition 10 that (y, g)
e−→n (z, g′).

Partial bisimulation is related to Definition 8 and Definition 7, but also implies validity
for formulas in B. These results are listed in Lemma 3.

Lemma 3 For k′ = (X′, L′,−→′, x′) ∈ K and k = (X,L,−→, x) ∈ K, such that k′ � k,
we have the following results:

(a) For all b ∈ B it holds that k′ � b if and only if k � b;
(b) For all f, g ∈ F it holds that f ∈ sub (x′, g) if and only if f ∈ sub (x, g); and

(c) For all f, f ′ ∈ F and e ∈ E and y ∈ X it holds that (x, f )
e−→ (y, f ′) if and only if

(x, f )
e−→ (y, f ′).

Proof Result (a) is obtained by induction towards the structure of b ∈ B in Definition 3,
result (b) is derived by induction towards the derivation depth in Definition 7, and result (c)
is shown by induction towards the derivation depth in Definition 8.

Lemmas 4 and 5 detail how existence of a formula-reduct relates to validity. Lemma 5 can
be considered a specific instance of Lemma 4, where we require the sub-formula property.

Lemma 4 For k = (X,L, −→, x) ∈ K, f ∈ F , e ∈ E and x′ ∈ X , such that x
e−→ x′,

there exists an f ′ ∈ F such that (x, f )
e−→0 (x′, f ′) and (X,L,−→, x′) � f ′.
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Proof By induction towards the structure of f ∈ F .

Lemma 5 For k = (X,L,−→, x) ∈ K, e ∈ E and f, g ∈ F such that <e>f ∈ sub (x, g)

and k � g, there exist x′ ∈ X and g′ ∈ F such that (x, g)
e−→0 (x′, g′) and f ∈ sub (x′, g′)

and (X,L,−→, x′) � g′.

Proof By induction towards the derivation depth of <e>f ∈ sub (x, g) in Definition 7,
using Lemma 4 for both cases for conjunction to cover the opposite conjunct (i.e. the case
not covered by induction).

If (x, f )
e−→0 (y, g) and (x, f )

e−→ (y, h) then g ≡ h if e ∈ U . This determinism
property gives rise to a specific result between formula-reducts and validity, as shown in
Lemma 6.

Lemma 6 If k = (X,L,−→, x) ∈ K and (x, f )
e−→0 (x′, f ′), for e ∈ U , x′ ∈ X and

f, f ′ ∈ F , such that k � f , it holds that (X,L, −→, x′) � f ′.

Proof By induction towards the derivation depth of (x, f )
e−→0 (x′, f ′).

Lemma 7 If (x, f )
e−→0 (x′, f ′), then for all n ∈ N it holds that (x, f )

e−→n (x′, f ′) if
for all m < n and for all v ∈ U∗ and (x′, f ′) v−→∗

m(x′′, f ′′) it holds that (x′′, f ′′) ↑m f ′′.

Proof This result follows from the construction in Definition 10 if we apply strong
induction towards n.

Lemma 8 If k = (X,L,−→, x) ∈ K and k′ = (X′, L′,−→′, x′) ∈ K, such that k′ � k,
and if f, f ′ ∈ F , n ∈ N and v ∈ U∗, such that (x, f )

v−→∗
n(y, f ′) and (X′, L′, −→′, x′) �

f , then there exists an y′ ∈ X′ such that x′{−→′}∗y′ and (X′, L′, −→′, y′) � (X,L,−→
, y) and (X′, L′,−→′, y′) � f ′.

Proof This result follows from Definition 2, Lemma 6 and induction towards the length of
v.

Lemma 9 details an important result between the semantic notion of synthesizability (i.e.
existence of a satisfying partial bisimulant) and the syntactic notion as given in Definition 9.

Lemma 9 For k = (X,L, −→, x) ∈ K, k′ ∈ K and for f, g ∈ F , such that f ∈ sub (x, g)

and k′ � g, it holds that (x, g) ↑n f .

Proof The proof is somewhat involved. We apply strong induction towards n, thereby gen-
eralizing over all other variables, and thereafter a nested induction towards the structure of
f , thereby generalizing over g, x and k′. A number of cases for f can be resolved directly
using the induction hypothesis for f , and do not depend upon the induction towards n.
These are the cases for f ≡ b ∈ B, f ≡ f1 ∧ f2, f ≡ b ∨ f ′, f ≡ [e]f ′ and f ≡ � f ′.
Lemma 1 is required to resolve these cases.
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We now consider the other inductive cases for f , where we highlight the key differences
for the cases under the inductions n ≡ 0 and n+ 1. Assume that k′ = (X′, L′,−→′, x′) and
R ⊆ X′ × X such that k′ �R k.

If f ≡ <e>f ′, for e ∈ C, then by Lemma 1(a) it holds that k′ � <e>f ′. By
Lemma 5 there exists a step x′ e−→ y′ and a formula-reduction (x′, g)

e−→0 (y′, g′) such
that (X′, L′,−→′, y′) � g′ and f ′ ∈ sub (y′, g′). By partial bisimulation there exists a
step x

e−→ y such that (y′, y) ∈ R. Definition 8 then allows the construction of a step
(x, g)

e−→0 (y, g′). By the induction hypothesis for f ′, we now derive (y, g′) ↑n f ′. For
the case n ≡ 0, this is sufficient to derive that (x, g) ↑n <e>f ′. For the inductive case for
n, we apply Lemma 7 to construct a step (x, g)

e−→n (y, g′). This requires that we prove
that for all m < n and v ∈ U∗ such that (y, g′) v−→∗

m(z, g′′) it holds that (z, g′′) ↑m g′′.
This can be resolved by Lemma 8 and the induction hypothesis for n.

The case for f ≡ ♦ b, for b ∈ B is essentially a generalization for the case for f ≡
<e>f ′. If k′ � ♦ b then there exists a x′{−→′}∗y′ such that (X′, L′,−→′, y′) � b, and by
Lemma 4 there exists a g′ ∈ F such that (X′, L′, −→′, y′) � g′. This allows us to construct
(x, g) −→∗

0 (y, g′) by Definition 8, such that (X,L,−→, y) � b. For the inductive case
for n we then construct (x, g) −→∗

n (y, g′), which is sufficient to derive (x, g) ↑n ♦ b.
The two remaining cases for f ≡ <e> and f ≡ dlf are essentially instances for the case
f ≡ <e>f ′.

The main result required for the maximality Theorem 4 has been established in Lemma 9.
We may now resolve this result directly.

Theorem 4 For k′, k ∈ K such that k′ � k and k′ � f , and for all n ∈ N, it holds that
k′ � S n

k,f .

Proof Assume k = (X,L, −→, x) and k′ = (X′, L′,−→, x′) and further assume that
R ⊆ X′ × X such that k′ �R k. We will show that k′ �R′ S n

k,f where R′ is defined as:

R′ = {(y′, (y, g)) | (y′, y) ∈ R ∧ (X′, L′,−→′, y′) � g}
Clearly (x′, (x, f )) ∈ R′ and for all (y′, (y, g)) ∈ R′ it holds that L′(y′) = LXF(y, g).
If y′ e−→′z′ then by Lemma 4 there exists a (y′, g)

e−→ (z′, g′) such that (X′, L′,−→′
, z′) � g′. By partial bisimulation, there exists a step y

e−→ z such that (z′, z) ∈ R.
We then apply Lemma 7 and resolve that for all m < n and for all v ∈ U∗ such that
(z, g′) v−→∗

m(w, g′′) it holds that (w, g′′) ↑m g′′ by application of Lemmas 8 and 9. We
then have (z′, (z, g′)) ∈ R′.

For the right-to-left case, assume (y, g)
e−→n (z, g′) for e ∈ U . Since y

e−→ z, there
exists a step y′ e−→′z′ such that (z′, z) ∈ R. By Lemma 6, it holds that (X′, L′,−→′, z′) �
g′, and therefore (z′, (z, g′)) ∈ R′.

Theorem 5 shows that if a solution exists it will eventually be found by the synthesis
construction introduced before.

Theorem 5 If k′, k ∈ K and f ∈ F , such that k′ � k and k′ � f , then there exists an
n ∈ N such that S n

k,f is complete.
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Proof Assume that k = (X,L, −→, x) and k′ = (X′, L′,−→′, x′). By Theorem 1 there
exists an n ∈ N such that S n

k,f is stable. Due to the construction in Definition 10, for all
(x, f ) −→∗

n (y, f ′) at least one of the following two observations holds:

1. There exist v, w ∈ U∗ and s ∈ C∗ such that (x, f )
vsw−→∗

n(y, f ′); or

2. There exists u ∈ U∗ such that (x, f )
u−→∗(y, f ′).

In the first case, by Definition 10 it holds that (y, f ′) ↑n f ′. For the second case, we
apply Lemma 8 to obtain an y′ ∈ X′ such that x′{−→′}∗y′ and (X′, L′,−→′, y′) � f ′ and
(X′, L′,−→′, y′) � (X,L,−→, y). By Lemma 9 it then holds that (y, f ′) ↑n f ′. It then
follows that S n

k,f is complete.

6 Computation

We propose the algorithm in Fig. 9 as a direct implementation of the theoretical synthesis
construction introduced in Section 4, for which termination and correctness have already

Fig. 9 Algorithm for synthesis of a formula f ∈ F , applied to the Kripke-LTS k ∈ K. The synthesis starting
point −→0 is constructed using a recursive procedure. Following this step, the main synthesis procedure
applies the iterative process of transition removal until a stable point has been reached. The completeness
test then determines whether synthesis has been successful
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been shown. What remains to be analyzed is the computational complexity of the pro-
posed algorithm, which is detailed in Theorem 6. We first analyze the key parts of this
algorithm.

For the first part of this algorithm, shown in lines 1–11 in Fig. 9, a somewhat different
approach compared to the theoretical setup in Definition 8 is applied, since these deriva-
tion rules can not be directly projected onto pseudo-code. Instead of a direct transformation
of each original transition x

e−→ x′ into a combined transition (x, f )
e−→0 (x′, f ′), we

use a recursive procedure zero where finiteness of formula expansion, as shown in Theo-
rem 1, is applied in order to obtain a finite set of connected transitions which constitute
−→0. This means that once every outgoing transition of a certain state (x, f ) has been
computed, these transitions, and successive transitions thereof, do not have to be computed
again. The test in line 5 in Fig. 9, determines whether the state (x, f ) has been inspected
before.

The second part of the algorithm, shown in lines 13–33 in Fig. 9, applies the synthe-
sizability test repeatedly and removes the transitions to states for which this test fails.
This is done until a stable point is reached, as can be observed in line 21 in Fig. 9.
The completeness test in line 29 in Fig. 9 then determines whether synthesis has been
successful.

Note that the implementation of Definition 8 and Definition 9 is not shown here, since it
is assumed that these parts of the algorithm may be straightforwardly derived from their cor-
responding formal definitions. This includes the synthesizability test for which decidability
can be derived from Definition 9 as follows. Note that it is decidable whether a formula
of type b ∈ B holds at a certain state, since the Boolean algebra B includes only the tests
for whether a label has been assigned to a particular state as well as the Boolean connec-
tives. It then follows that it is decidable if a formula of type ♦ b holds at a certain state,
by traversing all states reachable over −→n and keeping track of which states have already
been visited. The decidability of ↑n f for f ∈ F then follows from the inductive build-up
of the derivation rules in Definition 9.

We now wish to sketch a proof for the computational complexity for the algorithm shown
in Fig. 9. This requires an appropriate metric for the formula size since the number of tran-
sitions in S 0

k,f depends upon the size of the formula. Such a metric is given in Definition 12,
followed by the actual computational complexity proof.

Definition 12 We define size : F �→ N as a metric for the size of the formulas in F .
Assume that f, g ∈ F , b ∈ B and e ∈ E in the following definition:

size (f ) = 1 for f ∈ {b,♦ b,<e>, dlf } size (f ∧ g) = size (f ) + size (g)

size (b ∨ f ) = 1 + size (f ) size ([e]f ) = 1 + size (f )

size (<e>f ) = 1 + size (f ) size (� f ) = 1 + size (f )

Theorem 6 The algorithmic generation of S n
k,f terminates in O (m4) steps, if m =

size (f ) × l and k has l transitions.

Proof Let k = (X,L, −→, x) and f ∈ F . Assume that l is the number of transitions
in −→. The starting point of synthesis −→0, as generated by the procedure zero, has
O (size (f ) × l) transitions, since it is expanded by a factor which depends upon the size
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of f . The procedure zero is invoked only once within the procedure synthesis, and
returns the transition relation −→0, having O (m) transitions. Since the succeeding iter-
ation in the synthesis procedure operates multiple times upon this transition relation,
it can be safely assumed that this part of the procedure outgrows other parts in the com-
putational complexity. We distinguish four nested operations which may each take O (m)

steps:

1. The outer loop starting in line 21, which runs until a stable transition relation has been
reached, which may involve as many iterations as there are transitions in −→0.

2. The inner loop starting in line 23, which considers for each transition whether it should
be removed.

3. The applied synthesizability test in line 24 can be subdivided into two nested parts:

(a) Synthesizability is evaluated at every state reachable by uncontrollable events,
which may involve a search over O (m) transitions.

(b) The synthesizability test itself has complexity O (m) as shown in Definition 9, due
to formulas of type ♦ b.

This leads to the observation that the two nested loops in the synthesis procedure
give rise to a computational complexity in the order of O (m4). The succeeding invocation
of the completeness test only computes the synthesizability for every remaining reachable
state, and does not remove any more transitions. Its complexity is therefore superseded by
the aforementioned two nested loops.

The algorithm in Fig. 9 is presented as a direct implementation of the synthesis construc-
tion introduced in this paper and not as the most efficient or optimized implementation,
since this would obscure the insight into such an algorithm. Nevertheless, the second case
study in Section 9 analyzes the scalability of the algorithm presented in Fig. 9.

7 Ramadge-Wonham supervisory control

In this section we explain how a Ramadge-Wonham (RW) control synthesis problem
(Ramadge and Wonham 1987) may be expressed using the theory proposed in this paper.
Among other adaptations, we have to establish a relation between the language-based
constructs in RW-synthesis and the behavioral preorder of partial bisimulation. Note that
RW-synthesis is limited to deterministic models of both plant and controller.

Recall that RW-synthesis identifies a subset Xm ⊆ X of states as marked, modeling com-
pleted or notified tasks in the physical process the plant represents (Ramadge and Wonham
1987). To cope with marked states, we adapt our plant model as stated in Definition 13.

Definition 13 For plant model k = (X,L,−→, x) ∈ K and set Xm ⊆ X of marked states
we add a new label such that marked ∈ L(y) for each y ∈ Xm, and marked �∈ L(y) for each
y �∈ Xm.

For the remainder of this section we assume that each k ∈ K is adapted as described in
Definition 13. We now introduce two language-based notions in Definition 14 and language-
based controllability in Definition 15.
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Definition 14 We define the language L (k) and marked language Lm(k) of a Kripke-LTS
k = (X,L,−→, x) ∈ K as follows:

L (k) = {s ∈ E∗ | ∃ x′ ∈ X : x
s−→∗x′}

Lm(k) = {s ∈ E∗ | ∃ x′ ∈ X : x
s−→∗x′ ∧ marked ∈ L(x′)}

In addition we define the language closure L of L ⊆ E∗ as:

L = {s ∈ E∗ | ∃ t ∈ E∗ : st ∈ L}.

Definition 15 For languages L ⊆ E∗ and K ⊆ L we say that K is controllable with regard
to L if for each s ∈ K and su ∈ L, for u ∈ U , it holds that su ∈ K .

Parallel composition with unified labels is given in Definition 16. This type of parallel
composition is borrowed from process theory (Baeten et al. 2010) and may be used to define
the construction between plant and controller in supervisory control.

Definition 16 For k = (X,L,−→, x) ∈ K and k′ = (X′, L′,−→′, x′) ∈ K, we define the
parallel composition k′ ‖ k, as follows:

k′ ‖ k = (X′ × X,L′′,−→′′, (x′, x))

Where L′′(y′, y) = L′(y′) ∪ L(y), for each y′ ∈ X′ and y ∈ X, and (y′, y)
e−→′′(z′, z) if

and only if y′ e−→′z′ and y
e−→ z. Clearly L (k′ ‖ k) ⊆ L (k) and L (k′ ‖ k) ⊆ L (k′).

To express an RW-synthesis problem, we assume a given deterministic plant specifica-
tion p ∈ K. We now have to construct s ∈ K such that the following properties hold:
1) L (p ‖ s) is controllable with regard to L(p); and 2) p ‖ s is non-blocking; that is
L (p ‖ s) ∩ Lm(p) = L (p ‖ s). In Theorem 7 we prove that if we choose S 1

p,�♦marked for
s these two conditions are satisfied.

Lemma 10 If k′, k ∈ K such that k′ � k then L (k′) is controllable with regard to L (k).

Proof Let k′ = (X′, L′, −→′, x′) and k = (X,L, −→, x) and assume R ⊆ X′ × X exists
such that k′ �R k. We follow Definition 15. Assume that s ∈ L (k′) and su ∈ L (k), for
u ∈ U . Then clearly there exists y′ ∈ X′ such that x′{ s−→′}∗y′ and y ∈ X such that x

s−→∗y
and (y′, y) ∈ R, by Definition 2. Since y

u−→ z exists, then again by Definition 2 there
exists a step y′ u−→′z′ and thus su ∈ L (k′).

For the remainder of this section, we only consider those plant models p = (X,L,−→
, x) ∈ K such that for all u ∈ U∗ and y ∈ X and x

u−→∗y, there exist v ∈ E∗ and z ∈ X

such that y
v−→∗z and marked ∈ L(z). Otherwise, a solution does not exist.

Lemma 11 For k = (X,L,−→, x) ∈ K it holds that S 1
k,�♦marked is complete.

Proof For each (x,�♦marked) −→∗
0 (y,�♦marked) and (y,�♦marked)

e−→0

(z,�♦marked) it holds that (y,�♦marked)
e−→1 (z,�♦marked) if and only if

(z′,�♦marked) ↑0 ♦marked, for all u ∈ U∗ and (z,�♦marked)
u−→∗

0(z
′,�♦marked),



134 Discrete Event Dyn Syst (2017) 27:109–142

as follows from Definition 10. Due to the assumption that for each u ∈ U∗ and
(x,�♦marked)

u−→ ∗
0(y,�♦marked) it holds that (y,�♦marked) ↑0 ♦marked, we

conclude that S 1
k,�♦marked is complete.

Theorem 7 Given p ∈ K then L (p ‖ S 1
p,�♦marked) is controllable with regard to L (p),

and in addition p ‖ S 1
p,�♦marked is non-blocking.

Proof By Lemma 11, S 1
p,�♦marked is complete. Then by Lemma 10 and Theorem 3 it

holds that L (p ‖ S 1
p,�♦marked) is controllable with regard to L (p). We now consider

non-blockingness. Observe that:

L (p ‖ S 1
p,�♦marked) ∩ Lm(p) ⊆ L (p ‖ S 1

p,�♦marked)

already holds, so therefore:

L (p ‖ S 1
p,�♦marked) ⊆ L (p ‖ S 1

p,�♦marked) ∩ Lm(p)

is what remains to be shown. Assume that p = (X,L,−→, x) and t ∈ L (p ‖
S 1

p,�♦marked), then (x,�♦marked)
t−→ ∗

1(y,�♦marked). Since (y,�♦marked) ↑0

♦marked there exists v ∈ E∗ such that (y,�♦marked)
v−→ ∗

1(z,�♦marked) and

marked ∈ L (z). Then by Definition 8 it holds that x
tv−→∗z and therefore tv ∈ Lm(p).

8 Case study

Controlled system synthesis as achieved by the proposed theories in this paper may be
employed in an actual application setting as detailed in this section, where we will model
the coordination of maintenance procedures in the printing process of a high-end industrial
printer (Markovski et al. 2010), and also in the next section where we will use a case study
for automated guided vehicles to analyze scalability. An implementation of the synthesis
algorithm was written in the C programming language. Source files for this program and
input files for the various analyzed models are available at the following location:

https://github.com/ahulst/deds

Several distributed independent components make up the printing process of an industrial
printer, as shown in Fig. 10. The main task of the printing process is to apply the toner image
onto the toner transfuse belt, followed by the actual printing task where it is fused onto the
paper sheet. Preserving printing quality over numerous print jobs involves several mainte-
nance operations. For instance, the toner transfuse belt is jittered periodically, which ensures
an even spread of the wear induced by sharp paper edges, occasional printing of completely
black pages takes place, thereby removing paper dust, and various techniques are applied to
remove coarse toner particles. Maintenance scheduling is mainly based upon the number of
prints which have taken place, and maintenance scheduling is therefore related to various
strict, as well as, postponable thresholds. If a maintenance operation has to be performed,
the printing process has to switch its power mode from Run to Standby. However, such a
power mode switch may actually trigger the activation of other queued maintenance oper-
ations, which may lead to users of the printer having to wait unnecessarily long before the
printer becomes usable again.

https://github.com/ahulst/deds
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a b

c d

f g

e

Fig. 10 Five automata shown in (a)–(e) constitute the main components in the maintenance scheduling of
an industrial printer. Events Stb2Run, Run2Stb, OperStart, and, SchedOper are controllable, while the other
events are uncontrollable. Abstracted functionality is shown in (f), while scheduling of maintenance tasks is
depicted in (g)

In Fig. 10g, the occurrence of a non-delayable maintenance operation A suspends the
current print task, followed by a power mode transition to Stand-by. However, the power
mode change triggers the execution of another maintenance operation B, having a longer
duration than operation A. A realistic example of a practical situation where this occurs is
when a black image is printed (A), taking the exact time required to print a single page,
while the significantly longer transfuse belt jittering (B) is initiated due to the power mode
switch. This combined behavior gives rise to a prolonged user wait time between print jobs,
as shown in Fig. 10g.

In this case, we would like to enforce this uncontrolled system to behave in such a way
that undesired emergent behaviors does not occur. In addition, all other behavior of the oth-
erwise correctly functioning distributed components which make up the printing process
should be left in place. That is, the controlled system affected by the imposed restric-
tions due to more stringent maintenance coordination should be maximally permissive. The
various distributed components which model the printing process are shown in Fig. 10a–e.

We briefly consider the functionality of the various components depicted in Fig. 10 at an
informal level. Note that these system models comprise a natural abstraction in the sense
that the scheduling of only one maintenance operation is considered and timing issues are
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not taken into account. The components Target Power Mode and Maintenance Schedul-
ing execute scheduling tasks. The Current Power Mode, Maintenance Operation and Page
Counter components are responsible for handling maintenance tasks and actuating underly-
ing hardware control. The Current Power Mode sets the power mode to Run or Standby,
in reaction to the enabling signals Stb2Run and Run2Stb respectively. A confirmation is
replied by means of InStb and InRun. The Maintenance Operation component switches
between carrying out maintenance, triggered by OperStart, or being idle, as confirmed by
the OperFinished signal. The component Page Counter is responsible for counting the num-
ber of printed pages since maintenance has taken place. It sends the signals ToSoftDln and
ToHardDln when soft and hard deadlines are reached. Once the maintenance has finished,
the page counter module is reset by receiving the OperFinished from the Maintenance Oper-
ation component. The controller Target Power Mode defines which mode is requested by the
manager by sending the control signals TargetStandbyEvt and TargetRunEvt respectively.
The Maintenance Scheduling receives a request for maintenance via the signal SchedOper,
which is forwarded to the manager. Confirmation is send by the manager using the Exe-
cOperNow event. In addition, it receives feedback from Maintenance Operation to confirm
that maintenance has finished in order to reset the scheduling.

As the starting point for synthesis, we construct the synchronized product of these five
components. Upon this intermediate result, we apply synthesis for six separate control
requirements which are partly based on earlier research done by Markovski et al. (2010).
Informal and formal interpretations for these control requirements are shown below. We will
use p ⇒ q as an abbreviation for ¬p ∨ q and we use bold face in the formal requirements
to indicate state name propositions. For requirements 2–4, we invert ¬<e> as [e]false.

1. Maintenance operations can be performed only when the printing process is in standby,
formalized as:

� (OperInProg ⇒ Standby)

2. Maintenance operations can be scheduled only when a soft deadline has been reached,
and there are no print jobs in progress, or when a hard deadline has passed, formalized
as:

� (<SchedOper> ⇒ ((SoftDeadline ∧ ¬TargetRun) ∨ HardDeadline))

3. Maintenance operations can be started only after being scheduled, formalized as:

� (<OperStart> ⇒ ExecuteNow)

4. The power mode of the printing process must follow the power mode dictated by the
managers, unless overridden by any pending maintenance operation, formalized using
two requirements as:

� (<Stb2Run> ⇒ (TargetRun ∧ ¬ExecuteNow))

� (<Run2Stb> ⇒ (TargetStandby ∨ ExecuteNow))

5. After a maintenance operation has finished, the system should be in the TargetStandby
state, formalized as:

�[OperFinished]TargetStandby

6. Once a maintenance operation has started, its completion should end immediately such
that no new maintenance operation is scheduled and the system is not in the Standby
state, formalized as:

�[OperStart][OperFinished](NotScheduled ∧ ¬Standby)
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A controlled system conforming to control requirements 1–4 may be synthesized using
both the traditional event-based supervisory control framework (Ramadge and Wonham
1987), but also using the theories proposed in this paper. In the first case, the initial state
of each model in Fig. 10a–e needs to be interpreted as a marked state. Both synthesis
techniques result in the exact same model consisting of 60 states and 172 transitions.
Requirements 5–6 are used to illustrate the extended expressibility for control require-
ments the theories in this paper provides. Synthesis for requirements 1–6 results in a
further restricted controlled system consisting of 56 states and 158 transitions. This case
study, albeit small, reflects that the synthesis theory put forward in this paper is able to
express earlier research and supersedes earlier work by allowing for more expressive control
requirements.

9 Scalability analysis

The purpose of this section is to analyze the scalability of the algorithm introduced in
Section 6 by means of an extendable case study, which is loosely based on the work in
(Mushtaq 2000). We will compute a control coordination strategy for a variable number
of automated guided vehicles (AGVs) and a mixing station within a chemical production
plant. Since this model can be instantiated at variable plant sizes and due to the fact that
each new AGV introduces separate control objectives, this case is well-suited to analyze the
scalability of the type of synthesis presented in this paper.

We will now introduce the case study at hand, as illustrated in Fig. 11. A single mixing
station (Fig. 11a) in a chemical production plant is combined with several AGVs. A single
instance of the AGV model is shown in Fig. 11b. As shown in Fig. 11b, for each 1 ≤ n ≤
N , the label agvn is added to the connected state in AGV n, if there are N AGVs in the
entire model. Synchronization takes place under parallel composition in such a way that the
mixing station synchronizes with precisely one AGV over the connect event. This is the only
point of synchronization in the constructed parallel model. The connect event represents the
AGV connecting to the station where it delivers a chemical component. The AGV may then
disconnect after which it can be ordered to charge its batteries. If the mixing station has
received a chemical component from the AGV, it performs quality checks after which the
chemical may be either accepted or denied for mixing. The completed event represents the

a b

Fig. 11 Components in a chemical production plant for which a guiding control strategy is derived. A single
mixing station (a) is combined with multiple instances of the AGV model (b). Models are combined under
parallel composition, such that a connect event between the mixing station and precisely one AGV is the only
synchronizing event
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situation where the station has completed its task of mixing, after which its mixing tank is
supposed to be immediately cleaned. For this purpose, a cleaning agent is again delivered
by an AGV.

We intend to synthesize a controlled system for the behavior of both the AGVs and the
mixing station, which needs to adhere to several control requirements, as listed below:

1. If there are N AGVs, then after N direct subsequential quality checks at least one
AGV should have been disconnected. This requirement ensures that the system does
not solely perform quality checks while not sending the AGVs back. We may formalize
this control objective as follows:

�

⎛
⎝([qc])N

⎛
⎝ ∨

1≤n≤N

¬agvn

⎞
⎠

⎞
⎠

2. If the mixing process is finished, as signalled by the completed event, cleaning should
happen immediately. In this case, AGV1 should either be already connected or imme-
diately available for connecting, since this is the only AGV which is allowed to deliver
the cleaning agent:

�[completed]
(
agv1 ∨ <connect>agv1

)

3. If no AGV is connected and if the mixing staion is not receiving, then at least one AGV
should be immediately available for connecting. This may be expressed in terms of the
agvn labels:

�

⎛
⎝

⎛
⎝recv ∨

∨
1≤n≤N

agvn

⎞
⎠ ∨ <connect>

⎞
⎠

The table below shows the computation results for increasing numbers of AGVs in terms
of original plant size (as a single K-model, integrated under the aforementioned form of
parallel composition), the size of S 0

k,f and the size of the final resulting models. All data
for model sizes is expressed as S/T , where S refers to the number of states and T refers
to the number of transitions. In addition, maximal memory consumption and the number
of iterations required to achieve the final synthesis result are mentioned. Note that memory
consumption here refers to the maximal number of bytes allocated at some point during the
running of the program.

#AGVs plant (k) size S 0
k,f size S n

k,f size memory iterations

2 18/78 51/236 23/93 2Mb 3
3 54/297 182/1060 105/558 17Mb 3
4 162/1080 633/4406 487/2956 87Mb 3

These results show that the synthesis method in its current form expands fast in terms
of memory consumption. A possible improvement may be implemented in terms of on-the-
fly computations of the respective transition relations. That is, instead of computing the
entire initial model S 0

k,f at once, before any transition removal takes place, an improved

algorithm may entirely avoid adding certain transitions to S 0
k,f if these transitions are due

to be removed anyway. For instance, a transition towards a state (y, false) is in the current
synthesis setup added to S 0

k,f but removed in S 1
k,f . This requires a more complicated, but

possibly also more efficient approach of integrating the construction of the initial model
S 0

k,f with a partial implementation of the synthesizability test.
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We briefly characterize the obtained results in terms of related research. In Wolff et al.
(2013), the synthesis for a comparable formula consisting of a conjunction of invariants of
reachability expressions is considered. An interesting similarity to our research occurs when
synthesis for variable-size plant models in the orders of tens of states results in large (up to
several gigabytest) state models which remain computable in minutes. Work in Ehlers et al.
(2014) also shows exponential growth of the controller in terms of the size of the synthesized
formula. Many comparable works indicate exponential growth of both the resulting model
and running time once either the plant model or the synthesized formula expands linearly
(Arnold et al. 2003; Kupferman et al. 2000; Fabian and Lennartson 1997). Different results
were obtained as well. D’Ippolito et al. (2010) and Pralet et al. (2010) do not observe such
strong increases in memory consumption, although in the first case this might be partly
due to the specific approach applied in D’Ippolito et al. (2010). An offset in results for
synthesis for formulas in temporal logic may be noticed based on work in Su (2008), where
abstractions due to non-determinism result in effective plant models having significantly
smaller state spaces. Based on these observations, the hypothesis arises that if a state space
reduction via abstraction through the introduction of non-determinism preceeds a memory
demanding computation, the net result may be more efficient compared to observations of
the synthesis problem in itself.

10 Conclusions

This paper presents a novel approach to controlled system synthesis for modal logic on
non-deterministic plant models. The behavior of a Kripke-structure with labeled transitions
is adapted such that it satisfies the synthesized controlled behavior, expressed as a for-
mula in modal logic. The relationship between the synthesis result and the original plant
specification adheres to important notions in control synthesis: controllability and maxi-
mal permissiveness. The controlled behavior specification logic also allows expressibility
of deadlock-freeness and marker state reachability. The synthesis approach, via a reduction
on modal expressions combined with an iteratively applied synthesizability test for formulas
assigned to target states of transitions results in an effective synthesis procedure which may
be straightforwardly implemented. The synthesis theory presented in this paper allows the
full expressibility of Ramadge-Wonham control synthesis on deterministic plant models.

An implementation of the synthesis technique has been developed and analyzed in
this paper. We will assess various parameters regarding tractability and efficiency of the
proposed algorithm, or improvements thereof, in further case studies. In particular, the syn-
thesizability of reachability formulas may be modified such that recomputations can be
avoided, using dynamic programming or memoization techniques. To enable a clear focus
on the theoretical results as presented here, we did not include an embedding of such opti-
mizations in the synthesis theory. Partial bisimulation as a means to express controllability,
as well as other behavioral preorders for this purpose, will also be studied further. We also
intend to compare the efficiency of the constructed implementation to other toolsets, in
particular UPPAAL Tiga.
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