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Abstract This paper presents an introduction to and a formal connection between synthe-
sis problems for discrete event systems that have been considered, largely separately, in the
two research communities of supervisory control in control engineering and reactive synthe-
sis in computer science. By making this connection mathematically precise in a paper that
attempts to be as self-contained as possible, we wish to introduce these two research areas
to non-expert readers and at the same time to highlight how they can be bridged in the con-
text of classical synthesis problems. After presenting general introductions to supervisory
control theory and reactive synthesis, we provide a novel reduction of the basic supervisory
control problem, non-blocking case, to a problem of reactive synthesis with plants and with
a maximal permissiveness requirement. The reduction is for fully-observed systems that are
controlled by a single supervisor/controller. It complements prior work that has explored
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problems at the interface of supervisory control and reactive synthesis. The formal bridge
constructed in this paper should be a source of inspiration for new lines of investigation that
will leverage the power of the synthesis techniques that have been developed in these two
areas.

Keywords Supervisory control · Reactive synthesis · Non-blockingness ·
Maximal permissiveness

1 Introduction

The goal of this paper is to introduce and present a formal connection between synthesis
problems that have been considered, largely separately, in the two research communities of
control engineering and formal methods. By making this connection mathematically pre-
cise in a paper that attempts to be as self-contained as possible, we hope to introduce these
two research areas to non-expert readers and at the same time inspire future research that
will further bridge the gap between them and leverage their complementarity. Given the
pedagogical nature of this paper, we focus on connecting the most basic synthesis prob-
lem in supervisory control, for safety and non-blockingness in the case of full observation,
with a suitably-defined analogous problem in the field of reactive synthesis. We start our
discussion with a general introduction to the two research areas under consideration.

1.1 Supervisory control of discrete event systems

Feedback control of dynamic systems is an essential element of our technological society.
Control theory was originally developed for systems with continuous variables that evolve
in time according to dynamics described by differential or difference equations. Since the
1980s, the field of Discrete Event Systems (DES) in control engineering has been concerned
with the application of the feedback paradigm of control theory to the class of dynamical
systems with discrete state space and event-driven dynamics.

The DES community has been investigating feedback control of DES using models from
computer science, such as automata and Petri nets. The body of control theory developed
in DES has been for specifications that are expressible as regular languages, in the case of
DES modeled by automata, or in terms of constraints on the state (marking vector), in the
case of DES modeled by Petri nets. Control-theoretic frameworks have been developed for
both of these modeling formalisms. In this paper, we focus on the supervisory control theory
for systems modeled by finite-state automata and subject to regular language specifications.
Both the plant and the specification are represented as finite-state automata over a com-
mon event set. The foundations for this framework were developed in the seminal work of
Ramadge and Wonham (1987), Wonham and Ramadge (1987). Since then, a whole body of
theory has been developed that covers a wide variety of control architectures and informa-
tion structures, with vertical and horizontal modularity. The reader is referred to Cassandras
and Lafortune (2008), Wonham (2015) for textbook expositions of this theory; other rele-
vant references are the monograph (Kumar and Garg 1995), the survey papers (Ramadge
andWonham 1989; Thistle 1996), and the recent edited book (Seatzu et al. 2013). The focus
of this theory is on the synthesis of provably safe and non-blocking controllers for a given
uncontrolled system, or plant in control engineering terminology, despite limited actuation
and limited sensing capabilities. In automated manufacturing applications for instance, the
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plant would be the joint operation of a set of robots, conveyors, Automated Guided Vehicles
(AGVs), and numerically controlled machines, and the controller would be implemented
using one or more Programmable Logic Controllers (PLCs). Safety properties are expressed
in terms of bad states where robots and/or AGVs collide for instance, or bad sequences of
events that correspond to incorrect assembly for instance. Non-blockingness captures the
fact that product assembly should be completed in its entirety, followed by a return of all
components to their initial states.

1.2 Reactive synthesis

It is widely acknowledged that many design defects originate in the failure of the implemen-
tation to accurately capture the designer’s intent. Underlying the reactive synthesis approach
is the realization that many requirements can be expressed as formal temporal assertions,
capturing intended system functionality in a declarative fashion. Assertions can express both
safety properties, such as “a Grant is always followed by Busy”, and liveness properties,
such as “a Request is eventually followed by a Grant”. Thus, the functional specification of
a system can be expressed as a set of temporal assertions.

The assertion-based approach to system specification underlays early work on program
verification (Francez 1992), whose focus was on input/output properties. This was later
extended to temporal properties of ongoing computations (Pnueli 1977), which enabled the
application of formal verification techniques to reactive systems–systems that have ongoing
interactions with their environments (Harel and Pnueli 1985). One of the most success-
ful applications of the assertion-based approach has been model checking, an algorithmic
formal-verification technique (Clarke and Emerson 1981; Clarke et al. 1986; Lichtenstein
and Pnueli 1985; Queille and Sifakis 1982; Vardi and Wolper 1986); see (Clarke et al. 2000)
for an in depth coverage.

The design of reactive systems, systems that engage in an ongoing interaction with
their environment, is one of the most challenging problems in computer science (Harel and
Marelly 2003; Harel and Pnueli 1985). The assertion-based approach constitutes a signif-
icant progress towards addressing this challenge. While there has been impressive recent
progress on applying formal methods in verification (Jackson 2009), in current design
methodology, design and verification are distinct phases, typically executed by separate
teams. Substantial resources are spent on verifying that an implementation conforms to its
specifications, and on integrating different components of the system. Not only do errors
discovered during this phase trigger a costly reiteration of design and programming, but
more importantly, verification offers only quality control, not quality improvement, and
hence, current design methodology does not produce systems that are safe, secure, and
reliable.

Currently, when formal assertions are being used, it is in testing and verification, after
a significant effort has already gone into the development effort. When errors are found,
significant effort has to be expended on design change. An old dream in computer science
is that of design automation, in which the process of converting formal specification to
implementation is, to a major extent, automated. The implication is that a major portion
of the manual design effort should go into the development of high-level specifications,
since much of the implementation effort can then be automated. The technique of compiling
high-level formal requirements to low-level system code is referred to as synthesis, and was
proposed already in Church (1957), Green (1969). Follow up work in Büchi and Landweber
(1969), Rabin (1972) addressed the problem mathematically, but it seemed quite far from
being applicable to real-life problems.
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In the late 1980s, several researchers realized that the classical approach to system syn-
thesis (Green 1969), where a system is extracted from a proof that the specification is
satisfiable, is well suited to closed systems (systems with no inputs), but not to reactive
systems. In reactive systems, the system interacts with the environment, and a correct sys-
tem should then satisfy the specification no matter how the environment behaves, i.e., no
matter which inputs the environment provides to the system. If one applies the techniques
of Emerson and Clarke (1982), Manna and Wolper (1984) to reactive systems, one obtains
systems that are correct only with respect to some environment behaviors. Pnueli and
Rosner (1989a), Abadi et al. (1989), and Dill (1989) argued that the right way to approach
synthesis of reactive systems is to use the model of a, possibly infinite, game between the
environment and the system. A correct system can be then viewed as a winning strategy in
this game. It turns out that satisfiability of the specification is not sufficient to guarantee
the existence of such a strategy. Abadi et al. called specifications for which a winning strat-
egy exists realizable. Since then, the subject of reactive synthesis has been an active area
of research, attracting a considerable attention, for example (Kupferman and Vardi 2000;
Pnueli and Rosner 1989b; Vardi 1995; Wong-Toi and Dill 1991).

1.3 Contributions and organization of this paper

We start in Section 2 by presenting technical introductions to supervisory control
(Section 2.1) and reactive synthesis (Section 2.2). We have tried to make Section 2 as self-
contained as possible, so that readers who are not experts in either domain could follow the
ensuing results connecting these two areas. However, these introductions are not meant to
be thorough and readers interested in learning these areas in more depth should consult the
references mentioned above.

The main results connecting supervisory control and reactive synthesis are contained in
Section 3. That section is organized into several parts. First, we present in Section 3.1 a sim-
plification of the basic supervisory control problem, non-blocking version, to one where the
safety specification has been absorbed into the plant model. We then show that the result-
ing Simple Supervisory Control Problem (SSCP) has a state-based solution. The results
on SSCP will facilitate bridging the gap in the remainder of Section 3. Second, for bridg-
ing reactive synthesis with supervisory control, we need two technical steps: the first step
is to consider reactive synthesis with plants; the second step is to bring in the issue of
maximal permissiveness into this reactive synthesis setting. These two steps are covered in
Section 3.2. With the above technical results established, we establish the formal reduction
from SSCP to a reactive synthesis problem with plants and maximal permissiveness in Sec-
tion 3.3. This formal reduction is the main technical contribution of this paper. Section 3.4
discusses algorithmic issues and Section 3.5 discusses links between the reactive synthesis
problem with plants and the more standard reactive synthesis problem without plants.

Finally, some concluding comments and directions for future work are given in Section 4.
A preliminary and partial version of this paper, without proofs, appears in Ehlers et al.
(2014).

1.4 Related works

This paper is not the first to explore connections between supervisory control and reac-
tive synthesis. On the supervisory control side, several authors have considered control
of discrete event systems subject to temporal logic specifications; see, e.g.,Thistle and
Wonham 1986, Lin (1993), Jiang and Kumar (2006). Supervisory control of discrete event
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systems with infinite behavior, i.e., modeled by languages over Eω instead of E∗ for a
given event setE, has also been considered by many researchers; see, e.g., Ramadge (1989),
Kumar et al. (1992), Thistle and Wonham (1994a), Thistle and Wonham (1994b), Thistle
(1995), Thistle and Malhamé (1998), Lamouchi and Thistle (2000). On the other hand, sev-
eral researchers in the formal methods community have investigated supervisory control
of fully- and partially-observed discrete event systems, in untimed, timed, and hybrid sys-
tem settings; see, e.g., Hoffmann and Wong Toi (1992), Maler et al. (1995), Asarin et al.
(1995), Henzinger and Kopke (1997), Kupferman et al. (2000), Madhusudan (2001), Cassez
et al. (2002), Arnold et al. (2003), Riedweg and Pinchinat (2003). Researchers from both
the supervisory control and formal methods communities have also studied problems of
distributed or decentralized controller synthesis, where more than one controllers are (simul-
taneously) synthesized, e.g., see Pnueli and Rosner (1990), Rudie and Wonham (1992),
Barrett and Lafortune (1998), Lamouchi and Thistle (2000), Overkamp and van Schuppen
(2000), Ricker and Rudie (2000), Tripakis (2004), Lustig and Vardi (2009), Komenda et al.
(2012), Seatzu et al. (2013).

In the present paper, we restrict attention to the basic problem of centralized supervisory
control for fully-observed systems modeled by languages of finite strings. Our goal is to
establish a precise connection of this classical work with problems of reactive synthesis,
by showing how specific problem instances reduce to each other. While more advanced
connections have been discussed in the above-cited references, our goal is pedagogical in
nature and aims at establishing a bridge between these two areas at the most elementary
level. Still, to the best of our knowledge, the formal reduction presented in Section 3 has not
been published elsewhere. Our results therefore complement existing works from a technical
standpoint.

2 Classical frameworks

In this section, we present technical introductions to the fields of supervisory control and
reactive synthesis. These introductions are not meant to be comprehensive, but rather their
goal is to allow readers who are not experts in either or both of these fields to follow the later
results in Section 3 on establishing a precise connection between basic synthesis problems
in these two fields.

2.1 Supervisory control

In supervisory control of Discrete Event Systems (DES), the system to be controlled, i.e., the
plant, is typically modeled as a set of interacting finite-state automata coupled by common
events or as a Petri net. In order to obtain a monolithic model that will be used for analysis
and control synthesis purposes, the parallel composition of the set of interacting automata
is performed or the reachability graph of the Petri net is constructed. We restrict attention to
plants with finite state spaces. Also, we assume full event observability.

Let the plant be denoted by G. (Formal definitions will follow.) G captures the entire
set of possible behaviors of the plant and it is called the “uncontrolled system.” In general,
some of this behavior is not acceptable in the sense that it is not safe with respect to a given
specification or that it results in deadlock or livelock. Consequently, we wish to restrict the
behavior of G by means of a feedback controller, or supervisor in DES terminology. The
standard feedback loop of supervisory control theory is shown in Fig. 1. The “input” to the
supervisor S is the string of events generated so far by G. All the events of G are observed
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Fig. 1 Closed-loop system S/G,
where S issues control actions in
response to the events generated
by G

by S. The “output” of S is a control action that tells G which event(s) it is allowed to do at
that moment. The supervisor may allow more than one event, in which case the system will
decide which allowed event to execute next. The mechanism by which G chooses which
allowed event to execute next is not modeled. One may think of G as a semi-autonomous
system for instance. In general, the supervisor may not have full actuation capabilities, i.e.,
there may be events of G that it cannot disable. These events are called uncontrollable. How
to deal with uncontrollable events is one of the contributions of supervisory control theory.

Example 1 (Coffee Machine) For the sake of illustration, assume that our plantG is a coffee
machine that can grind coffee beans, brew coffee, and deliver a cup of coffee. Its interface
with the user is a “coffee button” that generates an event, denoted by c, when it is pressed
by the user. The automaton representation of that machine is shown in Fig. 2. We give the
formal definition of an automaton below; for now, we explain the transition structure. The
initial state is 1 (this is denoted by the fact that state 1 has an incoming arrow). State 1 is
also an accepting or marked state (denoted by the fact that the state is drawn as a double
circle). Upon occurrence of event c, the coffee machine moves to a new state in which it
can execute an arbitrary number of “grind” events, which are denoted by g, as well as an
arbitrary number of “brew” events, which are denoted by b; these events self-loop at state 2.
Finally, when grinding and brewing are completed, the coffee is delivered (poured in cup)
and the machine returns to its initial state; this is represented by event r . For simplicity, we
assume that the machine ignores further pressing of the coffee button while it is grinding
and brewing, i.e., until event r occurs. This is modeled by the self-loop for event c at state 2.

G represents the physical capabilities of the machine, without an appropriate control
protocol, i.e., without a specification. As given, this behavior is unsafe: first, brewing should
always be preceded by grinding; second, no grinding should occur after brewing has started.

Moreover, one may wish to follow special coffee recipes, parameterized by the number
of g events (more events means finer ground coffee) and the number of b events (more
events for stronger coffee). One such recipe could be that coffee is prepared by one grinding
step followed by two brewing steps. Another recipe for stronger coffee could call for two
grinding steps followed by three brewing steps.

Fig. 2 Automaton G:
uncontrolled coffee machine
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We wish to synthesize a supervisor S that will restrict the behavior ofG in order to satisfy
the above safety constraints and allow the two possible recipes. In this example, event c is
uncontrollable, as the supervisor cannot tell the plant to ignore a request for coffee when it is
in state 1. (Note that such requests are ignored while the plant is in state 2, as captured in the
model in Fig. 2.) The other events are assumed to be controllable, as the coffee machine has
actuators for grinding, brewing, and delivering a cup of coffee; hence, the control protocol
can decide when to activate or de-active these actuators. For instance, after the occurrence
of event c, S needs to tell G that it should execute a g event, not a b event, as grinding
must precede brewing. Hence, immediately after event c occurs, S should disable event b.
Similarly, after the first b event, S should disable event g until the next cup is prepared.
As for event r , it should remain disabled until a recipe is completed. Here, in the spirit of
supervisory control, we assume that the supervisor will not force one of the allowed recipes.
Namely, after one occurrence of g, S can enable both g and b and let the plant “randomly”
choose to do either another g event or to start brewing, i.e., randomly choose which recipe to
implement (perhaps on the basis of some other features not included in this simple model).
If the plant chooses to execute b, then further occurrences of g will be disabled by S. On the
other hand, after two consecutive occurrences of event g, S needs to tell G that it should not
execute any more g events for the current cup under preparation, as no recipe calls for three
grinding steps; i.e., S must disable the third consecutive occurrence of event g. When the
plant has completed either recipe, S disables both g and b and enables r in order to allow
the plant to deliver the cup of coffee.

In supervisory control, the objective is to automatically synthesize a supervisor S that
provably satisfies all given specifications. The inputs to the synthesis process are: (i) the
model G; (ii) the sets of controllable and uncontrollable events; and (iii) an automaton
model of the specifications imposed on G. In the rest of this section, we present the main
concepts needed before we can proceed to bridging the gap with reactive synthesis.

2.1.1 Plant model

In supervisory control theory, plants are typically modeled as deterministic finite-state
automata. A deterministic finite-state automaton (DFA) is a 5-tuple

G = (X, x0, Xm, E, δ)

where

• X is a finite set of states, x0 ∈ X is the initial state, and Xm ⊆ X is the set of marked
(i.e., accepting) states;

• E is a finite set of events. E is (implicitly) partitioned into two disjoint subsets:

E = Ec ∪ Euc

whereEc models the set of controllable events andEuc the set of uncontrollable events.
• δ : X × E → X is the transition function, which in general will be partial.

The reason for the transition function to be partial is the fact thatG models the physically
possible behavior of a DES, as a generator of events. Selection of the states to “mark,” i.e.,
to be included in Xm, is a modeling consideration to capture strings that represent that the
system has completed some task. In many systems with cyclic behavior, such as our coffee
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machine, the initial state is marked, as returning to it means that a task has been completed
and a new one can start.

A state x ∈ X is called a deadlock state if for all e ∈ E, δ(x, e) is undefined.
It is useful to “lift” the transition function δ to a function

δ∗ : X × E∗ → X

defined as follows:

δ∗(x, ε) = x

δ∗(x, σ · e) = δ(δ∗(x, σ ), e)

where ε denotes the empty string and · denotes string concatenation. (We usually omit
writing · unless needed for clarity of notation.) Note that since δ is partial, δ∗ is also partial.
Since we always extend δ to δ∗, we shall drop the “*” superscript hereafter and simply refer
to the extended function as δ.

The DES G defines the following languages:

L(G) = {σ ∈ E∗ | δ(x0, σ ) is defined} and Lm(G) = {σ ∈ E∗ | δ(x0, σ ) ∈ Xm}.
Given K ⊆ E∗, let K denote the prefix-closure of K:

K = {σ | ∃σ ′ ∈ E∗ : σσ ′ ∈ K}
In the definition above σ ′ can be the empty string, so K ⊆ K for all K .

Moreover, for any DES G:

Lm(G) ⊆ Lm(G) ⊆ L(G) = L(G)

Note that Lm(G) 	= L(G) in general. This is because L(G) may contain strings that cannot
be extended to yield strings in Lm(G). In other words, G may contain reachable states that
cannot reach any marked state.

2.1.2 Supervisors

A supervisor for G is a function S : E∗ → 2E . It reads a string σ representing the history
of what has happened so far and returns the set of controllable events that are allowed to
occur. To ensure that S never disables an uncontrollable event, we require that Euc ⊆ S(σ)

for all σ ∈ E∗ (alternatively, we could also define S to be a function S : E∗ → 2Ec ). Note
that S(σ) ∩ Ec may be empty.

Sometimes S is required to satisfy the following property:

∀σ, c ∈ Ec : c ∈ S(σ) =⇒ δ(x0, σc) is defined (1)

which states that S allows a controllable event e only if e is feasible in G. This is not
an essential requirement on S: we can simply ignore controllable events that S allows but
are not feasible in G. The same comment applies to enabled but infeasible uncontrollable
events.

When S is a supervisor specifically designed for G, the history σ can only be generated
by G, therefore S can also be defined as a function

S : L(G) → 2E

However, in general, it is more convenient to define S to be a function over E∗, since this
allows us to use the same supervisor for different plants, as long as Ec and Euc remain the
same.
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Remark 1 (Full observability) In the current framework, a plant is fully observable by a
supervisor, for two reasons. First, the supervisor, defined as a function with domain E∗,
observes the entire sequence of events generated by the plant (in partial observability frame-
works, only a subset of events are observed). Second, the plant itself is a deterministic
automaton. Therefore, given the sequence of observed events, the supervisor can uniquely
determine the current state of the plant.

2.1.3 Closed-loop system

Given a plant G = (X, x0, Xm, E, δ) and a supervisor S : E∗ → 2E for G, the closed-loop
system S/G, according to the feedback loop in Fig. 1, is a DES that is formally defined as
follows:

S/G = (X′, x′
0, X

′
m,E, δ′)

where

• X′ = X × L(G)
• x′

0 = (x0, ε)
• X′

m = Xm × L(G)

• δ′ ((x, σ ), e) =
{

(δ(x, e), σe) if δ(x, e) is defined and e ∈ S(σ)

undefined otherwise.

A state in S/G is a pair (x, σ ) where x ∈ X is a state of the plant G and σ ∈ L(G) is the
history observed so far. Thus, S/G is an infinite-state automaton, except for the special case
that G is loop-free. This need not worry us for now. At this point, we are mainly interested
in defining the synthesis problem, and not the algorithm to solve it. The initial state of S/G

is (x0, ε), since x0 is the initial state of G and the history is initially empty. X′
m is defined as

Xm ×L(G), meaning that a behavior of the closed-loop system is marked iff it is marked by
G. In other words, we only consider supervisors that do not affect the marking of states in
the plant. The definition of the transition function δ′ is explained as follows. Given current
state (x, σ ) and event e:

• when δ(x, e) is undefined (i.e., the plant does not have a transition from x for e), then
δ′ ((x, σ ), e) is also undefined

• otherwise, assuming δ(x, e) = x′,

– if e is uncontrollable, i.e., e ∈ Euc, then e is allowed by the supervisor and the
next state is (x′, σe), i.e., the plant moves to x′ and the supervisor observes e,

– if e is controllable and allowed by the supervisor S, i.e., e ∈ Ec ∩ S(σ), then
the next state is again (x′, σe),

– otherwise (i.e., if e ∈ Ec \S(σ), meaning that e is controllable but not allowed
by S), δ′ ((x, σ ), e) is undefined. This is the only case when an event e which
is allowed in G is forbidden in the closed-loop system.

Note that when δ(x, e) is defined, σ ∈ L(G) implies σe ∈ L(G). This ensures that if
(x, σ ) is a valid state of S/G, i.e., (x, σ ) ∈ X′, then δ′ ((x, σ ), e) is also a valid state of
S/G, so that the state-space of S/G is well defined.

S/G is an automaton (albeit an infinite-state one), therefore, languages L(S/G) and
Lm(S/G) are defined as stated above. Note that, by definition, S/G is a restriction of G,
therefore,

L(S/G) ⊆ L(G) and Lm(S/G) ⊆ Lm(G)
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Moreover, it is easy to verify that

Lm(S/G) = L(S/G) ∩ Lm(G)

since a marking in S/G is completely determined by a marking in G. When S is applied to
G as described above, the definition of S(σ) for σ ∈ E∗ \ L(S/G) is irrelevant, since the
controlled behavior will never exceed L(S/G).

As an example, consider the plant G1 shown in Fig. 3. Let Ec = {c1, c2} and Euc = {u}
(we generally use the convention that events c, c′, c1, c2, ... are controllable, while events
u, u′, u1, u2, ... are uncontrollable). Consider two supervisors S1 and S2 for G1, defined as
follows:

S1(σ ) = {c1, u} for all σ S2(σ ) =
{ {c1, u} if σ = ε

{c2, u} otherwise
The closed-loop systems S1/G1 and S2/G1 are shown in Fig. 3. For simplicity, states in

the closed-loop systems are labeled as in the original plant G1, instead of being labeled as
pairs (x0, ε), (x1, c1), (x3, u), and so on.

Remark 2 (Supervisors vs. controllers) Supervisory control theory typically uses the term
“supervisor” instead of “controller”. The term “supervisor” is well-chosen because in this
framework supervisors are like “parents”: they can disable options, but they cannot “make
things happen”. For instance, a supervisor cannot force the plant to take a certain transi-
tion, even when this transition is controllable. The supervisor can only allow a controllable
transition. If this is the only outgoing transition from the current state, then presumably this
will happen (although the state may be marked, with the interpretation that the plant “stops”
there). But if there are multiple (controllable or uncontrollable) transitions from that state,
the plant could choose any of them, without the supervisor having any control over this
choice.

2.1.4 A trivial synthesis problem

A supervisor is needed because without it the plant may generate illegal behaviors. The
supervisor aims at restricting the plant’s behaviors, so that they are all contained in a set of
“good”, or “legal” behaviors.

One way to formalize this idea is to assume that we are given a language of “good”
behaviors, Lam, called the admissible marked language. Then we could define a synthesis
problem where we ask for a supervisor S (if it exists) such that Lm(S/G) ⊆ Lam. This,
however, is not a very interesting problem, for a number of reasons.

First, in terms of synthesis, the problem is trivial. Indeed, instead of searching for an
arbitrary supervisor S, it suffices to simply check whether the most-restrictive (or least-
permissive) supervisor works. The most-restrictive supervisor Smr is the supervisor that

Fig. 3 Plant G1 and two closed-loop systems
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disables everything that it can disable, i.e., Smr(σ ) = Euc, for any σ . If Smr satisfies
Lm(Smr/G) ⊆ Lam, then we have found a solution to the above synthesis problem. Other-
wise, it is easy to see that no solution exists. Indeed, any other supervisor S is bound to allow
more behaviors than Smr , that is, Lm(Smr/G) ⊆ Lm(S/G). Therefore, if Lm(Smr/G) is
not a subset of Lam, neither can Lm(S/G) be.

The fact that this problem is trivial (indeed, it is not really a synthesis problem, but a ver-
ification problem) should not necessarily deter us. On the contrary, the easier the problem,
the better. However, the second and most important reason why the above problem is not the
right one is the fact that the most-restrictive supervisor is rarely what we want. Indeed, the
most-restrictive supervisor may be far too restrictive. It may, for example, introduce dead-
locks. For the plant G1 in Fig. 3, Smr will result in a new deadlock at state 3 of G1, since the
only events out of that state are controllable events that are disabled by Smr . We therefore
need a richer way to specify desirable supervisors. Toward this goal, we introduce next the
notion of non-blockingness.

2.1.5 Non-blockingness

Let G be a plant and S a supervisor for G. S is said to be non-blocking for G iff

Lm(S/G) = L(S/G).

Note that, as mentioned above, Lm(S/G) ⊆ L(S/G) always holds. Therefore, non-
blockingness is equivalent to L(S/G) ⊆ Lm(S/G). Non-blockingness says that the
closed-loop system should not contain behaviors that cannot be extended to marked behav-
iors. More precisely, there should be no deadlock states that are not marked, and there
should be no absorbing strongly connected components that do not contain a marked state;
the latter situation corresponds to a livelock.

As an example, consider again plant G1 and supervisors S1, S2 of Fig. 3. It can be seen
that S1 is blocking since (uc1 ∈ L(S1/G) but Lm(S1/G) = {ε, c1}); on the other hand, S2
is non-blocking.

The following is a useful characterization of non-blockingness. Its proof is straightfor-
ward from the definition of non-blockingness.

Lemma 1 S is a non-blocking supervisor for G iff from every reachable state of S/G there
is a path to a marked state of S/G.

2.1.6 Safety properties and admissible marked languages

Before we can give a formal statement of the basic supervisory control problem defined
below (in Section 2.1.8), we need to formalize the notions of admissible (marked) language
and of maximal permissiveness. This is done in this and the next subsections.

An admissible marked language in supervisory control, denoted Lam, captures the set
of “legal”, or “good”, behaviors. Typically, the designer first comes up with a prefix-closed
regular language La (i.e., a regular language such that La = La). La captures the set of
safe behaviors. For safety properties, such sets are prefix-closed, since for every unsafe
behavior σ , every extension σ · σ ′ of σ is also unsafe. Conversely, if σ is safe, every prefix
of σ is also safe. Once La is defined, the designer typically sets Lam to be the intersection
Lam := La ∩Lm(G), so that Lam captures the set of all safe behaviors that can be generated
and are marked by the plant. Lam has two useful properties:
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1. Lam ⊆ Lm(G) (by definition, since Lam = La ∩ Lm(G)).
2. Lam is “Lm(G)-closed”. Given languages K and L with K ⊆ L ⊆ E∗, we say that K

is L-closed iff

K = K ∩ L.

Notice that since K ⊆ L and K ⊆ K , K ⊆ K ∩L always holds. Therefore requiring L-
closure is requiring that K ∩ L ⊆ K . Then, it is easy to see that if Lam = La ∩Lm(G)

then Lam ∩ Lm(G) ⊆ Lam.

In the sequel we will assume that the given admissible marked language Lam satisfies con-
ditions 1 and 2 above, i.e., Lam ⊆ Lm(G) and Lam is Lm(G)-closed. Moreover, we will
assume that Lam is regular and we will be using a finite-state automaton to represent it.

Given DES G and Lam ⊆ Lm(G), a supervisor S is said to be safe for G with respect
to Lam if Lm(S/G) ⊆ Lam, i.e., the only marked strings allowed under control are safe
marked strings. We often drop the reference to Lam and simply say that a supervisor is
“safe” if it is clear from the context which safety specification is being referred to.

As an example, consider plant G1 of Fig. 3. Let L2 = {uc2}, which can be interpreted as
capturing the safety property “c1 should never occur”. (As explained above, L2 is obtained
by taking the intersection of Lm(G1) with the prefix-closed language containing all strings
not including c1, i.e., ε, u, c2, uu, c2c2, and so on.) L2 is Lm(G1)-closed. L2 is also a
strict subset of Lm(G1). Therefore, L2 is a valid admissible marked language. Consider the
supervisor S3 defined as follows:

S3(σ ) =
{ {u} if σ = ε

{c2, u} otherwise

It can be seen that S3 is non-blocking for G1 and satisfies Lm(S3/G1) ⊆ L2; therefore, S3
is safe w.r.t. L2.

Remark 3 Lam ⊆ Lm(G) is not a restrictive assumption, even for arbitrary Lam, i.e.,
not necessarily satisfying Lam = La ∩ Lm(G). If Lam 	⊆ Lm(G), we can set L′

am :=
Lam ∩ Lm(G) (thus achieving the condition L′

am ⊆ Lm(G)) and ask for a supervisor
such that Lm(S/G) ⊆ L′

am. Any such supervisor S also satisfies Lm(S/G) ⊆ Lam, since
L′

am ⊆ Lam. Conversely, any supervisor which satisfies Lm(S/G) ⊆ Lam also satisfies
Lm(S/G) ⊆ L′

am, since Lm(S/G) ⊆ Lm(G). Therefore, asking for a supervisor such that
Lm(S/G) ⊆ Lam is equivalent to asking for a supervisor such thatLm(S/G) ⊆ L′

am. Thus,
we can assume Lam ⊆ Lm(G) without loss of generality.

On the other hand, an arbitrary Lam is not necessarily Lm(G)-closed, as the following
example illustrates.

Consider the plant G2 shown in Fig. 4, where Lm(G2) = {c, cc}. Let L1 = {cc}. L1
is not Lm(G2)-closed. Indeed, c ∈ L1 ∩ Lm(G2) but c 	∈ L1. It is easy to find a block-
ing supervisor that ensures Lm(S/G2) ⊆ L1. In fact, the most-restrictive supervisor Smr

achieves Lm(Smr/G2) = ∅ ⊆ L1. This supervisor is blocking, because ε is in L(Smr/G2)

but not in Lm(Smr/G2) = ∅. A non-blocking supervisor S that ensures Lm(S/G2) ⊆ L1

Fig. 4 Plant G2
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does not exist. Indeed, S can only disable transitions, and it cannot disable both transitions
of G2 because this would be blocking. Thus, at least one of c or cc must be in Lm(S/G2).
But c ∈ Lm(S/G2) is not allowed, because this would imply Lm(S/G2) 	⊆ L1. Therefore
it must be that Lm(S/G2) = {cc}. But it is impossible to have S allow cc while it forbids c,
since c is a marked prefix of cc. Indeed, this would require S being able to “unmark” some
marked states of the plant, which it cannot do.

2.1.7 Maximal permissiveness and uniqueness

An important requirement in the basic supervisory control problem defined below (Sec-
tion 2.1.8) is maximal permissiveness, namely, the fact that the supervisor must disable
events only when strictly necessary to enforce the other requirements (non-blockingness or
safety). This is a reasonable requirement, as it forces the supervisor to “disturb” the plant as
little as possible, and only when strictly necessary. An important feature of the basic super-
visory control framework is that a unique maximally-permissive supervisor always exists.
As we shall see, this is not generally the case in the reactive synthesis framework. In this
section, we establish this uniqueness property.

First, we define what it means for a supervisor to be more permissive than another super-
visor. Consider a plant G and two supervisors S1, S2 for G. We say that S1 is no more
permissive than S2 iff S1(σ ) ⊆ S2(σ ) for any σ . We say that S2 is strictly more permissive
than S1 iff S1 is no more permissive than S2 and S1 	= S2.

Now, consider an admissible marked language Lam satisfying: (1) Lam ⊆ Lm(G) and
(2) Lam is Lm(G)-closed. A supervisor S which is non-blocking for G and safe w.r.t. Lam

is said to be maximally-permissive with respect to G and Lam if there is no supervisor S′
which is non-blocking for G, safe w.r.t. Lam, and strictly more permissive than S. Note that,
a-priori, there could be more than one maximally-permissive supervisor, as the definition
itself does not imply uniqueness. The theorem below shows that, for non-blockingness and
safety, a unique maximally-permissive supervisor exists, provided that a supervisor exists
at all.

Theorem 1 Consider a plant G, and an admissible marked language Lam satisfying:
(1) Lam ⊆ Lm(G) and (2) Lam is Lm(G)-closed. If there exists a supervisor which is
non-blocking for G and safe w.r.t. Lam then there exists a unique maximally-permissive
supervisor Smpnb which is non-blocking for G and safe w.r.t. Lam.

Proof The books (Cassandras and Lafortune 2008; Wonham 2015) and the original
papers (Ramadge and Wonham 1987; Wonham and Ramadge 1987) contain proofs of The-
orem 1, as well as statements of necessary and sufficient conditions for the existence of a
safe and non-blocking supervisor and algorithmic procedures for computing Smpnb, given
G and given an automaton representation of Lam. These proofs are normally done by defin-
ing the property of controllability of languages, showing that it is necessary and sufficient
for the existence of a supervisor that exactly achieves a given language, and then proving
the existence of the supremal controllable sublanguage.

For the reader interested in understanding the existence of a unique maximally permissive
safe and non-blocking supervisor without reading more detailed treatments of supervisory
control theory, we provide in Appendix A a direct proof based on disjunction of super-
visors. This proof does not require the notions of controllable languages and of supremal
controllable languages.
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In the sequel, the unique maximally-permissive non-blocking and safe supervisor will
be denoted by Smpnb and its associated closed-loop marked language by Lm(Smpnb/G) =
L

mpnb
am . Since Smpnb is non-blocking, then L(Smpnb/G) = L

mpnb
am . Moreover, as a conse-

quence of the maximal permissiveness property of Smpnb, the language L
mpnb
am must contain

the closed-loop marked language Lm(Sother/G) of any safe and non-blocking supervisor
Sother for G wrt Lam.

As an example, consider again plant G1 of Fig. 3, admissible marked language L2 =
{uc2}, and supervisor S3 defined above. S3 is maximally-permissive w.r.t. G1 and L2.
Indeed, any other supervisor, in order to be strictly more permissive than S3, would have
to either allow c1 initially, which would violate safety w.r.t. L2, or allow c2 initially, which
would violate non-blockingness, or allow c1 after u, which again would be blocking.

Remark 4 (Non-uniqueness of supervisors achieving maximal behavior) Note that,
although Smpnb is unique, there are generally more than one supervisors that result in the

same maximal closed-loop marked behavior L
mpnb
am since, by definition, Smpnb might enable

infeasible controllable events. As an example, consider the plant G3 shown in Fig. 5, where
both c1, c2 are controllable events. Note that all states of G are accepting and as a result,
Lm(G) is prefix-closed and Lm(G) = L(G) = {ε, c1, c1c2}.

Let Lam := {ε, c1}, which can be interpreted as “c2 should never occur”. The maximally-
permissive supervisor w.r.t. G3 and Lam defined as above is

Smpnb(σ ) =
{ {c1} if σ = c1

{c1, c2} otherwise

Another, less permissive supervisor, is one that always disables c2. Both these two
supervisors, however, achieve the same maximal closed-loop behavior, which is exactly
Lam.

2.1.8 BSCP-NB: basic supervisory control problem with non-blockingness

We are now ready to define the standard supervisory control problem:

Definition 1 (BSCP-NB) Given DES G and admissible marked language Lam ⊆ Lm(G),
with Lam assumed to be Lm(G)-closed, find, if it exists, or state that there does not exist, a
supervisor for G which is non-blocking for G, safe w.r.t. Lam, and maximally-permissive.

Observe that from the safety property Lm(S/G) ⊆ Lam, we get Lm(S/G) ⊆ Lam. Also,
from non-blockingness we know that L(S/G) = Lm(S/G). These two properties imply
L(S/G) ⊆ Lam and thus in BSCP-NB the controlled behavior always stays within the
prefix-closure of the admissible marked behavior.

As an example, consider again plant G1 of Fig. 3, admissible marked language L2 =
{uc2}, and supervisor S3 defined above. S3 is a solution to this BSCP-NB instance, since it
is non-blocking, safe, and maximally-permissive, as explained above.

It may happen that BSCP-NB has no solution. For instance, suppose thatL(G) = {ucuc}
and Lm(G) = {uc, ucuc} with Ec = {c} and Euc = {u}. Take Lam = {uc}. Then no safe

Fig. 5 Plant G3
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and non-blocking supervisor exists. Any supervisor will allow uncontrollable event u at the
beginning of system operation. But enabling c after observing string u will violate safety,
since string ucu will be in the closed-loop language. On the other hand, disabling c after
observing string u causes deadlock. Hence, BSCP-NB has no solution in this example.

This shows that the set of uncontrollable events Euc plays a central role in BSCP-NB.
Algorithmic procedures that solve BSCP-NB must account for both uncontrollability and
non-blockingness, and these two requirements are interdependent.

We postpone the discussion of algorithms to solve BSCP-NB to Section 3.4.1.

Example 2 (Coffee Machine Revisited) We revisit the coffee machine example at the begin-
ning of Section 2.1, where the “plant” is the automaton G in Fig. 2. To obtain an instance of
BSCP-NB, we formalize the specifications of safety and the two allowed recipes described
earlier in the form of a language Lam ⊆ Lm(G). It is not hard to see that Lam is marked by
the non-blocking automaton H shown in Fig. 6. This automaton ensures that grinding pre-
cedes brewing, that no grinding occurs after brewing has started, and it allows either one of
the two recipes: gbb or ggbbb. Its marked language is also a sublanguage of Lm(G) as we
have included self-loops for event c at the states where the coffee machine is not idle, con-
sistent with the structure of G. Observe that automaton H needs to count the number of g

and b events, something that is not done in G. It is also straightforward to verify from Fig. 6
that Lam satisfies the Lm(G)-closure condition.

If Euc = {c} but all other events are controllable, then the solution of BSCP-NB achieves
Lam exactly under control, i.e., the maximally permissive non-blocking supervisor Smpnb

is such that Lm(Smpnb/G) = Lam. In other words, in this simple example, the synthe-
sis step is trivial since the specification language is exactly achievable by disabling g, b,
or r at the right moment along each run of the plant. Hence, the closed-loop language
L(Smpnb/G) = Lam is also equal to L(H). (This is of course not true in general.) Indeed,
initially, Smpnb(ε) = {c, b, g, r}: only c is feasible and it is uncontrollable, so it must be
enabled; the other events are infeasible but added according to the definition of Smpnb. Then
the supervisor issues the following control actions for the given observed strings of G:
Smpnb(c) = {c, g} (i.e., b and r must be disabled to allow grinding to start);
Smpnb(cg) = {c, g, b} (i.e., r must be disabled until a recipe is completed);
Smpnb(cgb) = {c, b} (i.e., b must continue since the first recipe is being followed);

Fig. 6 Automaton H that marks the language Lam for the coffee machine example
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Smpnb(cgg) = {c, b} (i.e., b must start since the second recipe is being followed);
Smpnb(cgbb) = {c, r} (i.e., r must start since the first recipe is completed);
Smpnb(cggb) = {c, b} (i.e., b must continue since the second recipe is being followed);
Smpnb(cggbb) = {c, b} (i.e., b must continue since the second recipe is being followed);
Smpnb(cggbbb) = {c, r} (i.e., r must start since the second recipe is completed);
Smpnb(cgbbr) = Smpnb(cggbbbr) = {c, b, g, r} (i.e., a new cycle can begin);
and so forth.

If either event g, b, or r were uncontrollable, then BSCP-NB would have no solution. In
the case where g ∈ Euc for instance, the strings cgn, n ≥ 3, which are in L(G), cannot be
prevented by control, and they are outside Lam. Similarly for string cb if b is uncontrollable,
and for string cr if r is uncontrollable.

2.2 Reactive synthesis

In reactive synthesis, we build correct-by-construction controllers from declarative speci-
fications. Controllers are open dynamical systems. A controller is open in the sense that it
has inputs and outputs, and its behavior (its dynamics) depends on the inputs that the con-
troller receives. These inputs come from the controller’s environment (which may also be
an open system, receiving as inputs the controller’s outputs). A specification is declarative
in the sense that it states how a controller must behave, but is not concerned with its internal
structure. Rather, the specification only describes the desired behavior of the controller on
the interface level, i.e., using its sets of inputs and outputs.

Let us illustrate the reactive synthesis framework by re-stating the coffee maker example
(Section 2.1) in this framework. Consider the interface of the controller of a coffee maker
that is depicted in Fig. 7.

The controller is meant to trigger the mechanical components of the coffee maker. The
interface shows that we have one input signal, c. In this example, it is supposed to represent
whether the user of the coffee maker has pressed the coffee button. There are also two output
signals, namely b and g. While b is supposed to represent whether the brewing unit of the
coffee maker is activated, g represents whether the grinding unit is activated.

In reactive synthesis, we assume that the controller evolves in steps, i.e., the controller
communicates via input and output signals, which all have some value assigned in every
time step. For simplicity, we assume Boolean signals where all values are Boolean. Con-
trollers can therefore be viewed as state machines of type Moore or Mealy. In typical targets
for reactive synthesis such as on-chip controllers, this assumption is well-justified, as there
is typically a global clock generator in such systems. In the scope of our coffee maker,
which serves mainly as an introductory example, we just choose a reasonable step duration.

Fig. 7 The interface of a
controller for a coffee maker
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A reactive system has no designated time of going out-of-service, i.e., for every number
of time steps n, we should not synthesize a controller that only works under the assumption
that it runs for at most n steps, as letting it run for n + 1 time steps is also conceivable. To
abstract from this problem, we assume that the controller never goes out of service, and thus
runs for an infinite duration. Such an execution produces a trace, which describes in which
steps which inputs and outputs are set (i.e., have value true). Formally, a trace is an infinite
word w = w0w1w2 . . ., where for every i ∈ N, we have wi ⊆ API ∪ APO , where API is
the set of input signals, and APO is the set of output signals. In the case of the coffee maker,
API = {c} and APO = {g, b}. The following example shows an example trace of a coffee
maker controller:

w=
⎛
⎝ c �→ false

g �→ false
b �→ false

⎞
⎠
⎛
⎝ c �→ true

g �→ true
b �→ false

⎞
⎠
⎛
⎝ c �→ false

g �→ true
b �→ false

⎞
⎠
⎛
⎝ c �→ false

g �→ false
b �→ true

⎞
⎠
⎛
⎝ c �→ false

g �→ false
b �→ true

⎞
⎠
⎛
⎝ c �→ false

g �→ false
b �→ true

⎞
⎠ . . . (2)

In this trace, the coffee button is pressed in the second step, and grinding is performed in
the two steps starting with the second one. Then, the brewing unit of the coffee maker is
triggered for three steps.

This behavior of the controller could be one that satisfies its specification. For example,
a specification for a coffee maker controller could be that once the coffee button is pressed,
grinding should happen for two steps, and afterwards brewing should be done for three time
steps while the grinding unit is idle.

To now perform synthesis from this specification, we need to formalize it. In reactive
synthesis, this is typically done by describing the specification in a logic. The logic CTL�

(Emerson and Halpern 1986) is well-suited for this purpose and extends standard Boolean
logic by temporal operators and path quantifiers that intuitively allow us to connect the
system’s signal valuations in one step with the actions in other, future time steps. In the
context of logic, we also call the signals atomic propositions. (CTL stands for Computation
Tree Logic.) The informal specification from the previous paragraph would be formalized
into CTL� as follows:

ψ = AG (c → (g ∧ Xg ∧ XX((b ∧ ¬g) ∧ X(b ∧ ¬g) ∧ XX(b ∧ ¬g)))

The formula starts with the path quantifier A, which denotes that the expression right of
the operator should hold along all executions of a system to be synthesized. It is followed
by the temporal operator G, which is called the globally operator. For some formula Gφ to
hold at some point in the execution of a system, φ needs to hold for all steps from that point
onward.

A specification is required to hold right from the start of the system. Thus, prefixing our
coffee maker specification ψ with AG means that the implication c → . . . has to hold at
every step of the system’s execution. The implication in turn describes that (g ∧ Xg ∧ . . .)

shall happen whenever we have c, i.e., the coffee button has been pressed. The consequent
of the implication now is (g ∧ Xg ∧ XX((b ∧ ¬g) ∧ X(b ∧ ¬g) ∧ XX(b ∧ ¬g)), which
is a Boolean formula in which the temporal operator X (next) is used. It describes that we
need to look one step into the future in the trace of the system to test if some sub-formula
holds. So Xg holds in the first step in a trace of the system if g holds in the second step of
the trace. Likewise, XXg holds in the first step in a trace if g holds in the third step of the
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trace. This example also shows that the operators in CTL� can be chained, which makes it a
rich modeling formalism for specifications. Note that the consequent of the implication in
ψ describes the informal statement of what shall happen upon a coffee button press from
above in a formal way.

To actually synthesize a system from a specification, the specification needs to be realiz-
able, i.e., there has to exist a system implementation for the given interface that ensures that
every trace of the system satisfies the specification. Most synthesis algorithms also check
realizability, i.e., they do not only synthesize an implementation for realizable specifica-
tions, but also detect unrealizability. As a consequence, there is often no distinction between
the two steps in the literature.

While testing realizability appears to be trivial and unnecessary, in the practice of syn-
thesis, it is not. For example, the coffee maker specification from above is unrealizable, and
despite its short length, this fact is easily overlooked. The reason for unrealizability here is
that we might press the coffee button in the first two successive steps of the system’s execu-
tion. The specification part Xg then requires that grinding is performed in the third step (as
the implication is triggered by the second button press), but at the same time the specifica-
tion part XX((b ∧¬g)∧ . . .) requires that grinding does not happen in the third step. This is
a contradiction that the system to be synthesized cannot avoid, as the input is not under its
control. Therefore, this specification is unrealizable.

There are two ways to fix the specification. One is to allow the system to delay the
production of the next cup until a grinding and brewing cycle has finished. This can be done
using the eventually operator (F) of CTL�. Intuitively, a CTL� formula Fφ holds at a point
in a trace of the system if at some point in the future, φ holds. The modified specification
then looks as follows:

ψ = AG (c → F(g ∧ Xg ∧ XX((b ∧ ¬g) ∧ X(b ∧ ¬g) ∧ XX(b ∧ ¬g)))

It is now realizable, partly because there is no requirement that the number of coffees
produced matches the number of button presses. Note that the eventually operator does not
impose a bound on the number of steps by which a brewing cycle might be delayed. Thus, a
system that satisfies this specification could react with a delay that gets longer and longer the
more coffees are made. However, none of the contemporary synthesis algorithms produces
such implementations, as such a behavior would require an infinite-state implementation,
but they only compute finite-state ones. As it can be shown that whenever there exists an
implementation for a CTL� specification, there also exists a finite-state one, this is also not
necessary. So using the eventually operator in this context instead of imposing a maximal
bound on the number of steps until when grinding should start is reasonable.

Another possibility to fix the specification is to add an assumption to the specification
that expresses that the coffee button cannot be pressed when brewing or grinding is already
happening. The new realizable specification would be:

ψ ′ = A (G((g ∨ b) → ¬Xc) → G (c → F(Xg ∧ XXg ∧ XXX((b∧¬g)∧X(b∧¬g)∧ XX(b∧¬g))))

An assumption of course always has to be reasonable in practice to make sense in synthesis.
If we know that the coffee maker in which the controller is supposed to work ensures that
the button cannot be pressed while the maker is running (or alternatively ignores the button
press), then the assumption is justified.

After this short introduction to the aims of reactive synthesis, let us now discuss more
formally how we specify the intended behavior of the system to be synthesized and how
such a system is actually represented.
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2.2.1 Computation trees

A reactive system has to satisfy a specification regardless of the input to the system. To
get an overview about the possible behaviors of a system, for the scope of synthesis,
we typically view a system implementation as a computation tree, as these describe all
system behaviors of a reactive system at once. Formally, for some interface (API ,APO)

of a reactive system, a computation tree is a tuple 〈T , τ 〉, where T = (2API )∗ and
τ : T → 2API ∪APO . The tree describes all the possible traces by having τ map every input
sequence to the system to an output signal valuation that the system produces after hav-
ing read the input sequence. Without loss of generality, we assume that every node in the
computation tree is also labeled by the last input, i.e., we have τ(t0 . . . tn)|API

= tn for
every t0 . . . tn ∈ (2API )+. While labeling the nodes in the tree according to the last direc-
tion seems to be unnecessary, it allows us to define the logic CTL� below in a way that
generalizes to applying the logic to Kripke structures (which we define in Section 3.2.1)
as well. Note that τ(ε)|API

is not constrained in any way and can be freely set by the
computation tree.

Figure 8 shows an example computation tree of a coffee maker controller.

2.2.2 The temporal logic CTL�

Let AP be a set of atomic propositions. Expressions in CTL� can either be state formulas or
path formulas. We define the set of path formulas in the temporal logic CTL� inductively
by the following rules:

• every CTL� state formula is also a CTL� path formula
• For every CTL� path formula ψ , we have that ¬ψ , Gψ , Fψ , and Xψ are also CTL�

path formulas;
• For all CTL� path formulas ψ and ψ ′, we have that ψ Uψ ′, ψ Rψ ′, ψ ∨ψ ′, and ψ ∧ψ ′

are also CTL� path formulas.

Fig. 8 A computation tree of a coffee maker controller. Taking a branch to the left always refers to the input
{c �→ false}, whereas the right branches always refer to the input {c �→ true}
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The set of state formulas is defined as follows:

• For every p ∈ AP, p is a CTL� state formula;
• For all CTL� state formulas φ and φ′, we have that φ ∨ φ′, φ ∧ φ′ and ¬φ′ are also

CTL� state formulas;
• Given a CTL� path formula ψ , Aψ and Eψ are CTL� state formulas.

The semantics of CTL� is defined over computation trees. Let AP be a set of atomic
propositions for AP = API ∪ APO , ψ be a CTL� formula over AP, and 〈T , τ 〉 be a
computation tree. A branch in 〈T , τ 〉 starting in some node t ∈ T is defined to be a
sequence b = b0b1b2 . . . such that (1) b0 = t , (2) for every i ∈ N, we have bi ∈ T ,
and (3) for every i ∈ N, we have bi+1 = bix for some x ⊆ API . We denote the suf-
fix of a string b starting at position j ∈ N by bj , i.e., for b = b0b1b2 . . ., we have
bj = bjbj+1bj+2 . . ..

Given some node t = t0 . . . tn of 〈T , τ 〉, we evaluate the validity of a CTL� state formula
at point t by recursing over the structure of the CTL� state formula (where ψ is a CTL� path
formula and φ and φ′ are CTL� state formulas):

• 〈T , τ 〉, t |= p for some p ∈ API ∪ APO if p ∈ τ(t);
• 〈T , τ 〉, t |= ¬φ if and only if not 〈T , τ 〉, t |= φ;
• 〈T , τ 〉, t |= φ ∨ φ′ if and only if 〈T , τ 〉, t |= φ or 〈T , τ 〉, t |= φ′;
• 〈T , τ 〉, t |= φ ∧ φ′ if and only if 〈T , τ 〉, t |= φ and 〈T , τ 〉, t |= φ′;
• 〈T , τ 〉, t |= Aψ if for all branches b starting from t , we have 〈T , τ 〉, b |= ψ ;
• 〈T , τ 〉, t |= Eψ if for some branch b starting from t , we have 〈T , τ 〉, b |= ψ .

Likewise, given some branch b = b0b1 . . . of 〈T , τ 〉, we evaluate the validity of a CTL�

path formula on b by recursing over the structure of the CTL� path formula (where ψ and
ψ ′ are CTL� path formulas and φ is a CTL� state formula):

• 〈T , τ 〉, b |= φ if and only if 〈T , τ 〉, b0 |= φ;
• 〈T , τ 〉, b |= ¬ψ if and only if not 〈T , τ 〉, b |= ψ ;
• 〈T , τ 〉, b |= ψ ∨ ψ ′ if and only if 〈T , τ 〉, b |= ψ or 〈T , τ 〉, b |= ψ ′;
• 〈T , τ 〉, b |= ψ ∧ ψ ′ if and only if 〈T , τ 〉, b |= ψ and 〈T , τ 〉, b |= ψ ′;
• 〈T , τ 〉, b |= Xψ if and only if 〈T , τ 〉, b1 . . . |= ψ ;
• 〈T , τ 〉, b |= Gψ if and only if for all j ∈ N, we have 〈T , τ 〉, bj |= ψ ;
• 〈T , τ 〉, b |= Fψ if and only if for some j ∈ N, we have 〈T , τ 〉, bj |= ψ ;
• 〈T , τ 〉, b |= ψ Uψ ′ if and only if for some j ∈ N, we have 〈T , τ 〉, bj |= ψ ′, and for all

0 ≤ i < j , we have 〈T , τ 〉, bi |= ψ ;
• 〈T , τ 〉, b |= ψ Rψ ′ if either for all j ∈ N, we have 〈T , τ 〉, bj |= ψ ′, or there exists

some j ∈ N such that 〈T , τ 〉, bj |= ψ , and for all i ≤ j , we have 〈T , τ 〉, bi |= ψ ′.

We define the set of trees for which all children of the root node satisfy some CTL� state
formula φ to be the models of φ.1

1This definition differs a bit from the classical definition of a computation tree’s containment in the tree
language induced by a CTL� formula, where the safisfaction of φ is checked at the root node itself. For
reactive synthesis, where every node is labeled by the last input, this definition is a bit awkward, however,
as the root node does not have a last input. By evaluating a CTL� formula on all children of the root node,
we circumvent this problem. For the scope of this paper, we find this approach to be conceptually cleaner
than allowing the system to choose an arbitrary first input proposition valuation at the root, as done in many
classical publications on reactive synthesis.
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Given some CTL� state formula φ, we say that φ is realizable for some interface I =
(API ,APO) if there exists an 2APO∪API -labeled 2API -tree that is a model of φ (and that
copies the last input correctly to its node labels).

CTL is the subset of CTL� obtained by restricting the path formulas to be Xφ, Fφ, Gφ,
and φ Uφ′, where φ, φ′ are CTL state formulas. LTL is the subset of CTL� consisting of the
formulas Aφ in which the only state subformulas in φ are atomic propositions.

Definition 2 (Realizability Problem) Given some system interface I = (API ,APO) and
some CTL� state formula φ (the specification), the realizability problem is to test if there
exists some computation tree 〈T , τ 〉 with T = (2API )∗ and τ : T → 2API ∪APO that copies
the respective last input to its node labels correctly and such that 〈T , τ 〉 is a model of φ.

2.2.3 Transducers

The definition of the realizability problem above has one slight problem: while it clearly
defines what constitutes a computation tree that represents a solution to the synthesis prob-
lem, such computation trees have infinitely many nodes. Thus, the model is not directly
usable for actually synthesizing systems, which have to be finite-state in order to be imple-
mentable in the field. As a remedy to this problem, we define (deterministic) transducers
here, which serve as finite generators for computation trees. It can be shown that for every
realizable specification, there exists a computation tree that is generated by a transducer,
and thus for the scope of synthesis, it suffices to search for a transducer that generates a
suitable computation tree.

Formally, a transducer over some set of input atomic propositions API and output atomic
propositions APO is defined as a tuple T = (S, 2API , 2API ∪APO , δ, s0, L), where S is a
(finite) set of states, δ : S × 2API → S is the transition function, s0 ∈ S is the initial state
of the system, and L : S → 2API ∪APO assigns to each state its labeling. We require that
the states always represent the last input to the transducer, i.e., we have L(s)|API

= x for
every s ∈ S such that for some s′ ∈ S, we have δ(s′, x) = s. The definition of a transducer
corresponds to the definition of aMealy machine that is common in the practice of hardware
design, but with the addition that the transducer always produces the last output.

We say that some word w = w0w1 . . . ∈ (2APO × 2API )ω is a trace of T if there
exists some sequence of states π = π0π1 . . . ∈ Sω such that π0 = s0, and for all
i ∈ N, we have πi+1 = δ(πi, x) for some x ⊆ API and wi = L(πi). We call π a run
of the transducer in this context. We can obtain a computation tree 〈T , τ 〉 from a trans-
ducer T = (S, 2API , 2API ∪APO , δ, s0, L) by setting T = (2API )∗ and τ(t0t1 . . . tn) =
L(δ(. . . δ(δ(s0, t0), t1), . . . , tn)) for all t0t1 . . . tn ∈ T .

To illustrate the concept of transducers, Fig. 9 shows an example transducer for a coffee
maker controller that could have the same set of traces as the computation tree in Fig. 8. As
the computation tree in Fig. 8 is not fully shown (after all, it is infinite), we can however not
be sure about that.

2.2.4 Reactive Synthesis Problem (RSP)

Definition 3 (RSP) Given some system interface I = (API ,APO) and some CTL� state
formula φ (the specification), the reactive synthesis problem (RSP) for I and φ is to com-
pute a transducer over I whose computation tree satisfies φ whenever it exists, and to
deduce that no such transducer exists whenever this is the case.
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Fig. 9 An example transducer structure for a coffee maker controller with API = {c} and APO = {b, g}. The
initial state is marked with an incoming arrow. Edges are labeled by simple Boolean formulas that represent
the conditions over the input characters under which the transition is taken

We postpone a discussion of algorithms to solve RSP to Section 3.4.2.

2.2.5 Maximal permissiveness in RSP

The reader may have noted that in the definition of the supervisory control problem, we are
concerned with computing maximally permissive controllers, but in the reactive synthesis
problem, we just search for any controller that satisfies the specification. There are two rea-
sons for this difference. First of all, the reactive synthesis problem was originally defined in
this form by Church (1963). The second, more important reason is however that in general,
maximally-permissive controllers do not exist.

To actually discuss maximally-permissiveness in the context of the reactive synthesis
problem, we first of all need to change our transducer definition, as the transducers currently
dealt with are deterministic. For a transducer T = (S, 2API , 2APO , δ, s0, L), we redefine δ

to map from S × 2API to a subset of S. This way, whenever the controller is in some state
s and reads some input x ⊆ API , then it can transition to any of the states in δ(s, x). We
require that for all s ∈ S and x ⊆ API , δ(s, x) is non-empty. We furthermore allow more
than one initial state and modify the definition of a computation tree of account for these
facts.

Computation trees for such non-deterministic transducers T =
(S, 2API , 2API ∪APO , δ, S0, L) are then tuples 〈T , τ 〉 with T ⊆ S∗ such that for some
s0 ∈ S0, we have:

1.1. τ(ε) = L(s0)

1.2. |{s ∈ S | s ∈ T }| = |2API | and {L(s)|2API : s ∈ S ∧ s ∈ T } = 2API

1.3. For all s ∈ S with s ∈ T , we have s ∈ δ(s0, L(s)|2API )

2.1. For all t = t0 . . . tn ∈ T \ {ε}, we have τ(t0 . . . tn) = L(tn)

2.2. For all t = t0 . . . tn ∈ T \ {ε}, we have that |{s ∈ S | ts ∈ T }| = |2API | and
{L(ts)|2API : ts ∈ T } = 2API

2.3. For all t = t0 . . . tn ∈ T \ {ε} with n ≥ 1, we have tn ∈ δ(tn−1, L(tn)|2API ).
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Note that we actually only have three different conditions, but for the sake of complete-
ness need one copy of each condition for the root and one copy for the other nodes. The
conditions together ensure that all the possible computation trees of a transducer are input-
complete, i.e., from every node, they have one possible successor for every next input.
We say that a non-deterministic transducer satisfies some CTL* state formula φ if every
input-complete computation tree induced by the transducer satisfies φ (at the root).

We furthermore say that two computation trees 〈T , τ 〉 and 〈T ′, τ ′〉 are isomorphic if
there exists some bijective function f : T → T ′ with |f (t)| = |t | for all t ∈ T and
τ(t) = τ ′(f ′(t)) for all t ∈ T . Isomorphic trees effectively represent the same behavior of
a reactive system although the internal structure of the transducers from which the trees are
possibly generated may be different.

We call a non-deterministic transducer maximally permissive for some CTL* state for-
mula specification φ and interface I = (API ,APO) if (1) the transducer branches over API

and satisfies φ on all trees induced by the transducer, and (2) every input-responsive com-
putation tree for I that satisfies φ (at the root) has an isomorphic computation tree that is
induced by the transducer.

Note that maximally permissive finite-state controllers/transducers do not exist in gen-
eral for RSP. For example, let API = {r}, APO = {g}, φ = AGFg, and T =
(S, 2API , 2API ∪APO , δ, s0, L) be any transducer that satisfies φ. Since T satisfies φ, there
has to be some upper bound b ∈ N on the number of steps until g is set to true by the
controller for the first time, as otherwise, there exists some path in some computation tree
induced by T on which GFg is not satisfied. However, since a controller that sets g to true
every (b + 1)th cycle satisfies φ as well, T cannot be maximally permissive. As we started
with an arbitrary finite-state transducer, this proves that no controller can be maximally
permissive.

Section 3.2.5 contains a more detailed discussion of maximal permissiveness in the
reactive synthesis context.

3 Bridging the gap

In this section, we discuss how to bridge the gap between the synthesis problems consid-
ered in supervisory control and reactive synthesis. We do this by establishing relations (e.g.,
reductions) between some specific problems studied in these frameworks. The general sit-
uation is described in Fig. 10, where the basic supervisory control problem (BSCP-NB)
and the reactive synthesis problem (RSP) are the cases at the cliffs of the gap. We intro-
duce problems that conceptually lie in between BSCP-NB and RSP in order to bridge the
gap. These problems always differ in one aspect from their neighbors, and we can perform
reductions between these problems. As a result, we can move gently between the BSCP-NB
and RSP problems, which simplifies understanding the concepts to follow.

However, our bridge does not exactly meet in the middle. The reason is that the aim of
supervisory control and the aim of reactive synthesis slightly differ. In supervisory control,
we always want our supervisor to be maximally permissive (being a “parent”), as it should
only block undesired actions. In reactive synthesis, on the other hand, where maximal per-
missiveness is unachievable in general, we want our controller to actively enforce certain
properties, possibly at the expense of preventing certain overall system behavior that is
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Fig. 10 Relations between different synthesis and control problems

unproblematic. This mismatch, and the lack of study of the general reactive synthesis prob-
lem with maximal permissiveness, RSCPmax (see Definition 8 that follows), prevent us from
performing a sequence of reductions that map the problems completely onto each other.

Our focus in this paper is on the left-side of the bridge: we present formal reductions
from BSCP-NB to a special instance of RSCPmax. Specifically, we show in Section 3.1
that BSCP-NB is equivalent to a simpler supervisory control problem in which only non-
blockingness is required, called SSCP, and which simplifies the reduction to the reactive
synthesis setting. In Section 3.2 we define a reactive synthesis problem with an explicit
notion of plants, called RSCP. This makes it easier to capture supervisory control problems
where the plant is an input to the problem. RSCP does not generally admit maximally-
permissive solutions, but does so for the non-blocking requirement, which is the only
requirement of SSCP. In Section 3.3 we show how SSCP can be reduced to a variant of
RSCP which requires maximal permissiveness.

Regarding the right side of the bridge, we discuss in Section 3.5 the links between
reactive synthesis with plants and reactive synthesis without plants.

The center of the bridge is represented as an “automaton vehicle.” This vehicle captures
the fact that at an algorithmic level, the problems on either side of the gap are solved by
applying automata-theoretic techniques, as discussed in Section 3.4.2.

3.1 Simplifying the supervisory control problem

In view of reducing BSCP-NB to the reactive synthesis framework, we first reduce BSCP-
NB to a simpler problem. In particular, we will eliminate the safety specification Lam by
incorporating it into the plant. This can be done by taking as new plant the product of
the original plant G and an automaton recognizing Lam. The simpler problem asks for a
non-blocking supervisor for the new plant. We next formalize this idea.

3.1.1 Incorporating safety into the plant

Let G = (X, x0, Xm, E, δ) be a DES plant. Let Lam ⊆ Lm(G) and let Lam be Lm(G)-
closed. Let A = (XA, xA

0 , XA
m,E, δA) be a deterministic finite-state automaton such that
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Lm(A) = Lam and L(A) = E∗. We can assume without loss of generality that A is com-
plete in the sense that its transition function δA is total. Therefore, every string in E∗ has a
unique run in A, although only some runs will generally end up in a marked state; in fact,
A is generally a blocking automaton, since strings outside Lam will never reach a marked
state. (The fact that L(A) 	⊆ L(G) is not a problem; this will become apparent below.)

The product of G and A, denoted by G × A, is defined to be the automaton

G × A = (X × XA, (x0, x
A
0 ),Xm × XA

m,E, δ′)
such that

δ′ ((x, xA), e
)

=
⎧⎨
⎩

(
δ(x, e), δA(xA, e)

)
if δ(x, e) is defined (δA is total, so δA(xA, e) is always defined)
undefined otherwise

It follows from the construction of A and the assumptions on Lam and A that

L(G × A) = L(G) ∩ L(A) = L(G) ∩ E∗ = L(G) and

Lm(G × A) = Lm(G) ∩ Lm(A) = Lm(G) ∩ Lam = Lam.

G and G × A have the same set of events E, thus also the same subsets of controllable
and uncontrollable events. Therefore, any supervisor S for G is also a supervisor for G×A,
and vice versa. This allows us to state the following result.

Theorem 2 Let G = (X, x0, Xm, E, δ), Lam ⊆ Lm(G), and assume that Lam is Lm(G)-
closed. Let A be a complete DFA such that Lm(A) = Lam. Let S be a supervisor for G, and
therefore also for G × A. Then, the following statements are equivalent:

1. S solves BSCP-NB for plant G with respect to admissible marked language Lam.
2. S solves BSCP-NB for plantG×Awith respect to admissible marked languageLm(G×A).

Proof The proof is given in Appendix B.

To the best of our knowledge, the result in Theorem 2 does not appear explicitly in the
published literature, although it can be inferred rather straightforwardly from the algorith-
mic procedure for solving BSCP-NB originally presented in Ramadge and Wonham (1987),
Wonham and Ramadge (1987). Our proof in Appendix B is direct and relies only on the
concepts introduced so far in this paper.

3.1.2 SSCP: simple supervisory control problem

Theorem 2 allows to reduce BSCP-NB to a simpler problem, namely, that of find-
ing a maximally-permissive non-blocking supervisor for a given plant, with no external
admissible marked behavior. We call the resulting problem the Simple Supervisory Control
Problem (SSCP) and restate it formally:

Definition 4 (SSCP) Given DES G, find (if it exists, or state that none exists) a maximally-
permissive non-blocking supervisor for G, that is, a supervisor S which is non-blocking for
G, and such that there is no supervisor S′ which is non-blocking for G and strictly more
permissive than S.
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Corollary 1 BSCP-NB and SSCP are equivalent problems, i.e., each one can be reduced to
the other with a polynomial-time reduction.

Proof SSCP is equivalent to the special case of BSCP-NB with Lam := Lm(G). This is
because Lm(G) is trivially Lm(G)-closed and Lm(S/G) ⊆ Lm(G) always holds. Obvi-
ously this special case of BSCP-NB can be reduced to BSCP-NB. Conversely, Theorem 2
demonstrates that BSCP-NB can be reduced to this special case of BSCP-NB. This reduc-
tion is polynomial-time because G × A can be computed in polynomial time from G and
A. Therefore all three problems, BSCP-NB, BSCP-NB with Lam := Lm(G), and SSCP are
equivalent with polynomial-time reductions.

It also follows from the above results and Theorem 1 that if a solution to SSCP exists,
then this solution is unique, i.e., the maximally-permissive non-blocking supervisor is
unique.

3.1.3 Finite-memory, state-based supervisors

Wewill use SSCP to establish a precise connection between supervisory control and reactive
synthesis. In this regard, we prove a useful property for the type of supervisors that need to
be considered in solving SSCP.

A supervisor is a function S : E∗ → 2E . The domain of this function is E∗, which is
an infinite set. This makes it a priori possible for S to require infinite memory. Fortunately,
it can be shown that finite-memory, and in particular state-based supervisors, are sufficient
for SSCP.

Definition 5 Let G = (X, x0, Xm,E, δ) be a DES plant with E = Ec ∪ Euc and let
S : E∗ → 2E be a supervisor for G. S is said to be state-based if

∀σ1, σ2 ∈ E∗ : δ(x0, σ1) = δ(x0, σ2) =⇒ S(σ1) = S(σ2).

That is, S is state-based if it outputs the same decision for two behaviors σ1, σ2 of G

that end up in the same state. Therefore, S only needs to know the current state of the plant
in order to decide which controllable events should be allowed. Note that we assume that,
when one or both of δ(x0, σ1), δ(x0, σ2) are undefined, the equality δ(x0, σ1) = δ(x0, σ2)

is false, and therefore in that case the implication is trivially true. Given that, Definition 5
does not constrain the structure of S outside of L(G), i.e., for strings in E∗ \ L(G). This is
because we do not need to make any assumptions regarding the form of S over E∗ \ L(G),
since these control actions will never be invoked when S is applied to G.

Let S be a state-based supervisor for G, and assume all states of G are reachable, that
is, ∀x ∈ X : ∃σ ∈ E∗ : δ(x0, σ ) = x; note that unreachable states can be removed
from X without affecting SSCP. Then the action of S on G can be viewed as a function
S ′ : X → 2E , where S′(x) = S(σ) where σ is any string such that δ(x0, σ ) = x (x is
reachable, so at least one such σ exists). Because S is state-based, it returns the same choice
S(σ ′) = S(σ) for any other string σ ′ such that δ(x0, σ ′) = x. Therefore, S′ is well-defined.
Thus, we can assume, without loss of generality, that a state-based supervisor for G is a
function S : X → 2E . As in the case of general supervisors, we assume that Euc ⊆ S(x),
for all x ∈ X, to ensure that a state-based supervisor never disables an uncontrollable event.

In addition, the definition of the closed-loop system S/G can be simplified in the case
of state-based supervisors. In particular, S/G can be defined as S/G = (X′, x′

0, X
′
m, E, δ′)
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where X′ = X (instead of X × L(G)), x′
0 = x0, X′

m = Xm, and

δ′(x, e) =
{

δ(x, e) if δ(x, e) is defined and e ∈ S(x)

undefined otherwise.

The following result states that in order to solve the SSCP it suffices to consider only state-
based supervisors.

Theorem 3 The solution to SSCP, if it exists, is a state-based supervisor.

Proof Let Smpnb be the unique solution of SSCP. Suppose that δ(x0, σ1) = δ(x0, σ2) =
xp but that Smpnb(σ1) 	= Smpnb(σ2). Then there must exist ec ∈ Ec such that ec ∈
Smpnb(σ1) \ Smpnb(σ2). (Recall that we assume that all uncontrollable events are always
enabled by a supervisor.) Since δ(x0, σ1) = δ(x0, σ2) = xp , the post-languages in G from
xp are the same, i.e.,

L(G)/σ1 = L(G)/σ2

Lm(G)/σ1 = Lm(G)/σ2

Since in SSCP the control problem involves the simple safety specification Lm(G) and the
non-blocking property, as captured by the marked states of G, the decision to enable or
not an event after a given (safe) string σ depends entirely on the post-language after σ ,
equivalently, on the state δ(x0, σ ) reached by σ , since the states ofG are equivalence classes
for future behavior. (Recall Lemma 1.) Thus, no such ec can exist at state xp, otherwise
Smpnb(σ1) would be incorrect or Smpnb(σ2) would not be maximally permissive. Hence,
Smpnb is a state-based supervisor.

The consequence of Theorem 3 is that in order to solve SSCP, it suffices to search over
state-based supervisors. The state-based supervisor that satisfies the requirements of SSCP
among all state-based supervisors will be equal to Smpnb, the solution of SSCP.

As an illustration of state-based supervisors, consider our running example, and super-
visors S1 and S2 defined in Section 2.1.3 and illustrated in Fig. 3. Both S1 and S2 are
state-based and can be equivalently defined as follows:

S1(x) = {c1, u} for all x ∈ {x0, x1, x2, x3} S2(x) =
{ {c1, u} if x = x0

{c2, u} if x ∈ {x1, x2, x3}
Also consider supervisor S3 defined in Section 2.1.6. S3 is also state-based and can be
equivalently defined as follows:

S3(x) =
{ {u} if x = x0

{c2, u} if x ∈ {x1, x2, x3}

3.2 Reactive synthesis with plants

Most classical reactive synthesis frameworks (Manna and Wolper 1984; Pnueli and Rosner
1989a) do not have a notion of plant. In Pnueli and Rosner (1989a), the realizability problem
is defined as the problem of synthesizing, given a temporal logic specification φ, an input-
output strategy that implements φ. This is also how the reactive synthesis problem (RSP)
is defined in Section 2.2. An exception to the above is the work of Madhusudan (2001),
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where the control problem for non-reactive environments2 is defined as the problem of
synthesizing a controller for a given plant modeled as a finite-state Kripke structure, so that
the closed-loop system satisfies a specification in CTL or CTL�.

In view of building a bridge between supervisory control and reactive synthesis, in this
section we recall Madhusudan’s reactive synthesis problem with an explicit notion of plant,
giving it the name reactive synthesis control problem (RSCP). In Section 3.5 we discuss
links between RSCP and RSP.

3.2.1 Plants as kripke structures

As done in Madhusudan (2001), a plant can be captured as a transition system, specifically
a form of Kripke structure:

P = (W,w0, R, AP,L)

where

• AP is a set of atomic propositions.
• W is a set of states, w0 ∈ W being the initial state. W is (implicitly) partitioned into

two disjoint subsets

W = Ws ∪ We

Ws models the system states (where the system must choose a move). We models the
environment states (where the environment must choose a move).

• R ⊆ W × W is the transition relation.
• L : W → 2AP is a labeling function mapping every state w to a set of propositions true

in this state. L must be total.

We assume that R is total, that is, for any w ∈ W , there exists w′ ∈ W such that (w,w′) ∈
R. We define succP (w) = {w′ | (w,w′) ∈ R}. Because R is total, succP (w) 	= ∅ for all
w ∈ W . When P is clear from context we write succ instead of succP .

As an example, consider the Kripke structure P1 shown in Fig. 11. States drawn as cir-
cles are system states. The square state is an environment state (it is also the initial state).
The arrows between states represent the transition relation. Notice that there is at least one
outgoing transition from every state, which ensures that the transition relation is total. P1
has a single atomic proposition p holding only at state 3.

A Kripke structure plant is called finite when its set of states is finite.

2In Madhusudan (2001) this is also called the control problem for the universal environment. In his thesis,
Madhusudan also defines a control problem for reactive environments, where the goal is to find a controller
that works against all possible strategies of the environment, instead of a controller that works against the
single, “maximally nondeterministic” strategy of the environment which is to offer all possible inputs (the
latter is the universal environment). In the case of LTL specifications, a winning strategy for the maximally-
nondeterministic environment is also winning for any other environment. As pointed out in Madhusudan
(2001), this is not the case for CTL or CTL� specifications. For example, a specification of the form Eφ may
be satisfied in a maximally-nondeterministic environment which allows a certain path satisfying φ, whereas
in a more restrictive environment which does not allow such a path, the formula may not hold. Madhusudan
(2001) shows that the control problem for reactive environments is harder (from a complexity point of view)
than the control problem for the universal environment. For our purposes, the latter problem suffices to
capture SSCP.
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Fig. 11 Kripke structure P1

3.2.2 Using CTL� for Kripke Structures

We have introduced the temporal logic CTL� for the specification of a system to be syn-
thesized in Section 2.2.2. This logic is equally useful for specifying control objectives in
plants. In this context, we evaluate the CTL� formula on the tree that is induced by the
Kripke structure.

Let P = (W,w0, R,AP,L) be a Kripke structure. We say that P induces a computation
tree 〈T , τ 〉 if the following conditions hold:

• T ⊆ W ∗
• {t ∈ T : |t | = 1} = {w ∈ W : (w0, w) ∈ R}
• τ(ε) = L(w0)
• For all t = t0t1 . . . tn ∈ T , the set of t ′s children is precisely {t0t1 . . . tntn+1 | tn+1 ∈

W, (tn, tn+1) ∈ R}
• For all t = t0t1 . . . tn ∈ T , we have τ(t) = L(tn).

In a nutshell, the computation tree that is induced by a Kripke structure represents all
possible paths in the Kripke structure at the same time. A path of P is an infinite sequence
π = w0w1 · · · , such that wi ∈ W and (wi, wi+1) ∈ R, for all i ≥ 0.

Given some CTL� state formula φ, we say that some state w ∈ W satisfies φ if the
computation tree for the Kripke structure Pw = (W,w,R,AP,L) that only differs from P

by its initial state, satisfies φ. We say that a plant satisfies a CTL� state formula φ, written
formally as P |= φ, if the tree induced by P satisfies φ.

3.2.3 Strategies

A plant P may not generally satisfy a CTL� specification φ. A strategy aims to restrict P

so that it satisfies φ. Let P = (W,w0, R, AP,L) with W = Ws ∪ We. A strategy for P is
a (total) function

f : W ∗ × Ws → 2W

such that for all u ∈ W ∗, w ∈ Ws , f (u,w) is a non-empty subset of succ(w). The intuition
is that f observes the history of all states visited previously, u ∈ W ∗, as well as the current
system state w ∈ Ws , and chooses to allow moves to only a subset (but a non-empty subset)
of the successors of w.

A strategy f is state-based if for all u1, u2 ∈ W ∗, and for all w ∈ Ws , we have
f (u1, w) = f (u2, w). This means that the strategy only depends on the current state w and
not on the previous history u.
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A strategy f defines a new (infinite-state) Kripke structure P f :

P f = (Wf ,w
f

0 , Rf , AP,Lf )

where

• Wf = W ∗ × W
• w

f

0 = (ε, w0)

• Rf = {((u,w), (u · w,w′)
) | (

w ∈ We ∧ (w,w′) ∈ R
) ∨ (

w ∈ Ws ∧ w′ ∈ f (u,w)
)}

• Lf (u,w) = L(w) for all u ∈ W ∗, w ∈ W .

Note that Rf is guaranteed to be total. This is because R is assumed to be total, and f is
required to be such that f (u,w) 	= ∅.

Some strategies for P1 are shown in Fig. 12. The strategies f1, f2, f3 are state-based,
where f2 disables the transition 2 → 1, f3 disables the transition 1 → 2, and f1 disables
both of these transitions.

3.2.4 Reactive Synthesis Control Problem (RSCP)

Given Kripke structure plant P and CTL� formula φ, we say that a strategy f enforces φ

on P if it is the case that P f |= φ. The reactive synthesis control problem (RSCP) is the
following:

Definition 6 (RSCP) Given finite Kripke structure plant P and CTL� formula φ, find (if it
exists, or state that there does not exist) a strategy which enforces φ on P .

RSCP-CTL denotes RSCP where φ is required to be a CTL formula; RSCP-LTL denotes
RSCP where φ is required to be an LTL formula. (Similarly for RSP.)

3.2.5 Maximal permissiveness in RSCP

The reader may have observed that in the definition of RSCP above, we did not require that
the strategy f be maximally-permissive in any way. The reason is that unique maximally-
permissive strategies do not always exist. An example is given below. Let us first introduce
some terminology.

Let f1, f2 be two strategies for a plant P . f1 is said to be no more permissive than f2 iff
for all u ∈ W ∗, w ∈ Ws such that uw is a sequence of states that can be a prefix of a run in
P f2 , f1(u,w) ⊆ f2(u,w). f2 is said to be strictly more permissive than f1 if f1 is no more
permissive than f2 and f1(u,w) 	= f2(u,w) for some u ∈ W ∗, w ∈ Ws such that uw is a
sequence of states that can be a prefix of a run in P f2 .

f1 is said to be maximally permissive with respect to specification φ if f1 enforces φ and
there is no strategy f2 which enforces φ and is strictly more permissive than f1.

Fig. 12 Some strategies enforcing AFp on the Kripke structure P1 of Fig. 11



Discrete Event Dyn Syst (2017) 27:209–260 239

Let us return to the example of Figs. 11 and 12. Suppose we wish to find a strategy that
makes the plant P1 meet the specification AFp. The latter states that all executions must
eventually reach a state satisfying p. Since state 3 is the only state satisfying p in P1, we
want all executions to reach state 3. On its own, P1 does not satisfy AFp, because it contains
two executions “oscillating” between states 1 and 2.

All three strategies f1, f2, f3 of Fig. 12 enforce AFp on P1. Strategies f2 and f3
are strictly more permissive than f1, and are the two (incomparable) most permissive
state-based strategies for AFp. However, there are infinitely many other, more permissive
strategies which also enforce AFp, not shown in Fig. 12. In particular, any (non-state-based)
strategy which allows a finite number of transitions between states 1 and 2 before forbidding
them, enforces AFp.

There is a set of increasingly permissive such strategies, but the limit of this set is
the strategy that forbids nothing, and this strategy no longer enforces AFp. This example
shows that a unique maximally-permissive strategy does not generally exist for the RSCP
problem.

In Section 3.3.2, we will be concerned with CTL� specifications of the form AGEFq,
where q is a CTL� or CTL state formula without any temporal operator. For these,
maximally-permissive strategies do exist, and they are at the same time state-based. Let us
conclude the discussion of maximal permissiveness by proving this fact.

Lemma 2 Let P = (W,w0, R,AP,L) be a Kripke structure, and q be a CTL state for-
mula without temporal operators. If there exists a strategy enforcing AGEFq on P , then
there exists a unique, maximally-permissive strategy enforcing AGEFq on P ; moreover, this
strategy is state-based.

Proof Let A be the set of states of P from which there is no state reachable in P that
satisfies q. Then any strategy f that allows to eventually visit a state of A in P f cannot
induce a computation tree that satisfies AGEFq, as there exists at least one node in the tree
from which EFq is false (i.e., one node in A).

On the other hand, if a strategy only leads to visiting states other than A, then every node
in the computation tree for P f satisfies EFq (by the definition of A). Therefore, in order for
P f to satisfy AGEFq, it suffices for the strategy f to avoid visiting a state in A.

We prove that there exists a maximally-permissive, state-based strategy by showing that
we can compute a set of bad states B that over-approximates A, and precisely the strategies
that stay out of B lead to never having a path in P f that eventually visits A.

We build B gradually, starting with A. We add some state w ∈ Ws to B whenever there
exists no successor of w that is not in B yet. Furthermore, we add some state w ∈ We to
B whenever there is some successor of w that is in B. As we only add states to B in this
process, and never remove states, B converges to some well-defined set.

It can be shown by induction over the step of the computation in which a state is added
to B that from all of them, EFq cannot be enforced. For step 0, in which we initialize B

with A, the claim is trivial. For step i + 1, we can assume that the claim is true for i ∈ N. If
there is a state w ∈ Ws from which no matter what the strategy does, we land in a state in
B, then obviously, once a run entered B, we cannot avoid to visit a state in A in the future
(by induction), so adding w to B is justified. Likewise, if there is a state w ∈ We with a
successor in B, then we cannot avoid that after one step, we land in a state in B, so adding
w to B is again justified.
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Now assume that we have a strategy of the following form: we set f (w,w) = {w′ ∈
W | (w,w′) ∈ R,w′ /∈ B} if w /∈ B, and f (w, w) = {w′ ∈ W | (w,w′) ∈ R} otherwise.
By definition, there is no strategy f ′ that has f (w,w) ⊂ f ′(w,w) for some w and w such
that ww is a path in the run tree of P f ′

and at the same time prevents visiting B from a state
that is not in B, as it allows any transition to states not in B. As we have proven already
that any strategy that allows visiting B from w0 cannot enforce AGEFq, there is no strategy
that allows a move that is not allowed by f and enforces AGEFq. Thus, f is the unique
maximally-permissive strategy enforcing AGEFq if f is actually winning. Note that f is
state-based, too.

It remains to prove that f is winning (i.e., f is not “too permissive”). We show this by
induction over the length of a path in the run tree for P f . As long as along no such path, we
ever reach a state from B, all nodes in the computation tree satisfy EFq. We start with the
root of the computation tree of P f and know already that ifw0 ∈ B, then there is no strategy
to enforce AGEFq. So we can assume that w0 /∈ B. For the inductive step, take some node
ww that is not in B (by the inductive hypothesis). If w ∈ We, then by the definition of B,
we have that all successors of w in P f are also not in B. So we have that for all computation
tree nodes www′ of P f with w,w′ ∈ W that www′ /∈ B. If w ∈ Ws , then as f restricts Pf

to the successor states that are not in B, the claim holds in this case as well.

In view of reducing supervisory control problems to reactive synthesis problems, we
would like to reduce SSCP to RSCP. However, this reduction cannot be done directly,
because SSCP asks for a maximally-permissive supervisor, whereas RSCP only asks for a
strategy (since a maximally-permissive strategy may not generally exist). To avoid this prob-
lem, we exploit the result of Lemma 2 and introduce a new problem, called RSCPAGEFq

max ,
which is a variant of RSCP, and more precisely a variant of RSCP-CTL. In RSCPAGEFq

max , the
specification is a CTL formula of the form AGEFq where q is a CTL formula without tem-
poral operators. Lemma 2 shows that for this class of specifications, existence of a strategy
implies existence of a unique maximally-permissive strategy. RSCPAGEFq

max asks precisely for
this strategy, if it exists.

Definition 7 (RSCPAGEFq
max ) Given finite Kripke structure plant P and CTL formula φ of

the form AGEFq where q is a CTL formula without temporal operators, find (if it exists,
or state that there does not exist) the unique maximally-permissive state-based strategy that
enforces φ on P .

We can generalize RSCPAGEFq
max to a more general (and ambitious) reactive synthesis con-

trol problem with maximal-permissiveness. Although we currently do not know how to
solve this problem, it is useful to define it as a way of motivating future work.

Definition 8 (RSCPmax) Given finite Kripke structure plant P and CTL� formula φ, find, if
there exists, a strategy which enforces φ on P . If so, find whether a maximally-permissive
such strategy exists, and whether it is unique, and if so, compute it.

Other researchers have investigated problems related to RSCPmax, in the context of
related control frameworks and general logics; see, e.g., Riedweg and Pinchinat (2004),
Pinchinat and Riedweg (2005), van Hulst et al. (2014). These works show that there are
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problem instances where maximally permissive solutions can be computed, when they
exist.

3.3 From supervisory control to reactive synthesis with plants

In this section we show how to reduce SSCP to RSCPAGEFq
max .

3.3.1 From DES plants to Kripke structure plants

Given a plant G in the form of a DES, we first construct a plant PG in the form of a Kripke
structure. Consider plant G1 of Fig. 3. The Kripke structure PG1 is shown in Fig. 13. States
drawn as circles are system states. States drawn as rectangles are environment states.

A system state of PG is a state x of G. An environment state of PG is either of the form
(x, c), where c ∈ Ec, or (x,⊥). All successors of system states are environment states, and
vice versa. From a system state x, PG has at most |Ec|+1 possible successors, one successor
of the form (x, c) for each controllable event c which is enabled at state x in G, plus an extra
successor (x,⊥). Intuitively, choosing a subset of the successors of x amounts to allowing a
subset of the controllable events enabled at x. If only (x,⊥) is chosen, then all controllable
events are disabled and only uncontrollable events (if any) are allowed to occur at x.

From environment state (x, c), PG has an outgoing transition to a system state x′ if
either G has an uncontrollable transition from x to x′, or G has a transition labeled c from
x to x′. That is, the only transitions enabled from (x, c) are uncontrollable transitions or
the controllable transition labeled c (there can only be one controllable transition labeled
c, because G is deterministic). Note that if x has no controllable transition labeled c, then

Fig. 13 Kripke structure PG1 for DES G1 of Fig. 3
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(x, c) is not a successor of x by construction. Therefore, an outgoing transition is guaranteed
to exist from every reachable environment state of the form (x, c) with c ∈ Ec.

Finally, from environment state (x,⊥), PG has an outgoing transition to a system state
x′ if G has an uncontrollable transition from x to x′. That is, only uncontrollable transitions
are allowed from (x,⊥). If x has no outgoing uncontrollable transitions then a transition
back to x is added to (x,⊥). In the example of Fig. 13, this is the case with states (x1, ⊥),
(x2, ⊥), and (x3, ⊥). These “back-transitions” achieve two goals. First, they prevent dead-
locks in PG. Second, they will allow us to prove that non-blocking strategies can always be
extended to allow successors of the form (x,⊥) (Lemma 4), a property which facilitates the
arguments for maximal permissiveness.

Note that apart from back-transitions, whenever there is a transition from some envi-
ronment state (x,⊥) to some state x′, then every environment state (x, c) for some c also
has a transition to x′. This is due to the requirement that the uncontrollable transitions are
always enabled. Only the back-transitions are not duplicated; due to the fact that (x, c) is
only reachable if c is an enabled action in x, deadlock-freedom is already ensured without
the back-transitions.

So far we have defined the states and transitions of PG. We also need to define its set of
atomic propositions and labeling function. PG will have a single atomic proposition, acc.
The states of PG labeled with acc will be system states x which are marked states in G, and
environment states (x, c) or (x,⊥) where x is marked in G. In our example of Figure 13,
this is the case with states x1 and (x1,⊥), drawn with double lines to represent the fact that
they are labeled with acc.

3.3.2 Stating SSCP in temporal logic

We now express the requirements of SSCP as a temporal logic formula. We will use the
CTL formula

φnb := AGEF acc.

φnb states that it is always possible to reach a marked state, from any reachable state.
This formula characterizes non-blockingness.

Returning to our example of Fig. 13, we observe that PG1 does not satisfy φnb on its own:
this is because from state x2 there is no path reaching a state where acc holds. The same is
true for state (x2,⊥). Therefore, in order to enforce φnb, a strategy must make these states
unreachable.3 Three such (state-based) strategies are shown in Fig. 14.

The interpretation of the two right-most strategies of Fig. 14 is quite clear. f5 disables
c2 at state x0 and c1 at x3. f6 disables both c1 and c2 at x0, and c1 at x3. Neither f5 nor f6
are maximally-permissive strategies for φnb. Strategy f4, on the other hand, is maximally-
permissive.

The interpretation of f4 is perhaps puzzling. Interpreted as a supervisor, it appears to
allow c1 at x0 (because it keeps the transition from x0 to (x0, c1)), and at the same time to

3Note that from state (x3,⊥) there is a path to acc. This may seem counter-intuitive, as (x3,⊥) may be
interpreted as the state where the plant is at x3 and the supervisor has disabled all controllable events. Since
no uncontrollable event exists at x3, this must be a blocking situation. As it turns out, this is not a problem,
because we insist on maximally-permissive supervisors and strategies. Such a strategy either allows also
controllable events from x3, in which case blockingness is avoided by reaching the corresponding controllable
successors, or disables all controllable successors of x3, in which case x3 is already blocking. Therefore, it is
safe to allow a back-transition from (x3,⊥) to x3.
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Fig. 14 Strategies enforcing φnb on PG1 of Fig. 13

disable all controllable events at x0 (because it keeps the transition from x0 to (x0,⊥)). We
will not worry about this paradox, which we take to be only a matter of interpretation. The
way PG is defined, every successor of (x,⊥) is also a successor of (x, c) for any c ∈ Ec.
As a result, (x,⊥) may be redundant, but it does not harm. On the contrary, it will allow us
to prove existence of unique maximally-permissive strategies.

This intuition is formalized in Lemma 4 below.

3.3.3 The formal reduction

Let G = (X, x0, Xm,E, δ) be a DES plant with E = Ec ∪ Euc. It is convenient to define
the functions En : X → 2E with En(x) = {e | δ(x, e) is defined}, Enc : X → 2Ec

with Enc(x) = En(x) ∩ Ec, and Enu : X → 2Euc with Enu(x) = En(x) ∩ Euc. The
functions En,Enc,Enu return, respectively, the set of all events, controllable events, and
uncontrollable events, enabled at state x. For instance, a state x ∈ X is a deadlock in G iff
En(x) = ∅.

The Kripke structure plant PG is defined to be

PG = (W,w0, R, AP,L)

such that

• W = Ws ∪ We, with Ws = X and We = X × (Ec ∪ {⊥}).
• w0 = x0. Therefore, w0 is a system state.
• R = Rs ∪ Re, with

Rs = {(x, (x, c)) | x ∈ X, c ∈ Enc(x)} ∪ {(x, (x, ⊥)) | x ∈ X}
Re = {((x, c), x′) | x, x′ ∈ X, ∃e ∈ Eu ∪ {c} : δ(x, e) = x′}

∪ {((x, c), x) | x ∈ X, c ∈ Ec, c /∈ Enc(x)}
∪ {((x,⊥), x′) | x, x′ ∈ X, ∃u ∈ Eu : δ(x, u) = x′}
∪ {((x,⊥), x) | x ∈ X,Enu(x) = ∅}

• AP = {acc}.
• L(s) =

{ {acc} if s = x or s = (x,⊥) for some x ∈ Xm

{} otherwise.

The following lemma guarantees that PG does not have deadlocks, therefore, it is a valid
Kripke structure plant as required in Section 3.2.1.

Lemma 3 The transition relation R of PG defined above is total.
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Proof Let w ∈ W be a state of PG. We need to find w′ ∈ W such that (w,w′) ∈ R. We
distinguish cases.

• Suppose w ∈ Ws = X. In this case, we have that (w, (w,⊥)) ∈ R by definition of Rs .
• Suppose w ∈ We = X × (Ec ∪ {⊥}).

– Suppose w is of the form (x, c), for x ∈ X, c ∈ Ec.

∗ If Enu(x) 	= ∅ then there exists x′ ∈ X and u ∈ Euc such that
δ(x, u) = x′. Then

(
(x, c), x′) ∈ R by definition of Re.

∗ If Enu(x) = ∅ then

· if δ(x, c) is defined and equals x′, then
(
(x, c), x′) ∈ R

by definition of Re;
· otherwise, c 	∈ Enc(x), therefore ((x, c), x) ∈ R by

definition of Re.

– Suppose w is of the form (x,⊥), for x ∈ X.

∗ If Enu(x) 	= ∅ then there exists x′ ∈ X and u ∈ Eu such that
δ(x, u) = x′. Then

(
(x,⊥), x′) ∈ R by definition of Re.

∗ If Enu(x) = ∅ then ((x,⊥), x) ∈ R by definition of Re.

In the sequel we simplify notation for state-based strategies as follows. Whenever we are
concerned with a state-based strategy f for some set of states W , we simply write f (w)

for some w ∈ Ws to mean the value of f (w,w) for any w ∈ W ∗. Since for state-based
strategies the value of w does not make a difference, f (w) is uniquely defined.

Definition 9 Let G = (X, x0, Xm,E, δ) be a DES plant and PG = (W,w0, R, AP,L) be
a Kripke structure built from G by the construction above. Let f be a state-based strategy
for PG. The ⊥-closure of f is defined to be the state-based strategy f ′ that results from
setting f ′(x) = f (x) ∪ {(x,⊥)} for all x ∈ Ws .

Lemma 4 Let G = (X, x0, Xm,E, δ) be a DES plant and PG = (W,w0, R,AP,L) be a
Kripke structure built from G by the construction above. Let f be a strategy enforcing φnb

on PG. Let f ′ be the ⊥-closure of f . Then f ′ also enforces φnb on PG.

Proof The specification φnb is AGEFacc. This formula can only hold in a node of the com-
putation tree if from every node in the computation tree, some other node marked acc can
be reached. For every state-based strategy f and x ∈ Ws , we have that if f ′(x) 	= f (x),
then there has to exist some (x, c) ∈ f (x). This is because f (x) must be non-empty and
if all it contains is (x,⊥) then we would have f ′(x) = f (x). As (x,⊥)’s successors
are always a subset of (x, c)’s successors, and adding paths to nodes that already satisfy
AGEFacc does not change the fact that the computation tree satisfies AGEFacc, such a
modification of the strategy does not alter the fact that it induces a computation tree that
satisfies φnb.

The next theorem shows a one-to-one correspondence between maximally permissive
strategies in a DES plant G and maximally permissive strategies in the Kripke structure PG
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built from G according to the definition at the beginning of this section. Fig. 15 exempli-
fies the idea in the context of plant G1 presented earlier in Fig. 3. The figure shows the
two respective strategies, one for G1 and one for its corresponding Krikpe structure. Every
transition disabled in the strategy for G1 has a corresponding transition disabled in the
Kripke structure (and vice versa). Recall from above that the Kripke structure has as state
set W = Ws ∪ We for Ws = X, where X is the set of the states in the DES plant. The
strategies have the property that states x ∈ X are reachable in the DES plant if and only if
they are reachable in the Kripke structure. Also, the strategy in the Kripke structure never
disables transitions to states of the form (x0, ⊥), as the outgoing edges in (x0,⊥) represent
uncontrollable transitions in the plant. Since by the construction presented at the beginning
of this section the outgoing edges of a state of the form (x,⊥) are always a subset of the
edges from states of the form (x, c) for the same value of x, a maximally permissive strategy
in the Kripke structure that does not deadlock in a state x thus does not need to deactivate
the transition to (x,⊥).

Theorem 4 Let G = (X, x0, Xm, E, δ) be a DES plant and PG = (W,w0, R,AP,L) be a
Kripke structure built from G by the construction above.

1. Given a non-blocking maximally-permissive state-based supervisor S : X → 2E for G,
we can compute a maximally-permissive state-based strategy fS enforcing AGEFacc
on PG as follows:

For all w ∈ Ws, fS(w) = {(w, c) | c ∈ S(w) ∩ Ec} ∪ {(w,⊥)}.
2. Given a maximally-permissive state-based strategy f enforcing AGEFacc on PG, we

can compute a non-blocking state-based maximally-permissive supervisor Sf for G as
follows:

For all x ∈ X, Sf (x) = Euc ∪ {e ∈ Ec | (x, e) ∈ f (x)}.

Proof We prove this result in three steps:

Fig. 15 DES plant G1 (the same as in Figure 3), its corresponding Kripke structure, and a strategy for G1
that is mapped to its Kripke structure. Dashed lines represent transitions that are disabled by the strategies



246 Discrete Event Dyn Syst (2017) 27:209–260

(a) For every state-based supervisor S which is non-blocking for G, the state-based
strategy fS defined above is ⊥-closed and enforces AGEFacc on PG.

(b) Starting from a ⊥-closed state-based strategy f which enforces AGEFacc on PG, the
supervisor Sf defined above is a state-based supervisor which is non-blocking for G.

(c) Translating from a ⊥-closed strategy f to S and back will yield the same strategy as
we started with, i.e., fSf

= f . Furthermore, if f is a strategy that is strictly more per-
missive than some strategy f ′, then Sf is strictly more permissive than Sf ′ . Likewise,
if S is strictly more permissive than S′, then fS is strictly more permissive than fS′ .

Taking these facts together, we obtain that the translations above must map the (unique)
maximally-permissive non-blocking supervisor S forG and the maximally-permissive strat-
egy enforcing φnb on PG onto each other. Otherwise, mapping one of the maximal solutions
would yield a “more maximal solution” that is still a valid strategy/supervisor, which
contradicts maximal permissiveness.

More precisely, facts (a) and (c) imply part 1 of the theorem. Indeed, let S∗ be the
(unique) state-based maximally-permissive non-blocking supervisory for G and let f ∗ =
fS∗ . By definition f ∗ is state-based. Also, by (a), we know that f ∗ enforces φnb on PG. To
prove part 1 of the theorem, it remains to show that f ∗ is maximally-permissive. Suppose
not. Then there exists strategy f which enforces φnb on PG and is strictly more permissive
than f ∗. By (a), f ∗ is ⊥-closed, therefore f must also be ⊥-closed. Let S = Sf . By (c), S
must be strictly more permissive than S∗, which contradicts maximal permissiveness of the
latter.

Similarly, facts (b) and (c) imply part 2 of the theorem. Indeed, let f ∗ be the unique (by
Lemma 2) state-based maximally-permissive strategy enforcing φnb on PG. Lemma 4 and
maximal permissiveness of f ∗ ensure that f ∗ is ⊥-closed. Let S∗ = Sf ∗ . By definition S∗
is state-based. Also, by (b), we know that S∗ is non-blocking for G. It remains to show that
S∗ is maximally-permissive. Suppose not. Then there exists non-blocking supervisor S for
G which is strictly more permissive than S∗. Let f = fS . By (c), f must be strictly more
permissive than f ∗, which contradicts maximal permissiveness of the latter.

It remains to perform the three steps outlined above.

Step (a): We prove two sub-steps. First of all, we show that for every state s that is reach-
able in S/G, from any state (w, s) in P

f
G , we can reach an acc-labeled state. This implies

that EFacc holds at state (w, s). Then, we show that the only reachable states (w, s) in
P

f
G are those that have a successor state (w, s′) for which s′ is reachable in S/G, or s is

reachable in S/G. This shows that for all reachable states in P
f
G , EFacc holds, and thus,

the computation tree of P
f
G satisfies AGEFacc. The fact that f is ⊥-closed is trivial as it

is ⊥-closed by definition.
For the first sub-step, consider a state s ∈ S that is reachable in S/G. As S is a non-

blocking supervisor for G, we have that there exists some sequence s1e1s2e2 . . . en−1sn
in S/G with s1 = s, L(sn) = acc, and for every i ∈ {1, . . . , n − 1}, we have that
si+1 = δ(si , ei).

The construction of f and P
f
G makes sure that π =

s1(s1, c1)s2(s2, c2) . . . (sn−1, cn−1)sn is a valid path in PG for ci = ei whenever ei ∈ Ec,
and ci = ⊥ otherwise, and for every node (w, s) in P

f
G , there is a path from (w, s)

whose projection is π .
The second sub-step is proven by induction over a run in P

f
G . We start with state

(ε, w0) = (ε, x0), for which x0 in S/G is reachable by definition. For the induction step,
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assume that the claim holds for all previous states (w, w) for w ∈ W . If we have that
w = x for some x ∈ X, then all possible successors in P

f
G can only be of the form

(w′, (x, c)), so the claim holds here as well. If on the other hand we have that w = (x, c)

for some x ∈ X, then either we have c = ⊥, or we have c ∈ Ec with c ∈ S(x), as we
defined f to only allow these actions, and thus, these are the only successors that occur in
P

f
G . If c = ⊥, then the next element of the run in P

f
G can only be either (w′, x), in which

case the claim holds, or (w′, x′) for some x′ with x′ = δ(x, c′) for some c′ ∈ Eu. As
by the definition of a supervisor for controlling a plant, the supervisor cannot deactivate
uncontrollable actions, if x is reachable, then x′ is also reachable, and thus the claim
holds here, too. On the other hand if c 	= ⊥, then the next element of the run in P

f
G

can only be either (w′, (x, c)) or x′ with x′ = δ(x, c). In the first case, the claim holds
again, and in the second, as c can only have been selected if c ∈ S(x), we need to have
that the transition from x to x′ is possible in S/G, too, so again, the claim holds in this
case.

Step (b): We prove two sub-steps. First of all, we show that for every state (w, x) for
some x ∈ X that is reachable in P

f
G , from state x in Sf /G, we can reach an accepting

state. Then, we show that for every reachable states s in Sf /G, there is some reachable

state (w, s) in P
f
G . This shows that from all states that are reachable in Sf /G, there is

some path to an accepting state, which implies that Sf is a valid supervisor for G.

For sub-step 1, let (w, x) be some reachable state in P
f
G . As P

f
G satisfies AGEFacc,

there has to exist some path π from (w, x) to some (w′, x′) with L((w′, x′)) = acc.
Without loss of generality, let this path be loop-free (as we can always cut out loops in
the path). We build from π a path from x to x′ in Sf /G. Whenever we move along this
path from some state (w′′, x) to some state (w′′′, (x, c)) or to (w′′′, (x, ⊥)), we do not
add a step in the path for Sf /G. On the other hand, whenever we move from some state
(w′′, (x, c)) or (w′′, (x,⊥)) to (w′′′, x′), we add x′ to the path to be constructed. By the
definition of Sf , this is always a transition that is allowed by Sf . At the end of the path,
as we have L((w′, x′)) = acc if and only if x′ is marked, our reconstructed path in Sf /G

ends in a marked state.
For sub-step 2, we reconstruct a path in P

f
G from a path π = x0 . . . xn ∈ Xω in Sf /G.

Let ρ = ρ0 . . . ρn−1 be the actions to create the path π , i.e., we have xi+1 ∈ δ(xi, ρi) for
every i ∈ N. We have ρi ∈ f (xi) by the definition of S for every i ∈ N. This allows us
to construct the path π ′ = (ε, x0)(x0, (x0, c0))(x0(x0, c0), x1)(x0(x0, c0)x1, (x1, c1)) . . .

in P
f
G , where for every i ∈ N, we have ci = ⊥ if ρi is an uncontrollable

action, and ci = ρi otherwise. As π will end in (w, xn) for some w, the sub-claim
follows.

Step (c): The claim for step 3 consists of three sub-steps. For the first sub-step, let f be
a ⊥-closed strategy, and Sf be the corresponding supervisor. We translate Sf back tlo a
state-based supervisor for PG and obtain:

fSf
(w) = {(w, c) | c ∈ Sf (w) ∩ Ec} ∪ {(w,⊥)}

= {(w, c) | c ∈ {e ∈ Ec | (w, c) ∈ f (w)}} ∪ {(w,⊥)}
= f (w)
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For the second sub-step, let f and f ′ be state-based strategies such that for all w ∈ W ,
we have f ′(w) ⊆ f (w) and for one w ∈ W , we have f ′(w) ⊂ f (w). In this case, we
have for all w′ ∈ W \ {w}:

Sf ′(w′) = Euc ∪ {e ∈ Ec | (w′, e) ∈ f ′(w′)}
⊆ Euc ∪ {e ∈ Ec | (w′, e) ∈ f (w′)}
= Sf (w′)

Furthermore, we have:

Sf ′(w) = Euc ∪ {e ∈ Ec | (w, e) ∈ f ′(w)}
⊂ Euc ∪ {e ∈ Ec | (w, e) ∈ f (w)}
= Sf (w)

From line two to line three in this equation, we used the fact that the elements of f ′(w)

are all of the form (w, c) for some c ∈ Ec ∪ {⊥} (except if En(w) = ∅, in which case
f ′(w) ⊂ f (w) cannot be fulfilled as we need to have f ′(w) = f (w) = (w,⊥) then) and
by assumption, we have that (w′,⊥) ∈ f ′(w′), so there has to exist some c ∈ Enc(w)

with (w, c) ∈ f (w) but (w′, c) /∈ f ′(w) for all w′ ∈ W .
For the third sub-step, we apply the same idea as in sub-step two. Let S and S′ be state-

based supervisors such that for all x ∈ X, we have S′(x) ⊆ S(x) and for one x ∈ X, we
have S′(x) ⊂ S(x). Then for all x ∈ X \ {x}, we have:

fS′(x′) = {(x′, c) | c ∈ S′(x′) ∩ Ec} ∪ {(w,⊥)}
⊆ {(x′, c) | c ∈ S(x′) ∩ Ec} ∪ {(w,⊥)}
= fS(x′)

Furthermore, we have:

fS′(x) = {(x, c) | c ∈ S′(x) ∩ Ec} ∪ {(w,⊥)}
⊂ {(x, c) | c ∈ S(x) ∩ Ec} ∪ {(w,⊥)}
= fS(x)

This result completes step three over the overall proof.

Corollary 2 SSCP can be reduced to RSCPAGEFq
max with a polynomial-time reduction.

Proof Theorem 4 establishes a one-to-one correspondence between maximally-permissive
state-based non-blocking supervisors for a DES plant G and a maximally-permissive state-
based strategy for AGEFacc in a Kripke structure PG that we construct from G. It follows
that we can reduce the search for a supervisor in G as SSCP requests to searching for a strat-
egy in PG as RSCPAGEFq

max requests. Moreover, PG can be constructed from G in polynomial
time: the number of states of PG is O(n · (m + 2)) where n is the number of states of G and
m is the number of controllable events.
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3.4 Algorithms

3.4.1 Algorithms for supervisory control problems

The formulation and solution of BSCP-NB were first presented in the seminal papers
of Ramadge and Wonham (1987), Wonham and Ramadge (1987). The “standard” algo-
rithm for solving BSCP-NB builds a non-blocking automaton that marks the language
Lm(Smpnb/G) = L

mpnb
am in the notation of Section 2.1.7 from G and from a non-blocking

automaton that marks the language Lam. Let H be a deterministic automaton such that
L(H) = Lam and Lm(H) = Lam. Let G have n states and H have m states. The stan-

dard algorithm for BSCP-NB builds automaton Hmpnb such that L(Hmpnb) = L
mpnb
am and

Lm(Hmpnb) = L
mpnb
am by first forming the product of G with H , and then iterating over

the resulting structure to delete states that violate the safety property with an uncontrollable
event and/or are blocking. Iterations are necessary in general since deletion of states that
violate the safety property with an uncontrollable transition may create new blocking states,
and vice-versa. Convergence is guaranteed in a finite number of steps since the number of
states is finite. Hence, the computational complexity of the algorithm is O(n2m2) in the
worst case. This complexity does not include the construction of automaton H . There are
special cases where the computational complexity can be reduced to O(nm) in the worst
case, such as when Lam = Lam or when all cycles in G contain a marked state.

OnceHmpnb has been obtained, it is effectively an encoding of a state-based (with respect
to G × H ) supervisor that achieves the maximally permissive language L

mpnb
am ; the transi-

tions that are defined at each state of Hmpnb, which is a pair (xG, xH ) with xG a state of
G and xH a state of H , are the enabled controllable events and the feasible uncontrollable
events.

Our transformation of BSCP-NB to SSCP in Section 3.1 is essentially an implementation
of the first step of the standard algorithm (although we used an automatonAwith a complete
transition function therein).

The reader is referred to Cassandras and Lafortune (2008), Wonham (2015) for textbook
expositions of the above material. To make this paper more self-contained, a simple algo-
rithm for solving SSCP is given in Appendix C. This algorithm is a special case of the
standard algorithm for solving BSCP-NB from Ramadge and Wonham (1987), Wonham
and Ramadge (1987).

3.4.2 Algorithms for reactive synthesis problems

Algorithms for solving RSP-LTL have been provided in a number of works, e.g., in Pnueli
and Rosner (1989a). Generally, these algorithms follow a similar flow, where the LTL for-
mula φ is translated into some type of word automaton such as a Büchi automaton Aw , then
Aw is translated into a tree automaton At , and finally At is translated into a game which
is then solved algorithmically. Different methods differ by the type of automata and games
that they use and how they represent them (e.g., enumeratively or symbolically). Also, in
some cases some of the above steps may be missing as they are trivial. We refer the reader
to Ehlers (2013) for a comprehensive overview.

Techniques for solving RSP-CTL and RSP are provided in a number of works,
for instance, Kupferman and Vardi (1999), Madhusudan (2001). Madhusudan’s thesis
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(Madhusudan 2001) also provides a method for solving RSCP (and thus also RSCP-LTL and
RSCP-CTL as special cases) by reducing it to the module-checking problem (Kupferman
and Vardi 1996).

Because of the special form of the formula AGEFq and in view of the results in
Section 3.3, RSCPAGEFq

max can be solved using algorithms for supervisory control problems
such as SSCP or BSCP-NB. As described in Appendix C, the general idea is to start from a
set of bad states (initially those that violate EFq) and iterate by labeling additional states as
bad, if no strategy exists to avoid states that are already labeled bad. In the finite-state case,
the algorithm ends when no more states can be added to the set of bad states, or when the
initial state is added to that set. In the latter case, no winning strategy exists. The complexity
of such an algorithm is polynomial in the number of states.

3.5 Reactive synthesis with plants vs. reactive synthesis without plants

In this section we discuss the links between the reactive synthesis problem with plants,
RSCP, and the reactive synthesis problem without plants, RSP. Our discussion is infor-
mal, as it is beyond the scope of this paper to present detailed, formal reductions between
these problems. Roughly speaking, RSP can be seen as a special case of RSCP, where
the plant offers some possible input at every step. Some technical details need to be
resolved, as RSP is formulated in terms of inputs and outputs whereas RSCP is formu-
lated in terms of system and environment states. Bridging this gap should be relatively
straightforward.

Conversely, RSP may appear at first sight more restrictive than it really is, as there is
no notion of a plant that encodes the possible environment behavior. Yet, we can encode
the plant behavior into the specification. Starting from a specification φ, we can modify it
to some specification φ′ such that in order for the controller to satisfy φ′, it suffices that
it satisfies φ only for those input streams that correspond to paths in a given plant. This
roughly corresponds to φ′ being of the form φplant =⇒ φ, where φplant models the
behavior of the plant. In this way, a strategy for controlling a plant can be obtained by
chopping away the irrelevant parts of a computation tree that satisfies φ′.

The above approach may at first appear uninteresting from a practical perspective, espe-
cially when a plant is already available in the form of an automaton (or a network of
automata). Indeed, for most temporal logics the reactive synthesis problem is at least expo-
nential in the length of the formula, so keeping the size of the formula small is essential.
Moreover, an exponential blow-up typically occurs when translating the formula into some
form of automaton during the synthesis procedure. Therefore, encoding a plant automaton to
a temporal logic specification only to translate it back to an automaton during the synthesis
process may seem computationally inefficient.

However, there are methods that successfully use the approach of encoding plants as
temporal logic formulas, relying on the fact that sometimes the plant can be encoded in a
certain fragment of temporal logic which does not suffer from exponential blow-up during
translation to automata or synthesis. This is exploited, for instance, in Kress-Gazit et al.
(2007) where synthesis is used for robotics applications such as motion planning. The plant
encoded in this case is the region structure of the workspace, and it is encoded in the GR(1)
fragment of LTL, which admits efficient synthesis algorithms (Piterman et al. 2006). In
the case of Kress-Gazit et al. (2007), the overall approach is polynomial in the number of
regions.
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A related approach is taken in Pinchinat and Riedweg (2005), where an alternating
automaton model is used that can capture the specification formula with only linear blow-
up. Then the product of this automaton and the plant is computed resulting in an alternating
automaton of the same type as the automaton for the formula. Because the automaton model
is essentially as powerful and concise as the formula, this boils down to the same idea as
encoding the plant into the specification.

4 Conclusion

This work is an introductory treatment of the connection between the two research fields
of supervisory control and reactive synthesis. Although both fields target the general prob-
lem of controller synthesis for dynamic systems, they have developed largely independently
over the last three decades, often emphasizing different, yet complementary, aspects of the
general controller synthesis problem. The connection established in this paper was purpose-
fully focused on the most basic problem of supervisory control, so that non-expert readers
can get a general understanding of how the gap between these two fields can be bridged.
At the same time, the formal reduction described in Section 3.3 is a novel contribution. It is
our hope that this paper will motivate more in-depth studies on bridging this gap and more
generally advancing the state-of-the-art in controller synthesis for discrete event systems by
leveraging the techniques developed in both supervisory control and reactive synthesis.

As was mentioned in the introduction, connections between supervisory control and reac-
tive synthesis have already been established in more advanced problem domains, such as
partially-observed systems, languages of infinite strings, and distributed and decentralized
control settings. Yet, a number of interesting topics for future work emerge from the more
elementary connection established in this paper. One such topic is extending the results in
this paper to multi-tasking supervisory control (see, e.g., de Queiroz et al. (2005)), where
there are several sets of marked states that must each remain reachable.

Another topic is modeling and evaluation. We have only discussed illustrative examples
in this paper. Although numerous interesting case studies in synthesis do exist in the litera-
ture in both supervisory control and reactive synthesis, these have limited comparative value
as they were done in one of the two frameworks, but not in both. It would be worthwhile
to develop case studies that would allow a detailed comparison of these two frameworks
in terms of plant and specification modeling, computational complexity of synthesis, and
implementation of derived supervisor/controller.
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A Proof of theorem 1

We use the formalism defined in Section 2.1 to show that the concept of maximally permis-
sive solution, which is a central requirement in problem BSCP-NB of Section 2.1.8, is well
defined. This will provide a proof of Theorem 1 that is self-contained.
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For this purpose, we must first define the disjunction of two supervisors.
Let G be a DES plant and let S1, S2 be two supervisors for G. We define S1 ∪ S2 to

be a new supervisor, denoted by S1∪2 for G, such that S1∪2(σ ) = S1(σ ) ∪ S2(σ ) for all
σ ∈ E∗. We call S1∪2 the disjunction of S1 and S2, since S1∪2 allows all strings that S1 and
S2 respectively allow.

We now wish to characterize the controlled behavior L(S1∪2/G) under the disjunction
of S1 and S2. Recall that when Si is applied to G in isolation, the definition of Si over
E∗ \ L(Si/G) is irrelevant, since these strings will never occur in the controlled system.
However, in the context of disjunction, this is no longer true since the controlled behavior
will in general exceed L(Si/G) due to the actions of the other supervisor(s). In order to
allow for a simple characterization of L(S1∪2/G), we make the following assumption:

Si(σ ) = Euc for all σ ∈ E∗ \ L(Si/G). (3)

We refer to supervisors that satisfy this assumption as “G-matched supervisors.”
We can think of Si as being “out of range” when the controlled language leavesL(Si/G).

Hence, when this occurs, Si will not enable any events, other than uncontrollable ones,
as it assumes that the controlled behavior is now in the range of another supervisor. Any
supervisor S′

i , when applied in isolation to G, can be replaced by a G-matched one, Si , that
results in the same controlled behavior L(S′

i/G) = L(Si/G).
It follows directly from the G-matched assumption and from the definition of disjunction

that
L(S1∪2/G) = L(S1/G) ∪ L(S2/G). (4)

Since marking is a property of the plant, we similarly have that

Lm(S1∪2/G) = L(S1∪2/G) ∩ Lm(G) (5)

= [L(S1/G) ∪ L(S2/G)] ∩ Lm(G) (6)

= [L(S1/G) ∩ Lm(G)] ∪ [ L(S2/G) ) ∩ Lm(G) ] (7)

= Lm(S1/G) ∪ Lm(S2/G) (8)

Remark 5 (Supervisor disjunction) It is worth noting that, without the assumption in Eq. (3),
the closed-loop language under disjunction of supervisors may not be the union of their
respective languages. As an example, consider again plantG3 of Fig. 5, withLam := {ε, c1}.
Consider supervisors S1 and S2 where S1 always disables c1 and enables c2, whereas S2
always disables c2 and enables c1. Both S1 and S2 are non-blocking for G3, because all
states in the closed-loop system are accepting. Moreover, both S1 and S2 are safe w.r.t. the
above Lam. Indeed, S2 always disables c2, while S1, by disabling c1, prevents G3 from
reaching state x1, thus indirectly preventing c2. However, S1 ∪ S2 is not safe, since it allows
both c1 and c2 at any state.

The following result establishes a key property of supervisor disjunction.

Theorem 5 Let G be a DES plant and let Lam ⊆ Lm(G) be the admissible marked
language. If S1, S2 are two non-blocking and safe supervisors that are G-matched,

then S1 ∪ S2 is also a non-blocking and safe supervisor, and it is G-matched.

Proof We have that Lm(Si/G) = L(Si/G) and Lm(Si/G) ⊆ Lam, for i = 1, 2.
Safety: Clearly,

Lm(S1∪2/G) = Lm(S1/G) ∪ Lm(S2/G) ⊆ Lam
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and thus S1 ∪ S2 is a safe supervisor.
Non-blockingness: Since prefix-closure can be distributed over union (the proof of this

fact is straightforward), we have that

Lm(S1∪2/G) = Lm(S1/G) ∪ Lm(S2/G) (9)

= Lm(S1/G) ∪ Lm(S2/G) (10)

= L(S1/G) ∪ L(S2/G) (11)

= L(S1∪2/G). (12)

which proves that S1 ∪ S2 is a non-blocking supervisor.
Finally, it is clear that S1∪2 is G-matched as it inherits this property from the definitions

of S1 and S2 outside of L(S1∪2/G).

Corollary 3 Theorem 5 holds for infinite disjunctions of supervisors.

Proof All steps in the proof of Theorem 5 hold for an arbitrary number of disjunctions.

The hypothesis of Theorem 1 is that there exists at least one non-blocking supervisor
for G that is safe w.r.t. Lam. If there exists a single supervisor with these properties, then
it is necessarily the unique desired Smpnb, as no other safe non-blocking supervisor exists.
Let us assume then that there are several safe and non-blocking supervisors. If a supervi-
sor S is not G-matched, then we can always make it G-matched without changing L(S/G)

or Lm(S/G). By taking the disjunction of all G-matched non-blocking supervisors for G

that are safe w.r.t. Lam, we obtain a unique G-matched supervisor that is also safe and
non-blocking by Corollary 3; let us denote it by SG

disj . Then Lm(SG
disj ) contains all the sub-

languages of Lam that can be achieved by any safe and non-blocking supervisor. Otherwise,
if the sublanguage of Lam achieved by one supervisor is not contained in Lm(SG

disj ), then
the G-matched version of that supervisor would not have been added in the disjunction of
all G-matched safe and non-blocking supervisors, a contradiction.

Once we have the unique maximally-permissive closed-loop behaviorLm(SG
disj ), we take

Smpnb to be the unique maximally permissive supervisor that achieves it. To obtain Smpnb,
we simply add to SG

disj all infeasible (inG) controllable events for strings inL(SG
disj /G) and

all controllable events for strings in E∗ \ L(SG
disj /G). Since L(Smpnb/G) = L(SG

disj /G)

and Lm(Smpnb/G) = Lm(SG
disj /G), then Smpnb is non-blocking for G and safe w.r.t. Lam.

Smpnb is not G-matched anymore, but this is of no consequence in the later developments
in the paper.

This completes the proof of Theorem 1.

B Proof of theorem 2

First, we state and prove the following lemma.

Lemma 5 Let G = (X, x0, Xm,E, δ), Lam ⊆ Lm(G), and assume that Lam is Lm(G)-
closed. Let A be a complete DFA such that Lm(A) = Lam. Let S be a supervisor for G, and
therefore also for G × A. Then, the following hold:

1. If S is non-blocking for plant G × A, then S is non-blocking for plant G.
2. If S is non-blocking for plant G × A, then S is safe for plant G w.r.t. Lam.
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3. If S is non-blocking for plant G and safe for plant G w.r.t. Lam, then S is non-blocking
for plant G × A.

4. S is safe for plant G × A w.r.t. Lm(G × A).

Proof 1. To show that S is non-blocking for G, we need to show L(S/G) ⊆ Lm(S/G).
Let σ ∈ L(S/G). We need to find σ ′ such that σ · σ ′ ∈ Lm(S/G). We know that
σ ∈ L(S/G × A) because A is complete. Also, S is non-blocking for G × A, thus
σ ∈ Lm(S/G × A). Therefore there exists σ ′ such that σ · σ ′ ∈ Lm(S/G × A). By
definition of the marked states of G × A, both G and A accept σ · σ ′. Therefore,
σ · σ ′ ∈ Lm(S/G).

2. To show that S is safe for G w.r.t. Lam, we need to show Lm(S/G) ⊆ Lam. Let σ ∈
Lm(S/G). We need to show σ ∈ Lam. σ ∈ Lm(S/G) implies σ ∈ L(S/G), and
therefore σ ∈ L(S/G×A) because A is complete. Consider the (unique) run of G×A

on σ . We claim that this run ends on a product state that is marked for both G and A.
σ ∈ Lm(S/G), therefore the product state must indeed be marked for G. We show that
σ ∈ Lm(A) which implies that the product state is also marked for A. Since S is non-
blocking for G × A, there exists σ ′ such that σ · σ ′ ∈ Lm(S/G × A). But this means
σ · σ ′ ∈ Lm(A), which implies σ ∈ Lm(A). Also, σ ∈ Lm(S/G) implies σ ∈ Lm(G).
Therefore, we have σ ∈ Lm(G) ∩ Lm(A).

Since Lm(A) (i.e., Lam) is Lm(G)-closed, σ ∈ Lm(A).
3. To show that S is non-blocking for plant G × A, we need to show L(S/G × A) ⊆

Lm(S/G × A). Let σ ∈ L(S/G×A). We need to find σ ′ such that σ ·σ ′ ∈ Lm(S/G×
A). σ ∈ L(S/G × A) implies σ ∈ L(S/G) and σ ∈ L(A). Since S is non-blocking
for G, there exists σ ′ such that σ · σ ′ ∈ Lm(S/G). Since Lm(S/G) ⊆ Lam = Lm(A),
σ ·σ ′ ∈ Lm(A). σ ·σ ′ ∈ Lm(S/G) and σ ·σ ′ ∈ Lm(A) implies σ ·σ ′ ∈ Lm(S/G×A).
Therefore σ ∈ Lm(S/G × A).

4. Trivially, since safe w.r.t. Lm(G × A) means Lm(S/G × A) ⊆ Lm(G × A), which
holds for any S.

We can now present the proof of Theorem 2.

Proof 2 ⇒ 1 : We need to show that S is non-blocking for G, safe w.r.t. Lam, and
maximally-permissive. Non-blockingness follows from Lemma 5, part 1. Safety follows
from Lemma 5, part 2.

To show that S is maximally-permissive in G, suppose there exists a non-blocking and
safe w.r.t. Lam supervisor S′ which is strictly more permissive than S. By Lemma 5, parts 3
and 4, S′ is non-blocking for G × A and safe for G × A w.r.t. Lm(G × A). The fact that S′
is strictly more permissive than S in G also means that S′ is strictly more permissive than S

in G × A. This contradicts the hypothesis that S is maximally-permissive in G × A.
1 ⇒ 2 : We need to show that S is non-blocking for G × A, safe for G × A w.r.t.

Lm(G × A), and maximally-permissive. Non-blockingness follows from Lemma 5, part 3.
Safety follows from Lemma 5, part 4.

To show that S is maximally-permissive in G × A, suppose there exists a non-blocking
supervisor S′ for G × A (and also trivially safe w.r.t. Lm(G × A)) which is strictly more
permissive than S.
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By Lemma 5, parts 1 and 2, S′ is non-blocking for G and safe for G w.r.t. Lam. The
fact that S′ is strictly more permissive than S in G × A also means that S′ is strictly more
permissive than S in G. This contradicts the hypothesis that S is maximally-permissive
in G.

C An algorithm for SSCP

For the sake of completeness of this paper, a simple algorithm to solve SSCP is presented
below. The algorithm starts by labeling as Blocking all states that cannot reach a marked
state (note that this generally requires reachability analysis). Then the algorithm iterates,
repeatedly labeling more states as Blocking, until no more can be labeled. A state is labeled
during this iteration, if either it has an uncontrollable successor already labeled, or all its
successors are already labeled. At the end, if the initial state is labeled Blocking then no
supervisor exists. Otherwise, a state-based supervisor can easily be constructed by avoiding
all controllable transitions leading to Blocking states.

The above algorithm essentially computes a fixpoint of a function that takes a set of
blocking states and returns those states that have an uncontrollable transition to a blocking
successor or all of whose successor states are blocking. The fixpoint evaluation starts from
the set of states that do not have a path to a marked state. The algorithm is furthermore an
adaptation of the standard algorithm in Wonham and Ramadge (1987) for solving BSCP-
NB to the special case of SSCP. Examples of the application of the standard algorithm for
solving BSCP-NB can be found in Wonham (2015), Cassandras and Lafortune (2008), for
instance.

As a simple example of how the algorithm operates, consider the plant G1 of Figure 3.
After initialization, Blocking contains a single state, namely x2. (Note that x1 has no path
to itself, but is not considered blocking because it is marked.) After executing the body of
the repeat loop no more states are added to the set Blocking. Indeed, no state has an uncon-
trollable transition to x2, therefore the set StatesWithUncontrollablyBlockingSuccs turns out
to be empty. The set NewDeadlocks also turns out to be empty because there is no state
whose only successors, if any, are blocking, i.e., x2 (note that, again, the marked state x1 is
exempted). Since Blocking does not change, the loop is exited after one iteration. The initial
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state is not blocking, therefore a supervisor exists and is defined as follows: S(x0) = {u, c1},
S(x1) = S(x2) = {u, c1, c2}, and S(x3) = {c2}. The computed supervisor corresponds to
supervisor S2 shown in Fig. 3.
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