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Abstract This paper presents a framework for compositional nonblocking verification of
discrete event systems modelled as extended finite-state machines (EFSM). Previous results
are improved to consider general conflict-equivalence based abstractions of EFSMs com-
municating both via shared variables and events. Performance issues resulting from the
conversion of EFSM systems to finite-state machine systems are avoided by operating
directly on EFSMs, deferring the unfolding of variables into state machines as long as pos-
sible. Several additional methods to abstract EFSMs and remove events are also presented.
The proposed algorithm has been implemented in the discrete event systems tool Suprem-
ica, and the paper presents experimental results for several large EFSM models that can be
verified faster than by previously used methods.
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http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10626-015-0217-y-x&domain=pdf
mailto:sahar.mohajerani@gmail.com
mailto:robi@waikato.ac.nz
mailto:fabian@chalmers.se


34 Discrete Event Dyn Syst (2016) 26:33–84

1 Introduction

Many discrete event systems are safety-critical, where failures can result in huge financial
losses or even human fatalities. Logical correctness is a crucial property of these systems,
and formal verification is an important part of guaranteeing it. This paper focuses on the
verification of the nonblocking property (Ramadge and Wonham 1989).

Formal verification requires a formal model, and finite-state machines (FSM) are
widely used to represent discrete event systems (Ramadge and Wonham 1989). FSMs
describe the behaviour of a system using states and transitions between these states.
The transitions are associated to events through which the FSM can interact with other
FSMs and the outside world. For systems with data dependency, it is natural to extend
FSMs with variables and guards. This results in extended finite-state machines (EFSM),
which interact through events and bounded discrete variables. EFSMs, also referred to as
extended finite-state automata (EFA), have been similarly defined by several researchers
(Cheng and Krishnakumar 1993; Chen and Lin 2000; Sköldstam et al. 2007; Zhaoa et al.
2012; Teixeira et al. 2013).

EFSMs facilitate the modelling of complex discrete event systems that include counters
or other quantitative variables. The state spaces of such systems can be huge, yet they can be
modelled concisely with only a few state machine diagrams. On the other hand, the formal
verification of these systems remains a challenge, because technically verification must
take all possible combinations of variable values into account, often resulting in state-space
explosion.

Various approaches have been proposed to overcome state space explosion. With sym-
bolic model checking, the explicit enumeration of states is avoided using a symbolic
representation (Baier and Katoen 2008; McMillan 1993), typically consisting of ordered
binary decision diagrams (Bryant 1992), making it possible to explore much larger state
spaces (Vahidi 2004).

With compositional verification (Graf and Steffen 1990) and abstract interpreta-
tions (Dams et al. 1994), the model is simplified before or during verification in an attempt
to reduce combinatorial complexity. The nonblocking property considered in this paper
requires special types of abstraction for compositional verification to work. Abstraction
based on conflict equivalence (Malik et al. 2006) is more effective than general abstract
interpretations (Dams et al. 1994) or bisimulation equivalence (Milner 1989). While it
is well-known that nonblocking verification and similar model checking problems are
NP (Gohari and Wonham 2000), and the worst-case complexity of compositional verifica-
tion is even worse, experimental results (Flordal and Malik 2009; Su et al. 2010; Malik and
Leduc 2013) show that compositional nonblocking verification can efficiently verify several
large FSM models that cannot be verified by standard monolithic verification.

Compositional verification can also be applied to systems modelled as EFSMs, after con-
verting the EFSMs to a set of FSMs (Sköldstam et al. 2007). However, the conversion can
increase the number of events significantly, and in some cases takes longer than the verifi-
cation (Mohajerani et al. 2013b). Recently, a direct method for compositional verification
of EFSM models has been proposed (Mohajerani et al. 2013a; 2014), which removes the
need to convert EFSMs to FSMs. In (Mohajerani et al. 2013a), symbolic observation equiv-
alence is used as the only abstraction method. This is generalised to conflict equivalence
in (Mohajerani et al. 2014), where a general framework for compositional verification of
EFSMs communicating only via shared variables is introduced.
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This paper is an extended version of (Mohajerani et al. 2014). It proposes a framework
and an algorithm for compositional nonblocking verification of systems modelled as EFSMs
that do not only communicate via shared variables but also via shared events.

– Firstly, this paper introduces normalisation to treat communication via shared vari-
ables (Mohajerani et al. 2014), or via events (Flordal and Malik 2009), or combinations
of these, in a uniform way. After normalisation, the conflict-preserving abstractions
for FSMs (Flordal and Malik 2009; Pena et al. 2009; Su et al. 2010; Malik and Leduc
2013) can be generalised for EFSM systems. While in (Mohajerani et al. 2014), par-
tial unfolding of variables is limited to local variables, i.e., variables used by only one
component, after normalisation this can be generalised to allow unfolding of arbitrary
variables, even if they are shared between several components (Proposition 8).

– Secondly, this paper proposes more ways to simplify EFSM components while pre-
serving the nonblocking property. In addition to the FSM-based abstraction based
on (Flordal and Malik 2009; Pena et al. 2009; Su et al. 2010; Malik and Leduc 2013)
(Proposition 5), four further methods (Propositions 9–10) are introduced to simplify
or remove events in a normalised EFSM system, which increase the possibility of
abstraction.

– Lastly, this paper combines all the abstraction methods in an algorithm (Algorithm 1)
for compositional nonblocking verification of EFSM systems. The algorithm is imple-
mented in Supremica (Åkesson et al. 2006), and has been used successfully to verify
several large systems. The algorithm’s performance is compared with the previously
used BDD-based (Vahidi 2004) and FSM-based algorithms (Flordal and Malik 2009;
Malik and Leduc 2013).

This paper is structured as follows. Section 2 introduces the notation and concepts for
EFSMs, and Section 3 gives a motivating example to informally illustrate compositional
nonblocking verification and abstraction of EFSM systems. Next, Section 4 explains the
normalisation procedure. Then Section 5 presents the principle of compositional nonblock-
ing verification and describes different methods to simplify EFSM systems while preserving
the nonblocking property. Afterwards, Section 6 combines these results in an algorithm for
compositional nonblocking verification of EFSM systems, and Section 7 presents the exper-
imental results. Finally, Section 8 adds some concluding remarks. The Appendix contains
formal proofs of all propositions contained in the paper.

2 Preliminaries

2.1 Finite-state machines

The standard means to model discrete event systems (Ramadge and Wonham 1989) are
finite-state machines (FSM), which synchronise on shared events (Hoare 1985). Events are
taken from an alphabet �. The special silent event τ /∈ � is not included in � unless
explicitly mentioned using the notation �τ = � ∪ {τ }. Further, �∗ is the set of all finite
traces of events from �, including the empty trace ε. The concatenation of two traces s, t

∈ �∗ is written as st .

Definition 1 A finite-state machine (FSM) is a tuple G = 〈�, Q, →, Q◦, Qω〉, where �
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is a set of events, Q is a finite set of states, →⊆ Q×�τ ×Q is the state transition relation,
Q◦ ⊆ Q is the set of initial states, and Qω ⊆ Q is the set of marked states.

The transition relation is written in infix notation x
σ→ y, and is extended to traces in �∗

τ

by x
ε→ x for all x ∈ Q, and x

sσ→ z if x
s→ y and y

σ→ z for some y ∈ Q. The transition
relation is also defined for state sets X ⊆ Q, for example X

s→ y means x
s→ y for some

x ∈ X.
When two or more FSMs are brought together to interact, lock-step synchronisation in

the style of (Hoare 1985) is used.

Definition 2 Let G1 = 〈
�1,Q, →1, Q

◦
1, Q

ω
2

〉
and G2 = 〈

�2,Q2 →2, Q
◦
2, Q

ω
2

〉
be two

FSMs. The synchronous composition of G1 and G2 is

G1||G2 = 〈
�1 ∪ �2,Q1 × Q2, →,Q◦

1 × Q◦
2,Q

ω
1 × Qω

2

〉
(1)

where

(x1, x2)
σ→ (y1, y2) if σ ∈ �1 ∩ �2, x1

σ→1 y1, and x2
σ→2 y2 ; (2)

(x1, x2)
σ→ (y1, x2) if σ ∈ (�1 \ �2) ∪ {τ } and x1

σ→1 y1 ; (3)

(x1, x2)
σ→ (x1, y2) if σ ∈ (�2 \ �1) ∪ {τ } and x2

σ→2 y2 . (4)

Hiding is the act of replacing certain events by the silent event τ .

Definition 3 Let G = 〈�, Q, →, Q◦, Qω〉 be an FSM, and let ϒ ⊆ �. The result of hiding
ϒ from G is

G \ ϒ = 〈� \ ϒ,Q, → \ϒ,Q◦,Qω〉, (5)

where → \ϒ is obtained from → by replacing all events in ϒ with the silent event τ .

This paper concerns verification of the nonblocking property, which is commonly used
in supervisory control theory of discrete event systems (Ramadge and Wonham 1989). A
system is nonblocking if, from every reachable state, it is possible to reach a marked state,
i.e., a state in Qω.

Definition 4 An FSM G = 〈�, Q, →,Q◦,Qω〉 is nonblocking if, for every trace s ∈ �∗
τ

and every state x ∈ Q such that Q◦ s→ x, there exists a trace t ∈ �∗
τ such that x

t→ Qω.

2.2 Extended finite-state machines

Extended finite-state machines (EFSM) are similar to conventional finite-state machines,
but augmented with updates associated to the transitions (Chen and Lin 2000; Sköldstam
et al. 2007). Updates are formulas constructed from variables, integer constants, the Boolean
literals true and false, and the usual arithmetic and logic connectives.

A variable v is an entity associated with a bounded discrete domain dom(v) and an initial
value v◦ ∈ dom(v). Let V = {v0, . . . , vn} be the set of variables with domain dom(V ) =
dom(v0) × · · · × dom(vn). An element of dom(V ) is also called a valuation and is denoted
by v̂ = (v̂0, . . . , v̂n) with v̂i ∈ dom(vi), and the value associated to variable vi ∈ V is
denoted v̂[vi] = v̂i . The initial valuation is v◦ = (v◦

0, . . . , v◦
n).



Discrete Event Dyn Syst (2016) 26:33–84 37

A second set of variables, called next-state variables and denoted by V ′ = { v′ | v ∈ V }
with dom(V ′) = dom(V ), is used to describe the values of the variables after execution
of a transition. Variables in V are also referred to as current-state variables to differentiate
them from the next-state variables in V ′. The set of all update formulas using variables in
V and V ′ is denoted by 	V .

For an update p ∈ 	V , the term vars(p) denotes the set of all variables that occur in p,
and vars′(p) denotes the set of all variables whose corresponding next-state variables occur
in p. For example, if p ≡ x′ = y +1 then vars(p) = {x, y} and vars′(p) = {x}. Here and in
the following, the relation ≡ denotes syntactic identity of updates to avoid ambiguity when
an update contains the equality symbol =. An update p without any next-state variables,
vars′(p) = ∅, is called a pure guard. Usually it is understood that variables that do not
appear as next-state variables remain unchanged, and the execution of a pure guards does not
change any variables. To get this interpretation, the following notion of extension is used.

Definition 5 Let p ∈ 	V be an update. The extension of p to W ⊆ V is


W (p) ≡ p ∧
∧

v∈W\vars′(p)
v′ = v. (6)

The extension is constructed syntactically by adding to the update p equations v′ = v

for all variables v ∈ W that do not already appear as next-state variables in p. For example,

{x}(x = 1) ≡ x = 1 ∧ x′ = x and 
{x,y}(x′ = y + 1) ≡ x′ = y + 1 ∧ y′ = y. Another
important way to rewrite updates is substitution, which performs syntactic replacement of
subformulas.

Definition 6 A substitution is a mapping [z1 �→ a1, . . . , zn �→ an] that maps variables zi

to terms ai . Given an update p ∈ 	V , the substitution instance p[z1 �→ a1, . . . , zn �→ an]
is the update obtained from p by simultaneously replacing each occurrence of zi by ai .

For example, (x′ = x + y)[x′ �→ 1, x �→ 0] ≡ 1 = 0 + y.
With slight abuse of notation, updates p ∈ 	V are also interpreted as predicates over

their variables, and they are evaluated to F or T, i.e., p : dom(V )× dom(V ′) → {F,T}. For
example, if V = {x} with dom(x) = {0, 1}, then the update p ≡ x′ = x + 1 means that the
value of the variable x in the next state will be increased by 1 over its current-state value.
Its predicate p(x, x ′) evaluates to true as p(0, 1) = T and to false as p(1, 1) = F.

Definition 7 An extended finite-state machine (EFSM) is a tuple E = 〈�, Q, →,Q◦,Qω〉,
where � is a set of events, Q is a finite set of locations, →⊆ Q × � × 	V × Q is the
conditional transition relation, Q◦ ⊆ Q is the set of initial locations, and Qω ⊆ Q is the
set of marked locations.

The expression q0
σ :p→ q1 denotes the presence of a transition in E, from location q0 to

location q1 with event σ and update p. Such a transition can occur if the EFSM is in loca-
tion q0 and the update p evaluates to T, and when it occurs, the EFSM changes its location
from q0 to q1 while updating the variables in vars′(p) in accordance with p; variables not
contained in vars′(p) remain unchanged. This can be implemented by first assigning next-
state variables such that the update formula p is satisfied, and after the transition assigning
the values of the next-state variables to the corresponding current-state variables.

For example, let x be a variable with domain dom(x) = {0, . . . , 5}. A transition with
update x′ = x + 1 changes the variable x by adding 1 to its current value, if it currently is
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less than 5. Otherwise (if x = 5) the transition is disabled and no updates are performed.
The update x = 3 disables a transition unless x = 3 in the current state, and the value of x

in the next state is not changed. Differently, the update x′ = 3 always enables its transition,
and the value of x in the next state is forced to be 3.

Given an EFSM E = 〈�, Q, →, Q◦, Qω〉, its alphabet is also denoted by �E = �. The
variable set of E is vars(E) = ⋃

(q0,σ,p,q1)∈→ vars(p), and it contains all the variables that
appear on some transitions of E.

Usually, reactive systems are modelled as several components interacting with each
other. Such a model is called an EFSM system.

Definition 8 An EFSM system is a collection of interacting EFSMs,

E E = {E1, . . . , En}. (7)

The alphabet of the system E is �E = ⋃
E∈E �E , and the variable set of E is vars(E ) =⋃

E∈E vars(E).

In the synchronisation of EFSMs, similar to FSMs, shared events between two EFSMs
are synchronised in lock-step, while other events are interleaved. In addition, the updates
are combined by conjunction.

Definition 9 Given two EFSMs E1 = 〈�1,Q1,→1, Q
◦
1,Q

ω
1 〉 and E2 =

〈�2,Q2,→2,Q
◦
2, Q

ω
2 〉, the synchronous composition of E1 and E2 is E1||E2 =

〈�1 ∪ �2,Q1 × Q2,→2,Q
◦
1 × Q◦

2,Q
ω
1 × Qω

2 〉, where:

(x1, x2)
σ :p1∧p2−−−−−−−→(y1, y2) if σ ∈ �1 ∩ �2, x1

σ :p1−−−−→1y1, and x2
σ :p2−−−→2y2 ; (8)

(x1, x2)
σ :p1−−−→(y1, x2) if σ ∈ �1 \ �2 and x1

σ :p1−−→1y1 ; (9)

(x1, x2)
σ :p2−−→(x1, y2) if σ ∈ �2 \ �1 and x2

σ :p2−−→2y2 . (10)

Using Definition 9, the global behaviour of a system E = {E1 . . . En} is expressed as
||E = E1|| · · · ||En.

The standard approach to verify the nonblocking property of EFSMs evaluates all vari-
able values. This is done by flattening, which introduces states for all combinations of
locations and variable values (Baier and Katoen 2008).

Definition 10 Let E = 〈�,Q, →,Q◦,Qω〉 be an EFSM with variable set vars(E) = V .
The monolithic flattened FSM of E is U(E) = 〈�, QU, →U ,Q◦

U , Qω
U 〉 where

– QU = Q × dom(V );

– (x, v̂)
σ→U (y, ŵ) if E contains a transition x

σ :p→ y such that 
V (p)(v̂, ŵ) = T;
– Q◦

U = Q◦ × {v◦};
– Qω

U = Qω × dom(V ).

The inclusion of the variable values v̂ in the states of the monolithic flattened FSM
ensures the correct sequencing of transitions. The use of 
V (p) as opposed to p in the
definition of →U ensures that a variable x can only change its value if its correspond-
ing next-state variable x′ appears in the update p. The monolithic flattened FSM of an
EFSM system E = {E1, . . . , En} is U(E ) = U(E1|| · · · ||En). Using these definitions, the
nonblocking property is also defined for EFSMs and EFSM systems.
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Definition 11 An EFSM E or an EFSM system E is nonblocking if the monolithic flattened
FSM U(E) or U(E ), respectively, is nonblocking.

3 Motivating example

This section demonstrates the process of EFSM-based compositional nonblocking ver-
ification using a simple manufacturing system modelled as interacting extended finite
state-machines. The manufacturing system consists of four devices CB1, CB2, M1, and M2
as shown in Fig. 1. CB1 and CB2 are sections of a conveyor belt. The total capacity of the
conveyor belt is given by a parameter N ≥ 1, where it is assumed that N = 2 in the remain-
der of this section. Workpieces are loaded onto CB1 (event l1) from outside the system, and
transported over to CB2 (event l2). When workpieces enter CB2, a part detection sensor
determines the type of workpieces (events p1 and p2). When workpieces leave CB2, type 1
workpieces are loaded into machine M1 (event s1), and type 2 workpieces are loaded into
machine M2 (event s2). The machines M1 and M2 then process their workpieces and output
them from the system (f1 and f2).

The EFSM model consists of the EFSMs CB1, CB2, M1, and M2 as shown in Fig. 1. It
uses variables v1 and v2 with domain {0, . . . , N} to represent the number of workpieces on
conveyor section CB1 and CB2, respectively, and a variable t with domain {0, 1, 2} to keep
track of the type of workpiece as determined by the sensor at CB2.

The update v1 + v2 < N ∧ v′
1 = v1 + 1 for event l1 in CB1 enforces the capacity

restriction of the conveyor belt by preventing the loading of another workpiece onto CB1
unless both conveyor sections combined have less than N workpieces, v1 + v2 < N , and
if the event l1 occurs, it increases the number of workpieces on CB1 by 1, v′

1 = v1 + 1.
For illustration, CB2 contains a transition to the blocking state ⊥ to represent that conveyor
section CB2 exceeds the capacity limit. It becomes part of the nonblocking verification to
confirm that this transition is never taken.

Fig. 1 Manufacturing system example
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The model in Fig. 1 is blocking, because the part recognition procedure is not imple-
mented correctly in CB2. In the following, it is demonstrated how the compositional
nonblocking verification algorithm finds this fault and shows that the system is blocking
without exploring the full state space.

Before EFSM-based compositional nonblocking verification starts, the preprocessing
step of normalisation transforms the model in such a way that each event corresponds to a
unique update. This facilitates reasoning about a composed system as it shows directly what
effect the execution of events has on all the variables.

In order to normalise a system, the first step is to normalise individual components. The
EFSM CB2 is not normalised, because the event l2 corresponds to two different updates
v2 < N ∧ v′

2 = v2 + 1 and v2 = N . To normalise CB2, event l2 is replaced by two new
events l21 and l22, where the update of l21 is v2 < N ∧ v′

2 = v2 + 1 and the update of l22
is v2 = N . Having replaced l2 in CB2, the transition labelled with l2 in CB1 is replaced by
two transitions labelled l21 and l22, both of which have the update 0 < v1 ∧ v′

1 = v1 − 1
of the original l2-transition in CB1. These steps result in two EFSMs C1 and C2, shown in
Fig. 2, which replace CB1 and CB2 in the system. This way of normalising components
individually preserves the synchronous composition of the system except for the renaming
of events.

Now the EFSMs are individually normalised, as each event has a unique update within
each EFSM. Yet, the system as a whole is not yet normalised, because s1 has the update
t = 1 ∧ 0 < v2 in C2 and another update t ′ = 0 ∧ v′

2 = v2 − 1 in M1. To normalise the
system, the update of each event is replaced by the conjunction of the updates of the event
in all the components it occurs in. For example, after normalisation the update of event s1
becomes

t = 1 ∧ 0 < v2 ∧ t ′ = 0 ∧ v′
2 = v2 − 1 . (11)

This conjunction is well-defined for each event since, after the first step above, events
have unique updates in each component. Figure 3 shows the normalised form of the system.
Normalisation makes it unnecessary to write the updates on the transitions. Instead, the
information about the updates of the events is given in the table in Fig. 3.

Now the EFSM system is normalised, and nonblocking verification can start. This is
done by constructing an abstraction of the synchronous composition of the system in several
small steps. At each step, either EFSMs are abstracted and replaced by EFSMs with less
transitions or locations, or variables are unfolded, replacing them by EFSMs and produc-
ing simpler updates. Synchronous composition is computed step by step on the abstracted
EFSMs. In the end, all the variables are unfolded and the final result is a single abstracted
FSM, which is simpler than the result of flattening the original EFSM system would be,
while it has the same property of being nonblocking or not. Then standard monolithic
nonblocking verification is applied to this abstracted FSM.

After normalisation, the system is E = {N (C1),N (C2),N (M1),N (M2)} as shown
in Fig. 3. In the first step of compositional nonblocking verification, individual EFSMs are

Fig. 2 Normalised EFSMs obtained from CB1 and CB2
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Fig. 3 Normalised manufacturing system for N = 2.

abstracted if possible. Event f1 only appears in N (M1). Such events are referred to as
local events. If the update of a local event is true, then transitions labelled by that event
are always executable and execution will not change the value of any variable. Thus, local
events corresponding to true updates can be hidden, that is, replaced by the silent event τ .
After hiding the local event f1 in N (M1), the two states of N (M1) can be merged using
the conflict-preserving abstraction method of observation equivalence (Milner 1989). The
same steps are applied to N (M2). Fig. 4 shows the EFSMs N (M1) \ {f1} and N (M2) \
{f2} resulting from hiding and the resulting abstractions M̃1 and M̃2.

Events l1, p1, and p2 are also local. However, these events cannot yet be hidden because
of their nontrivial updates. Since the abstraction methods greatly benefit from hiding, the
next step is to simplify updates of some events to make hiding possible.

The only variable in the updates of p1 and p2 is t . This observation suggests to unfold
the variable t , removing this variable from the updates, so that the events p1 and p2 can be
hidden and more abstraction becomes possible. Partial unfolding replaces a variable by a
new EFSM, called the variable EFSM, which has one location for each value in the domain
of the unfolded variable, and transitions that reflect the way the variable is updated by the
corresponding events. The variable EFSM T for t , shown in Fig. 5, has three locations
corresponding to dom(t) = {0, 1, 2}. The variable t changes from 0 to 1 and from 0 to 2
by executing events p1 and p2, respectively, and from 1 to 0 on the occurrence of s1, and
from 2 to 0 on the occurrence of s2. Now the updates of these events can be simplified as
the variable EFSM T contains the effect the events have on the variable t . The results are
shown in the table in Fig. 5: the updates of s1 and s2 are simplified to no longer include t ,
and the updates of p1 and p2 become true. However, p1 and p2 are no longer local events
as they now appear in the variable EFSM T and in N (C2).

So, now the synchronous composition T C = T ||N (C2) is constructed, shown in Fig. 5,
which has local events p1 and p2 that can now be hidden because of their true updates.
Hiding results in the EFSM T C \ {p1, p2}, also shown in Fig. 5. All the states ⊥ can be

Fig. 4 Abstraction results of N (M1) and N (M2).
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Fig. 5 The components after unfolding t .

merged since the system will be blocking if it ends up in any of these states. Also, the
only states that can be reached from q1 are q2 and q3, and they can only be reached by the
silent event τ . Such a state can be removed by the Only Silent Outgoing Rule as only the τ -
successor states are relevant for conflict equivalence (Flordal and Malik 2009). The EFSM
T C \ {p1, p2} can thus be simplified to T̃ C in Fig. 5.

Next, the composition T̃ C||M̃1||M̃2 is found to be equal to T̃ C, and it results in the
events s1 and s2 being local. From the table in Fig. 5, it can be observed that the updates of
s1 and s2 only depend on the variable v2. Thus, the variable v2 is unfolded, which results in
the variable EFSM V2 shown in Fig. 6. The event l1 with update v1 + v2 < 2 ∧ v′

1 = v1 + 1
does not change the value of the variable v2, so it appears on two selfloop transitions in
EFSM V2. Firstly, the case v2 = 0 gives rise to a selfloop on state 0 with an update that
simplifies to v1 < 2 ∧ v′

1 = v1 + 1, and secondly the case v2 = 1 gives rise to a selfloop
on state 1 with simplified update v1 < 1 ∧ v′

1 = v1 + 1. To keep the system normalised
after unfolding, the event l1 is renamed and replaced by two new events l10 and l11 each
with a unique update. This renaming also affects component N (C1), where the transition

Fig. 6 The components after unfolding v2
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labelled l1 is replaced by transitions with both the new events, resulting in C′
1 in Fig. 6. The

other events l21, s1, and s2 also have two transitions each, but their updates simplify to the
same expression in each case, which means that there is no need for further renaming.

After composition of V2 and T̃ C||M̃1||M̃2 = T̃ C, events s1 and s2 can be hidden, result-
ing in T CV \ {s1, s2} shown in Fig. 6. Here, states q1 and q2 have equivalent outgoing
transitions. These states can be merged using observation equivalence (Milner 1989), result-
ing in the abstraction T̃ CV also shown in Fig. 6. The event l22 becomes always disabled
after synchronisation of V2 and T C′, so it is removed from the model. This confirms that

the transition q0
l2−−→⊥ in CB2 never occurs.

After all these abstractions, only the EFSMs C′
1 and T̃ CV and the variable v1 remain.

The final step is to unfold v1, which results in the variable EFSM V1 shown in Fig. 7,
where all updates are true. The synchronous composition of C′

1, T̃ CV , and V1, also shown
in Fig. 7, is blocking. This essentially shows that the system blocks if a second workpiece
enters CB2 by executing l2, before the previous workpiece is released by executing s1 or s2.
As the final abstraction result is blocking, it is concluded that the original model in Fig. 1 is
blocking. The largest component created during the compositional steps to obtain this result
is T C in Fig. 5 with nine locations and ten transitions. In contrast, standard monolithic
verification would have to flatten the entire system at once, which creates a blocking FSM
with 44 states and 104 transitions.

This example demonstrates how EFSM-based compositional verification works. In the
sequel, Section 4 explains formally the normalisation process, and Section 5 describes the
abstraction methods.

4 Normalisation

The first step of the compositional nonblocking verification algorithm proposed in this paper
is normalisation, which rewrites an EFSM system in such a way that each event has its own
distinct update. This makes it possible to examine directly the effect that executing an event
has on the variables, greatly simplifying the processing of EFSM systems during the later
steps of compositional verification.

Definition 12 An EFSM system E is normalised if for all transitions x1
σ :p1−−−−→x2 and

y1
σ :p2−−−−→y2 it holds that p1 ≡ p2. An EFSM E is normalised if the EFSM system {E} is

normalised.

Definition 13 For a normalised EFSM or EFSM system E, the expression �E(σ) denotes
the unique update associated with the event σ ∈ �E . Moreover, for all σ ∈ �E such that
there does not exist any transition x

σ :p−−−→y in E, it is defined that �E(σ) ≡ false.

Fig. 7 The final abstracted system after unfolding v1.
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If an EFSM system E is normalised, then each event associates to a unique update,
and �E (σ ) is well-defined. Then the association of updates to events can be maintained
separately, and EFSMs can be represented without updates on transitions, as it is done in the
figures in Section 3. In a normalised EFSM system, synchronous composition also becomes
simpler, because there is no need to combine update formulas.

Definition 14 Let E1 = 〈�1, Q1, →,Q◦
1, Q

ω
1 〉 and E2 = 〈�2, Q2, →,Q◦

2, Q
ω
2 〉 be

EFSMs. The normalised synchronous composition of E1 and E2 is E1‖̇E2 = 〈�1 ∪
�2,Q1 × Q2 →,Q◦

1 × Q◦
2,Q

ω
1 × Qω

2 〉, where:

(x1, x2)
σ :p−−−→(y1, y2) if σ ∈ �1 ∩ �2, x1

σ :p−−−→
1 y1, and x2

σ :p−−−→
2 y2 ; (12)

(x1, x2)
σ :p−−−→(y1, x2) if σ ∈ �1 \ �2 and x1

σ :p−−−→
1 y1 ; (13)

(x1, x2)
σ :p−−−→(x1, y2) if σ ∈ �2 \ �1 and x2

σ :p−−−→
2 y2 . (14)

In normalised synchronous composition, events and updates are treated as one entity, and
synchronisation between transitions in two EFSMs is only possible when the events and
updates are the same. In a normalised system, where all updates are uniquely determined by
the event, this works like synchronous composition of FSMs (Definition 2): EFSMs can be
composed by considering only the events, ignoring the updates. Normalised synchronous
composition of a normalised EFSM system results in a normalised EFSM that produces the
same flattening result as EFSM synchronous composition (Definition 9). This is confirmed
by the following proposition.

Proposition 1 Let E be a normalised EFSM system. Then U(||E ) = U(‖̇E ).

By Proposition 1, if the system is normalised, the computation of the synchronous
composition can be simplified using normalised synchronous composition. This paper
concerns the verification of the nonblocking property of EFSM systems. As normalised
synchronous composition produces the same flattening results as synchronous composition
by Proposition 1, it follows in combination with Definition 11 that normalised synchronous
composition preserves the nonblocking property of an EFSM system.

If a given EFSM system E is not normalised, it can be transformed into a normalised
system by the two-step process of normalisation explained in the following. In the first
step, individual EFSM components are normalised, and in the second step, the system is
normalised as a whole. First, individual EFSMs are normalised by introducing new events
and using a renaming.

Definition 15 Let �1 and �2 be two alphabets. A renaming of �1 to �2 is a surjective map
ρ : �2 → �1.

If an EFSM E ∈ E is not normalised, then some event σ in E is linked to more than one
update. To normalise E, new events σi /∈ �E are introduced for each update pi associated
with σ and a renaming is created that maps these new events to the original event σ , i.e.,
ρ(σi) = σ . This results in a renamed EFSM F such that ρ : �F → �E and ρ(F ) = E,
and �F (σ) is well-defined for each σ ∈ �F .
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Example 1 EFSM CB2 in Fig. 1 is not normalised since l2 corresponds to two different
updates v2 < N ∧ v′

2 = v2 + 1 and v2 = N . To normalise CB2, new events l21 and l22 are
created, and the renaming ρ is introduced such that ρ(l21) = ρ(l22) = l2 and ρ(σ) = σ for
all σ /∈ {l21, l22}. This results in the renamed EFSM C2 shown in Fig. 2, with �C2(l21) ≡
v2 < N ∧ v′

2 = v2 + 1 and �C2(l22) ≡ v2 = N .

After applying a renaming to some component E in a system E , a corresponding inverse
renaming needs to be applied to all the remaining system components E′ �= E of E , to
comply with the event modification.

Definition 16 Let E = 〈�E,Q, →,Q◦,Qω〉 be an EFSM, and let ρ : �′
E → �E be a

renaming. Then ρ−1(E) = 〈�′
E, Q, ρ−1(→),Q◦,Qω〉 where ρ−1(→) = { (x, σ, p, y) |

x
ρ(σ):p−−−−→y }.

The EFSM ρ−1(E) is obtained by replacing transitions labelled by a replaced event σ

with transitions labelled by all the events replacing it.

Example 2 After normalising CB2 in Fig. 1, the EFSM CB1 is replaced by C1 =
ρ−1(CB1), which is obtained by replacing the l2-transition by two transitions labelled l21
and l22, both of which have the update 0 < v1 ∧ v′

1 = v1 − 1 of the original l2-transition
in CB1. The EFSM C1 = ρ−1(CB1) is shown in Fig. 2.

The following proposition confirms that the structure of an EFSM system remains
unchanged when a single EFSM is normalised using the combination of renaming and
inverse renaming described above. The behaviour of the original system can be regained by
applying the renaming to the synchronous composition of the renamed system.

Proposition 2 Let E and F be EFSM systems, and let ρ : �F → �E be a renaming, such
that E = {E1, E2, . . . , En} and F = {F1 ρ−1(E2), . . . , ρ

−1(En)} and ρ(F1) = E1. Then
ρ(||F ) = ||E .

The repeated application of Proposition 2 to all components of an EFSM system with
appropriate renamings results in a system where each EFSM is normalised individually.
Yet, the system as a whole is not necessarily normalised as events shared between different
EFSMs may be associated with different updates in their EFSMs. Therefore, a second step
is needed to normalise the whole system.

Definition 17 Let E = {E1, . . . , En} be an EFSM system such that all Ei = 〈�i,Qi,→i

, Q◦
ω,Qω

i 〉 for 1 ≤ i ≤ n are individually normalised. The normalised form of E is
N (E ) = {N (E1), . . . ,N (En)} where N (Ei) = 〈�i,Qi,→N

i ,Q◦
i ,Q

ω〉 and →N
i =

{ (x, σ,�N (E )(σ ), y) | x
σ :p−−−→

i y } and �N (E )(σ ) = ∧
i:σ∈�i

�Ei
(σ ).

The normalised system is obtained by assigning to each event a single update, which is
the conjunction of the updates corresponding to the event in the different EFSMs. Under
the assumption that the individual EFSMs in a system are individually normalised, the nor-
malised system N (E ) obtained by Definition 17 fulfils the requirement of a normalised
system given in Definition 12. The update of each event after normalisation is essentially
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the update that would have been calculated by synchronous composition. Then, since the
normalisation of individual components preserves the synchronous composition, the com-
plete normalisation process also preserves the structure of synchronous composition of the
system as a whole.

Example 3 After normalisation of the system in Section 3, the updates of the events l21
and l22 are the conjunction of the updates of these events in C1 and C2. For example,
event l21 is associated with 0 < v1 ∧ v′

1 = v1 − 1 in C1 according to Example 2 and with
v2 < N ∧v′

2 = v2 +1 in C2 according to Example 1, so its update in the normalised system
is �N (E )(l21) ≡ 0 < v1 ∧ v′

1 = v1 − 1 ∧ v2 < N ∧ v′
2 = v2 + 1 as shown in the table in

Fig. 3.

The following proposition confirms that the behaviours of an EFSM system E and its
normalised form N (E ) are identical if normalised synchronous composition is used to
describe the behaviour of the normalised system.

Proposition 3 Let E be an EFSM system such that each E ∈ E is normalised. Then ||E =
‖̇N (E ).

The first step to normalise a system is to normalise individual components. Proposition 2
confirms that the behaviours of a system before and after normalisation of each component
are identical up to renaming of the events. As renaming preserves the nonblocking property,
normalisation of individual EFSMs does not change the nonblocking property of the system.
When all individual components of a system are normalised, next the operation N (·) is
applied to associate each event with a unique update in the system. Proposition 3 guarantees
that the normalised system behaviour as described using normalised synchronous composi-
tion is identical up to isomorphism to the original system behaviour. Moreover, Proposition
1 and Definition 11 together guarantee that normalised synchronous composition preserves
the nonblocking property. Therefore it follows from Propositions 1–3 that the normalisation
procedure preserves the nonblocking property of an EFSM system. Proofs of Proposition
1–3 are given in Appendix A.

5 EFSM-based compositional verification

The objective of compositional nonblocking verification is to determine whether a nor-
malised EFSM system

E = {E1, E2, . . . , En} . (15)
is nonblocking. If a given system is not normalised, it can be normalised without affecting
the nonblocking property as explained in Section 4. The straightforward approach to verify
whether the system (15) is nonblocking, is to monolithically flatten the system and check for
each reachable state whether it is possible to reach a marked state. However, this technique
is limited by the state-space explosion problem.

In an attempt to alleviate state-space explosion, compositional verification (Flordal and
Malik 2009) seeks to repeatedly rewrite individual components, and for example, replace
E1 in (15) by an abstraction F1, and then to analyse the simpler system {F1, E2, . . . , En}.

The abstraction steps to simplify the individual components Ei must satisfy certain con-
ditions to guarantee that the verification result is preserved. One equivalence to support
nonblocking verification is conflict equivalence (Malik et al. 2006).
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Definition 18 Two EFSMs (or FSMs) E and F are said to be conflict equivalent, written
E �conf F , if for any EFSM (or FSM) T , it holds that E||T is nonblocking if and only if
F ||T is nonblocking.

Due to the congruence properties of conflict equivalence (Malik et al. 2006), components
of an FSM system can be replaced by conflict equivalent components while preserving the
nonblocking property. This follows directly from Definition 18 when T represents the rest
of the system. It is straightforward to lift this result to EFSMs.

Proposition 4 Let E = {E1, . . . , En} and F = {F1, E2, . . . , En} be EFSM systems such
that E1 �conf F1. Then E is nonblocking if and only if F is nonblocking.

If no abstraction is possible, then some components are composed to create local
events or some variables are unfolded to simplify some updates. The resulting EFSMs
are abstracted again, and the procedure continues until all the variables of the systems
are unfolded and the system is simple enough to be verified monolithically. To ensure
correctness, all these operations are performed in such a way that the nonblocking and
normalisation properties of the system are preserved.

The above-mentioned abstraction methods of FSM-based abstraction, synchronous com-
position, and variable unfolding are described in more detail in the following Sections 5.1,
5.2, and 5.4. Section 5.3 describes the method of update simplification, which is closely
linked to variable unfolding. Finally, Section 5.5 proposes four further methods to reduce
the number of events and transitions in an EFSM system.

5.1 FSM-based conflict equivalence abstraction

Compositional nonblocking verification is well-developed for systems modelled as inter-
acting finite-state machines (Flordal and Malik 2009; Malik and Leduc 2013). Several
abstraction methods for FSM-based compositional nonblocking verification with efficient
implementations are known. This section shows how these methods can be applied directly
to EFSMs without first flattening or unfolding any variables.

Definition 19 Let E = 〈�,Q, →,Q◦,Qω〉 be a normalised EFSM. The FSM form of E

is the FSM ϕ(E) = 〈�, Q, →ϕ,Q◦, Qω〉, where x
σ−→ϕy if x

σ :p−−−→y for some x, y ∈ Q.

The FSM form of an EFSM is obtained by simply disregarding all updates. This differs
from the flattened FSM (Definition 10), where variable values are expanded and updates
evaluated. The conversion to FSM form and back is a straightforward operation that does
not incur any blow-up, yet it makes it possible to apply FSM simplification to EFSMs. The
transformation relies on the system being normalised, because in a normalised system each
event has a unique update, making it possible to disregard the updates.

Most abstraction methods defined for FSMs (Flordal and Malik 2009) use local events,
i.e., events that only appear in one FSM in the system. Local events can be hidden because
they do not interact with other components of the system. In an EFSM system, even though
local events are not shared with other components, the variables in their updates can still
result in interaction; only local events with true update can be hidden. Therefore, when
transforming an EFSM to an FSM, the local events with true updates are collected in a set ϒ

and hidden from the transformed FSM. Then the FSM is simplified based on the following
result.
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Proposition 5 Let E = {E1, E2, . . . , En} be a normalised EFSM system and let ϒ ⊆
�1 such that (�2 ∪ · · · ∪ �n) ∩ ϒ = ∅ and �E (σ ) ≡ true for all σ ∈ ϒ . Let F =
{F1, E2, . . . , En} be a normalised EFSM system such that ϕ(E1) \ ϒ �conf ϕ(F1) \ ϒ .
Then E is nonblocking if and only if F is nonblocking.

To summarise Proposition 5, to apply the conflict-preserving abstraction defined for FSM
on EFSM, first the set ϒ is identified as the set of events with true updates that appear only
in the EFSM E1 to be simplified. Next, the FSM form of E1 is obtained by disregarding
all updates, and the events in ϒ are hidden from the FSM form ϕ(E1). Then the conflict
equivalence abstraction methods developed for FSMs are used to simplify ϕ(E1), resulting
in an FSM ϕ(F1). This FSM is interpreted as an EFSM, F1, which is added back to the
system. Proposition 5 provides a general method to simplify an EFSM in a normalised
system while preserving the nonblocking property. A proof is given in Appendix B.1.

Example 4 Consider the normalised EFSM system E = {E1, E2} in Fig. 8. It can be
observed from Fig. 8 that the events α and γ only appear in the EFSM E1, and �E (γ ) ≡
true. Therefore, the set of local events to be hidden is chosen as ϒ = {γ }. To apply the
abstraction methods defined for FSMs, the EFSM E1 is transformed to the FSM form ϕ(E1)

based on Definition 19, and event γ is hidden, resulting in ϕ(E1) \ ϒ shown in Fig. 8. The
two states q0 and q1 in ϕ(E1) \ ϒ can now be merged using the conflict-preserving Silent
Continuation Rule (Flordal and Malik 2009), resulting in the abstracted FSM Ẽ1 in Fig. 8.
Afterwards, the FSM Ẽ1 is transformed back to an EFSM with the same structure as Ẽ1 and
the silent event τ is replaced by the local event γ as shown in E′

1.

To ensure normalisation, the silent event τ is only used in FSMs and not in EFSMs.
Therefore, the τ events are replaced by ordinary events when the FSM is converted back to
an EFSM. Any local event with true update can be used for this replacement, and an original
EFSM whose FSM form contains a τ -transition must contain at least one such event.

5.2 Partial composition

Synchronous composition is the simplest step in compositional nonblocking verification. It
is always possible to replace some components of an EFSM system by their composition.
This operation does not reduce the state space, but it is necessary when all other means
of simplification have been exhausted. The following result follows directly from the def-
initions. The EFSM systems before and after normalised synchronous composition are not
only equivalent with respect to nonblocking, but also identical up to isomorphism.

Fig. 8 Example of FSM-based conflict equivalence abstraction.
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Proposition 6 (Partial Composition) Let E = {E1, . . . , En} be an EFSM system, and let
F = {E1‖̇E2, E3, . . . , En}. Then ‖̇E = ‖̇F .

Proposition 6 states that the composition of two EFSMs in an EFSM system does not
change the behaviour of the system. It is also clear that the system stays normalised as
normalised synchronous composition does not affect the updates of events. In combination
with Proposition 1, it is guaranteed that the nonblocking property of the system is preserved
after composing a part of a system using this operation. A proof is given in Appendix B.2.

5.3 Update simplification

An important aspect to reasoning about EFSM systems is the symbolic manipulation of
updates, in order to keep the formulas as simple as possible. This is achieved by rewriting
updates into logically equivalent updates, while keeping in mind that variables that do not
appear as next-state variables in an update remain unchanged in a normalised system.

Definition 20 Let p, q ∈ 	V be two updates.

– p and q are logically equivalent, written p ⇔ q, if it holds that p(v̂, ŵ) = q(v̂, ŵ) for
all valuations v̂, ŵ ∈ dom(V ).

– p and q are logically equivalent with respect to W ⊆ V , written p ⇔W q, if 
W (p)

and 
W (q) are logically equivalent.

Example 5 The updates p ≡ x = 1 and q ≡ x = 1 ∧ x′ = 1 are not logically equivalent,
because for valuations v̂[x] = 1 and ŵ[x] = 0, e.g., it holds that p(v̂, ŵ) = T but q(v̂, ŵ) =
F. Yet, bearing in mind that the update p ≡ x = 1 leaves the variable x /∈ vars′(p)

unchanged, these two updates have the same effect. The extension 
{x}(p) ≡ x = 1 ∧ x′ =
x is logically equivalent to q ≡ x = 1 ∧ x′ = 1, and therefore p and q are logically
equivalent with respect to W = {x}, i.e, p ⇔{x} q.

Two updates being logically equivalent does not necessarily mean that they are logically
equivalent with respect to W , nor does the converse hold in general.

Updates can be simplified automatically by standard methods of propositional reasoning,
theorem proving, or binary decision diagrams (Huth and Ryan 2004; Bryant 1992). The
following proposition confirms that replacing updates by updates logically equivalent with
respect to the full variable set V does not effect the nonblocking property of the system.

Proposition 7 (Update Simplification) Let E = {E1, . . . , En} and F = {F1, . . . , Fn}
be normalised EFSM systems with Ei = 〈�i,Qi,→E

i ,Q◦
i ,Q

ω[i]〉 and Fi =
〈�i,Qi,→F

i ,Q◦
i , Q

ω
i 〉. Let V = vars(E ) = vars(F ) and �E (σ ) ⇔V �F (σ ) for all

σ ∈ �E = �F , and →F
i = { (x, σ,�F (σ ), y) | x

σ :�E (σ )−−−−−−−→
E

i y }. Then E is nonblocking
if and only if F is nonblocking.

The EFSMs in E and F in Proposition 7 have the same events and states, the only dif-
ference is that updates in E are replaced in F by updates logically equivalent with respect
to all variables, maintaining normalisation by consistently making the same replacement for
each event. A proof of Proposition 7 is given in Appendix B.3.
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5.4 Variable unfolding

This section describes the abstraction that removes a variable from an EFSM system. It
has been shown (Mohajerani et al. 2014) that unfolding a variable that only appears in
one EFSM, called a local variable, preserves conflict equivalence. Here, this idea of par-
tial unfolding is generalised to allow unfolding an arbitrary variable, even if it is shared
between several EFSMs. In a normalised EFSM system, this can be achieved by replacing
the variable with a variable EFSM that keeps track of the variable values.

Definition 21 Let z be a variable, and let � be a set of events. The variable alphabet of z

with respect to � is Uz(�) = � × dom(z) × dom(z).

Definition 22 Let E be a normalised EFSM system. The normalised variable EFSM of
z ∈ vars(E ) is

UE (z) = 〈Uz(�z), dom(z),→z, {z◦}, dom(z)〉 (16)

where

�z = { σ ∈ �E | z ∈ vars(�E (σ )) } ; (17)

→z = {(a, (σ, a, b),
{z}(�E (σ ))[z �→ a, z′ �→ b], b) | (18)

z ∈ vars(�E (σ )) and a, b ∈ dom(z)}.

Furthermore, the variable renaming map ρz : �E ∪ Uz(�z) → �E for z is defined by
ρz(σ ) = σ for all σ ∈ �E and ρz((σ, a, b)) = σ for all (σ, a, b) ∈ Uz(�z).

The variable EFSM uses the domain of the unfolded variable z as its set of locations.
Events σ that have the variable z in their update are modified to have the form of (σ, a, b)

to keep track of the value of the variable when the event is executed, where a, b ∈ dom(z)

are the values of z before and after the transition, respectively. If z′ does not appear in the
update �E (σ ), then the extension operation 
{z} adds the condition z′ = z to ensure that
the value of z remains unchanged. Afterwards, the substitution [z �→ a, z′ �→ b] inserts
the variable values corresponding to the source and target states of the transitions into the
updates. The resulting updates can typically be simplified using Proposition 7.

For example, unfolding the variable v2 with domain {0, 1, 2} in the example of Section 3
results in the variable EFSM V2 with three locations 0, 1, and 2 as shown in Fig. 6. By
executing l1 with update v1 + v2 < 2 ∧ v′

1 = v1 + 1, the value of v2 does not change.
Event l1 is replaced by two new events (l1, 0, 0) and (l1, 1, 1), which are presented as l10
and l11 in Section 3. The update of (l1, 0, 0) is (v1 + v2 < 2 ∧ v′

1 = v1 + 1)[v2 �→ 0, v′
2 �→

0] ≡ (v1 + 0 < 2 ∧ v′
1 = v1 + 1), which can be simplified to v1 < 2 ∧ v′

1 = v1 + 1 using
Proposition 7.

When a variable is unfolded, updates are changed and new events are introduced.
Then the following event replacement operation Uz(E) is used to ensure that the EFSMs
in the system after partial unfolding use the new events. This operation replaces transi-
tions labelled with the original events σ by new transitions labelled with each of the new
events (σ, a, b), in a similar way as the inverse renaming ρ−1 in Definition 16.
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Definition 23 Let E = 〈�E,Q,→, Q◦, Qω〉 be an EFSM, and let z be a variable. The
expansion of E after unfolding z is defined by

Uz(E) = 〈�U, Q,→U , Q◦,Qω〉 ; (19)

�U = Uz(�E ∩ �z) ∪ (�E \ �z) (20)

→U = {
(x, (σ, a, b),
{z}(�E (σ ))[z �→ a, z′ �→ b], y) |

z ∈ vars(�E (σ ))andx
σ :�E (σ )−−−−−−→yandσ ∈ �E ∩ �z

}
∪

{ (x, σ, p, y) | x
σ :p−−−→y and σ ∈ �E \ �z } . (21)

Example 6 Figure 6 in Section 3 shows the expansion C′
1 = Uv2(N (C1)), which replaces

the EFSM N (C1) in Fig. 3 after unfolding v2.

Given these definitions, a variable z is unfolded by adding the variable EFSM UE (z) to
the system, and replacing all EFSMs E by their expansions Uz(E).

Definition 24 Let E = {E1, . . . , En} be a normalised EFSM system and z ∈ vars(E ). The
result of unfolding z in E is

E \ z = {UE (z), Uz(E1), . . . , Uz(En)} (22)

where UE (z) is defined as in Definition 22 and Uz(Ei) is defined as in Definition 23.

Proposition 8 (Variable Unfolding) Let E be a normalised EFSM system, and let z ∈
vars(E ). Then E is nonblocking if and only if E \ z is nonblocking.

Proposition 8 confirms that the nonblocking property of the system is preserved after
unfolding a variable. A proof can be found in Appendix B.4.

Example 7 Consider the EFSM E in Fig. 9 with updates shown in the table, which is part
of a normalised system E . Assume dom(x) = dom(y) = {0, 1} and x◦ = y◦ = 0. Unfold-
ing the variable x results in the variable EFSM UE (x) with locations 0 and 1 in Fig. 9.

Fig. 9 Example of unfolding a variable x
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The event α with update y′ = x + 1 is replaced by four new events:

(α, 0, 0) with update 
{x} (y′ =x+1)[x �→ 0, x′ �→ 0]≡y′ =0+1 ∧ 0=0 ⇔V y′ =1

(α, 0, 1) with update 
{x} (y′ =x+1)[x �→ 0, x′ �→ 1]≡y′ =0+1 ∧ 1=0 ⇔V false

(α, 1, 0) with update 
{x} (y′ =x+1)[x �→ 1, x′ �→ 0]≡y′ =1+1 ∧ 0=1 ⇔V false

(α, 1, 1) with update 
{x} (y′ =x+1)[x �→ 1, x′ �→ 1]≡y′ =1+1 ∧ 1=1 ⇔V false

The update of the event (α, 1, 1) is false because y′ = 2 is not possible as dom(y) =
{0, 1}. Similarly, event β is replaced by four new events. The new events and their simplified
updates are shown in the table in Fig. 9. Since partial unfolding introduces new events to
the system, the EFSM E needs to be modified to use the new events. Thus, E is replaced
by Ux(E), also shown Fig. 9.

5.5 Event Simplification

Generally, reducing the number of events in a system increases the possibility of abstraction.
This section proposes four different methods to reduce the number of events.

It can happen after abstraction and simplification that the updates of some events become
false. Such events can be removed from the system and their transitions deleted. This event
removal is implemented by the following operation of restriction.

Definition 25 The restriction of EFSM E = 〈�, Q, →,Q◦,Qω〉 to � ⊆ � is E|� =
〈�, Q, →|�,Q◦,Qω〉 where

→|�= { (x, σ, p, y) ∈→| σ ∈ � } . (23)

The restriction of E = {E1, . . . , En} to � is E|� = {E1|�, . . . , En|�}.

Proposition 9 (false-Removal) Let E be a normalised EFSM system, and let � ⊆ �E be
a set of events such that for all λ ∈ � at least one of the following conditions holds:

(i) �E (λ) ≡ false;

(ii) There exists E ∈ E such that λ ∈ �E , but there does not exist any transition x
λ:p−→y

in E.

Then E is nonblocking if and only if E|�E \� is nonblocking.

Based on Proposition 9, events with false updates can be removed from the system while
preserving the nonblocking property. Likewise, events that in some EFSM do not appear
on any transition and therefore are always disabled, can be removed. A proof is given in
Appendix B.5.

Example 8 Consider again the EFSMs Ux(E) and UE (x) in Fig. 9. The updates of events
(α, 0, 1), (α, 1, 0), (α, 1, 1), (β, 0, 0), and (β, 1, 0) are false. Thus, these events an their
transitions can be entirely removed from the system. Fig. 10 shows the simplified EFSMs
X′ and E′ obtained from UE (x) and Ux(E), respectively, by removing the events with false
updates.

In compositional nonblocking verification of FSM systems, events that only appear on
selfloops are immediately removed because no state change is possible by these transitions.
This is not possible in an EFSM system. Even though no location change is possible by
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Fig. 10 Example of removing events with false update.

selfloop-only events, if the updates contain next-state variables, the execution of these events
can still change the system state by changing the variable values. An event can be removed
from an EFSM system if it causes no location changes, which means it appears only on
selfloop transitions, and if it causes no changes of variable values, which is guaranteed if
the update of the event is a pure guard, i.e., contains no primed variables.

Definition 26 An EFSM E = 〈�, Q, →,Q◦,Qω〉 is selfloop-only for λ ∈ � if x
λ:p−→y

implies x = y and vars′
E (p) = ∅. EFSM E is selfloop-only for � ⊆ � if E is selfloop-

only for each λ ∈ �. An EFSM system E is selfloop-only for � ⊆ � if each E ∈ E is
selfloop-only for �.

An EFSM is selfloop-only for an event, if the event appears only in selfloops and the
update of the event is a pure guard. The following proposition confirms that selfloop-only
events can be removed without affecting the nonblocking property of an EFSM system. A
proof can be found in Appendix B.5.

Proposition 10 (Selfloop Removal) Let E be a normalised EFSM system that is selfloop-
only for � ⊆ �E . Then E is nonblocking if and only if E|�E \� is nonblocking.

Example 9 Consider the normalised EFSM system E = {E1, E2} in Fig. 11, where the
alphabets of E1 and E2 are �1 = {α, β, γ } and �2 = {β, σ }. Assume dom(x) = dom(y) =
{0, 1}. The events α and β only appear on selfloops in the entire system, and the update of β

is pure guard. Using Proposition 10, the event β can be removed from the system. Thus,
EFSMs E1 and E2 are replaced by E1|�1\{β} and E2|�2\{β} shown in Fig. 11. Note that,
although event α also appears only on selfloops in the entire system, its update is not a pure
guard, and consequently this event cannot be removed.

Using Propositions 9 and 10, it is possible to remove an event from the system. The
following results make it possible to combine some events and replace them by a single
event.

Fig. 11 Example of selfloop removal.
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Proposition 11 (Event Merging) Let E = {E1, . . . , En} be a normalised EFSM system
with Ei = 〈�i,Qi,→i ,Q

◦
ω,Qω

i 〉, let Ek ∈ E , and let ρ : �E → �′ be a renaming such
that the following conditions hold for all σ1, σ2 ∈ �E with ρ(σ1) = ρ(σ2):

(i) �E (σ1) = �E (σ2);
(ii) for all i �= k, it holds that σ1 ∈ �i if and only if σ2 ∈ �i , and for all x, y ∈ Qi it

holds that x
σ1:�E (σ1)−−−−−−−→iy if and only if x

σ2:�E (σ2)−−−−−−−→iy.

Then E is nonblocking if and only if ρ(E ) is nonblocking.

By Proposition 11, all events with the same update can be merged and replaced by the
same event if they appear on transitions with the same source and target states in all the
EFSMs of the system except for one EFSM Ek . A proof is given in Appendix B.5.

One of the applications of event merging, Proposition 11, is after variable unfolding as
events introduced by variable unfolding appear on different transitions only in the vari-
able EFSM. For example, after unfolding the variable v2 in Fig. 6 in Section 3, event s2 is
replaced by two new events (s2, 1, 0) and (s2, 2, 1) both with the same update true. Using
Proposition 11, these events can be merged back into s2. Therefore, there is no need to
introduce new events in the first place, and only s2 is used in Fig. 6.

Example 10 Consider again the EFSMs E′ and X′ in Fig. 10. The updates of events (β, 0, 1)

and (β, 1, 1) are the same, and these events appear on different transitions only in the
EFSM X′. Thus, the renaming ρ is introduced such that ρ((β, 0, 1)) = ρ((β, 1, 1)) = β

and ρ(σ) = σ for all σ /∈ {(β, 0, 1), (β, 1, 1)}. The resulting simplified EFSMs ρ(E′) and
ρ(X′) are shown in Fig. 12.

Proposition 12 (Update Merging) Let E = {E1, . . . , En} be a normalised EFSM system
with Ei = 〈�i,Qi,→i ,Q

◦
ω,Qω

i 〉. Let ρ be a renaming such that the following conditions
hold for all σ1, σ2 ∈ �E with ρ(σ1) = ρ(σ2):

(i) vars′(�E (σ1)) = vars′(�E (σ2)),
(ii) for all i = 1, . . . , n it holds that σ1 ∈ �i if and only if σ2 ∈ �i , and for all x, y ∈ Qi

it holds that x
σ1:�E (σ1)−−−−−−−→iy if and only if x

σ2:�E (σ2)−−−−−−−→iy

Further let F = {F1, . . . , Fn} such that Fi = 〈ρ(�i),Qi,→F
i ,Q◦

i ,Q
ω
i 〉 where →F

i =
{(x, ρ(σ ),�F (ρ(σ )), y) | x

σ :�E (σ )−−−−−−→y } and�F (μ) ≡ ∨
σ∈ρ−1(μ) �E (σ ) for allμ ∈ �F .

Then E is nonblocking if and only if F is nonblocking.

Fig. 12 Example of event merging
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By Proposition 12, two events with the same next-state variables in their updates that
appear on transitions with the same source and target states in the entire system can be
replaced by a single new event. The update of the new event is the disjunction of the updates
of the replaced events. The condition on the next-state variables ensures that the set of
unchanged variables, i.e., variables not occurring as next-state variables, is preserved. A
proof can be found in Appendix B.5.

Example 11 Consider the normalised EFSM system E = {E1, E2} in Fig. 13 with
dom(x) = dom(y) = {0, 1}. Events α1 and α2 appear on the same transitions throughout E ,
and vars′

E (α1) = vars′
E (α2) = ∅. In order to use Proposition 12, the new event α and the

renaming ρ are introduced such that ρ(α1) = ρ(α2) = α, ρ(β) = β, and ρ(γ ) = γ . The
update of the merged event α is y = 0 ∨ y = 1 ⇔V true, and as a result the EFSM E1 can
be replaced by F1 in Fig. 13.

6 Algorithm

This section applies the results from the previous sections to give an algorithm for composi-
tional nonblocking verification of EFSM systems. An overview of the approach is shown as
Algorithm 1. Given an EFSM system, the algorithm repeatedly unfolds variables, composes
EFSMs, and applies abstraction to the resultant EFSMs. While doing this, it maintains an
event tree data structure to keep track of the events and their updates, and the renamings
generated by partial unfolding.

The first step of Algorithm 1 is to normalise the system. The normalise() procedure in
line 2 performs the normalisation and initialises the event tree, which at the beginning only
links each event to its unique update. Then the main loop in lines 3–18 repeatedly unfolds
variables or composes EFSMs, and simplifies EFSMs, until only a single EFSM is left.
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Fig. 13 Example of update merging

In each iteration, the selectCandidate() procedure in line 4 heuristically selects a candidate
representing a subsystem to simplify, which consists of a set Vc of variables and a set Ec of
EFSMs, the composition or unfolding of which is predicted to have potential for the most
simplification. If the selected subsystem contains variables, then the selectVariable() pro-
cedure in line 6 heuristically identifies the best variable to unfold, which is then removed
from the system and unfolded by the unfold() procedure in lines 7–8. If the selected can-
didate contains no variables, then it consists of only EFSMs, which are removed from the
system and composed in lines 10–11. In both cases, the EFSM E resulting from unfolding
or composition is sent for abstraction in lines 13–17.

Abstraction starts by calling the procedure removeEvents() in line 13, which applies
update simplification (Proposition 7), removes events with false updates (Proposition 9),
removes selfloop-only events (Proposition 10), and merges events (Propsosition 11 and 12).
These steps can change both the EFSM E and the remaining components of E , while at the
same time updating the event tree. Afterwards, the simplify() procedure called in line 15
computes a conflict-preserving abstraction of E according to Proposition 5. As abstraction
may change or remove transitions, it may result that some events only appear as selfloops
or that there are groups of events on transitions with the same source and target states.
Therefore, the removeEvents() procedure is applied again to the abstracted EFSM in an
attempt to remove more events.

The loop terminates when E contains only one EFSM and all the variables are unfolded.
The final EFSM can be considered as an FSM as there are no more variables in the system,
so it is passed to standard FSM-based nonblocking verification in line 19. In the following,
each of the procedures mentioned above is explained in more detail.

The selectCandidate() method in line 4 uses the following steps to select the most promis-
ing candidate, which consists of a set Vc of variables and a set Ec of EFSMs to be composed
or unfolded.

(i) The first step is to search the system for variables that appear only as (primed) next-
state variables or only as (unprimed) current-state variables in the entire system. If
a variable only appears as next-state variable then all states in the variable EFSM
are bisimilar (Milner 1989), so the variable EFSM can immediately be simplified to
a single-location EFSM. If a variable only appears as current-state variable, then it
never changes its value. Then all locations except the initial locations are unreachable
in the variable EFSM, which again can be simplified to a single-location EFSM. If
the system contains variables that only appear as current-state or only as next-state
variables, then the selectCandidate() procedure returns all these variables in Vc, while
Ec is an empty set.

(ii) The second step is to search for local variables, i.e., for variables that appear in the
updates of only one EFSM. As the system is normalised, events with a local variable
in their updates appear in only one EFSM. Unfolding local variables simplifies their
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updates, which may result in some updates becoming true, increasing the possibility
of hiding and abstractions in later steps. Yet, after unfolding a local variable, its events
in the EFSM are shared with the variable EFSM.

If the system contains local variables, the selectCandidate() procedure returns the
local variables in Vc, while Ec is an empty set. Subsequently, one of these variables
will be unfolded in line 8. To exploit the benefit of this unfolding, the selectCan-
didate() procedure also ensures that, in the next iteration of the main loop after
unfolding a local variable and simplifying the resultant EFSM, the next candidate
only consists of the variable EFSM and the EFSM that has the local variable.

(iii) If there are no variables that appear only primed or only unprimed, and no local
variables, the final step is to use a strategy called mustL (Flordal and Malik 2009),
which tries to improve the potential of abstraction by making events local. For each
event σ , all EFSMs with σ in the alphabet and all variables in the update of σ are
selected, so that σ becomes a local event if the selected EFSMs and variables were
to be composed. This gives several candidates, one for each event, and the following
heuristics are used to select the best candidate among them.

minF selects the candidate with the smallest number of other EFSMs and variables
linked via events to the candidate’s EFSMs and variables (Mohajerani et al. 2014).
This heuristic attempts to minimise event sharing between the candidate and the
rest of the system.

minS selects the candidate with the smallest estimated number of states in its syn-
chronous composition. The number of states in the synchronous composition is
estimated as the product of the sizes of the domains of the variables and the num-
bers of locations of the EFSMs, multiplied by the ratio of the number of events the
candidate shares with the rest of the system over the total number of events of the
candidate (Flordal and Malik 2009).

The selectCandidate() procedure first employs the minF heuristic, and if minF gives
equal preference to two candidates, then the minS heuristic is used to break the tie.

If the candidate returned by the selectCandidate() procedure contains variables, only one
of these variables will be unfolded. Line 6 calls the selectVariable() procedure, which uses
another set of heuristics to identify the most promising variable:

maxE selects a variable that appears in the update of the largest number of events.
maxS selects a variable that appears in the largest number of selfloops.
minD selects a variable with the smallest domain.

The maxE heuristic enables more update simplification, which increases the chance of
updates becoming true and thus the possibility of hiding. As the contributions of the conflict
equivalence abstraction methods are high in simplifying the system, and they are greatly
dependent on hiding, maxE is the first heuristic that is applied. If maxE gives equal pref-
erence to two variables, then the maxS heuristic is used to break the tie. maxS attempts
to boost the performance of selfloop removal, which also may increase the performance of
conflict equivalence abstraction. In the case that both maxE and maxS give equal preference
to two variables, the minD heuristic is used in order to create the smallest possible variable
EFSM.

Example 12 Consider the EFSM system E = {E1, E2} in Fig. 14. Normalisation pro-
duces N (E1) and N (E2) with the updates shown in the table. As variable x only appears
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Fig. 14 Normalisation and initial event tree

unprimed and variable y only appears primed in the updates, the selectCandidate() pro-
cedure returns Vc = {x, y} and Ec = ∅ as the selected candidate. As this candidate has
variables, next the selectVariable() procedure is called in line 6 to select a variable, which
starts by evaluating the maxE heuristic. In this case, x only occurs in the update of β, while
y occurs in the updates of both α and β, so y is selected for unfolding.

According to Definition 22, partial unfolding by the unfold() procedure in line 8 gen-
erates for each event σ with the variable v in its update, several new events of the
form (σ, a, b). Subsequently, all the components of the system need to be changed by
replacing σ with these new events according to Definition 24. To improve performance,
this replacement is done by modifying the event tree only. The new events (σ, a, b) are
added with their updates to the event tree as children of the original event σ . Other EFSMs
using σ remain unchanged, with the interpretation that any transition labelled σ represents
transitions with all the descendants of σ stored in the event tree. In this way, the replace-
ment of events and the associated blow-up in the number of transitions is postponed until
the synchronous composition of EFSMs containing σ with the variable EFSM. Often, the
replacement can be avoided altogether, as some of the new events can be removed or merged
before they are needed in synchronous composition.

Example 13 Consider the normalised EFSM system E = {N (E1),N (E2)} in Fig. 14
with dom(x) = {0, 1}, x◦ = 0, dom(y) = {1, 2}, and y◦ = 1. Normalisation produces
N (E1) and N (E2) with the updates stored separately in an event tree that initially consists
of two root nodes with the two events α and β and their updates, as shown in Fig. 14. Unfold-
ing of the variable y produces events of the form (α, a, b) and (β, a, b), which are added
as children of α and β to the event tree. Figure 15 shows the variable EFSM UE (y) and the
updated event tree. At this point, the EFSMs N (E1) and N (E2) are left unchanged.

The removeEvents() procedure called in line 13 attempts to simplify the EFSMs and the
event tree as much as possible before proceeding further with simplification. It first sim-
plifies all the updates according to Proposition 7 and removes all events with false updates
according to Proposition 9. Next, selfloop removal is applied, which removes events that
have pure guards as updates and that only appear as selfloops in the entire system (Propo-
sition 10). Afterwards, the removeEvents() procedure merges events and updates using
Propostions 11 and 12. An exact implementation of these propositions requires a search of
transitions of all the EFSMs. To improve performance, the removeEvents() uses the event
tree. Only events that have the same parent and no children in the event tree are considered
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Fig. 15 Result of unfolding y and associated event tree

for merging. By the construction of the event tree, the children of an event σ are implic-
itly present in all EFSMs containing the parent event σ , but they appear on exactly the
same transitions as the parent event, so these EFSMs do not need to be checked to deter-
mine whether merging is possible according to Propositions 11 and 12. More precisely, the
removeEvents() procedure first searches for childless events with the same parent and the
same next-state variables in their updates. Each group of such events becomes a merge can-
didate. Within a merge candidate, all events with the same update p are replaced by a single
event with update p (Proposition 11), and the remaining events that appear on transitions
with the same source and target states are replaced by a new event with an update that is the
disjunction of the updates of the replaced events (Proposition 12).

Example 14 Consider the EFSM system E = {N (E1),N (E2), UE (y)} with the EFSMs
shown in Figs. 14 and 15, where dom(x) = {0, 1} and x◦ = 0. First, the removeEvents()
procedure removes events (α, 1, 2) and (α, 2, 2) as their updates are false. Next, events
(α, 1, 1) and (α, 2, 1) both have the parent α and the update true. These events can be
merged according to Proposition 11, and as they are the only children of α they are replaced
by their parent α with update true. Further, the events (β, 1, 1) and (β, 2, 1), and (β, 1, 2)

and (β, 2, 2) have the same update and the same parent. The removeEvents() procedure
merges events (β, 1, 1) and (β, 2, 1) into a new event β0, and merges (β, 1, 2) and (β, 2, 2)

into a new event β1. Then β is assigned as the parent of β0 and β1 in the event tree. Figure 16
shows the EFSM Y that results from UE (y) and the event tree after these modifications.

After event removal and update merging, the simplify() procedure called in line 15
attempts to simplify the EFSM E based on conflict equivalence. First, the getLocalEvents()

Fig. 16 Result of the
removeEvents() procedure
applied to UE (y)
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procedure called in line 14 computes the set ϒ of events to be hidden. According to Proposi-
tion 5, these are events with true update that only appear in E. Then the EFSM is converted
to FSM form while hiding these events. As the updates are stored separately from the
EFSM E in the event tree, E is simply considered as an FSM and the events in ϒ are
replaced by τ . Then the conflict preserving abstraction methods (Flordal and Malik 2009)
are applied to this FSM. Using the event tree, the resultant FSM can again be considered as
an EFSM.

The synchronise() procedure, called in line 11, performs normalised synchronous com-
position, ignoring updates, and taking the event relationships in the event tree into account.
If the set Ec of EFSMs to be composed contains an EFSM containing a parent event and
an EFSM containing its children, then the procedure replaces all occurrences of the parent
event with its children while computing the normalised synchronous composition.

Example 15 Consider the normalised EFSM system E = {N (E1),N (E2), Y } with the
EFSMs shown in Figs.14 and 16, and assume that the EFSMs Y and N (E1) are to be
composed. During synchronous composition, based on the event tree, event β in N (E1) is
replaced by β0 and β1, resulting in EFSM E′

1, while Y remains unchanged. Figure 17 shows
the EFSM E′

1 and the result E′
1||Y of normalised synchronous composition.

7 Experimental results

The EFSM-based compositional nonblocking verification has been implemented in the dis-
crete event systems tool Supremica (Åkesson et al. 2006). It has been tested on some large
EFSM models and compared to an FSM-based compositional algorithm (Malik and Leduc
2013) and a BDD-based algorithm (Vahidi 2004). This section shows the results of the
experiments.

The following list gives an overview of the test cases used to compare the algorithms.
These include complex industrial models and case studies, and some scalable models with
very large state spaces.

pml3 A system consisting of three parallel manufacturing lines each processing work-
pieces of a particular type (Mohajerani et al. 2014). Each line has 49 serially connected
machines. The parallel lines share 50 buffers with capacity 2 or 3.

prime-sieve A distributed version of the Sieve of Eratosthenes for generating prime num-
bers (Mohajerani et al. 2013b). The models considered here contain filters for the first 4,

Fig. 17 Synchronous composition of N (E1) and Y using event tree
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6, or 8 prime numbers, enabling them to find prime numbers less or equal to 120, 288,
or 528, respectively. prime-sieve4b is a faulty blocking version of the program, while
the others are correct and nonblocking.

production-cell A model of part of a metal-processing plant consisting of seven manu-
facturing devices (Fabian et al. 2014).

profisafe-ihost-b Part of the PROFIsafe protocol for fail-safe communication (Malik and
Mühlfeld 2003). Considered here are two EFSM models of a blocking version of the
PROFIsafe input-host with sequence numbers ranging from 0 to 127 or 255.

psl An assembly cell for toy cars, which are built up from seven parts (Parsaeian 2014).
The cell has three robots, which pick up parts from two intakes, assemble them in a
fixture, and thereafter place the complete car at an outlet. psl-big is a model of the
uncontrolled plant, psl-n is the nonblocking system with supervisor updates added to the
EFSMs. psl-b is a blocking version obtained from psl-n by removing some of the super-
visor updates, psl-restart is an uncontrolled plant with additional transitions to facilitate
resynchronisation of the system.

round-robin EFSM model of a token-passing resource allocation protocol with a ring of
300 or 400 processes (Graf and Steffen 1990).

tline A scalable version of the transfer line with rework cycles (Teixeira et al. 2013). The
system consists of 500 serially connected cells linked by buffers. Each cell has three
machines and a test unit that can reject workpieces up to 3 or 4 times.

Table 1 shows experimental results for nonblocking verification of the above mod-
els using the EFSM-based compositional nonblocking verification algorithm proposed in
Section 6 and two other methods. The table shows for each model the number of
EFSMs (|E |), the number of variables (|V |), the size of the largest variable domain (|dom|),
whether or not the model is nonblocking (Nbl), and the performance data for the different
algorithms. The experiments were run on a standard desktop computer using a single core
3.3 GHz CPU and not more than 2 GB of RAM. Runtime was limited to 20 minutes: if this
time was exceeded, or the process ran over the limit of 2 GB RAM, the attempt was aborted
and the table entries left blank.

The EFSM column shows the runtimes of the EFSM-based compositional nonblock-
ing verification and the total number of EFSM transitions encountered during the run. The
implementation proceeds as described in Section 6 and selects the subsystems to compose
and the variables to unfold following the heuristics in the order presented. That is, can-
didates for composition are selected according to the minF heuristic, and if this gives the
same priority for two candidates, then the minS heuristic is used to break the tie. Likewise,
the order for the variable selection heuristics is first maxE, then maxS, and finally minD.
The number of transitions shown in the table is the sum of the transition numbers of the
EFSMs E encountered in line 13 of Algorithm 1, before abstraction, plus the number of
transitions of the final EFSM in line 19.

For comparison, the table also contains runtimes for the following two alternative
algorithms from previous work, which are also implemented in Supremica.

FSM The FSM-based compositional algorithm converts the EFSM model to a set of
FSMs and then applies the compositional algorithm (Flordal and Malik 2009). The
EFSM model is modularly flattened by creating a collection of location FSMs and vari-
able FSMs (Mohajerani et al. 2013a). Location FSMs use the EFSM locations as states
but replace the updates with events. The variable FSMs use the domain of a variable as
their states space and keep track of the value of that variable. Differently from Section 5.4
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Table 1 Experimental results for different nonblocking verification algorithms

Model Flattening+FSM BDD EFSM

Name |E | |V | |dom| Nbl Flatten Verify Transitions Time Nodes Time Transitions

pml3 〈2〉 153 200 4 yes 1.5 s 2.0 s 59,132 2.9 s 23,594

pml3 〈3〉 153 200 4 yes 2.8 s 25.2 s 553,616 6.3 s 116,691

prime-sieve4b 6 10 121 no 6.0 s 2.5 s 371,454 3.5 s 780,241 2.8 s 203,060

prime-sieve4 6 10 121 yes 5.9 s 2.3 s 405,400 5.0 s 712,594 2.7 s 200,438

prime-sieve6 8 14 289 yes 130.4 s 23.0 s 3,291,713 74.2 s 6,503,464 19.6 s 1,598,433

prime-sieve8 10 18 529 yes 137.7 s 6,945,315

production-cell 17 32 3 no 0.3 s 1.1 s 38,594 0.4 s 46,538 0.8 s 4,567

profisafe-ihost-b 〈127〉 4 17 128 no 345.8 s 206.8 s 5,584,320 5.5 s 4,034,794 28.6 s 1,444,584

profisafe-ihost-b 〈255〉 4 17 256 no 101.2 s 3,079,912

psl-big 1 37 14 no 0.5 s 0.5 s 5,299 1.6 s 92,356 1.5 s 10,217

psl-b 1 37 14 no 54.1 s 349.4 s 380,847 35.0 s 5,448,127 5.5 s 190,695

psl-n 1 37 14 yes 54.6 s 370.1 s 458,162 38.5 s 5,517,392 5.8 s 229,080

psl-restart 1 37 14 no 0.6 s 3.5 s 129,490 1.1 s 120,690 4.2 s 182,946

round-robin 〈300〉 901 1 300 no 1.5 s 87.3 s 14,720 69.7 s 11,119

round-robin 〈400〉 1201 1 400 no 2.0 s 210.6 s 19,620 166.5 s 14,819

tline 〈3〉 1501 3001 4 yes 27.2 s 56.1 s 1,379,328 98.6 s 2,841,834

tline-b 〈3〉 1501 3001 4 no 27.2 s 851.6 s 3,460,482 99.3 s 2,843,887

tline 〈4〉 1501 3001 5 yes 43.5 s 109.2 s 5,312,091 156.2 s 10,410,971

tline-b 〈4〉 1501 3001 5 no 44.4 s 898.1 s 12,029,935 157.8 s 10,419,370

above, the flattened FSM system has events of the form (σ ; v̂; ŵ) for each update p of
event σ in EFSM E and all valuations v̂ ∈ dom(vars(p)) and ŵ ∈ dom(vars′(p)) such
that p(v̂, ŵ) = T. In the worst case, the number of events created for an update is the
product of the sizes of the domains of its variables. Table 1 shows the total number of
transitions encountered during verification, obtained in the same way as for the EFSM
column, and in two further columns the times spent to flatten the system (Flatten) and
to verify the flattened FSM system (Verify). The total runtime is the sum of these two
columns.

BDD The BDD-based algorithm converts the EFSM model to a symbolic representation
in the form of Binary Decision Diagrams (BDDs) (Bryant 1992) and explores the full
state space symbolically (McMillan 1993). The implementation includes several perfor-
mance improvements, most importantly an initial variable ordering based on the FORCE
heuristics (Aloul et al. 2003) and a disjunctive partitioning of the transition relation in
a form optimised for discrete event systems (Vahidi 2004). Table 1 shows the total run-
time of BDD-based verification and the total number of BDD nodes encountered. BDD
nodes require a similar amount of memory as transitions, so that their number gives a
measure of the memory requirements similar to the numbers of transition encountered
by the other two algorithms.

Table 1 shows that the EFSM-based compositional algorithms successfully verifies
all the examples in this experiment, in most cases faster than the two other algorithms.
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The transition numbers encountered by the EFSM-based algorithm are usually smaller than
those encountered by the FSM-based algorithm, as is to be expected from the deferred
unfolding and event tree techniques.

However, the EFSM algorithm needs to perform symbolic computation and can take
more time even with fewer numbers. For examples like pml3 〈2〉, production-cell, and
round-robin the runtimes of the FSM-based and EFSM-based algorithms are similar. These
models have got simple updates, so that the number of events in the flattened FSM system
is small and the flattening times are small, and as a result, the FSM-based and EFSM-based
algorithms verify the models in similar ways.

This effect can also be observed with the psl models. The models psl-b and psl-n are
obtained by calculating a supervisor and attaching some or all its updates to psl-big, result-
ing in EFSMs with a large number of extremely complicated updates. As it can be observed
from the table, the psl-big and psl-restart models, which have much fewer and simpler
updates, can be flattened significantly faster than psl-b and psl-n. In these cases, the FSM-
based algorithm encounters fewer transitions than the EFSM-based algorithm, suggesting
that the FSM-based method can perform more accurate simplification for these simple mod-
els. For psl-b and psl-n, the large large number of events in the flattened FSM system causes
the FSM-based compositional algorithm to perform poorly, while both the EFSM-based
compositional and the BDD algorithm cope well with the complicated updates.

The BDD algorithm is not impeded by complicated update formulas, as these only cause
a moderate increase in the complexity of the symbolic model. However, it is limited by the
size and search depth of the state space, and fails to verify large scaled-up models such as
pml, round-robin and tline.

The nonblocking verification algorithms have also been applied to a scalable version of
the manufacturing system example in Section 3. The system consists of M serially con-
nected cells linked by conveyor belts. Each cell m for 1 ≤ m ≤ M has two conveyor belt
sections CBm

1 and CBm
2 and two machines Mm

1 and Mm
2 . Initially workpieces are picked

up by the conveyor belt CB1
1 to enter cell 1, and completed workpieces from Mm

1 or Mm
2

in cell m are placed on the next conveyor CBm+1
1 . Fig. 18 shows the runtimes for instances

with 1–1000 serially connected cells and fixed conveyor belt capacity N = 10, and Fig. 19
shows the runtimes for instances with conveyor belt capacity 2–100 and a fixed number of
100 serially connected cells.
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Fig. 18 Runtimes for manufacturing systems with conveyor capacity N = 10 and increasing number of cells
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Fig. 19 Runtimes for manufacturing systems with 100 cells and increasing conveyor belt capacity N

The EFSM-based compositional algorithm successfully reveals the blocking conditions
of manufacturing systems with up to 1000 serially connected cells and conveyor belt capac-
ity up to 100. However, the runtime does not grow linearly in the number of connected
cells because of the complexity of the MustL and MinF heuristics. The preselection heuristic
MustL produces up to |�| candidates, and the evaluation of MinF takes time proportional to

Table 2 Runtimes with different composition candidate and variable selection heuristics

minF minS

maxE maxS minD maxE maxS minD

pml3 〈2〉 2.88 s 3.10 s 3.01 s

pml3 〈3〉 6.34 s 33.99 s 6.42 s

prime-sieve4b 2.80 s 2.82 s 2.84 s 2.82 s 2.81 s 2.80 s

prime-sieve4 2.67 s 2.68 s 2.68 s 2.68 s 2.69 s 2.70 s

prime-sieve6 19.64 s 19.95 s 19.78 s 19.88 s 19.72 s 19.71 s

prime-sieve8 137.70 s 136.51 s 137.86 s 137.43 s 137.17 s 137.15 s

production-cell 0.84 s 0.85 s 0.86 s 0.74 s 0.75 s 0.74 s

profisafe-ihost-b 〈127〉 28.64 s 29.06 s 29.88 s 23.69 s 23.11 s 23.54 s

profisafe-ihost-b 〈255〉 101.19 s 102.04 s 97.70 s

psl-big 1.51 s 1.47 s 1.39 s 1.46 s 1.45 s 1.61 s

psl-b 5.49 s 8.14 s 84.10 s 9.42 s 9.46 s 112.44 s

psl-n 5.82 s 8.01 s 88.44 s 10.42 s 8.98 s 115.39 s

psl-restart 4.15 s 4.20 s 46.67 s 4.25 s 4.14 s 32.92 s

round-robin 〈300〉 69.72 s 68.97 s 69.74 s

round-robin 〈400〉 166.48 s 166.95 s 166.57 s

tline 〈3〉 98.56 s 96.69 s 97.06 s

tline-b 〈3〉 99.31 s 97.17 s 97.75 s

tline 〈4〉 156.22 s 155.91 s 155.93 s

tline-b 〈4〉 157.85 s 157.52 s 156.56 s
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the number of events of the candidate. Therefore, the complexity of the component selection
heuristic is quadratic in the number of events. The FSM-based algorithm has more events
to process and therefore suffers more from this effect, and in addition most of its runtime is
taken up by the flattening process. The difference is more noticeable when the conveyor belt
capacity increases than when the number of cells increases, because the number of events
grows quadratically in the size of the domain of the variable N and only linearly in the num-
ber of cells. The BDD algorithm cannot handle more than 60 serially connected cells and
therefore is not shown in these figures.

Table 2 shows the runtimes of the EFSM-based compositional nonblocking verification
algorithm using different heuristics for the selection of composition candidates and vari-
ables. In this experiment, the standard ordering of the heuristics is changed such that the
indicated heuristic is used first. In the maxS columns, the order of variable selection heuris-
tics is first maxS, then maxE, and finally minD; and in the minD columns, the order is first
minD, then maxE, and finally maxS.

The results suggest that, in many cases the variable ordering heuristics have little or no
effect on the runtime. On the other hand, while the algorithm fails to verify some of the
models using minS, it successfully verifies all the examples using minF. It appears that the
minF heuristic is better at increasing the number of local events and thus the possibility of
abstraction.

8 Conclusions

A general framework for compositional nonblocking verification of extended finite-state
machines (EFSMs) has been presented, which supports the verification of large models
consisting of several EFSMs that interact both via shared events and shared variables. Nor-
malisation is introduced, which makes it possible to unfold arbitrary variables and apply
abstraction methods developed previously for ordinary finite-state machines to EFSMs,
without the need to flatten the system and the associated overhead. Various methods of
abstraction are presented that simplify individual system components while preserving the
nonblocking property of the whole system.

These results are combined in an algorithm for compositional nonblocking verification of
EFSM systems. This algorithm gradually composes the system and applies conflict equiv-
alence abstraction to the components, unfolds variables, and removes events if possible.
The algorithm has been implemented and its performance compared with two other well-
developed algorithms. The experimental results suggest that the EFSM-based algorithm can
outperform FSM-based and BDD-based methods for large systems with complex update
formulas on their transitions.

In future work, the authors would like to improve the algorithm using better symbolic
abstractions and considering special properties of updates. Another area of interest is to
extend the method and apply it to the compositional synthesis of supervisors for EFSM
systems.

Appendix: A Normalisation

This appendix contains the proofs of the propositions concerning normalisation presented
in Section 4. First Proposition 1 confirms that EFSMs obtained by normalised synchronous
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composition in Definition 14 and by standard synchronous composition in Definition 9 pro-
duce identical flattened FSMs. Next, Proposition 2 confirms that the structure of an EFSM
system is preserved after normalisation of individual components. Finally, Proposition 3
confirms that the normalised system is identical to the original system.

Proposition 1 Let E be a normalised EFSM system. Then U(||E ) = U(‖̇E ).

Proof It follows from Definitions 9, 10, and 14 that U(||E ) and U(‖̇E ) have the same
event and state sets, including initial and marked states. It remains to be shown that they
also have the same transitions.

To show this, write E = {E1, . . . , En}, and �i = �Ei
and �i = �Ei

for 1 ≤ i ≤ n.

First let (x1, . . . , xn, v̂)
σ→ (y1, . . . , yn, ŵ) in U(||E ). By Definition 10 this means

(x1, . . . , xn)
σ :p−−−→(y1, . . . , yn) in ||E such that 
V (p)(v̂, ŵ) = T, where p ≡∧

i:σ∈�i
�E (σ ) by Definition 9 and by the fact that E is normalised. Consider two cases

for each Ei : either σ ∈ �i or σ /∈ �i . If σ ∈ �i , then xi

σ :�E (σ )−−−−−−→yi in Ei . If σ /∈ �i ,

then xi = yi . Then (x1, . . . , xn)
σ :�E (σ )−−−−−−−→(y1, . . . , yn) in ‖̇E by Definition 14, and as


V (
∧

i:σ∈�i
�E (σ ))(v̂, ŵ) = 
V (p)(v̂, ŵ) = T, it holds that 
V (�E (σ ))(v̂, ŵ) = T.

Thus, (x1, . . . , xn, v̂)
σ→ (y1, . . . , yn, ŵ) in U(‖̇E ) by Definition 10.

Conversely, assume (x1, . . . , xn, v̂)
σ→ (y1, . . . , yn, ŵ) in U(‖̇E ). By Definition 10

this means (x1, . . . , xn)
σ :p−−−→(y1, . . . , yn) in ‖̇E such that 
V (p)(v̂, ŵ) = T. Consider

two cases for each Ei : either σ ∈ �i or σ /∈ �i . If σ ∈ �i , then by Definition 14
it follows that xi

σ :p−−−→yi in Ei . If σ /∈ �i , then xi = yi . By Definition 9, it follows

that (x1, . . . , xn)
σ :∧i:σ∈�i

p

−−−−−−−−−→(y1, . . . , yn) in ||E , and as 
V (p)(v̂, ŵ) = T, it follows
that 
V (

∧
i:σ∈�i

p)(v̂, ŵ) = T. Thus, (x1, . . . , xn, v̂)
σ :p−−−→(y1, . . . , yn, ŵ) in U(||E ) by

Definition 10.

Proposition 2 Let E and F be EFSM systems, and let ρ : �F → �E be a renaming, such
that E = {E1, E2, . . . , En} and F = {F1 ρ−1(E2), . . . , ρ

−1(En)} and ρ(F1) = E1. Then
ρ(||F ) = ||E .

Proof Let

E = ||E = E1|| · · · ||En ; (24)

F = ||F = F1||F2|| · · · ||Fn = F1||ρ−1(E2)|| · · · ||ρ−1(En) . (25)

Clearly �E = �E = ρ(�F ) = ρ(�F ), and from ρ(F1) = E1 it follows that E

and ρ(F ) have the same state sets, including initial and marked states. It remains to be
shown that E and ρ(F ) have the same transitions.

First assume (x1, x2, . . . , xn)
σ :p−−−→(y1, y2, . . . , yn) in E = E1|| · · · ||En. By Definition 9

it holds that p = ∧
i:σ∈�Ei

pi where xi

σ :pi−−−→yi in Ei whenever σ ∈ �Ei
. Consider two

cases.

– If σ ∈ �E1 then x1
σ :p1→ y1 in E1. Since ρ(F1) = E1, there exists μ ∈ �F1

such that ρ(μ) = σ and x1
μ:p1−−−→y1 in F1. Now consider two cases for each 2 ≤

i ≤ n: either σ ∈ �Ei
or σ /∈ �Ei

. If σ ∈ �Ei
then xi

σ :pi−−−→yi in Ei , and since

ρ(μ) = σ it holds by Definition 16 that xi

μ:pi−−−→yi in ρ−1(Ei). If σ /∈ �Ei
then
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μ /∈ ρ−1(�Ei
) = �ρ−1(Ei )

and xi = yi . Combining the above observations for all i, it

follows by Definition 9 that (x1, x2, . . . , xn)
μ:p−−−→(y1, y2, . . . , yn) in F , which implies

(x1, x2, . . . , xn)
σ :p−−−→(y1, y2, . . . , yn) in ρ(F ).

– If σ /∈ �E1 then x1 = y1. As ρ is surjective by Definition 15, there exists μ ∈ �F such
that ρ(μ) = σ . Then since ρ(�F1) = �E1 , it holds that μ /∈ �F1 . Now consider two

cases for each 2 ≤ i ≤ n: either σ ∈ �Ei
or σ /∈ �Ei

. If σ ∈ �Ei
then xi

σ :pi−−−→yi in Ei ,

and since ρ(μ) = σ it holds by Definition 16 that xi

μ:pi−−−→yi in ρ−1(Ei). If σ /∈ �Ei

then μ /∈ ρ−1(�Ei
) = �ρ−1(Ei )

and xi = yi . Combining the above observations for

all i, it follows by Definition 9 that (x1, x2, . . . , xn)
μ:p−−−→(y1, y2, . . . , yn) in F , which

implies (x1, x2, . . . , xn)
σ :p−−−→(y1, y2, . . . , yn) in ρ(F ).

Conversely assume (x1, x2, . . . , xn)
σ :p−−−→(y1, y2, . . . , yn) in ρ(F ). Then there exists μ ∈

�F such that ρ(μ) = σ and (x1, x2, . . . , xn)
μ:p−−−→(y1, y2, . . . , yn) in F . By Definition 9 it

holds that p ≡ ∧
i:μ∈�Fi

pi where xi

μ:pi−−−→yi in Fi whenever μ ∈ �Fi
. Consider two cases

for E1:

– If μ ∈ �F1 then x1
μ:p1−−−→y1 in F1. Since ρ(μ) = σ , it follows that x1

σ :p1→ y1 in
ρ(F1) = E1.

– If μ /∈ �F1 then σ = ρ(μ) /∈ ρ(�F1) = �E1 and x1 = y1.

Now consider two cases for each 2 ≤ i ≤ n:

– If σ ∈ �Ei
then μ ∈ ρ−1(�Ei

) = �Fi
and therefore xi

μ:pi−−−→yi in Fi = ρ−1(Ei). Since

ρ(μ) = σ , it holds by Definition 16 that xi

σ :pi−−−→yi in Ei .
– If σ /∈ �Ei

then μ /∈ ρ−1(�Ei
) = �Fi

and xi = yi .

Combining the above observations for 1 ≤ i ≤ n, it follows by Definition 9 that
(x1, x2, . . . , xn)

σ :p−−−→(y1, y2, . . . , yn) in E1|| · · · ||En = E.

Proposition 3 Let E be an EFSM system such that each E ∈ E is normalised. Then ||E =
‖̇N (E ).

Proof It follows from Definitions 9, 14, and 17 that ||E and ‖̇N (E ) have the same event
and state sets, including initial and marked states. It remains to be shown that they also have
the same transitions.

To show this, write E = {E1, . . . , En}, and �i = �Ei
and �i = �Ei

for 1 ≤ i ≤ n.

First assume (x1, . . . , xn)
σ :p−−−→(y1, . . . , yn) in ||E . Then by Definitions 9 and 17, it holds

that p ≡ ∧
i:σ∈�i

�i(σ ) ≡ �N (E )(σ ). Consider two cases for each Ei : either σ ∈ �i or

σ /∈ �i . If σ ∈ �i , then xi
σ :�i(σ)−−−−−−→yi in Ei , and since Ei and N (Ei) by Definition 17 have

the same alphabet, it holds that xi

σ :�N (E )(σ )
−−−−−−−−−−→yi in N (Ei). If σ /∈ �i , then σ is not in the

alphabet of N (Ei) and xi = yi . Then (x1, . . . , xn)
σ :�N (E )(σ )

−−−−−−−−−−→(y1, . . . , yn) in ‖̇N (E )

by Definition 14, and as �N (E )(σ ) ≡ p, it holds that (x1, . . . , xn)
σ :p−−−→(y1, . . . , yn)

in ‖̇N (E ).
Conversely, assume (x1, . . . , xn)

σ :p−−−→(y1, . . . , yn) in ‖̇N (E ) where p ≡ �N (E )(σ ) ≡∧
i:σ∈�i

�i(σ ). Consider two cases for each Ei : either σ ∈ �i or σ /∈ �i . If σ ∈ �i , then

by Definition 14 it follows that xi

σ :p−−−→yi in N (Ei), and since Ei and N (Ei) have the
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same alphabet, it holds that xi
σ :�i(σ)−−−−−−→yi in Ei . If σ /∈ �i , then σ is not in the alphabet

of Ei and xi = yi . By Definition 14, it follows that (x1, . . . , xn)
σ :∧i:σ∈�i

�i(σ )

−−−−−−−−−−−−−→(y1, . . . , yn)

in ||E , and as
∧

i:σ∈�i
�i(σ ) ≡ p, it holds that (x1, . . . , xn)

σ :p−−−→(y1, . . . , yn) in ||E .

B EFSM-based compositional verification

This appendix contains the proofs of the results concerning abstraction methods presented
in Section 5. Each of the following subsections contains the proofs for the propositions in
the corresponding subsection of Section 5.

B.1 FSM-based conflict equivalence abstraction

This section contains the proof of Proposition 5 in Section 5.1, which states that the
nonblocking property of an EFSM system is preserved when the FSM form of a single
component is simplified subject to conflict equivalence of FSMs. This proof requires mod-
ular reasoning about the unfolded EFSM system to exploit the conflict equivalence of FSM
forms.

This reasoning is facilitated using an alternative way to unfold an EFSM system, called
modular unfolding, where the variables are unfolded to a single variable FSM while the
EFSMs are only replaced by their FSM forms.

Definition 27 Let E be a normalised EFSM system with variable set V = vars(E ). The
variable FSM for E is VE = 〈�E , dom(V ),→V , {v◦}, dom(V )〉 where v̂

σ→V ŵ if

V (�E (σ ))(v̂, ŵ) = T.

Definition 28 Let E = {E1, . . . , En} be a normalised EFSM system. The modular
unfolding of E is

ϕ(E1)|| · · · ||ϕ(En)||VE . (26)

The variable FSM VE has all possible valuations of the variables of E as its states and in
its transitions encodes all the constraints imposed by the updates. This makes it possible to
replace each EFSM Ei by its FSM form ϕ(Ei) according to Definition 19, resulting in the
system (26) of FSMs that interact in standard FSM synchronous composition (Definition 2).
The following Lemma 13 shows that this modular unfolding is isomorphic to the EFSM
system unfolding U(E ). Then the modular unfolding can be used to decompose an EFSM
system into FSMs and prove Proposition 5.

Lemma 13 Let E = {E1, . . . , En} be a normalised EFSM system. Then U(E ) =
ϕ(E1)|| · · · ||ϕ(En)||VE .

Proof Let E = {E1, . . . , En} with Ei = 〈�i,Qi,→i , Q
◦
ω,Qω

i 〉, let E = U(E ) = U(‖̇E )

by Proposition 1, and let F = ϕ(E1)|| · · · ||ϕ(En)||VE . Since Ei and ϕ(Ei) have the same
alphabet �i , it follows that ϕ(E1)|| · · · ||ϕ(En) and E also have the same alphabet �E =⋃n

i=1 �i . The alphabet of VE also is �E , which implies that �E = �E = �F . Moreover,
by Definition 27 it holds that QE = Q1 × . . .×Qn ×dom(V ) = QF , Q◦E = Q◦1 × . . .×
Q ◦n ×{v̂◦} = Q◦F , and Qω

E = Qω
1 × . . . × Qω

n × dom(V ) = Qω
F . It is left to show that

→E=→F .
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First let (x1, . . . , xn, v̂)
σ→ (y1, . . . , yn, ŵ) in E = U(‖̇E ). This means by Definition 10

that (x1, . . . , xn)
σ :p−−−→(y1, . . . , yn) in ‖̇E where p ≡ �E (σ ) and 
V (p)(v̂, ŵ) = T.

The latter means by Definition 27 that v̂
σ→V ŵ in VE . Now consider two cases for each Ei :

either σ ∈ �i or σ /∈ �i . If σ ∈ �i , it follows by Definition 14 that xi

σ :p−−−→yi in Ei , which
implies xi

σ−→yi in ϕ(Ei). If σ /∈ �i then xi = yi . Thus, (x1, . . . , xn, v̂)
σ→ (y1, . . . , yn, ŵ)

in ϕ(E1)|| · · · ||ϕ(En)||VE = F .
Conversely, let (x1, . . . , xn, v̂)

σ→ (y1, . . . , yn, ŵ) in F = ϕ(E1)|| · · · ||ϕ(En)||VE . This
means (x1, . . . , xn)

σ→ (y1, . . . , yn) in ϕ(E1)|| . . . ||ϕ(En) and v̂
σ→ ŵ in VE . Consider two

cases for each Ei : either σ ∈ �i or σ /∈ �i . If σ ∈ �i then by Definition 2 it follows that
xi

σ→ yi in ϕ(Ei). Then by Definition 19 it holds that xi

σ :p−−−→yi in Ei , where p ≡ �Ei
(σ ) ≡

�E (σ ) as E is normalised. If σ /∈ �i then xi = yi . Thus, (x1, . . . , xn)
σ :p−−−→(y1, . . . , yn)

in ‖̇E by Definition 14. Furthermore, as v̂
σ→ ŵ in VE , it holds by Definition 27 that


V (p)(v̂, ŵ) = 
V (�E (σ ))(v̂, ŵ) = T. It follows by Definition 10 that (x1, . . . , xn, v̂)
σ→

(y1, . . . , yn, ŵ) in U(‖̇E ) = E.

Proposition 5 Let E = {E1, E2, . . . , En} be a normalised EFSM system and let ϒ ⊆
�1 such that (�2 ∪ · · · ∪ �n) ∩ ϒ = ∅ and �E (σ ) ≡ true for all σ ∈ ϒ . Let F =
{F1, E2, . . . , En} be a normalised EFSM system such that ϕ(E1) \ ϒ �conf ϕ(F1) \ ϒ .
Then E is nonblocking if and only if F is nonblocking.

Proof Let

ϕ(E1) \ ϒ �conf ϕ(F1) \ ϒ . (27)

Because of symmetry it is enough to show that, if E is nonblocking then F is nonblock-
ing. Therefore assume that E is nonblocking, which means that U(E ) is nonblocking. By
Lemma 13,

U(E ) = ϕ(E1)|| · · · ||ϕ(En)||VE (28)

is nonblocking. As �E (υ) ≡ true for all υ ∈ ϒ , it holds by Definition 27 that v̂
υ−→v̂ in VE

for all v̂ ∈ dom(vars(E )) and all υ ∈ ϒ , and these events appear on no other transitions
in VE . These events are pure selfloop events in VE and can be removed (Wonham ), i.e.,

U(E ) = ϕ(E1)|| · · · ||ϕ(En)||VE = ϕ(E1)|| · · · ||ϕ(En)||VE |� (29)

is nonblocking, where � = �E \ ϒ . Now consider T = ϕ(E2)|| . . . ||ϕ(En)||VE |�. Then it
follows from (�2 ∪ · · · ∪ �n) ∩ ϒ = ∅ and � ∩ ϒ = ∅ that

(ϕ(E1) \ ϒ)||ϕ(E2)|| . . . ||ϕ(En)||VE |� (30)

is nonblocking. Note that VE = VF . Since ϕ(E1) \ ϒ and ϕ(F1) \ ϒ are conflict
equivalent (27), it follows that

(ϕ(F1) \ ϒ)||ϕ(E2)|| . . . ||ϕ(En)||VF |� (31)

is nonblocking. Again since (�2 ∪ · · · ∪ �n) ∩ ϒ = ∅ and � ∩ ϒ = ∅ and the events in ϒ

are pure selfloops in VE = VF , it follows that

ϕ(F1)||ϕ(E2)|| . . . ||ϕ(En)||VF |� = ϕ(F1)||ϕ(E2)|| . . . ||ϕ(En)||VF = U(F ) (32)

is nonblocking, i.e., F is nonblocking.
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B.2 Partial composition

This section proves that the synchronous composition of two components in an EFSM
system preserves the nonblocking property of the system as stated in Proposition 6 in
Section 5.2. In this proof, it is shown that the results of unfolding before and after partial
synchronous composition are not only equivalent but identical.

Proposition 6 (Partial Composition) Let E = {E1, . . . , En} be an EFSM system, and let
F = {E1‖̇E2, E3, . . . , En}. Then ‖̇E = ‖̇F .

Proof It follows from Definition 14 that ‖̇E and ‖̇F have the same event and state sets,
including initial and marked states. It remains to be shown that they also have the same
transitions. Throughout the proof, let �i = �Ei

for 1 ≤ i ≤ n.
First, let

(x1, . . . , xn)
σ :p−−−→(y1, . . . , yn) (33)

in ‖̇E . By Definition 14, this means for each 1 ≤ i ≤ n that either σ ∈ �i and xi

σ :p−−−→yi

or σ /∈ �i and xi = yi . Consider four cases for E1 and E2.

– If σ ∈ �1 ∩ �2, then x1
σ :p−−−→y1 in E1 and x2

σ :p−−−→y2 in E2, and by Definition 14 it
holds that (x1, x2)

σ :p−−−→(y1, y2) in E1‖̇E2.
– If σ ∈ �1 \ �2, then x1

σ :p−−−→y1 in E1 and x2 = y2, and by Definition 14 it holds that
(x1, x2)

σ :p−−−→(y1, x2) = (y1, y2) in E1‖̇E2.
– If σ ∈ �2 \ �1, then x1 = y1 and x2

σ :p−−−→y2 in E2, and by Definition 14 it holds that
(x1, x2)

σ :p−−−→(x1, y2) = (y1, y2) in E1‖̇E2.
– If σ /∈ �1 ∪ �2, then σ is not in the alphabet of E1‖̇E2 and (x1, x2) = (y1, y2).

Combining the above observations for E1‖̇E2 and E3, . . . , En, it follows by Definition 14
that ((x1, x2), x3, . . . , xn)

σ :p−−−→((y1, y2), y3, . . . , yn) in ‖̇F .
Conversely, let

((x1, x2), x3, . . . , xn)
σ :p−−−→((y1, y2), y3, . . . , yn) (34)

in ‖̇F . Consider four cases for E1 and E2.

– If σ ∈ �1 ∩�2, then by Definition 14 it holds that (x1, x2)
σ :p−−−→(y1, y2) in E1‖̇E2, and

furthermore x1
σ :p−−−→y1 in E1 and x2

σ :p−−−→y2 in E2.
– If σ ∈ �1 \�2, then by Definition 14 it holds that (x1, x2)

σ :p−−−→(y1, y2) in E1‖̇E2, and
furthermore x1

σ :p−−−→y1 in E1 and σ /∈ �2 and x2 = y2.
– If σ ∈ �2 \�1, then by Definition 14 it holds that (x1, x2)

σ :p−−−→(y1, y2) in E1‖̇E2, and
furthermore σ /∈ �1 and x1 = y1 and x2

σ :p−−−→y2 in E2 and
– if σ /∈ �1 ∪ �2, then by Definition 14 it holds that x1 = x2 and y1 = y2.

Furthermore, for 3 ≤ i ≤ n it follows from (34) by Definition 14 that either σ ∈ �i and
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xi

σ :p−−−→yi or σ /∈ �i and xi = yi . Combining the above observations for E1, . . . , En, it
follows by Definition 14 that (x1, . . . , xn)

σ :p−−−→(y1, . . . , yn) in ‖̇F .

B.3 Update simplification

This section proves the correctness of update simplification as stated in Proposition 7 in
Section 5.3. The proof uses the following lemma, which shows two EFSM systems with log-
ically equivalent updates with respect to all variables have isomorphic monolithic flattening
results.

Lemma 14 Let E = {E1, . . . , En} and F = {F1, . . . , Fn} be normalised EFSM systems
with Ei = 〈�i,Qi,→E

i , Q◦
i ,Q

ω
i 〉 and Fi = 〈�i,Qi,→F

i ,Q◦
i ,Q

ω
i 〉. Let V = vars(E ) =

vars(F ) and �E (σ ) ⇔V �F (σ ) for all σ ∈ �E = �F , and →F
i = { (x, σ,�F (σ ), y) |

x
σ :�E (σ )−−−−−−−→

E

i y }. Then U(E ) = U(F ).

Proof Clearly, U(E ) and U(F ) by construction both have the same event alphabet �E ,
and they have the same state sets, including initial and marked states. Also note that E
and F are normalised, so U(E ) = U(‖̇E ) and U(F ) = U(‖̇F ) by Proposition 1. It
remains to be shown that U(E ) and U(F ) have the same transitions. Because of sym-
metry it is enough to show that, if (x1, . . . , xn, v̂)

σ→ (y1, . . . , yn, ŵ) in U(E ) then
(x1, . . . , xn, v̂)

σ→ (y1, . . . , yn, ŵ) in U(F ).
Assume (x1, . . . , xn, v̂)

σ→ (y1, . . . , yn, ŵ) in U(E ) = U(‖̇E ). By Definition 10,

this means (x1, . . . , xn)
σ :�E (σ )−−−−−−−→(y1, . . . , yn) in ‖̇E and 
V (�E (σ ))(v̂, ŵ) = T. Then

by construction, (x1, . . . , xn)
σ :�F (σ )−−−−−−−→(y1, . . . , yn) in ‖̇F and �E (σ ) ⇔V �F (σ ). The

latter means 
V (�E (σ )) ⇔ 
V (�F (σ )) by Definition 20, i.e., 
V (�F (σ ))(v̂, ŵ) =

V (�E (σ ))(v̂, ŵ) = T. It follows by Definition 10 that (x1, . . . , xn, v̂)

σ→ (y1, . . . , yn, ŵ)

in U(‖̇F ) = U(F ).

Proposition 7 (Update Simplification) Let E = {E1, . . . , En} and F = {F1, . . . , Fn}
be normalised EFSM systems with Ei = 〈�i,Qi,→E

i ,Q◦
i ,Q

ω[i]〉 and Fi =
〈�i,Qi,→F

i ,Q◦
i , Q

ω
i 〉. Let V = vars(E ) = vars(F ) and �E (σ ) ⇔V �F (σ ) for all

σ ∈ �E = �F , and →F
i = { (x, σ,�F (σ ), y) | x

σ :�E (σ )−−−−−−−→
E

i y }. Then E is nonblocking
if and only if F is nonblocking.

Proof By Definition 11, E is nonblocking if and only if U(E ) is nonblocking, and F is
nonblocking if and only if U(F ) is nonblocking; and by Lemma 14, it holds that U(E ) =
U(F ). It follows that E is nonblocking if and only if F is nonblocking.

B.4 Variable unfolding

This section proves that unfolding of a variable in an EFSM system preserves the nonblock-
ing property of the system as stated in Proposition 8 in Section 5.4. The key step to prove
this result is contained in Lemma 15, which shows that the FSMs obtained from completely
unfolding the system before and after partial unfolding have essentially the same transition
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relations. The link between these transition relations is established by extending or restrict-
ing valuations to add or remove the variable to be unfolded. The following two definitions
are needed for this purpose.

Definition 29 Let v̂ : V → D be a valuation. For a variable set W ⊆ V , the restriction
v̂|W : W → D is defined by v̂|W [v] = v̂[v] for all v ∈ W .

Definition 30 Let V = V1∪̇V2 be a variable set, and let v̂1 : V1 → D1 and v̂2 : V2 → D2
be two valuations. The extension v̂1 ⊕ v̂2 : V → D1 ∪ D2 is defined by

(v̂1 ⊕ v̂2)[v] =
{

v̂1[v], if v ∈ V1 ;
v̂2[v], if v ∈ V2 .

(35)

Lemma 15 Let E = {E1, . . . , En} be a normalised EFSM system and z ∈ vars(E ). Then
(a, x1, . . . , xn, v̌)

σ→ (b, x1, . . . , xn, w̌) in ρz(U(E \z)) if and only if (x1, . . . , xn, v̌⊕{z �→
a}) σ→ (x1, . . . , xn, w̌ ⊕ {z �→ b}) in U(E ).

Proof Let V = vars(E ), and let v̂ = v̌ ⊕ {z �→ a} and ŵ = w̌ ⊕ {z �→ b}, which means
v̂[z] = a and ŵ[z] = b. Also write Ei = 〈�i,Qi,→i ,Q

◦
i ,Q

ω
i 〉 for 1 ≤ i ≤ n. Note

that E and E \ z are normalised, so by Proposition 1 it holds that U(E ) = U(‖̇E ) and
U(E \ z) = U(‖̇(E \ z)).

First let (a, x1, . . . , xn, v̌)
σ→ (b, y1, . . . , yn, w̌) in ρz(U(E \ z)) = ρz(U(‖̇E \ z)). Note

that E \ z = {UE (z), Uz(E1), · · · , Uz(En)} by Definition 24. Consider two cases.

(i) σ ∈ �z. Then z ∈ vars(�E (σ )) by Definition 22, and

(a, x1, . . . , xn, v̌)
(σ ′,a′,b′)−−−−−−−→(b, y1, . . . , yn, w̌) in U(E \ z) = U(‖̇(E \ z)) for some

(σ ′, a′, b′) ∈ Uz(�z) such that ρz((σ
′, a′, b′)) = σ . By definition of ρz it holds that

σ ′ = σ . By Definition 10, it holds that

(a, x1, . . . , xn)
(σ,a′,b′) : �E \z((σ,a′,b′))
−−−−−−−−−−−−−−−−−−−→(b, y1, . . . , yn) in ‖̇(E \ z)

= UE (z)‖̇Uz(E1)‖̇ · · · ‖̇Uz(En) (36)

and 
V \{z}(�E \z((σ, a′, b′)))(v̌, w̌) = T. As (σ, a′, b′) = (σ ′, a′, b′) ∈ Uz(�z) is in
the alphabet of UE (z), it follows that

a
(σ,a′,b′) : �E \z((σ,a′,b′))
−−−−−−−−−−−−−−−−−−−→b in UE (z) . (37)

Then it follows from Definition 22 that a′ = a and b′ = b, and �E \z((σ, a, b)) ≡

{z}(�E (σ ))[z �→ a, z′ �→ b]. Note that


V (�E (σ ))(v̂, ŵ) = 
V (�E (σ ))(v̌ ⊕ {z �→ a}, w̌ ⊕ {z �→ b})
= 
V \{z}(
{z}(�E (σ )))(v̌ ⊕ {z �→ a}, w̌ ⊕ {z �→ b})
= 
V \{z}(
{z}(�E (σ )))[z �→ a, z′ �→ b](v̌, w̌)

= 
V \{z}(
{z}(�E (σ ))[z �→ a, z′ �→ b])(v̌, w̌)

= 
V \{z}(�E \z((σ, a, b)))(v̌, w̌)

= 
V \{z}(�E \z((σ, a′, b′)))(v̌, w̌)

= T .

Now consider some Ei with 1 ≤ i ≤ n. If σ ∈ �i then since σ ∈ �z also (σ, a′, b′) ∈
Uz(�i) so that (σ, a′, b′) is in the alphabet of Uz(Ei) by Definition 23. It follows
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from (36) that xi

(σ,a′,b′):�E \z((σ,a′,b′))
−−−−−−−−−−−−−−−−−−−→yi in Uz(Ei), which implies xi

σ :�E (σ )−−−−−−−→yi

in Ei by Definition 23. Otherwise, if σ /∈ �i then (σ, a′, b′) is not in the alphabet
of Uz(Ei) and xi = yi . Having shown the above for all 1 ≤ i ≤ n, it can be concluded

by Definition 14 that (x1, . . . , xn)
σ :�E (σ )−−−−−−−→(y1, . . . , yn) in E1‖̇ · · · ‖̇En = ‖̇E .

(ii) σ /∈ �z. Then z /∈ vars(�E (σ )) by Definition 22, and

(a, x1, . . . , xn, v̌)
σ ′
−→(b, y1, . . . , yn, w̌) in U(E \ z) = U(‖̇(E \ z)) for some

σ ′ ∈ �E \z \ Uz(�z) such that ρz(σ
′) = σ . By definition of ρz it holds that

σ ′ = σ ∈ �E . By Definition 10, it holds that

(a, x1, . . . , xn)
σ :�E \z(σ )

−−−−−−−−→(b, y1, . . . , yn) in ‖̇(E \z) = UE (z)‖̇Uz(E1)‖̇ · · · ‖̇Uz(En)

(38)
and 
V \{z}(�E \z(σ ))(v̌, w̌) = T. As σ ∈ �E , it is clear that σ /∈ Uz(�z) and
thus σ is not in the alphabet of UE (z), which implies a = b. Also by (38), there

must exist i such that xi

σ :�E \z(σ )
−−−−−−−−→yi in Uz(Ei), which given σ ∈ �E implies

xi

σ :�E \z(σ )
−−−−−−−−→yi in Ei by Definition 23 where �E \z(σ ) ≡ �E (σ ) as E is normalised.

As z /∈ vars(�E (σ )), it holds that 
V (�E (σ ))(v̂, ŵ) = 
V (�E (σ ))(v̌ ⊕ {z �→
a}, w̌ ⊕ {z �→ b}) = 
V \{z}(�E (σ ))(v̌, w̌) = 
V \{z}(�E \z(σ ))(v̌, w̌) = T.

Now consider some Ei with 1 ≤ i ≤ n. If σ ∈ �i then since σ /∈ �z it follows

from (38) that xi

σ :�E \z(σ )
−−−−−−−−→yi in Uz(Ei), which implies xi

σ :�E (σ )−−−−−−−→yi in Ei by Defi-
nition 23. Otherwise, if σ /∈ �i then σ is not in the alphabet of Uz(Ei) and xi = yi .
Having shown the above for all 1 ≤ i ≤ n, it can be concluded by Definition 14 that

(x1, . . . , xn)
σ :�E (σ )−−−−−−−→(y1, . . . , yn) in E1‖̇ · · · ‖̇En = ‖̇E .

In both cases, it has been shown that (x1, . . . , xn)
σ :�E (σ )−−−−−−−→(y1, . . . , yn) in ‖̇E and


V (�E (σ ))(v̂, ŵ) = T. Then it follows by Definition 10 that (x1, . . . , xn, v̌ ⊕{z �→ a}) =
(x1, . . . , xn, v̂)

σ→ (y1, . . . , yn, ŵ) = (y1, . . . , yn, w̌ ⊕ {z �→ b}) in U(‖̇E ) = U(E ).
Conversely let (x1, . . . , xn, v̂)

σ→ (y1, . . . , yn, ŵ) in U(E ) = U(‖̇E ). Then it holds by
Definition 10 that

(x1, . . . , xn)
σ :p−−−→(y1, . . . , yn) in ‖̇E = E1‖̇ · · · ‖̇En (39)

where p ≡ �E (σ ) and 
V (p)(v̂, ŵ) = T. Consider two cases.

(i) σ ∈ �z. Note that z ∈ vars(�E (σ )) = vars(p). Then by Definition 22 it holds that

a
(σ,a,b):p′
−−−−−−−→b in UE (z) where p′ ≡ 
{z}(p)[z �→ a, z′ �→ b] and ρz((σ, a, b)) =

σ . Note that 
V \{z}(p′)(v̌, w̌) = 
V \{z}(
{z}(p))[z �→ a, z′ �→ b])(v̌, w̌) =
(
V (p)[z �→ a, z′ �→ b])(v̌, w̌) = 
V (p)(v̌ ⊕ {z �→ b}, w̌ ⊕ {z �→ b}) =

V (p)(v̂, ŵ) = T.
Now consider some Ei with 1 ≤ i ≤ n. If σ ∈ �i , it follows from (39) that xi

σ :p−−−→yi

in Ei , which implies xi

(σ,a,b):p′
−−−−−−−→yi in Uz(Ei) by Definition 23 as σ ∈ �z. Otherwise,

if σ /∈ �i then σ is not in the alphabet of Ei and xi = yi . Having shown the above for
all 1 ≤ i ≤ n, it can be concluded by Definition 14 that

(a, x1, . . . , xn)
(σ,a,b):p′

−−−−−−−→(b, y1, . . . , yn) in UE (z)‖̇Uz(E1)‖̇ · · · ||Uz(En)=‖̇(E \ z) .

(40)
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Since 
V \{z}(p′)(v̌, w̌) = T, it follows by Definition 10 that

(a, x1, . . . , xn, v̌)
(σ,a,b):p′
−−−−−−−→(b, y1, . . . , yn, w̌) in U(‖̇(E \ z)) = U(E \ z), which

implies (a, x1, . . . , xn, v̌)
σ→ (b, y1, . . . , yn, w̌) in ρz(U(E \ z)).

(ii) σ /∈ �z. In this case, by Definition 22 it holds that z /∈ vars(�E (σ )) = vars(p) and
ρz(σ ) = σ ∈ �E is not in the alphabet of UE (z). Consider some Ei with 1 ≤ i ≤ n. If
σ ∈ �i , it follows from (39) that xi

σ :p−−−→yi in Ei , which implies xi

σ :p−−−→yi in Uz(Ei)

by Definition 23 as σ ∈ �i \ �z. Otherwise, if σ /∈ �i then σ is not in the alphabet
of Ei and xi = yi . Having shown the above for all 1 ≤ i ≤ n, it can be concluded by
Definition 14 that

(a, x1, . . . , xn)
σ :p−−−→(a, y1, . . . , yn) in UE (z)‖̇Uz(E1)‖̇ · · · ‖̇Uz(En) = ‖̇(E \ z) .

(41)

From 
V (p)(v̂, ŵ) = T and z /∈ vars(p) ⊇ vars′(p), it follows that (z′ =
z)(v̂, ŵ) = T. This means a = v̂[z] = ŵ[z] = b and 
V \{z}(p)(v̌, w̌) =

V (p)(v̂, ŵ) = T. Then by Definition 10, it holds that (a, x1, . . . , xn, v̌)

σ→
(a, y1, . . . , yn, w̌) = (b, y1, . . . , yn, w̌) in U(‖̇(E \ z)) = U(E \ z), which given
ρz(σ ) = σ implies (a, x1, . . . , xn, v̌)

σ→ (b, y1, . . . , yn, w̌) in ρz(U(E \ z)).

Proposition 8 (Variable Unfolding) Let E be a normalised EFSM system, and let z ∈
vars(E ). Then E is nonblocking if and only if E \ z is nonblocking.

Proof Let E = {E1, . . . , En}, let E \ z = {UE (z), Uz(E1), . . . , Uz(En), according to
Definition 24, and let ρz : �E ∪ Uz(�z) → �E be the variable renaming map according to
Definition 22.

First assume E is nonblocking, which implies U(E ) is nonblocking. It will be shown that
ρz(U(E \ z)) is nonblocking. Assume (a0, x0

1 , . . . , x0
n, v̌0)

σ1−−→ · · · σm−−→(al, xl
1, . . . , x

l
n, v̌

l)

in ρz(U(E \ z)). From Lemma 15 it follows that (x0
1 , . . . , x0

n, v̌0 ⊕ {z �→
a0}) σ1−−→ · · · σm−−→(xl

1, . . . , x
l
n, v̌

l ⊕ {z �→ al}) in U(E ). Since U(E ) is non-

blocking, there exists a path (xl
1, . . . , x

l
n, v̂

l)
σl+1−−−→ · · · σm−−→(xm

1 , . . . , xm
n , v̂m) in U(E )

such that (xm
1 , . . . , xm

n ) ∈ Qω
1 × · · · × Qω

n . From Lemma 15 it follows

that (al, xl
1, . . . , x

l
n, v̌

l)
σl+1−−−→ · · · σl−→(am, xm

1 , . . . , xm
n , v̌m) in ρz(U(E \ z)) such that

(xm
1 , . . . , xm

n ) ∈ Qω
1 × · · · × Qω

n and v̂i = v̌i ⊕ {z �→ ai} for l + 1 ≤ i ≤ m. Since
(xl

1, . . . , x
l
n, v̂

l) was chosen arbitrarily, it holds that ρz(U(E \ z)) is nonblocking. Since
renaming preserves nonblocking, it holds that U(E \ z) is nonblocking, which implies that
E \ z is nonblocking.

Conversely assume E \ z is nonblocking. Then U(E \ z) is nonblocking, which
implies ρz(U(E \ z)) is nonblocking. It will be shown that U(E ) is nonblocking.
Assume (x0

1 , . . . , x0
n, v̂0)

σ1−−→ · · · σm−−→(xl
1, . . . , x

l
n, v̂

l) in U(E ). From Lemma 15, it fol-

lows that (a0, x0
1 , . . . , x0

n, v̌0)
σ1−−→ · · · σm−−→(al, xl

1, . . . , x
l
n, v̌

l) in ρz(U(E \ z)), where v̂i =
v̌i ⊕ {z �→ ai} for 0 ≤ i ≤ l. Since ρz(U(E \ z)) is nonblocking, there exists
a path (al, xl

1, . . . , x
l
n, v̌

l)
σl+1−−−→ · · · σm−−→(am, xm

1 , . . . , xm
n , v̌m) in ρz(U(E \ z)) such that

(xm
1 , . . . , xm

n ) ∈ Qω
1 × · · · × Qω

n . From Lemma 15 it follows that (xl
1, . . . , x

l
n, v̌

l ⊕ {z �→
al}) σl+1−−−→ · · · σm−−→(xm

1 , . . . , xm
n , v̌m ⊕ {z �→ am}) in U(E ) such that (xm

1 , . . . , xm
n ) ∈ Qω

1 ×
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· · ·×Qω
n . Since (xl

1, . . . , x
l
n, v̂

l) was chosen arbitrarily, it follows that U(E ) is nonblocking,
which implies that E is nonblocking.

B.5 Event simplification

This section contains proofs of correctness of the event removal and merging operations in
Propositions 9–12 in Section 5.5. The common approach to prove that abstractions such as
these preserve the nonblocking property of an EFSM system, is to show that for each path
in the EFSM system before abstraction there exists a corresponding path after abstraction,
and vice versa.

First, to prove Prop. 9, which states that false-removal preserves the nonblocking
property, it is shown in Lemma 16 that every path in any EFSM system resulting from
restriction can be lifted to a path in the original system, and conversely it is shown in
Lemma 17 that paths in an EFSM system also exist in a system resulting from false-removal.

Lemma 16 Let E = {E1, . . . , En} be a normalised EFSM system, let � ⊆ �E , and let
û ∈ dom(vars(E ) \ vars(E|�)). Then (x1, . . . , xn, v̂)

σ→ (y1, . . . , yn, ŵ) in U(E|�) implies

(x1, . . . , xn, v̂ ⊕ û)
σ→ (y1, . . . , yn, ŵ ⊕ û) in U(E ).

Proof Let F = E|� and V = vars(E ) and W = vars(E|�) ⊆ vars(E ) = V .

Assume (x1, . . . , xn, v̂)
σ→ (y1, . . . , yn, ŵ) in U(F ) = U(‖̇F ). Then σ ∈ �, and by

Definition 10 it holds that (x1, . . . , xn)
σ :p−−−→(y1, . . . , yn) in ‖̇F with p ≡ �F (σ ) and


W (p)(v̂, ŵ) = T. By Definition 14, it holds that xi

σ :p−−−→yi in Ei |� for each i such that
1 ≤ i ≤ n and σ ∈ �Ei

, with p ≡ �F (σ ) and vars(p) ⊆ vars(F ) = vars(E|�) = W .

As →|�⊆→, it follows that xi

σ :p−−−→yi in Ei for each i such that σ ∈ �Ei
. This shows

(x1, . . . , xn)
σ :p−−−→(y1, . . . , yn) in ‖̇E by Definition 14. As furthermore 
W (p)(v̂, ŵ) = T

and vars′(p) ⊆ vars(p) ⊆ W , it holds that 
V (p)(v̂⊕û, ŵ⊕û) = T. Thus, (x1, . . . , xn, v̂⊕
û)

σ→ (y1, . . . , yn, ŵ ⊕ û) in U(‖̇E ) = U(E ) by Definition 10.

Lemma 17 Let E be a normalised EFSM system, and let � ⊆ �E be a set of events such
that for all λ ∈ � at least one of the following conditions holds:

(i) �E (λ) ≡ false;

(ii) There exists E ∈ E such that λ ∈ �E , but there does not exist any transition x
λ:p−→y

in E.

Also let W = vars(E|�E \�). Then (x1, . . . , xn, v̂)
σ→ (y1, . . . , yn, ŵ) in U(E ) implies

(x1, . . . , xn, v̂|W )
σ→ (y1, . . . , yn, ŵ|W ) in U(E|�E \�).

Proof Let E = {E1, . . . , En} and � = �E \ � and F = E|� and V = vars(E ). It is clear
that W = vars(E|�) ⊆ vars(E ) = V .

Assume (x1, . . . , xn, v̂)
σ→ (y1, . . . , yn, ŵ) in U(E ) = U(‖̇E ). By Definition 10, it fol-

lows that (x1, . . . , xn)
σ :p−−−→(y1, . . . , yn) in ‖̇E with p ≡ �E (σ ) and 
V (p)(v̂, ŵ) = T.

Note that σ ∈ � cannot hold, because if σ ∈ �, then either (i) p ≡ �E (σ ) ≡ false in
contradiction to 
V (p)(v̂, ŵ) = T, or (ii) there exists E = Ek ∈ E such that σ ∈ �E

and xk

σ :p−−−→yk in E = Ek does not hold, in contradiction to (x1, . . . , xn)
σ :p−−−→(y1, . . . , yn)

in ‖̇E by Definition 9. Thus σ ∈ � and (x1, . . . , xn)
σ :p−−−→(y1, . . . , yn) in ‖̇E|� = ‖̇F .
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As also 
V (p)(v̂, ŵ) = T and vars′(p) ⊆ vars(p) ⊆ vars(E|�) = W , it follows

that 
W (p)(v̂|W , ŵ|W ) = T. Thus, by Definition 10 it holds that (x1, . . . , xn, v̂|W )
σ→

(y1, . . . , yn, ŵ|W ) in U(‖̇F ) = U(F ) = U(E|�).

Proposition 9 (false-Removal) Let E be a normalised EFSM system, and let � ⊆ �E be
a set of events such that for all λ ∈ � at least one of the following conditions holds:

(i) �E (λ) ≡ false;

(ii) There exists E ∈ E such that λ ∈ �E , but there does not exist any transition x
λ:p−→y

in E.

Proof Note that E and thus E|�E \� are normalised, so U(E ) = U(‖̇E ) and U(E|�E \�) =
U(‖̇E|�E \�) by Proposition 1.

Assume E is nonblocking, which means that U(E ) is non-
blocking. It will be shown that U(E|�E \�) is nonblocking. Let

(x◦1, . . . , x
◦
n, v̂◦) σ1−−→(x1

1 , . . . , x1
n, v̂1)

σ2−−→ · · · σl−→(xl
1, . . . , x

l
n, v̂

l) in U(E|�E \�) =
U(‖̇E|�E \�) where (x◦

1 , . . . , x◦
n) ∈ Q◦

1 × · · · × Q◦
n. By Lemma 16, it follows that

(x0
1 , . . . , x0

n, v̂ ◦ ⊕û◦) σ1−−→(x1
1 , . . . , x1

n, v̂1 ⊕ û◦) σ2−−→ · · · σl−→(xl
1, . . . , x

l
n, v̂

l ⊕ û◦) in
U(‖̇E ). Since U(E ) = U(‖̇E ) is nonblocking, there exists a path (xl

1, . . . , x
l
n, v̂

l ⊕
û◦)

σl+1−−−→(xl+1
1 , . . . , xl+1

n , ŵl+1)
σl+2−−−→ · · · σm−−→(xm

1 , . . . , xm
n , ŵm) in U(‖̇E ) such that

(xm
1 , . . . , xm

n ) ∈ Qω
1 × · · · × Qω

n . From Lemma 17 and as (v̂l ⊕ û◦)|W = v̂l , it fol-

lows that (xl
1, . . . , x

l
n, v̂

l)
σl+1−−−→(xl+1

1 , . . . , xl+1
n , ŵl+1

|W )
σl+2−−−→ · · · σm−−→(xm

1 , . . . , xm
n , v̂m|W )

in U(‖̇E|�E \�) and (xm
1 , . . . , xm

n ) ∈ Qω
1 × · · · × Qω

n . Since (xl
1, . . . , x

l
n, v̂

l) was chosen
arbitrarily, it follows that U(‖̇E|�E \�) = U(E|�E \�) is nonblocking, i.e., E|�E \� is
nonblocking.

Conversely assume E|�E \� is nonblocking, which means that U(E|�E \�) is

nonblocking. Let (x◦
1 , . . . , x◦

n, v̂◦) σ1−−→(x1
1 , . . . , x1

n, v̂1)
σ2−−→ · · · σl−→(xl

1, . . . , x
l
n, v̂

l)

in U(E ) = U(‖̇E ) where (x◦
1 , . . . , x◦

n) ∈ Q◦
1 × · · · × Q◦

n. By Lemma 17,

it holds that (x◦
1 , . . . , x◦

n, v̂◦|W )
σ1−−→(x1

1 , . . . , x1
n, v̂1|W )

σ2−−→ · · · σl−→(xl
1, . . . , x

l
n, v̂

l|W )

in U(‖̇E|�E \�). As U(‖̇E|�E \�) = U(E|�E \�) is nonblocking, there exists a

path (xl
1, . . . , x

l
n, v̂

l|W )
σl+1−−−→(xl+1

1 , . . . , xl+1
n , ŵl+1)

σl+2−−−→ · · · σm−−→(xm
1 , . . . , xm

n , ŵm)

in U(‖̇E|�E \�) such that (xm
1 , . . . , xm

n ) ∈ Qω
1 × · · · × Qω

n . By Lemma 16, it fol-

lows that (xl
1, . . . , x

l
n, v̂

l) = (xl
1, . . . , x

l
n, v̂

l|W ⊕ v̂l|V \W )
σl+1−−−→(xl+1

1 , . . . , xl+1
n , ŵl+1 ⊕

v̂l|V \W )
σl+2−−−→ · · · σm−−→(xm

1 , . . . , xm
n , ŵm ⊕ v̂l|V \W ) in U(‖̇E ) and (xm

1 , . . . , xm
n ) ∈

Qω
1 × · · · × Qω

n . As (xl
1, . . . , x

l
n, v̂

l) was chosen arbitrarily, it follows that U(‖̇E ) = U(E )

is nonblocking, i.e., E is nonblocking.

As selfloop removal is also defined using restriction, the proof of Proposition 10 again
uses Lemma 16 to lift paths from an abstracted system to the original system. For the con-
verse, the following Lemma 18 shows that a path in the original system also exists in the
abstracted system after selfloop removal, except possibly for the deletion of some selfloops.

Lemma 18 Let E = {E1, . . . , En} be a normalised EFSM system with event
alphabet �E = �∪̇�, which is selfloop-only for �. Then (x1, . . . , xn, v̂)

σ→
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(y1, . . . , yn, ŵ) in U(E ) implies (x1, . . . , xn, v̂|W )
P�(σ)−−−−−→(y1, . . . , yn, ŵ|W ) in U(E|�)

where W = vars(E|�).

Proof Let V = vars(E ). Clearly W = vars(E|�) ⊆ vars(E ) = V .

Assume that (x1, . . . , xn, v̂)
σ→ (y1, . . . , yn, ŵ) in U(E ) = U(‖̇E ). Then by Def-

inition 10 it holds that (x1, . . . , xn)
σ :p−−−→(y1, . . . , yn) in ‖̇E with p ≡ �E (σ ) and


V (p)(v̂, ŵ) = T. By Definition 14 it holds that xi

σ :p−−−→yi for each i such that 1 ≤ i ≤ n

and σ ∈ �Ei
, and xi = yi for each i such that 1 ≤ i ≤ n and σ /∈ �Ei

. Consider two cases
for σ : either σ ∈ � or σ /∈ �.

– If σ ∈ � then P�(σ) = ε, and since each Ei is selfloop-only for σ ∈ �, it follows from
xi

σ :p−−−→yi in Ei that xi = yi and vars′(p) = ∅. From vars′(p) = ∅ and 
V (p)(v̂, ŵ) =
T it follows that v̂ = ŵ, which implies v̂|W = ŵ|W . Given P�(σ) = ε, it follows that

(x1, . . . , xn, v̂|W )
P�(σ)−−−−−→(x1, . . . , xn, v̂|W ) = (y1, . . . , yn, ŵ|W ) in U(‖̇E|�) = U(E|�).

– If σ /∈ � then P�(σ) = σ . In this case, it follows from xi

σ :p−−−→yi in Ei that xi

σ :p−−−→yi

in Ei |�, and thus (x1, . . . , xn)
σ :p−−−→(y1, . . . , yn) in ‖̇E|�. As this transition is in ‖̇E|�,

it holds that vars′(p) ⊆ vars(p) ⊆ vars(‖̇E|�) = vars(E|�) = W , so it follows
from 
V (p)(v̂, ŵ) = T that 
W (p)(v̂|W , ŵ|W ) = T. By Definition 10, it follows that

(x1, . . . , xn, v̂|W )
P�(σ)−−−−−→(y1, . . . , yn, ŵ|W ) in U(‖̇E|�) = U(E|�).

Proposition 10 (Selfloop Removal) Let E be a normalised EFSM system that is selfloop-
only for � ⊆ �E . Then E is nonblocking if and only if E|�E \� is nonblocking.

Proof Let E = {E1, . . . , En} and � = �E \ � and V = vars(E ) and W = vars(E|�).
Assume E is nonblocking, which means that U(E ) is non-

blocking. It will be shown that U(E|�) is nonblocking. Let

(x◦
1 , . . . , x◦

n, v̂◦) σ1−−→(x1
1 , . . . , x1

n, v̂1)
σ2−−→ · · · σl−→(xl

1, . . . , x
l
n, v̂

l) in U(E|�) = U(‖̇E|�)

where (x◦
1 , . . . , x◦

n) ∈ Q◦
1 × · · · × Q◦

n. By Lemma 16, it follows that

(x0
1 , . . . , x0

n, v̂ ◦ ⊕û◦) σ1−−→(x1
1 , . . . , x1

n, v̂1 ⊕ û◦) σ2−−→ · · · σl−→(xl
1, . . . , x

l
n, v̂

l ⊕ û◦)
in U(‖̇E ). Since U(E ) = U(‖̇E ) is nonblocking, there exists a path (xl

1, . . . , x
l
n, v̂

l ⊕
û◦)

σl+1−−−→(xl+1
1 , . . . , xl+1

n , ŵl+1)
σl+2−−−→ · · · σm−−→(xm

1 , . . . , xm
n , ŵm) in U(‖̇E ) such that

(xm
1 , . . . , xm

n ) ∈ Qω
1 ×· · ·×Qω

n . From Lemma 18 and since (v̂l ⊕û◦)|W = v̂l , it follows that

(xl
1, . . . , x

l
n, v̂

l)
P�(σl+1)−−−−−−−→(xl+1

1 , . . . , xl+1
n , ŵl+1

|W )
P�(σl+2)−−−−−−−→ · · · P�(σm)−−−−−−→(xm

1 , . . . , xm
n , v̂m|W )

in U(‖̇E|�) and (xm
1 , . . . , xm

n ) ∈ Qω
1 × · · · × Qω

n . Since (xl
1, . . . , x

l
n, v̂

l) was chosen
arbitrarily, it follows that U(‖̇E|�) = U(E|�) is nonblocking, i.e., E|� is nonblocking.

Conversely assume E|� is nonblocking, which means that U(E|�) is nonblock-

ing. Let (x◦
1 , . . . , x◦

n, v̂◦) σ1−−→(x1
1 , . . . , x1

n, v̂1)
σ2−−→ · · · σl−→(xl

1, . . . , x
l
n, v̂

l) in U(E ) =
U(‖̇E ) where (x◦1, . . . , x◦n) ∈ Q◦

1 × · · · × Q◦
n. By Lemma 18, it holds

that (x◦
1 , . . . , x◦

n, v̂◦|W )
P�(σ1)−−−−−→(x1

1 , . . . , x1
n, v̂1|W )

P�(σ2)−−−−−→ · · · P�(σl)−−−−−→(xl
1, . . . , x

l
n, v̂

l|W )

in U(‖̇E|�). Since U(‖̇E|�) = U(E|�) is nonblocking, there exists a path

(xl
1, . . . , x

l
n, v̂

l|W )
σl+1−−−→(xl+1

1 , . . . , xl+1
n , ŵl+1)

σl+2−−−→ · · · σm−−→(xm
1 , . . . , xm

n , ŵm) in U(‖̇E|�)

such that (xm
1 , . . . , xm

n ) ∈ Qω
1 × · · · × Qω

n . By Lemma 16, it follows
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that (xl
1, . . . , x

l
n, v̂

l) = (xl
1, . . . , x

l
n, v̂

l
|W ⊕ v̂l

|V \W )
σl+1−−−→(xl+1

1 , . . . , xl+1
n , ŵl+1 ⊕

v̂l
|V \W )

σl+2−−−→ · · · σm−−→(xm
1 , . . . , xm

n , ŵm ⊕ v̂l
|V \W ) in U(‖̇E ) and (xm

1 , . . . , xm
n ) ∈

Qω
1 × · · · × Qω

n . As (xl
1, . . . , x

l
n, v̂

l) was chosen arbitrarily, it follows that U(‖̇E ) = U(E )

is nonblocking, i.e., E is nonblocking.

The next result to prove is Proposition 11, which states that the nonblocking property
of an EFSM system is preserved by event merging. Again, it needs to be established that
for each path in the EFSM system before abstraction there exists a corresponding path after
abstraction, and vice versa. First, Lemma 19 shows that every path in an EFSM system can
be found again after renaming, and afterwards Lemma 20 shows how to lift a path from the
abstracted system after event merging back to the original system.

Lemma 19 Let E = {E1, . . . , En} be an EFSM system, and let ρ : �E → �′
be an arbitrary renaming. Then (x1, . . . , xn, v̂)

σ→ (y1, . . . , yn, ŵ) in U(E ) implies

(x1, . . . , xn, v̂)
ρ(σ )−−−→(y1, . . . , yn, ŵ) in U(ρ(E )).

Proof Write V = vars(E) and �i = �Ei
for 1 ≤ i ≤ n. Assume (x1, . . . , xn, v̂)

σ→
(y1, . . . , yn, ŵ) in U(E ). By Definition 10, this means (x1, . . . , xn)

σ :p−−−→(y1, . . . , yn)

in ||E where 
V (p)(v̂, ŵ) = T. By Definition 9, it holds that xi

σ :pi−−−→yi for each Ei such
that σ ∈ �i , and xi = yi for each Ei such that σ /∈ �i , and p ≡ ∧

σ∈�i
pi . For σ ∈ �i it

follows that xi

ρ(σ):pi−−−−−−→yi in ρ(Ei), and therefore (x1, . . . , xn)
ρ(σ):p−−−−→(y1, . . . , yn) in ||ρ(E ).

As 
V (p)(v̂, ŵ) = T and vars(ρ(E )) = vars(E ) = V , it follows by Definition 10 that

(x1, . . . , xn, v̂)
ρ(σ )−−−→(y1, . . . , yn, ŵ) in U(ρ(E )).

Lemma 20 Let E = {E1, . . . , En} be a normalised EFSM system with Ei = 〈�i,Qi,→i

, Q◦
ω,Qω

i 〉, let Ek ∈ E , and let ρ : �E → �′ be a renaming such that the following
conditions hold for all σ1, σ2 ∈ �E with ρ(σ1) = ρ(σ2):

(i) �E (σ1) = �E (σ2);
(ii) for all i �= k, it holds that σ1 ∈ �i if and only if σ2 ∈ �i , and for all x, y ∈ Qi it

holds that x
σ1:�E (σ1)−−−−−−−→iy if and only if x

σ2:�E (σ2)−−−−−−−→iy.

Then (x1, . . . , xn, v̂)
μ−→(y1, . . . , yn, ŵ) in U(ρ(E )) implies (x1, . . . , xn, v̂)

σ→
(y1, . . . , yn, ŵ) in U(E ) for some σ ∈ �E such that ρ(σ) = μ.

Proof First note that E is normalised, which implies by assumption (i) that ρ(E ) is
normalised. Therefore, it holds by Proposition 1 that U(E ) = U(‖̇E ) and U(ρ(E )) =
U(‖̇ρ(E )).

Assume (x1, . . . , xn, v̂)
μ−→(y1, . . . , yn, ŵ) in U(ρ(E )) = U(‖̇ρ(E )). Then it holds

by Definition 10 that (x1, . . . , xn)
μ:p−−−→(y1, . . . , yn) in ‖̇ρ(E ) where p ≡ �ρ(E )(μ) and


V (p)(v̂, ŵ) = T where V = vars(ρ(E )) = vars(E ). Consider two cases: either
μ ∈ ρ(�k) or μ /∈ ρ(�k).

– If μ ∈ ρ(�k), then xk

μ:p−−−→yk in ρ(Ek) by Definition 14. Then there exists σ ∈ �k

such that ρ(σ) = μ and xk

σ :p−−−→yk in Ek .
– If μ /∈ ρ(�k), then xk = yk by Definition 14. As ρ is surjective by Definition 15, there

exists σ ∈ �E such that ρ(σ) = μ. Note that σ /∈ �k as otherwise μ = ρ(σ) ∈ ρ(�k).
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In both cases there exists σ ∈ �E with ρ(σ) = μ, with other properties mentioned in each
case. Now consider two cases for each i �= k: either σ ∈ �i or σ /∈ �i .

– If σ ∈ �i , then μ = ρ(σ) ∈ ρ(�i) and thus xi

μ:p−−−→yi in ρ(Ei) by Definition 14.
Then there exists σi ∈ �i such that ρ(σi) = μ and xi

σi :p−−−→yi in Ei . As i �= k and
ρ(σi) = μ = ρ(σ), it follows by assumption (ii) that σ ∈ �i and xi

σ :p−−−→yi in Ei .
– If σ /∈ �i , then μ = ρ(σ) /∈ ρ(�i) and thus xi = yi by Definition 14.

Combining the above observations for k and all i �= k, it follows by Definition 14 that
(x1, . . . , xn)

σ :p−−−→(y1, . . . , yn) in ‖̇E . As furthermore 
V (p)(v̂, ŵ) = T, it follows by
Definition 10 that (x1, . . . , xn, v̂)

σ→ (y1, . . . , yn, ŵ) in U(‖̇E ) = U(E ).

Proposition 11 (Event Merging) Let E = {E1, . . . , En} be a normalised EFSM system
with Ei = 〈�i,Qi,→i ,Q

◦
ω,Qω

i 〉, let Ek ∈ E , and let ρ : �E → �′ be a renaming such
that the following conditions hold for all σ1, σ2 ∈ �E with ρ(σ1) = ρ(σ2):

(i) �E (σ1) = �E (σ2);
(ii) for all i �= k, it holds that σ1 ∈ �i if and only if σ2 ∈ �i , and for all x, y ∈ Qi it

holds that x
σ1:�E (σ1)−−−−−−−→iy if and only if x

σ2:�E (σ2)−−−−−−−→iy.

Then E is nonblocking if and only if ρ(E ) is nonblocking.

Proof First assume E is nonblocking, which means that U(E )

is nonblocking. It will be shown that E is nonblocking. Let
U(ρ(E ))

μ1−→(x1
1 , . . . , x1

n, v̂1)
μ2−→ · · · μl−→(xl

1, . . . , x
l
n, v̂

l). By Lemma 20, there exist events

σ1, . . . , σl such that U(E )
σ1−−→(x1

1 , . . . , x1
n, v̂1)

σ2−−→ · · · σl−→(xl
1, . . . , x

l
n, v̂

l). Since U(E )

is nonblocking, there exists a path (xl
1, . . . , x

l
n, v̂

l)
σl+1−−−→ · · · σm−−−→(xm

1 , . . . , xm
n , v̂m)

in U(E ) such that (xm
1 , . . . , xm

n ) ∈ Qω[1] × · · · × Qω[n]. From Lemma 19, it

follows that (xl
1, . . . , x

l
n, v̂

l)
ρ(σl+1)−−−−−−→ · · · ρ(σm)−−−−→(xm

1 , . . . , xm
n , v̂m) in U(ρ(E )) and

(xm
1 , . . . , xm

n ) ∈ Qω
1 × · · · × Qω

n . Since (xl
1, . . . , x

l
n, v̂

l) was chosen arbitrarily, it follows
that U(ρ(E )) is nonblocking, i.e., E is nonblocking.

Conversely assume F is nonblocking, which means that U(F ) is nonblocking.
Let U(E )

σ1−−→(x1
1 , . . . , x1

n, v̂1)
σ2−−→ · · · σl−→(xl

1, . . . , x
l
n, v̂

l). By Lemma 19, it holds that

U(F )
ρ(σ1)−−−−→(x1

1 , . . . , x1
n, v̂1)

ρ(σ2)−−−−→ · · · ρ(σl)−−−−→(xl
1, . . . , x

l
n, v̂

l). As U(F ) is nonblocking,

there exists a path (xl
1, . . . , x

l
n, v̂

l)
μl+1−−−→ · · · μm−−→(xm

1 , . . . , xm
n , v̂m) in U(F ) such that

(xm
1 , . . . , xm

n ) ∈ Qω
1 × · · · × Qω

n . By Lemma 20, there exist events σ1+1, . . . , σm such that

(xl
1, . . . , x

l
n, v̂

l)
σl+1−−−→ · · · σm−−→(xm

1 , . . . , xm
n , v̂m) in U(E ) and (xm

1 , . . . , xm
n ) ∈ Qω

1 × · · · ×
Qω

n . As (xl
1, . . . , x

l
n, v̂

l) was chosen arbitrarily, it follows that U(E ) is nonblocking, i.e., E
is nonblocking.

Similar to event merging, to prove that update merging preserves the nonblocking prop-
erty of an EFSM system as stated in Proposition 12, the relationship between the paths in the
system before and after abstraction is first established. Lemma 21 shows how to construct
a path in the abstracted system after update merging from a path in the original system, and
Lemma 22 shows how to do the converse.

Lemma 21 Let E = {E1, . . . ,En} be a normalised EFSM system with
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Ei = 〈�i,Qi,→i ,Q
◦
ω,Qω

i 〉. Let ρ be a renaming such that the following conditions hold
for all σ1, σ2 ∈ �E with ρ(σ1) = ρ(σ2):

(i) vars′(�E (σ1)) = vars′(�E (σ2)),
(ii) for all i = 1, . . . , n it holds that σ1 ∈ �i if and only if σ2 ∈ �i , and for all x, y ∈ Qi

it holds that x
σ1:�E (σ1)−−−−−−−→iy if and only if x

σ2:�E (σ2)−−−−−−−→iy

Further let F = {F1, . . . , Fn} such that Fi = 〈ρ(�i),Qi, →F
i , Q◦

i , Q
ω
i 〉 where

→F
i = {(x, ρ(σ ),�F (ρ(σ )), y) | x

σ :�E (σ )−−−−−−→y } and �F (μ) ≡ ∨
σ∈ρ−1(μ) �E (σ )

for all μ ∈ �F . Then (x1, . . . , xn, v̂)
σ→ (y1, . . . , yn, ŵ) in U(E ) implies

(x1, . . . , xn, v̂)
ρ(σ )−−−→(y1, . . . , yn, ŵ) in U(F ).

Proof Note that E and F are normalised, so U(E ) = U(‖̇E ) and U(F ) = U(‖̇F ) by
Proposition 1.

Let (x1, . . . , xn, v̂)
σ→ (y1, . . . , yn, ŵ) in U(E ) = U(‖̇E ). This means by Defini-

tion 10 that (x1, . . . , xn)
σ :�E (σ )−−−−−−−→(y1, . . . , yn) in ‖̇E and 
V (�E (σ ))(v̂, ŵ) = T where

V = vars(E ) = vars(F ). Consider two cases for each Ei : either σ ∈ �i or σ /∈ �i .

– If σ ∈ �i , then it follows by Definition 14 that xi

σ :�E (σ )−−−−−−−→yi in Ei . In this case,

ρ(σ) ∈ ρ(�i), and it follows by construction of →F
i that xi

ρ(σ):�F (σ )−−−−−−−−−−→yi in Fi .
– If σ /∈ �i then xi = yi by Definition 14, and ρ(σ) /∈ ρ(�i).

Combining these observations for all i, it follows by Definition 14 that

(x1, . . . , xn)
ρ(σ):�F (ρ(σ ))−−−−−−−−−−−−→(y1, . . . , yn) in F1‖̇ · · · ‖̇Fn = ‖̇F . Furthermore,

note that by construction �F (ρ(σ )) = ∨
σ ′∈ρ−1(ρ(σ )) �E (σ ′), which implies


V (�F (ρ(σ ))) ⇔ ∨
σ ′∈ρ−1(ρ(σ )) 
V (�E (σ ′)) by assumption (i). Then it follows

from σ ∈ ρ−1(ρ(σ )) and 
V (�E (σ ))(v̂, ŵ) = T that 
V (�F (ρ(σ )))(v̂, ŵ) = T.

Then it follows from Definition 10 that (x1, . . . , xn, v̂)
ρ(σ )−−−→(y1, . . . , yn, ŵ) in

U(‖̇F ) = U(F ).

Lemma 22 Let E = {E1, . . . , En} be a normalised EFSM system with Ei = 〈�i,Qi,→i

, Q◦
ω,Qω

i 〉. Let ρ be a renaming such that the following conditions hold for all σ1, σ2 ∈ �E

with ρ(σ1) = ρ(σ2):

(i) vars′(�E (σ1)) = vars′(�E (σ2)),
(ii) for all i = 1, . . . , n it holds that σ1 ∈ �i if and only if σ2 ∈ �i , and for all x, y ∈ Qi

it holds that x
σ1:�E (σ1)−−−−−−−→iy if and only if x

σ2:�E (σ2)−−−−−−−→iy

Further let F = {F1, . . . , Fn} such that Fi = 〈ρ(�i),Qi, →F
i , Q◦

i , Q
ω
i 〉 where

→F
i = {(x, ρ(σ ), �F (ρ(σ )), y) | x

σ :�E (σ )−−−−−−→y } and �F (μ) ≡ ∨
σ∈ρ−1(μ) �E (σ ) for

all μ ∈ �F . Then (x1, . . . , xn, v̂)
μ−→(y1, . . . , yn, ŵ) in U(F ) implies (x1, . . . , xn, v̂)

σ→
(y1, . . . , yn, ŵ) in U(E ) for some σ ∈ �E such that ρ(σ) = μ.

Proof Note that E and F are normalised, so U(E ) = U(‖̇E ) and U(F ) = U(‖̇F ) by
Proposition 1.
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Assume (x1, . . . , xn, v̂)
μ−→(y1, . . . , yn, ŵ) in U(F ) = U(‖̇F ). Then it holds that

by Definition 10 that (x1, . . . , xn)
μ:p−−−→(y1, . . . , yn) in ‖̇F where p ≡ �F (μ) ≡∨

σ∈ρ−1(μ) �E (σ ), and 
V (p)(v̂, ŵ) = T where V = vars(F ). As p ≡ ∨
σ∈ρ−1(μ) �E (σ )

and 
V (p)(v̂, ŵ) = T, there exists σ ∈ ρ−1(μ) such that 
V (�E (σ ))(v̂, ŵ) = T. Note,
as σ ∈ ρ−1(μ) it holds that ρ(σ) = μ. Consider two cases for each Ei : either σ ∈ �i or
σ /∈ �i .

– If σ ∈ �i then μ = ρ(σ) ∈ ρ(�i), which by Definition 14 implies xi

μ:p−−−→yi in Fi . By

construction of →F
i , this means xi

σ :�E (σ )−−−−−−−→yi in Ei .
– If σ /∈ �i , then μ /∈ ρ(�i) and xi = yi by Definition 14.

Combining the above observations for all i, it follows by Definition 14 that

(x1, . . . , xn)
σ :�E (σ )−−−−−−−→(y1, . . . , yn) in ‖̇E . As 
V (�E (σ ))(v̂, ŵ) = T, it follows that

(x1, . . . , xn, v̂)
σ→ (y1, . . . , yn, ŵ) in U(‖̇E ) = U(E ).

Proposition 12 (Update Merging) Let E = {E1, . . . , En} be a normalised EFSM system
with Ei = 〈�i,Qi,→i ,Q

◦
ω,Qω

i 〉. Let ρ be a renaming such that the following conditions
hold for all σ1, σ2 ∈ �E with ρ(σ1) = ρ(σ2):

(i) vars′(�E (σ1)) = vars′(�E (σ2)),
(ii) for all i = 1, . . . , n it holds that σ1 ∈ �i if and only if σ2 ∈ �i , and for all x, y ∈ Qi

it holds that x
σ1:�E (σ1)−−−−−−−→iy if and only if x

σ2:�E (σ2)−−−−−−−→iy

Further let F = {F1, . . . , Fn} such that Fi = 〈ρ(�i),Qi,→F
i ,Q◦

i ,Q
ω
i 〉 where →F

i =
{(x, ρ(σ ),�F (ρ(σ )), y) | x

σ :�E (σ )−−−−−−→y } and�F (μ) ≡ ∨
σ∈ρ−1(μ) �E (σ ) for allμ ∈ �F .

Then E is nonblocking if and only if F is nonblocking.

Proof First assume E is nonblocking, which means that U(E )

is nonblocking. It will be shown that F is nonblocking. Let
U(F )

μ1−→(x1
1 , . . . , x1

n, v̂1)
μ2−→ · · · μ1−→(xl

1, . . . , x
l
n, v̂

l). By Lemma 22, there exist events

σ1, . . . , σl such that U(E )
σ1−→(x1

1 , . . . , x1
n, v̂1)

σ2−→ · · · underrightarrowσl (xl
1, . . . , x

l
n, v̂

l).

Since U(E ) is nonblocking, there exists a path (xl
1, . . . , x

l
n, v̂

l)
σl+1−−→ · · · σm−→(xm

1 , . . . , xm
n , v̂m)

in U(E ) such that (xm
1 , . . . , xm

n ) ∈ Qω
1 × · · · × Qω

n . From Lemma 21, it follows

that (xl
1, . . . , x

l
n, v̂

l)
ρ(σl+1)−−−−→ · · · ρ(σm)−−−→(xm

1 , . . . , xm
n , v̂m) in U(F ) and (xm

1 , . . . , xm
n ) ∈

Qω
1 × · · · × Qω

n . Since (xl
1, . . . , x

l
n, v̂

l) was chosen arbitrarily, it follows that U(F ) is
nonblocking, i.e., F is nonblocking.

Conversely assume F is nonblocking, which means that U(F ) is nonblock-
ing. Let U(E )

σ1−→(x1
1 , . . . , x1

n, v̂1)
σ2−→ · · · σl−→(xl

1, . . . , x
l
n, v̂

l). By Lemma 21, it holds

that U(F )
ρ(σ1)−−−→(x1

1 , . . . , x1
n, v̂1)

ρ(σ2)−−−→ · · · ρ(σl)−−−→(xl
1, . . . , x

l
n, v̂

l). As U(F ) is nonblock-

ing, there exists a path (xl
1, . . . , x

l
n, v̂

l)
μl+1−−→ · · · μm−→(xm

1 , . . . , xm
n , v̂m) in U(F ) such that

(xm
1 , . . . , xm

n ) ∈ Qω
1 × · · · × Qω

n . By Lemma 22, there exist events σ1+1, . . . , σm such that

(xl
1, . . . , x

l
n, v̂

l)
σl+1−−→ · · · σm−→(xm

1 , . . . , xm
n , v̂m) in U(E ) and (xm

1 , . . . , xm
n ) ∈ Qω

1 ×· · ·×Qω
n .

As (xl
1, . . . , x

l
n, v̂

l) was chosen arbitrarily, it follows that U(E ) is nonblocking, i.e., E is
nonblocking.
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