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Abstract In this paper we perform Infinitesimal Perturbation Analysis (IPA) for a single-
stage stochastic fluid queue that is shared between two competing sources, one that employs
additive loss-feedback congestion control and the other that employs no congestion-control
(i.e., it is unresponsive). This scenario is applicable within the realm of computer commu-
nication networks particularly at bottleneck router queues where multiple and diverse flows
compete for bandwidth. We optimize the tradeoff between total loss volume and queue
workload (a measure for queueing delay). Although a sound knowledge of the system’s
dynamics is required to derive the IPA gradient estimators, no knowledge of the underly-
ing probability distributions governing the system is required. What results are fairly simple
counting processes, whose values can be computed directly from an ongoing live stream of
traffic.

Keywords Infinitesimal perturbation analysis · IPA · Stochastic fluid models · Stochastic
optimization · Network congestion control

1 Introduction

Infinitesimal Perturbation Analysis (IPA) is a well-known gradient estimation technique
that can be used in the general recursive Robbins-Monro stochastic approximation (SA)
procedure to find the root of the gradient:

θ̂n+1 = θ̂n − anĝ(θ̂n) (1)

where ĝ(θ̂n) is the noisy estimate of the gradient at the iterate θ̂n and an is the step size (or
gain). Conditions that an must satisfy include an > 0,

∑∞
n=1 a2n < ∞ and

∑∞
n=1 an = ∞.

One sequence of gains that satisfies these conditions is an = a0n
−1.
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IPA directly gleans all the data it needs to estimate the gradient of the performance func-
tion from a single arbitrary sample path (or simulation run); hence, there is no need for
multiple replications at each value of the control parameter θ . Additionally, IPA requires no
knowledge of the underlying probability distributions governing the system and in the more
simple cases, needs no knowledge of the traffic and service processes themselves (i.e., rates
etc.). Therefore, while passively observing the system as it runs, IPA can simultaneously
compute the gradient estimate using fairly simple counting processes, leading to an efficient
“online” estimator.

Initial work on IPA gradient estimation used the traditional queueing paradigm, for which
the enqueue and dequeue events for each “customer” were considered in the derivation and
implementation of the gradient estimator. More recent work on IPA gradient estimation
has shifted to the stochastic fluid model (SFM) paradigm. The time scale of the process
is increased so that entities are aggregated into continuous flows that are characterised by
random rates.

With regards to theoretical IPA work using stochastic fluid models (SFM), IPA gradient
estimators have been derived for the expected loss rate and average queue length for the
single-stage case with a simple threshold-based admission control, i.e., the control parame-
ter is the buffer size (Cassandras et al. 2001). Also, for the single-stage case, IPA derivatives
for the loss volume and cumulative queue workload were derived with respect to a service
rate parameter and an inflow rate parameter (Wardi et al. 2002). Feedback was not con-
sidered. In Cassandras et al. (2003), the authors examined the single-stage in which two
types of traffic were admitted: uncontrolled and threshold-based buffer controlled. Here, the
queue was assumed to be infinite, and a “virtual” buffer size adjusted, such that when this
limit was exceeded the controlled traffic was dropped, whereas the uncontrolled traffic was
not. This work was generalized in Sun et al. (2004).

A number of works have also been generated for nodes in tandem. In Sun et al. (2003),
the authors derived IPA gradient estimators for the loss volume and buffer workload with
respect to only the first node’s buffer limit in a tandem of single-class nodes. (See also Sun
et al. (2004)). The authors in Wardi and Riley (2002) examined the loss volume and
buffer workload with respect to the buffer size of both nodes of a two-stage tandem. (See
also Wardi and Melamed (2001)). The authors in Nosrati and Nikravesh (2004) examined
tandem networks of two-class stochastic fluid models. In Panayiotou (2004) was examined
the case when multiple buffers are served by a single server using non-idling scheduling
polices, i.e., it addressed a resource allocation problem. The performance metrics of interest
were the loss volume and the queue workload, and the control parameters were the buffer
size as well as the bandwidth share for each buffer.

The notion of feedback in IPA-SFM work was first introduced by Yu and Cassandras
(2003) and Yu and Cassandras (2004b). Here, the incoming rate to a single-stage network
was decreased instantaneously and additively based on a function of the queue length. The
control parameter was again buffer size and the performance measures were loss rate and
average (queue) workload. The authors in Wardi and Riley (2004) then considered the IPA
gradient estimator for loss volume in the case of retransmissions for the single-stage network
and for which the control parameter was again the buffer size. Here, some notion of delay
in the feedback path was examined. In Yu and Cassandras (2004c) and Yu and Cassandras
(2004a), the authors dealt with multiplicative feedback on a single node SFM. In Yu and
Cassandras (2004c) the input rate was decreased multiplicatively by a factor c (0 < c ≤ 1)
if the queue length exceeded a certain threshold φ. They derived the IPA gradient estimators
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for the loss rate and average queue workload performance metrics with respect to the feed-
back gain parameter c instead of the usual buffer size. The authors in Yu and Cassandras
(2004a) extended the work of Yu and Cassandras (2004c) by deriving the IPA gradient esti-
mators for loss rate and throughput metrics with respect to the buffer threshold φ at which
the multiplicative feedback will be invoked. They then used the IPA gradient estimators with
respect to c and φ in a joint two-dimensional optimization procedure using SA to minimize
a cost function of the weighted sum of loss rate and throughput. In Wardi et al. (2010) a
unified approach for single-stage IPA-SFM was presented. A general framework for IPA of
tandem networks in which there are delays was provided in Wardi and Riley (2010).

In Yao and Cassandras (2009), the authors derived IPA derivative estimators for a two-
class system with each class having its own performance objectives. In this case the flow
classes were differentiated in terms of service processes and flow content. In Yao and Cas-
sandras (2011) they extended this work on multi-class systems by examining a class of
stochastic non-cooperative games termed “resource contention games”. In either case, no
feedback was considered.

In this paper we examine a single-stage stochastic fluid queue that is shared between
two competing sources, one that employs additive loss-feedback congestion control and the
other that employs no congestion-control (i.e., it is unresponsive). We derive the appropri-
ate IPA gradient estimators, which are then used in the Robbins-Monro SA procedure to
perform online stochastic optimization of the following objective function:

J (θ) = ωLLT (θ) + ωQQT (θ) (2)

where LT (θ) and QT (θ) are the total loss volume and queue workload respectively, ωL

and ωQ are their relative weights and θ , the parameter for optimization, is chosen to be the
buffer capacity b.

In Section 2, we analyze the system’s dynamics from which we determine the gradient
estimators dLT (θ)

dθ
and dQT (θ)

dθ
. In Section 3, we perform some simulations to demonstrate

the efficacy of the approach. We conclude in Section 4.

2 The gradient estimators

Consider the scenario depicted in Fig. 1. A non-responsive stochastic flow of rate σ2(t)

competes with that of a controlled source of rate σ1(t). The loss-feedback constant is c,

Fig. 1 Stochastic fluid model with instantaneous additive-loss feedback for the single stage case with a
competing non-responsive flow
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the buffer capacity, b, the buffer occupancy, x(θ; t), the service rate, β(t), the outflow rate,
δ(θ; t) and the IPA time-horizon, the constant T such that T > 0 and t ∈ [0, T ]. It should be
noted again that θ , the optimization parameter, will be b. The total loss rate at the queue is
denoted as γ (θ; t) = γ1(θ; t)+γ2(θ; t) where γ1(θ; t) is the loss-rate of the IPA-controlled
flow, and γ2(θ; t) is that of the non-responsive flow.

The total loss volume, LT (θ), is given by

LT (θ) =
∫ T

0
γ (θ; t) dt (3)

and the cumulative queue workload, QT (θ), is given by

QT (θ) =
∫ T

0
x(θ; t) dt (4)

We define:
A(θ; t) = σ2(t) + α1(θ; t) − β(t) (5)

So that the dynamics of the queue state, x(θ; t), can be expressed as follows:

dx

dt
=

⎧
⎨

⎩

0 if x(θ; t) = 0 and A(θ; t) < 0
0 if x(θ; t) = b and A(θ; t) > 0
A(θ; t) otherwise

(6)

Also:

γ (θ; t) =
{

A(θ; t) if x(θ; t) = b

0 otherwise
(7)

Now:
α1(θ; t) = σ1(t) − cγ1(θ; t) (8)

where
γ1(θ; t) = α1(θ;t)

α1(θ;t)+σ2(t)
γ (θ; t) (9)

⇒ α1(θ; t) =
{

f (σ1(t), σ2(t), β(t), c) if x(θ; t) = b

σ1(t) otherwise

⇒ A(θ; t) =
{

σ2(t) + f (σ1(t), σ2(t), β(t), c) − β(t) if x(θ; t) = b

σ2(t) + σ1(t) − β(t) otherwise

(10)

where
f (σ1(t), σ2(t), β(t), c) ≡ − σ2(t)

2 + σ1(t)+cβ(t)
2(1+c)

+
√(

σ2(t)
2 − σ1(t)+cβ(t)

2(1+c)

)2 + σ1(t)σ2(t)
(11)

The derivation of Eq. 11 can be found in the Appendix (i.e., Section 1).
Using the relation in Eqs. 10, 6 and 7 can be rewritten as:

dx

dt
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if x(θ; t) = 0
and σ2(t) + σ1(t) − β(t) < 0

0 if x(θ; t) = b

and σ2(t) + f (σ1(t), σ2(t), β(t), c) − β(t) > 0
σ2(t) + σ1(t) − β(t) otherwise

(12)

γ (θ; t) =
{

σ2(t) + f (σ1(t), σ2(t), β(t), c) − β(t) if x(θ; t) = b

0 otherwise
(13)

Consider the buffer-occupancy process in Fig. 2. Let τi(θ) be the beginning of the i-th
boundary period (BP) and let ςi(θ) be the end of the i-th BP, so that the i-th BP is denoted
as Bi = [τi(θ), ςi(θ)] in the interval [0, T ]. Let F := {i : x(θ; t) = b ∀ t ∈ Bi} be the set
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Fig. 2 Trajectory of buffer-occupancy for single-stage case with competing flow

of all indices of boundary periods that are full periods in the interval [0, T ]. Then the total
loss volume, denoted as LT (θ), is given by:

LT (θ) =
∑

i∈F
Li(θ) (14)

where

Li(θ) = ∫ ςi (θ)

τi (θ)
γ (θ; t) dt

= ∫ ςi (θ)

τi (θ)
[σ2(t) + f (σ1(t), σ2(t), β(t), c) − β(t)] dt

(15)

The loss derivative is then given by

dLT (θ)

dθ
=

∑

i∈F

dLi(θ)

dθ
(16)

We define two types of events that are pertinent to this work: exogenous event and
endogenous events. An exogenous event is a discontinuity in the defining processes σ(t)

and β(t). Therefore, its time of occurrence, υ, is independent of the control parameter. Let
υ be this time of occurrence, then dυ

dθ
= 0.

On the other hand, an endogenous event is the beginning of an empty-period or full-
period at the queue. However, we reiterate the formal definition for endogenous events
as specified in Cassandras et al. (2010). An endogenous event occurs if there exists a
continuously-differentiable function g(x, θ) such that at the time of its occurrence, υ(θ),
g(x(θ, υ), θ) = 0. At the beginning of an empty-period: υ(θ), g(x(θ, υ), θ) = x(θ, υ), and
at the beginning of a full-period: g(x(θ, υ), θ) = x(θ, υ) − θ . It will be shown later, that
dυ
dθ

= 1
(σ2(τi (θ))+σ1(τi (θ))−β(τi (θ)))

when the queue becomes full after a cease-full event.
Now we will proceed to derive the loss derivative considering the case when the buffer

capacity, b, is the control parameter.

dLi(θ)
dθ

= d
dθ

[∫ ςi (θ)

τi (θ)
(σ2(t) + f (σ1(t), σ2(t), β(t), c) − β(t)) dt

]

= ∫ ςi (θ)

τi (θ)
d
dθ

[σ2(t) + f (σ1(t), σ2(t), β(t), c) − β(t)] dt + (
σ2(ςi(θ)−) +

f (σ1(ςi(θ)−), σ2(ςi(θ)−), β(ςi(θ)−), c) − β(ςi(θ)−)
) dςi (θ)

dθ
−(

σ2(τi(θ)+) + f (σ1(τi(θ)+), σ2(τi(θ)+), β(τi(θ)+), c) −
β(τi(θ)+)

)
dτi (θ)

dθ

(17)

Since σ1(t), σ2(t) and β(t) are independent of θ , then f (σ1(t), σ2(t), β(t), c) is
also independent of θ within the interval (τi(θ), ςi(θ)) so that

∫ ςi (θ)

τi (θ)
d
dθ

[σ2(t) +
f (σ1(t), σ2(t), β(t), c) − β(t)] dt = 0

Consider, t = ςi(θ), the time when the queue ceases to be full. For the discontinuous
case, there is a jump in A(θ; t) i.e. A(θ; ςi(θ)−) > A(θ; ςi(θ)+). This implies that:
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σ2(ςi(θ)−) + f (σ1(ςi(θ)−), σ2(ςi(θ)−), β(ςi(θ)−), c) − β(ςi(θ)−) (18)

> σ2(ςi(θ)+) + σ1(ςi(θ)+) − β(ςi(θ)+)

Suppose that there are no exogenous changes in the processes σ1(t), σ2(t) and β(t) at
t = ςi(θ), then

f (σ1(ςi(θ)), σ2(ςi(θ)), β(ςi(θ)), c) > σ1(ςi(θ)) (19)

But this cannot be since for the same values of σ1(t), σ2(t) and β(t) at t = ςi(θ)

α1(ςi(θ)−) < α1(ςi(θ)+) (20)

⇒ f (σ1(ςi(θ)), σ2(ςi(θ)), β(ςi(θ)), c) < σ1(ςi(θ))

Therefore, for there to be a negative jump in A(θ; t), it must be due to an exogenous
event in σ1(t), σ2(t) or β(t) at t = ςi(θ). As a result, dςi (θ)

dθ
= 0.

In the continuous case, A(θ; t) = 0 at t = ςi(θ) which implies that

f (σ1(ςi(θ)), σ2(ςi(θ)), β(ςi(θ)), c) = σ1(ςi(θ)) = σ2(ςi(θ)) − β(ςi(θ)) (21)

(which is possible) so that A(θ; ςi(θ))
dςi (θ)

dθ
= 0.

Equation 17 then becomes:

dLi(θ)

dθ
= − (

σ2(τi(θ)+) + f (σ1(τi(θ)+), σ2(τi(θ)+), β(τi(θ)+), c)

− β(τi(θ)+)
) dτi(θ)

dθ
(22)

We now attempt to determine an expression for the time-derivative, dτi (θ)
dθ

, which cor-
responds to when the queue becomes full. To do this, we first consider the non-boundary
period (NBP) that precedes the full-period. That NBP may have itself been preceded by an
empty period (EF) or a full-period (FF).

x(θ; t)|τi (θ)
ςi−1(θ) = x(θ; τi(θ)) − x(θ; ςi−1(θ)) =

{
θ if preceding NBP is EF
0 if preceding NBP is FF

= ∫ τi (θ)

ςi−1(θ)
dx(θ,t)

dt
dt

= ∫ τi (θ)

ςi−1(θ)
(σ2(t) + σ1(t) − β(t)) dt

(23)

Taking derivatives of Eq. 23 with respect to θ :

(σ2(τi(θ)−) + σ1(τi(θ)−) − β(τi(θ)−))
dτi(θ)

dθ
=

{
1 if preceding NBP is EF
0 if preceding NBP is FF

(24)

Because no exogenous event occurs at t = τi(θ), then (σ2(τi(θ)−) + σ1(τi(θ)−) −
β(τi(θ)−)) = (σ2(τi(θ)+)+σ1(τi(θ)+)−β(τi(θ)+)) = (σ2(τi(θ))+σ1(τi(θ))−β(τi(θ))).
Equation 24 then becomes:

(σ2(τi(θ)) + σ1(τi(θ)) − β(τi(θ)))
dτi (θ)

dθ
=

{
1 if preceding NBP is EF
0 if preceding NBP is FF

(25)

Substitute Eq. 25 into Eq. 22:

dLi(θ)

dθ
=

⎧
⎪⎪⎨

⎪⎪⎩

− (σ2(τi (θ))+f (σ1(τi (θ)),σ2(τi (θ)),β(τi (θ)),c)−β(τi (θ)))
(σ2(τi (θ))+σ1(τi (θ))−β(τi (θ)))

if preceding NBP
is EF

0 if preceding NBP
is FF

(26)



Discrete Event Dyn Syst (2016) 26:367–382 373

Because the loss-feedback is felt only when the queue is in a full-period, the IPA deriva-
tive for the queue workload is the same as that of the single-stage case with no loss-feedback
as derived in Wardi et al. (2002). For ease of reference we repeat the result here. Denote
the j -th non-empty period in which there is at least one full period as NEj . Let uj,1 be the
beginning of the first full period in NEj . Let vj be the end of NEj . Then

dQT (θ)

dθ
=

M∑

j=1

vj − uj,1 (27)

where there are M such non-empty periods in the interval [0, T ].

2.1 A note on unbiasedness

The IPA gradient estimators are said to be unbiased if the operations of integration and
expectation can be interchanged so that:

d

dθ
(E[J (θ)]) = E

[
dJ

dθ

]

(28)

When the following two conditions are both met, the IPA derivative estimators will be
unbiased. Consider the IPA loss derivative1:

– The sample derivative, dL(θ)
dθ

exists for all θ ∈  where  is a closed and bounded set.
– The sample function, L(θ; T ) is Lipschitz continuous in θ , and its Lipschitz constant

has a finite first moment.

For the first condition to be satisfied, it is necessary that L(θ; T ) should be continuous
with respect to θ over the set θ ∈ . As can be seen from the previous section, the form of
the loss derivative consists of the product of the net-inflow rate (A(θ; t)) and the derivative
of an event-time with respect to the control parameter, θ , i.e., dv

dθ
. (See Eq. 25). Therefore

the existence of the gradient estimator will depend on the behaviour of the net-inflow rate
(A(θ; t)) with respect to θ , as well as on the existence of the event-time derivatives.

For the event-times to be continuous in θ for all θ ∈ , small changes in θ should not
alter the sequence of events. Therefore the following three assumptions must hold w.p.1:

Assumption 1 σ(t) and β(t) are piecewise continuously differentiable on the interval
[0, T ].

Assumption 2 No empty period or full period consists of a single point.

Assumption 3 Exogenous events cannot occur simultaneously with other exogenous events
or with other endogenous events

In other words, no two events can occur at the same time unless one of them induces the
other. Consider, as an example, the situation when the second assumption does not hold. It
would mean that an endogenous and exogenous event would have occurred simultaneously.
If the control parameter θ were to increase infinitesimally to θ + �θ , then the exogenous
event would have occurred before the endogenous event. And if the control parameter were

1This applies also to the queue-workload derivative
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Fig. 3 Algorithm for the adjustment of the control parameter θ

to instead decrease infinitesimally to θ − �θ , the opposite would be true. This can cause a
discontinuity in the loss volume at θ .

The assumption that follows constrains the behaviour of the net-inflow rate (A(θ; t)) with
respect to θ so that it is continuous with respect to θ , otherwise if this condition were not to
hold, A(θ; t) would be discontinuous and so would be the gradient estimator dependent on
it.

Assumption 4 During an open sub-interval of any boundary period it never occurs that
A(θ; t) = 0

Fig. 4 Optimization for k = 0.1, c = 0.3333
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Fig. 5 Cost function for k = 0.1, c = 0.3333

If the following is true then the second condition is satisfied.

‖LT (θ + �θ) − LT (θ)‖ < K�θ (29)

where K > 0 is a random variable with E[K] < ∞. In other words, the maximum magni-
tude of the sample derivative over all θ should always be less than some constant, K , which
is the Lipschitz constant and the mean of which is always finite.

Fig. 6 Optimization for k = 0.1, c = 0.25
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Fig. 7 Cost function for k = 0.1, c = 0.25

In all, what remains to be done, is to determine the value of K for each sample-derivative
we derived using IPA, to prove unbiasedness. In particular, for this single-stage case with
instantaneous additive loss feedback and with buffer length being the control parameter of
interest, we find that

∣
∣ dL

dθ
(θ)

∣
∣ < NT where NT is the number of lossy busy-periods in the

Fig. 8 Optimization for k = 0.5, c = 0.3333
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Fig. 9 Cost function for k = 0.5, c = 0.3333

interval [0, T ]. Within the interval [0, T ], the independent processes, σ(t) and β(t), can
have only a finite number of discontinuities, so that the number of sign changes in the net
inflow-rate A(θ; t) is also finite. As a result, NT > 0, E[NT ] < ∞. We can thus say that
NT is the Lipschitz constant that we need, and that the IPA loss derivative is unbiased. The

Fig. 10 Optimization for k = 0.5, c = 0.25
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unbiasedness of the queue-workload derivative for this case was established in Wardi et al.
(2002).

3 Simulations with buffer capacity, b, as the control variable θ

Simulation results were obtained using a fluid model created in Matlab.
The service rate, β(t), is a random process, uniformly distributed between 6.75 Mbps

and 11.25 Mbps. Its average service rate is 9 Mbps. The time interval between changes in
the magnitude of β(t) is a constant at 75 ms. The IPA time-horizon, T = 10 seconds. The
average input-rate, λ = E[σ1] + E[σ2], into the first queue was held at 8.32 Mbps (taking
into account packet-header adjustments). Let k ≡ E[σ2]

E[σ1]+E[σ2] . Also, let x = (1−k)×λ, and
y = k×λ. For the controlled source, let p be the “HI-rate”, and q, the “LO-rate”. Therefore
p = x

d+(1−d)r
and q = rp, where d ≡ duty-cycle = 0.5 and r ≡ ratio of off- to on-rate =

0.25. The total (on- + off-)period on average was 200ms.
For the non-responsive source, let a be the “on-rate”, and b, the “off-rate”, so that a = y

d

and b = 0 where d ≡ duty-cycle = 0.5. The total (on- + off-)period on average was 110ms.
In all, σ1(t) switches between either of two levels, 13.31× (1− k) Mbps (“HI”-rate) and

3.32 × (1 − k) Mbps (”LO”-rate) every 100 ms or so. Its average is 8.32 × (1 − k) Mbps.
σ2(t) oscillates between 16.64 × k Mbps and 0 Mbps every 55 ms or so, for an average of
8.32 × k Mbps.

The loss-feedback constant, c is 0.3333. The packet size is 554 bytes (512 bytes for the
payload, and 42 bytes for the header).

Three optimizations were carried out with different initial values for the buffer-limit, i.e.,
b = 20, 70, 100. For each optimization, there were 120 independent iterations, with each
iteration being a run of length 10s. The control variable θ (i.e. the buffer-limit) was adjusted
after each run and was used as the new buffer-limit in the next run. The algorithm for the
adjustment in θ ≡ b is shown in Fig. 3 with � initialized to zero. The parameter values were
chosen to be ai = a0

iρ
, a0 = 5, ρ = 0.6, wL = 10, wQ = 83.5, and dJ

dθ
= wL

T
dLT

dθ
+ wQ

T
dQT

dθ
.

With the optimization, each run is completely independent of each other. The results are
shown for k = 0.1 in Fig. 4. In spite of the noise, all three cases converge to b ≈ 75packets.
The corresponding cost function is shown in Fig. 5. It can be seen that the minimum value
occurs at around b ≈ 75packets.

Simulations were also conducted for the following cases:

1. c = 0.25, k = 0.1.
2. c = 0.3333, k = 0.5.
3. c = 0.25, k = 0.5.

The results for these cases, together with their corresponding cost functions are shown in
Figs. 6, 7, 8, 9, 10 and 11.

In all cases presented the minima was found to occur within the range of 70 to 80 packets
for the buffer limit. Based on the form of the cost function that was chosen and the relative
sizes of the weights, it can be deduced that for low values of buffer limit, the loss-volume
component of the cost function will dominate, and for higher values of the buffer limit,
the queue workload will dominate. For all cases examined, the weight values were held
constant. But it was found that when the proportion of traffic entering the queue due the
competing, uncontrolled traffic increased from 10 % to 50 %, the contribution of the queue
workload to the total cost seemed to have diminished considerably. This then led to the
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Fig. 11 Cost function for k = 0.5, c = 0.25

minimum cost being less pronounced. This in turn lead to a longer covergence time when the
initial value of the buffer limit was greater than that of the minima. This behaviour may be
attributed to the fact that the proportion of the total loss rate that is fedback to the controlled
source would be less with k = 50 % thereby diminishing the effect of the control function
on the total loss volume. Hence the change in loss volume per unit-increase in buffer limit
is greater for k = 50 % than k = 10 %. The queue workload derivative, however, being
unaffected by the loss feedback, would not produce a comparable change in queue workload
with buffer limit as that of the loss volume for the same change in k.

With k = 10 %, a change in the feedback constant from c = 0.3333 to c = 0.25 led
to an increase in the buffer-limit at minima from 75 packets to roughly 80 packets. This
may be due to the less aggressive feedback policy (i.e., lower feedback constant) allowing
the loss volume generated for a given buffer-limit to be greater. The impact of a change in
loss feedback is less discernible when the proportion of traffic flow due to uncontrolled,
competing traffic is greater. In the both cases: k = 50 %, c = 0.3333 and k = 50 %, c =
0.25, the buffer limit at the minimum cost was about 70 packets.

Therefore, for this optimization to be implemented in a real-world system, it may be
necessary to dynamically adjust the weights of the cost function with changing traffic load.

4 Conclusion

We have derived the IPA gradient estimators for loss volume with respect to buffer capacity
for a single-stage stochastic fluid queue that is shared between two competing sources,
one that employs additive loss-feedback congestion control and the other that employs no
congestion-control (i.e., it is unresponsive), a scenario that is applicable within the realm of
computer communication networks particularly at bottleneck router queues where multiple
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and diverse flows compete for bandwidth. The IPA gradient estimators were then used to
drive an online stochastic optimization so as to minimize a cost function which consisted of
a weighted sum of loss volume and queue workload. There was convergence to the minima.

In this paper, only a single queue is considered with instantaneous loss feedback to
the responsive source. In reality, however, a set of competing flows may traverse a tan-
dem of queues connected by links that incur non-zero propagation delays. Additionally,
there would be some non-zero delay in the feedback mechanism. Therefore, one sug-
gested path of progression along this line of research would be to investigate and derive
the IPA gradient estimators for the single-stage case with loss-feedback delay for a pair of
responsive and non-responsive competing flows. The next step would be to extend these
delayed-loss-feedback results to the tandem case with propagation delay.

Appendix: Derivation of α1

During a full-period:

α1 = σ1 − cγ

(
α1

α1 + σ2

)

(30)

γ = σ2 + α1 − β (31)

Substitute Eq. 31 into Eq. 30

α1 = σ1 − c(σ2 + α1 − β)

(
α1

α1 + σ2

)

⇒ α1(α1 + σ2) = σ1(α1 + σ2) − c(σ2 + α1 − β)α1

⇒ α2
1 + α1σ2 = σ1α1 + σ1σ2 − cα1σ2 − cα2

1 + cα1β

⇒ (1 + c)α2
1 + (σ2 − σ1 + cσ2 − cβ)α1 − σ1σ2 = 0

⇒ (1 + c)α2
1 + ((1 + c)σ2 − (σ1 + cβ))α1 − σ1σ2 = 0

⇒ α1 = −((1 + c)σ2 − (σ1 + cβ)) ± √
((1 + c)σ2 − (σ1 + cβ))2 + 4(1 + c)σ1σ2

2(1 + c)

⇒ α1 = −σ2(t)

2
+ σ1(t) + cβ(t)

2(1 + c)
±

√
(

σ2(t)

2
− σ1(t) + cβ(t)

2(1 + c)

)2

+ σ1(t)σ2(t)

Now, for all σ1(t), σ2(t), β(t) and c:
√

(
σ2(t)

2
− σ1(t) + cβ(t)

2(1 + c)

)2

+ σ1(t)σ2(t) >

∣
∣
∣
∣
σ2(t)

2
− σ1(t) + cβ(t)

2(1 + c)

∣
∣
∣
∣

so that

−σ2(t)

2
+ σ1(t) + cβ(t)

2(1 + c)
−

√
(

σ2(t)

2
− σ1(t) + cβ(t)

2(1 + c)

)2

+ σ1(t)σ2(t) < 0

−σ2(t)

2
+ σ1(t) + cβ(t)

2(1 + c)
+

√
(

σ2(t)

2
− σ1(t) + cβ(t)

2(1 + c)

)2

+ σ1(t)σ2(t) > 0
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Therefore

⇒ α1 = −σ2(t)

2
+ σ1(t) + cβ(t)

2(1 + c)
+

√
(

σ2(t)

2
− σ1(t) + cβ(t)

2(1 + c)

)2

+ σ1(t)σ2(t)

Denote

f (σ1(t), σ2(t), β(t), c) ≡ −σ2(t)

2
+ σ1(t) + cβ(t)

2(1 + c)

+
√

(
σ2(t)

2
− σ1(t) + cβ(t)

2(1 + c)

)2

+ σ1(t)σ2(t)
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