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Abstract We define a mixed imperative/declarative programming language: declar-
ative contracts are enforced upon imperatively described behaviors. This paper
describes the semantics of the language, making use of the notion of Discrete
Controller Synthesis (DCS). We target the application domain of adaptive and
reconfigurable systems: our language can serve programming closed-loop adaptation
controllers, enabling flexible execution of functionalities w.r.t. changing resource and
environment conditions. DCS is integrated into a1 programming language compiler,
which facilitates its use by users and programmers, performing executable code
generation. The tool is concretely built upon the basis of a reactive programming
language compiler, where the nodes describe behaviors that can be modeled in
terms of transition systems. Our compiler integrates this with a DCS tool, making
it a new environment for formal methods. We define the trace semantics of our
contracts language, describe its compilation and establish its correctness, and discuss
implementation and examples.
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1 Introduction

1.1 Motivation w.r.t. programming languages

We define a mixed imperative/declarative programming language, in which declar-
ative contracts, stating dynamical temporal properties, are enforced at compilation-
time upon imperatively described behaviors. We propose in this way a programming
language design and compilation involving the concrete exploitation of the formal
model of the dynamical behavior of the program, as represented by the state space of
its control flow. Classically compilation takes into account statical properties holding
for all states (type consistency checking, optimizations and code generation). In con-
trast, we want to consider properties on the dynamical control flow of the program
under compilation. We consider here safety properties on sequences, for which we
use synchronous observers in order to reduce them to state-based properties (we do
not consider properties that evolve at run-time).

One example could be to use model-checking operations and test for the reach-
ability of states in order to determine whether code associated to such states is
dead code or not. In our approach we want to go further than this, by considering
the formal technique of Discrete Controller Synthesis (DCS). We integrate it in the
compilation to produce (part of) the control logic implementing the program. We
consider the family of reactive languages like StateCharts (Harel and Naamad 1996)
or synchronous languages (Benveniste et al. 2003), which lend themselves naturally
to our approach. They rely on finite state machine models, for specification at front-
end, and at back-end as a target representation for code generation, model checking
or DCS.

1.2 Motivation w.r.t. DCS

DCS is stemming from control theory: it ensures by construction some required
dynamical and qualitative properties on a transition system, by coupling it in a
closed-loop to a controller that determines the set of actions which may be taken
without compromising the properties (Cassandras and Lafortune 2007; Ramadge
and Wonham 1987). Application of Discrete Control Theory to computing systems
is relatively recent, e.g., DCS on Petri nets can be used to automatically derive
controllers avoiding dead-lock configurations in a multi-thread program (Wang et al.
2009). We model the transition system by Symbolic Transition Systems (Marchand et
al. 2000), an implicit Boolean representation of the dynamic behavior (implemented
by means of BDD to avoid the enumeration of the state space), and focus on the
synthesis of controllers for safety properties. We integrate DCS into a compiler,
and thereby improve its usability by programmers, and provides them with support
for executable code generation. From a description in a high-level programming
language of both the system and the expected properties to be fulfilled, the controlled
system is automatically produced, in the same high-level language, from which
executable code is generated.

1.3 Motivation w.r.t. adaptive and reconfigurable systems

We target the application domain of reconfigurable computing systems, which
are also called adaptive systems, in the sense that they adapt, by reconfiguring
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themselves, to changes in their environment or execution platform concerning, e.g.,
power supply, communication bandwidth, quality of service, surface used in a FPGA,
computation load, or dependability and fault tolerance for a safe execution. The
adaptive systems that we consider can switch between known modes, and we want
to control these switches (but we do not consider adaptive control). The run-time
management of this adaptivity is the object of research on the design of adaptation
strategies. A global approach is referred to as autonomic computing, where function-
alities are defined for sensing the state of a system, deciding upon reconfiguration
actions, and performing and executing them. These functionalities are assembled
into a closed-loop as illustrated in Fig. 1a. When safe design is an important issue,
there is a contradiction with dynamical operating system features. Obtaining static
predictability is the goal of model-based methods for specification, validation and
verification techniques of embedded systems. In a context of increasing complexity
of systems, coupled with more and more integration (independent functional tasks
sharing common resources), handwriting correct controllers remains difficult and
error-prone. We want to combine these two different requirements for adaptive
systems, i.e., to be adaptive and predictable. We consider the controller of such an
adaptive system as a reactive system, and the design of a correct controller as a
Discrete Control problem. Such a system has running configurations, represented
by states, and it can perform reconfigurations, represented by labelled transitions.

We want a well-defined language that separates concerns, that is to say that
supports separate specification of, on the one hand, the possible behaviors of the
components, their different execution modes, the way they can switch between them,
and their controllability, in the form of an automaton model; and on the other hand,
in a contract, the adaptation policy to be followed, the control objectives for the
components assembly, from which DCS can generate a control decision component.

1.4 Typical examples

We consider a computing system featuring a set of tasks, considered at the level
of their activity behavior, with states characterized by their consuming resources:
processing or memory, power, or other. We want to coordinate such tasks while
enforcing the constraints around resources. These tasks are represented by their
behavior in terms of activation state, initially idle. They can be started into an
active state. Some tasks can be controlled into an intermediary state, before being
activated, where they may be waiting until a required resource is free; there, they
do not consume any resource. Others can be controlled, from the active state, into
a suspended state, where they will consume no computing resource, but will hold
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their memory resource. Functionalities can also have different modes, characterized
by the use of different resources, and by different levels of quality of service for the
offered functionality.

Managing this multi-task system involves enforcing some coordination properties
on the interactions between the tasks, around the resources, e.g., simple mutual
exclusion between active states of two tasks, or bounded number of tasks in the
active mode at the same time, in order to limit access to some bounded resource.
Another, more dynamical management property concerns enforcing that between
activations of two given tasks, another third task must always have been activated
(e.g., re-initializing or cleaning up some accessed resources).

For example an adaptive communication system may have a behavior with modes
accessing the cellular phone network, and other modes accessing the WiFi: they may
involve different protocols, different prices (which constitutes another resource). An
adaptation policy must define what mode to choose, in terms of properties, separately
from the possible behaviors. As soon as the programmed system comprises several
such concurrent tasks, with several policies to be enforced, the controller enforcing
these policies can be very intricate to program manually. Therefore, automated
controller generation can here be helpful.

Such simple examples illustrate the separation of concerns enabled by our lan-
guage: it is the compilation, involving DCS, that computes automatically the correct
relation between, on the one hand, the controllability of the components, and on the
other hand, the adaptation policy. As in Fig. 1b, the reactive component, written in
our reactive programming language, will be receiving input flows of task activation
requests and of task termination signals; it will produce flows of task starting signals
to be executed by the system platform. It decides what signals to send out, w.r.t.
the automaton model of the set of tasks, while enforcing the management policy,
implemented into a controller automatically generated by DCS.

1.5 Contribution and overview

Our contribution in this paper is particularly in the programming language level
integration of discrete control objectives, concretized by the use of DCS within the
compilation, for which we do not know, to the best of our knowledge, other closely
related work. From the point of view of programming languages, it is uncommon that
a model of the dynamics of the program is taken into account by the compilation,
and even rarer that it is exploited for synthesizing the resulting behavior : our
approach is therefore novel. From the point of view of Discrete Control, it allows to
consider novel application areas, and shows the relevance of theoretical approaches
to modularity and abstraction.

A companion paper describes how compilation works with modular DCS compu-
tations (Delaval et al. 2010), whereas this paper defines the programming language
semantics in a denotational way. Previous work, preceding these papers, involved
some separate and partial aspects of the problem, testing the idea in the framework
of a more modest specialized language and elaborating on the articulation between
reactive programs and DCS (Marchand et al. 2000; Altisen et al. 2003).

We proceed by defining the BZR programming language and its compilation as an
extension of the Heptagon reactive language presented in Section 2.1. In the semantic
framework of transitions systems, the operation of DCS can be applied, as we recall
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in Section 2.2. On these bases, our contribution is the definition of a construct for
nodes with contracts: they have an assumption part, given which they will satisfy the
enforce part, relying upon local control variables. This is presented first informally
in Section 3, with a simple example. The trace semantics of the language defines the
behavior of the programs, as presented in Section 4.

As detailed in Section 5, the compilation of these programs involves:

– the extraction of the control part from the body and contract, and its compilation
into an uncontrolled transition system;

– the extraction of the control objectives from the contracts;
– the application of DCS upon the previous two elements;
– the transformation of the obtained maximally permissive constraint into a de-

terministic controller function, by triangularization; item[–] the composition of
the obtained controller with the uncontrolled program, producing the correct
controlled automaton.

– the resulting composition is compiled towards target code, e.g., C or Java, and
consists of a step function, to be called at each reaction of the reactive system, and
a reset function for (re)initialization purposes. They then have to be embedded
as a control component in the adaptive system under design (Delaval and Rutten
2010).

In this compilation process, we re-use existing tools, for synchronous compilation
and for DCS, and build our contribution on top of them.

Section 6 describes an example, illustrating how the programming language works.
Section 7 gives an overview of related work, and Section 8 concludes.

2 Reactive systems and their supervisory control

This section introduces the classical bases, upon which we will build our contribution
in the next sections. We first rely on the corpus of reactive languages, and more
particularly synchronous languages and Mode Automata, with notations inspired
from Lucid Synchrone (Colaço et al. 2005). We further present the notion of dis-
crete event systems, their supervisory control, and more particularly the automated
technique of DCS.

2.1 Reactive programming and synchronous languages

2.1.1 Nodes

For scalability and abstraction purpose, we consider synchronous programs struc-
tured in nodes, consisting in a name, input and output variables representing flows
of values, and equations defining outputs as functions of inputs. The basic behavior
is that at each reaction step, values in the input flows are used in order to compute
the values in the output flows for that step. Inside a node, this is expressed as a set of

Fig. 2 Simple equation node
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Fig. 3 Basic task control

declarations D, which takes the form of equations defining, for each output and local,
the values that the flow takes, in terms of an expression on other flows, possibly using
local flows and values computed in preceding steps (also known as state values). The
complete syntax of our language is given in Section 3.2. A simple equation node is
illustrated in Fig. 2, where for input flows a, b , c and d, all Boolean, a Boolean output
flow m is true when more than two out of the four inputs are true.

A particular type of node which we consider in this paper is used to encode
Mode Automata, which give the possibility of mixing equational programming with
more imperative automata-based programming. We consider programs expressed as
synchronous automata, with parallel and hierarchical composition. With each state
of an automaton, a node can be associated, with equations, or a Mode Automaton.
At each step, according to inputs and current state values, equations associated to the
current state produce outputs, and conditions on transitions are evaluated in order to
determine the state for the next step (i.e., transitions are considered weak). It can be
noted that such higher-level constructs can be compiled towards the minimal kernel
(Colaço et al. 2005), hence they will not be represented explicitly in the semantics.

An example of Mode Automaton is a very basic task controller, distinguishing
between its idle and active states. This example is shown in Fig. 3 in graphical syntax,
with an example of input/output trace. The node is named task. A “go” input g
causes the transition from the initial idle state to the active state (step 2 on the exam-
ple), where computations take place, with corresponding resources consumption. An
output s is emitted on this transition,1 which will fire the concrete task starting in the
controlled operating system. Another input e signals the termination of the task, and
causes transition back to idle (step 5). Equations associated with the states define the
value of an output a. This basic pattern will be used in different ways.

An interesting variant is the delayable task, for which Fig. 4 gives the graphical
and texual syntax. An additional input flow c enables the control of the request r, by
either accepting it right away and going to the active state, or going to a wait state,
from where c can later fire the starting. The output flow a appropriately defines the
activity.

1Such emissions on transitions, used here for simplicity, are easily translated to equations associated
with states, as in Fig. 4.
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Fig. 4 Delayable task

2.1.2 Node composition

The composition of equations constructs a system of equations, with a synchronous
semantics. Nodes can be composed synchronously, e.g., automata, behaving as a
synchronous product. Figure 5 shows the composite node twotasks, constructed
by the synchronous composition of instances of the nodes task and delayable
described above.

The corresponding composition performs a global transition at each step. The
implementation takes the form of a reset function, to initialize state variables,
and a step function, encoding the transition function. In such implementations, the
synchrony hypothesis consists of considering that the function is guaranteed to return
in bounded time.

2.1.3 Basic semantic framework for nodes

We represent the logical behavior of a Mode Automaton by a symbolic transition
system (STS), as illustrated in Fig. 6, in its equational form. Synchronous compilers

Fig. 5 Composite node with
delayable task
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Fig. 6 Transition system for a
program

essentially compute this transition system from source programs, particularly han-
dling the synchronous parallel composition of nodes. For a node f , a transition
function T takes the inputs X and the current state value, and produces the next
state value, memorized by S for the next step. The output function O takes the same
inputs as T, and produces the outputs Y.

STS definition Formally, from a node f , we can automatically derive an STS
given by S f (X, S, Y),2 defining a synchronous program of state variables S ∈
B

m, input variables X ∈ B
n, output variables Y ∈ B

p. S f (X, S, Y) is a four-tuple
(T, O, Q, Q0) with two functions T and O, and two relations Q and Q0 as in Eq. 1,
where the vectors S and S′ respectively encode the current and next state of the
system and are called state variables. T ∈ B[S, X] represents the transition function.

S f (X, S, Y) =

⎧
⎪⎪⎨

⎪⎪⎩

S′ = T(S, X)

Y = O(S, X)

Q(S, X)

Q0(S)

(1)

It is a vector-valued function [T1, . . . , Tn] from B
m+n to B

m. Each predicate com-
ponent Ti represents the evolution of the state variable Si. O ∈ B[S, X] represents
the output function. Q0 ∈ B[S] is a relation for which the solutions define the set of
initial states. The relation Q ∈ B[S, X] is the constraint between current states and
events that defines which transitions are admissible, i.e., the (S, X) for which the
transition function T is actually defined. This constraint can be used, e.g., to encode
assumptions on the inputs, i.e., assumptions on the environment. The semantics of
an STS S f is defined as set of sequences (s, x, y) = (si, xi, yi)i such that Q0(s0) and
i, Q(si, xi) ∧ (si+1 = T(si, xi)) ∧ (yi = O(si, xi)). This set of sequences is denoted by
Traces(S f ).

Operations on STS Given two STS S f1 and S f2 , we note by S f1‖S f2 , the syn-
chronous parallel composition of S f1 and S f2 which consists in performing the
conjunction of the constraint predicates of S f1 and S f2 , and is defined whenever
state and output variables are exclusive. Communications between the two systems
are expressed via common inputs and outputs variables, which are considered as
outputs of the composition. Formally, S f1‖S f2 is the STS S f1‖S f2((X1 ∪ X2) \
(Y1 ∪ Y2), S1 ∪ S2, Y1 ∪ Y2):

S f1‖S f2 =

⎧
⎪⎪⎨

⎪⎪⎩

S′
1, S′

2 = (T1(S1, X1), T2(S2, X2))

Y1, Y2 = (O1(S1, X1), O2(S2, X2))

Q1(S1, X1) ∧ Q2(S2, X2)

Q01(S1) ∧ Q02(S2)

2Note that there exists a one to one mapping from a node f (only handling Boolean variables) to
S f .
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Fig. 7 Controlled transition
system

Given an STS S f (X, S, Y), we denote by S f � A the extension of constraints of S f

with the predicate A ∈ B[S, X], namely S f � A = (T, O, Q ∧ A, Qo).

2.2 Discrete Controller Synthesis

DCS, emerged in the 80’s (Ramadge and Wonham 1987; Cassandras and Lafortune
2007), defines constructive methods, that ensure required properties on a system
behavior. Starting from a behavioral model of the system and the set of properties
that have to be satisfied, the synthesis produces the constrained system, so that only
behaviors satisfying required properties are kept.

In our framework, DCS is an operation that applies on a transition system (orig-
inally uncontrolled), where inputs X are partitioned into uncontrollable (Xu) and
controllable variables (Xc). It is applied with a given control objective: a property
that has to be enforced by control. In this work, we consider invariance of a subset
of the state space (typically, forcing a predicate over the state variables of the system
to be always true). But we can also use observer automata composed in parallel with
the original system, to enable general safety properties.3

The purpose of DCS is to obtain a controller, which is a constraint on values
of controllable variables Xc, as a function of the current state and the values of
uncontrollable inputs Xu, such that all remaining behaviors satisfy the property
given as objective. The synthesized controller is maximally permissive, it is a priori a
relation; it can be transformed into a control function. This is illustrated in Fig. 7,
where the transition system of Fig. 6, as yet uncontrolled, is composed with the
synthesized controller C, which is fed with uncontrollable inputs Xu and the current
state value from S, in order to produce the values of controllables Xc which are
enforcing the control objective. The transition system then takes X = Xu ∪ Xc as
input and makes a step by computing the new state and producing the new outputs.

Formally, given an STS S f as in Eq. 1 and a goal predicate G(S) ∈ B[S], to be
made invariant (i.e., always maintained true by control), a controller is a predicate
K ∈ B[S, Xc, Xu] that constrains the set of admissible events so that the state traces
of the controller system always satisfy the predicate G. The behavior of the system
supervised by the controller is then modeled by S f � K. The controller describes
how to choose the static controls; when the controlled system is in state s, and when
an event xu occurs, any value xc such that Q(s, xc, xu) and K(s, xc, xu) can be chosen.
One has to note that K is non-deterministic w.r.t. the controllable variables, in the
sense that for each state of the system and for each valuation of the uncontrollable
variables, there might exists several valuations for the controllable ones that respects
K. Obviously, this non-determinism has to be solved in some ways. One possibility

3An observer is simply an STS allowing to capture a safety property over the sequences of the systems
(e.g. the event a does not occur twice in a row in the system). As usual, we assume that an observer
is complete so that when performing the composition with the STS of the system, the behavior of the
resulting STS is not changed.
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is to encapsulate in the system, a predicate solver, that either asks an external user
to make a choice amongst the possible solutions or that itself performs a random
choices amongst them. Following a method similar to the one described in Hietter et
al. (2008) and Marchand (1997), another possibility is to derive from the controller a
set of functions Fc

i that depends on S, Xc, Xu and some fresh phantom variables φi,
one for each controllable variables, namely:

K(S, Xc, Xu) ⇔ ∃(φi)i≤�

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xc
1 = Fc

1(S, Xu, φ1)

· · ·
Xc

i = Fc
i (S, Xu, Xc

1, · · · , Xc
i−1, φi)

· · ·
Xc

� = Fc
n(S, Xu, Xc

1, · · · , Xc
�−1, φ�)

In other words, whatever the valuation of a tuple (s, xu, xc) is, there exists a valuation
(vφi)i≤� of (φi)i≤� such that xc

i = Fc
i (s, xu, xc

1, · · · , xc
i−1, vφi).

At this point, either the variables (φi) can be seen as new inputs of the system or
can be eliminated by choosing for each of them a value. Note that in this case, we
loose the equivalence (only ⇒ implication is kept). For clarity reasons, this is the
second choice we have made in this paper. Hence, from the controller K, we derive
a deterministic controller C which is a function from B

S∪Xu → B
Xc

.

S f /C =

⎧
⎪⎪⎨

⎪⎪⎩

S′ = T(S, C(S, Xu), Xu)

Y = O(S, C(S, Xu), Xu)

Q(S, C(S, Xu), Xu)

Q0(S)

(2)

The result is a controlled STS as in Eq. 2 such that ∀(s, xu, y) ∈ Traces(S f /C), G(s).
Note that the controllable variables of Xc are now encapsulated inside the STS
and become internal variables. This definition is used in Section 5.3 to assess the
correctness of the compilation of our language. Given an STS S f with Xc as
controllable variables and G the predicate to be made invariant, we denote C =
DCS(S , Xc, G) the operation which consists in computing a controller C so that
in S f /C, the predicate G is always true.

Remark 1 It might happen that given a node S f and a control objective G, there is
no admissible controller to ensure this goal (this is basically due to the uncontrollable
aspects of input variables). In such a case, the node is said to be uncontrollable w.r.t.
G (but might be controllable for another goal).

All the DCS procedure is actually automatic, and implemented in the tool
Sigali (Marchand et al. 2000), which manipulates STS using Binary Decision Dia-
gram (BDD), in order to avoid the state space enumeration when computing the
controller. From a computational point of view, the translation of a node and its
associated control objective to an STS is automatic as well as the computation of
the controller C. This controller is then automatically translated in the original
framework by adding a new node fC derived from C in the original program
following the scheme of Fig. 7, which is essential in our approach, where we want
to build a compiler using DCS.
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Remark 2 In this section, we only focused on ensuring safety properties. However,
it is worthwhile noticing that non-blocking properties can also be considered within
this framework. It would basically consists in ensuring the reachability of a given
set of states F by computing a controller C so that from every state reachable from
the initial state under the control of C, F remains reachable. This procedure is also
implemented in Sigali and can be used as a possible contract within our framework
(note however, that to be correct, we need to keep the maximal permissive controller;
otherwise the reachability is not ensured).

3 Behavioral contracts language

We introduce a new language construct, supporting separation of concerns between
description of components to be managed, and control policy to be enforced. The
advantage is that the programmer does not write the solution, but poses the control
problem. Hence, when the policy changes for the same system, or when aspects of the
system are changed but are managed with the same policy, modifications are limited,
re-use is facilitated, and clarity is favored.

3.1 Contract construct

3.1.1 Simple contract node

As shown in Fig. 8a, we associate to a node a contract, which is a program with
two outputs: an output eA representing the environment model of the node and an
invariance predicate eG that should be satisfied by the node. At the node level, the
programmer declares controllable variables c1, . . . , cq, that will be used for ensuring
this objective. This contract means that the node will be controlled, i.e., that values
will be given to c1, . . . , cq such that, given any input trace yielding eA, the output
trace will yield eG. This will be done by computing a controller using DCS.

Figure 8b shows a simple problem of complementarity between activities of
two tasks: one “background” and one delayable task. The contract node exor
instantiates the node twotasks of Fig. 5. We assume for this example and the
following one that this instantiation gives access to the body of the sub-node (this
option being available in the actual compiler); such assumption will not be true in
further sections. A contract is given by stating that the assumption is empty (or

(a)

(b)

Fig. 8 BZR nodes
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(a) (b)

Fig. 9 Observer and contract node

true), and that the property to be enforced is that only one and at least one of the
two tasks should be active at any time: (ag xor ar). In order to enforce this contract,
g and cr are defined locally to the contract node. Concretely, the control flows g and
cr are used to delay the starting of the delayable task when the background task is
already active, until the latter stops; and conversely if the delayable task stops, the
other is started.

Several nodes can have the same body, behaviorally specialized with different
assumptions and enforcements. The other way around, it is possible to apply the same
contract, to a different body (changing a sub-component in its refined description),
and to re-obtain the updated controller simply by compilation. The contract can
itself feature a program, typically automata observing traces and defining states, as
mentioned in Section 2.2, to express a variety of safety properties. For example, an
error state can be defined where the intended property is false, with the intention to
keep it outside an invariant subspace. Such an observer is illustrated in Fig. 9a: given
input flows for the starting and stopping events of three tasks, it outputs value true
on flow err when a sequence is observed such that task 3 is started (upon s3) after
task 2 (upon its end event e2), without a complete execution of task 1, from s1 to
e1, having taken place in between : this sequence violates the property that we have
always 1 between 2 and 3.

The contract in Fig. 9b uses this observer for having always an execution of the
simple task between two executions of the delayable task; this amounts to make
invariant the state space where err is false. To enforce this, cr is used to delay
the starting of the delayable task until a full execution of the other one stops.

3.1.2 Composite contract node

A composite BZR node has a contract of itself, and sub-BZR-nodes with their own
contracts, as in Fig. 10. Sub-nodes may communicate, e.g., some of the inputs xpi of
sub-nodes can come from the outputs of other sub-nodes y1i or from the values xi

produced by the node. This is where modularity gets involved, and the information
about contracts of the sub-nodes, which is visible at the level of the composite, will
be re-used for the compilation of the composite node. The objective is still to control
the body, by using the controllable variables c1, . . . , cq, so that eG is true, assuming
that eA is true. But here, we have information on sub-nodes: we do not keep their
body as it would lead to a state space explosion, but these nodes are abstracted to
their contracts, which can then be used in the DCS at that level. So, we can assume
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Fig. 10 BZR composite node

not only eA, but also, in the case of two sub-nodes, (eA1 ⇒ eG1) and (eA2 ⇒ eG2).
Accordingly, the control problem becomes that: assuming eA and (eA1 ⇒ eG1) and
(eA2 ⇒ eG2), we want to enforce eG, and also eA1 and eA2 so that the contracts of the
sub-nodes will be effectively satisfied. In particular, part of the control at the level of
the composite can take care of making true the assumptions of the sub-nodes. More
formal explanations are given in Section 5.1.

3.2 Complete syntax of the minimal contract language

We focus on kernel of Fig. 11, into which other constructs, e.g., automata, can be
compiled (Colaço et al. 2005). A program P is a sequence of nodes d1 . . . dn.

A node is denoted:

d = node f (x) = (y)

contract (D1, eA, eG) with c
let D2 tel

where f is the name of the node, x are its inputs, y its outputs. (D1, eA, eG) with c is
its contract, and D2 the definitions of outputs and local variables. The contract part is
optional. Within a contract, D1 represents the exported definitions, eA an expression
for the “assume” part of the contract, eG the “guarantee” part, and c the controllable
variables. D1 contains no sub-node application.

Definitions D2 are a set of equations, separated by ;, each defining a variable x by
an expression e.

An expression can be Boolean constants (i), or refer to variables (x), operations
op on sub-expressions, pairs of expressions, and applications of a function f on an
expression.

Fig. 11 Syntax of the language with contracts
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Operations are:

– e1 fby e2 which defines a new flow with the first element of flow e1 followed by
the whole flow e2: this puts a delay on a flow e2, with an initial value given by e1;

– fst and snd are the pair selectors (resp. first and second value);
– not, or and and are Boolean operators, applied point-to-point.

Binary operators (like fby, or and and) are considered as unary operators applied
on pairs. We denote by e1ope2 the expression op(e1, e2).

4 Trace semantics

We give a trace semantics of our language, inspired from the denotational semantics
of the Lucid Synchrone language (Hamon 2002). It is defined by a function denoted
�e�, which associates to an expression e the set of infinite traces corresponding to
e’s evaluation. We define some basic functions in Fig. 12, upon the notion of infinite
sequence of values V ∞. For Booleans, True(s) ⇔ s = true.true . . ..

N from V ∞ to sets of triples of V ∞ is the set of functions defining nodes. The
set of resulting values is a set of possible triples (s, sA, sG), where s is the
result of the node, and sA and sG the value of respectively the “assume” and
“guarantee” parts of the node’s contract.

N defines node environments by, for a variable, its corresponding node function.
ρ defines trace environments by, for a variable, the set of its infinite traces of

instantaneous values. ρ1 ⊕ ρ2 denotes union of environments, only on distinct
domains.

�·�N
ρ is the function giving the trace semantics of the language. From a node

environment N and a trace environment ρ, this function gives:

– from an expression, the set of infinite traces of its resulting values;
– from an equation (or set of equations), the trace environment for the

variable(s) it defines.

�d�N is the function which, from a node environment N, associates to a node d the
function from traces to set of traces representing this node.

Based upon this, Fig. 13 gives the semantic rules as follows.
The rule (OpSeq) states that Boolean operators are applied point to point on

infinite traces.
The semantics of the fby operator (rule (Fby)) is that the front element of the

first trace is appended with the second trace. The resulting trace has the values of the
second with a one-step delay; the first value of the first trace gives the initial value for

Fig. 12 Functions for the trace semantics
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Fig. 13 Trace semantics of the BZR language

the resulting delayed flow. This is the only kernel operator involving memory, from
one step to the other.

Boolean constant flows i are flows of the Boolean constant (rule (Imm)). A
variable x is evaluated in the trace environment ρ by extracting its value (rule (Var)).
The rule (Op) describes the semantics of operators, which are applied on traces of
their operands. The rule (Pair) matches pairs of traces to pairs of expressions.

The rule (App) states that a function can be applied as the special case of a node
where “assume” and “guarantee” parts are constantly true. This application has no
valid semantics if either part of the contract is not constantly true, in particular the
“assume” part (sA).

The semantics of equations (rule (Eq)) is that infinite traces of the left-hand side
of the equation are given by the semantics of the right-hand side of the equation.

The rule (Par) gives the semantics of parallel definitions, which is given by the
union of the environments obtained from the composed definitions.

The rule (Node) defines the semantics of nodes without contracts. A node f
defines a function which, given an input trace value s, gives a set of trace triplets
(for consistency with nodes with contracts) which first value is the output value of f .
This value is defined through a trace environment ρ, defined as a fix-point applying
equations of D, initialized with the trace value of the input. This fix-point allows
the incremental computation of values for the synchronous composition of parallel
equations.
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The rule (NodeC) gathers the specificity of our contribution: it gives us the
semantics of the application of a node with a body D2, with a contract having a body
D1 and controllable variables c. It is defined iff for each input s, there exists a trace sc

associated to the controllable variable c (within the fix-point initialization), such that
the implication between the evaluations of the “assume” (eA) and “guarantee” (eG)
parts holds.

The rule (Nodes) builds the node environment from definitions in the sequence
of nodes. Finally, the rule (Prog) builds the environment from a program P and an
initial empty environment.

5 Compilation

We show in this section how our language is compiled towards STS, on which DCS
can be applied.

5.1 Principle and corresponding DCS problem

The purpose of the compilation principle presented here is to show how to use a DCS
tool, within the compilation process of our language. We want to obtain, from each
node, an STS as defined in Section 2.2, in order to apply DCS on it. The obtained
controller is itself a node of equations, recomposed in the target language. Given the
definition of the semantics of a node in Section 4, and given the definition of DCS
in Section 2.2, the result obtained when recomposing the synthesized controller in a
node as in our compilation, behaves like the semantics of a contract node given in
Section 4.

5.1.1 Single contract enforcement

To compile a single contract node, we encode it as a DCS problem where, assuming
eA (produced by the contract program, which will be part of the transition system),
we will obtain a controller for the objective of enforcing eG (i.e., making invariant
the subset of states where eA ⇒ eG is true), with controllable variables Xc. This is
illustrated in Fig. 14a, re-using instances of the transition system of Fig. 6: one for the
contract and one for the body of the node, and showing the controller as in Fig. 7. The
contract program has access to the inputs X and outputs Y of the body; its outputs eA

and eG, and its state, which is part of the global state, are accessible to the controller,
as well as the state of the body and its (uncontrollable) inputs X.

More formally, given a node f with its associated STS S f (Xc ∪ Xuc, S, Y), a
contract will be given by a tuple Cont = (Sc, A, G) where Sc((X ∪ Y), Sc,∅) is an
STS encoding the body of the contract, A ∈ B[Sc] and G ∈ B[Sc] are predicates,
respectively encoding the signals eA and eG. Now, in order to enforce the contract
we consider the STS SCont = (S ‖S c) � A on which we enforce by control the
invariance of G. The result is a controller C = DCS(SCont, Xc, G)

5.1.2 Compiling a composite contract node

When compiling a composite contract node f , with sub-nodes, e.g. f1 and f2 as
described in Fig. 10, one can associate to each sub-node its corresponding STS
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(a) (b)

Fig. 14 BZR and DCS problem

S fi(Xi, Si, Yi). This is illustrated in Fig. 14b, re-using the same graphical notations.
The STS S f can then be represented by the STS

S f (X, S, Y) = (S ′‖S f1‖S f2)

where S ′ corresponds to the STS derived from additional local code used to
described f . Note that Xuc

i ⊆ S ∪ Xuc ∪ Xc ∪ Y, namely the uncontrollable variables
of the lower level can be defined either by state, uncontrollable or controllable inputs,
or outputs variables of the upper system. Thus to proceed to the encapsulation we
need to rename the variables Yuc

i according to their new name in the new system.
We assume that each sub-node comes with a contract Conti = (Sci , Ai, Gi), with

Sci(Xi ∪ Yi, Sci ,∅), Ai ∈ B[Sci ], Gi ∈ B[Sci ], and that a controller Ci to ensure the
invariance of Gi.

We want now to obtain a controller C for the system S f to fulfill a contract Cont =
(Sc, A, G), with Sc(Y ∪ Z , Sc,∅), A ∈ B[Sc] and G ∈ B[Sc]. One way to do this is to
compute the whole dynamic of S and to control it using the previous method, but this
would lead to a state space explosion. Instead, we will use the contracts of the sub-
components as an abstraction of them. Thus, we use an abstracted STS S f , defined
as the composition of S ′ with the system part of the subcontracts, constrained with
the properties enforced by Ci on each of the sub-components. In other words, we
take the assume and enforced parts of the subcontracts as environment model of the
abstracted system.

Remark 3 The Yi variables were outputs of the lower level. As we abstract away
the body of this system, these variables have now to be considered as uncontrollable
variables of the upper system (indeed, there is no way to know their value). Besides,
the value of these variables is normally computed according to the value of Xuc

i and
internal variables. Hence, it exists causality problems between these variables and
the variables of the upper level. See Delaval et al. (2010) for more details.
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We define the new system to be controlled as follows:

S f (Yuc ∪ Z1 ∪ . . . ∪ Zn ∪ Xc, S, Y) =
(

S′‖(Sc1 � (A1 ⇒ G1)
)‖(Sc2 � (A2 ⇒ G2)

))

We should notice that, in order to the STSs Si, controlled by their controller, to be
evaluated in a correct environment, the predicates Ai must be satisfied. Therefore,
we define a new contract Cont′, which will be used to compute a controller on S f :

Cont′ = (Sc, Â, Ĝ) where

{
Â = A
Ĝ = G ∧ A1 ∧ A2

We then compute controller C, enforcing contract Cont′ on STS S f . We can further
show that whenever S fi/Ci satisfies the invariance of Gi for i = 1, 2 then

(S ′‖S f1/C1‖S f2/C2)/C

satisfies the invariance of G.

Remark 4 As mentioned in Section 2.2, one can also consider non-blocking contract
within our framework. However, even-though the controlled sub-nodes are non-
blocking it might happen that the composition of these nodes gives access to a
blocking node. In order to ensure the non-blocking aspect, we have to consider the
whole system (with no abstraction) and ensure this property on this system (thus
loosing the modular aspect of the controller synthesis).

5.2 Formal compilation rules

We describe the compilation towards STS through a function Tr, from BZR equa-
tions and expressions towards tuples (S , Xu, G) where

– S (X, S, Y) = (T, O, Q, Q0) denotes the obtained STS: for expressions, it only
defines one output value. For equations, the outputs are the variables they define.

– Xu denotes the additional uncontrollable inputs of the obtained STS, corre-
sponding to the outputs of the applied sub-nodes.

– G corresponds to the synthesis objectives from contracts of sub-nodes.

This compilation function Tr, applied on nodes, produces nodes without contracts.
We consider the compilation on normalized programs, following the restricted syntax
given below, defined such that the expressions e correspond to those allowed in STS.

D ::= x = e | D; D | x = f (x) | x = v fby x
e ::= i | x | op(e) | (e, e)
op ::=fst | snd | not | or | and
i ::=true | false

Particularly, equations with subnodes applications in the expression are decom-
posed into equations defining intermediate variables, with either an expression or a
subnode application. Compilation rules are given in Fig. 15.

C-Exp expressions are directly translated to an STS (T, O, Q, Q0) where only
Q �= ∅, in the form of an output function for y.
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Fig. 15 Compilation rules

C-Fby introduces a fresh state variable s, with appropriate transition and
initialization.

C-App translates applications by composing: S c
f , the STS of the contract of

f ; S , where the output y of the applied sub-node is considered as an
additional uncontrollable variable: as the body of f is abstracted, the value
of y cannot be known. This composition represents the abstraction of the
application. The assume/guarantee part of the contract of the applied sub-
node, as in C-Node, (A f ⇒ G f ) is added as a constraint Q of the STS.
It can be noted that the point of this is to favor DCS, by giving some
information of behaviors of sub-nodes: this can enable to find control
solutions, which a black box abstraction would not allow. Hence it is
an optimization of the modular control generation, not a necessity w.r.t.
the language semantics, which it should of course not jeopardize (see
Section 5.3).

C-Par STSs from parallel equations are composed; additional variables from
sub-nodes are gathered; the synthesis objective is the conjunction of sub-
objectives.

C-Node translates nodes with contracts to controlled nodes. It features the appli-
cation of the DCS function of Section 2.2 to the composition of the STSs
from the contract and the body. This composition is constrained with the
operation � by the assumption part A f of the contract. The additional
variables induced by the abstractions of the applications are added as
uncontrollable inputs to the STS on which the DCS is performed. This
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rule defines S c
f , A f and G f used for applications of f (rule C-App). The

translation of nodes without contract is the identity, defining S c
f as empty

STS (neutral for parallel composition), and A f = G f = true.
C-Prog translates the sequence of nodes of the program.

5.3 Conformance to trace semantics

The above compilation rules show how to obtain, from nodes with contracts, nodes
where the contracts have been replaced by a controller function obtained by DCS.
The semantics of nodes with contracts defines the set of possible output traces from
input traces, given the different possible controllable values. Using a computed
controller function gives us, for one input trace, only one controllable variable trace
and thus only one output trace. We expect that this specific output trace belongs to
the set of traces defining the semantics of the node with its contract. Therefore, we
define a relation � on program and node semantics, based on the set inclusions of
expressions semantics:

ρ1 � ρ2 ⇔ dom(ρ1) = dom(ρ2) ∧ x ∈ dom(ρ1), ρ1(x) ⊆ ρ2(x) (3)

N1 � N2 ⇔ dom(N1) = dom(N2) ∧ f ∈ dom(N1),

∀s ∈ V ∞, N1( f )(s) ⊆ N2( f )(s)
(4)

The theorem on semantics conformance is expressed as:

Theorem 1 For all programs P, �Tr(P)� � �P�.

Proof The proof relies on induction on sequences of node definitions. The base case
is a single node program, without sub-nodes applications. We first prove that then,
the definition of DCS is sufficient to ensure conformance of the compiled node with
the semantics.

– Base step: case where P = d:

d = node f (X) = (Y)

contract(D1, A, G)

with c
letD2 tel

D2 has no sub-nodes applications, hence Tr(D2) = (S2,∅,∅) as (C-App) is the
only rule adding uncontrollable variables and synthesis objectives. Let Tr(D1) =
(S c

f ,∅, ∅) and S = S2‖S c
f and C = DCS(S � A, {c}, G). By definition of

DCS, we have:

Traces((S � A)/C) ⊆ {s ∈ Traces(S � A) s.t. G(s)} (5)

From the definition of S � A, we have

{s ∈ Traces(S � A) s.t. G(s)} ⊆ {s ∈ Traces(S � A) s.t. A(s) ⇒ G(s)} (6)

Let s and ρ = {x �→ s}, such that s verifies A and let sc and ρ ′ = ρ ⊕ {c �→ sc} such
that �D1; D2�

∅
ρ ′ is defined and satisfies A ⇒ G.
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As D2 contains no applications, the translation towards STS preserves the
semantics: �D2�

∅
ρ ′ = Traces(S2 � A). In a similar way: �D1�

∅
ρ ′ = Traces(S c

f � A).

Thus, �D1; D2�
∅
ρ ′ = Traces(S � A). Hence �D1; D2; c = C�∅

ρ = Traces((S �
A)/C) which is the left-hand side of Eq. 5. Also, �D1; D2�

∅
ρ ′ = Traces(S � A),

as featured in the right-hand side of Eq. 6.
As a consequence, we have:

�D1; D2; c = C�∅
ρ ⊆ {�D1; D2�

∅
ρ⊕{c�→sc} s.t. A ⇒ G}

As D1; D2; c = C is the body of Tr(d), and right-hand side is the semantics of d,
we conclude that:

�Tr(d)�∅ � �d�∅

– Inductive step: case where P = d1 . . . dn.
Let N = �d1 . . . dn−1� and N′ = �T(d1 . . . dn−1)�. By induction hypothesis, we
have N′ � N. Let

dn = node f (X) = (Y)

contract (D1, A, G)

with c
let D2 tel

We focus on node applications and definitions, as other semantic rules are
defined with operations preserving set inclusions. Particularly, parallel sub-node
applications will be handled by rule (C-App). We assume that D2 = y = f (x).
Let s and ρ = {x �→ s}, such that s satisfies A. From rule (C-App) we have Tr(y =
f (x)) = (S2, {y}, A f ) where S2 = S ‖S c

f and S ({y},∅, {z}) =
{

z = y
A f ⇒ G f

Let (S1,∅, ∅) = Tr(D1), C = DCS(S1‖S2 � A, {c}, G ∧ A f ).
�y = f (x)�N′

ρ is defined, since A f is a synthesis objective (hence, A f is enforced
by C). From the induction hypothesis:

�y = f (x)�N′
ρ ⊆ {�y = f (x)�N

ρ⊕{c�→sc} s.t. A f ⇒ G f }

Then, traces from �y = f (x)�N′
ρ satisfy A f ⇒ G f , and:

�y = f (x)�N′
ρ ⊆ Traces(S ‖S c

f ).

Then, �D1; D2�
N′
ρ ⊆ Traces(S1‖S2).

As by definition of DCS,

Traces(S1‖S2/C) ⊆ {Traces(S1‖S2) s.t. A ⇒ G ∧ A f }
⊆ {Traces(S1‖S2) s.t. A ⇒ G}

then:

�D1; D2; c = C�N′
ρ ⊆ {�D1; D2�

∅
ρ⊕{c�→sc} s.t. A ⇒ G}

and �Tr(dn)�
N′ � �dn�

N . ��
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Fig. 16 BZR compilation
process

5.4 Implementation

5.4.1 Compilation process

The compilation process is organized as shown in Fig. 16.
A BZR program is compiled into two parts. The first part is the classical sequential

code resulting from the compilation of the synchronous imperative part (automata
and equations). The second part is the translation of automata and contracts into
transition systems (STSs) and synthesis objectives. This part is used by the DCS tool
(Sigali) to produce a controller (constraint on inputs, states and controllable vari-
ables), which is then determinized and translated towards synchronous equations.
Thus, the controller itself is produced as a BZR program (without contract) and can
then in turn be compiled towards sequential code, in C, in Java, or CAML; it os
possible to develop simple back-ends for other target languages. The two sequential
parts (from automata and the controller) can then be composed by simple link
edition, defining their synchronous composition.

This compilation process is modular, meaning that this process is applied on each
node, independently on (i) the body of its non-inlined subnodes and (ii) its calling
context in upper-level nodes.

5.4.2 Costs issues

At its kernel, our compiler calls the DCS tool Sigali. The complexity of the involved
algorithms is exponential in the number of variables, just like other comparable
operations like model checking. On a more practical level, our techniques benefit
from the level of abstraction and granularity of control which is handled: we manage
just the reactive control kernel, not the whole system, thereby modelling key things,
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abstracting the rest. Therefore the size of the controller on an adaptive system is
much smaller than the more data-related parts.

The Table 1 shows the synthesis time and controller size on some examples.4

The four first columns give the number of variables (state variables, input and
controllable variables, and total number), thus giving an indication about the size of
the example. Although the synthesis cost is theoretically exponential, we can see that
for examples of reasonable sizes (30 state variables correspond to, e.g., the parallel
composition of 10 automata of 5 to 8 states each), the synthesis time is of the order of
seconds. In the example of Section 6, the full compilation (synthesis included) takes
hardly a second.

The size of the controller generated is theoretically exponential in the number of
variables ; but its online execution is linear. On the examples given on Table 1, all
execution times for one step of the controlled system (thus including execution of the
controller itself) are of the order of few μseconds.

Moreover, we have some more thorough experiments regarding performance and
size of systems that can be managed (Delaval et al. 2010), which show that scalability
is greatly enhanced by modular synthesis.

5.4.3 Back end: executable code

At the back end, code generators from the synchronous compiler can be used,
producing typically, in C or Java, a function for the reactive step, and a function for
the initialization of state variables. The generated executable controller is integrated
into the adaptive system, linked with the particular host operating system and
computation model, and with functional (non-control) code. We can recall that for a
synchronous program, there are two ways of interacting with an execution platform:

– one of them is the calling of external functions in the host language from the
synchronous program: this enables interfacing easily with the non-synchronous
world, typically for features not available in the synchronous languages, e.g., arbi-
trary functions and types (e.g., involving pointers and dynamical data structures),
libraries, numerical computations, side-effects. In this scheme, care has to be
taken that the synchrony hypothesis is respected, i.e., the functions have to be
guaranteed to return in bounded time.

– the other is being called from the global executive, initialization or resetting, and
then each step of the reactive controller is launched by calling the generated
controller code; this has to be done at appropriate control points in the system.
This involves the following phases:

– the input event has to constructed e.g., by reading queues or buffers, or
testing flags set by callbacks since the last step.

– then the step is called e.g., from the body of a loop (which can be infinite), or
attached to an exception handling mechanism, or through an interrupt.

– finally, there is an interpretation of the output event, e.g., by the emission of
signals, call of functions, raising of flags.

It is possible to have several controllers obtained separately that way in the
same system, but their interactions can be taken into account by synchronous

4Experiments carried out on a 64 bits dual-core PC, 2.93 GHz, with 3.8 Gb of RAM.
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compilation or DCS only if they are assembled in the same global program. No
conflicts are generated as long as only safety properties are considered.

We have experiences in such integrations in various contexts. In an experiment with
the design environment Orccad for control systems, on top of a Posix real-time
operating system (Aboubekr et al. 2011), the step function is called each time an
event is placed in the automaton input FIFO. With the component-based framework
Fractal, in its C implementation developed in the MIND project (Delaval and Rutten
2010), we instrumented the controlled system with monitors related to the occupation
of FIFOs, and these events are fed to the step function. We are currently exploring
the autonomic administration of deployment of a virtual machine.

6 Example

Our language introduces a different, unusual programming methodology. Whereas
classically computer programming consists of writing a control solution, in BZR we
specify the problem. This is related to the control theory way of approaching things:

– first write nodes that describe the process to be controlled (the “plant”), with all
its possible, uncontrolled behaviors; thereby identify its possible control points,
independently of their use;

– then write contracts that specify control objectives or desired behaviors; it can
be noted that different objectives can make sense for the same “plant”, and that
controllability of the plant for the given objective is not always given;

– compile the program to derive the controller, using DCS; like type synthesis
does for types, control synthesis can be described as a form of completion of
the control automaton, that was uncompletely specified.

This section illustrates these points, in the specific domain of embedded systems, with
the example of a robot manipulator arm.

6.1 The robot arm case study

Our example is a simplified form of a case study (Aboubekr et al. 2011) concerning a
robot arm, the articulations of which define a mechanically reachable workspace.
Such a robot must always be under the control of a control law, otherwise the
movements would become erratic, depending on gravity, wind or any mechanical
forces around. There is also an exclusion constraint between these control laws, the
actuator being an exclusive resource for them. They are implemented in real-time
tasks, that can be started, and which can emit a termination event when their goal is
reached, or predefined exception events.

We consider six such control tasks. The robot arm can move its end, carrying a
tool, inside the workspace, using control based on Cartesian coordinates (C). How-
ever, some movements can lead its articulations to their limits, called singularities,
which causes an exception event to be raised. This requires to make an intermediary
move in order to turn around a singularity, using a different control, based on joint
coordinates (angles of the articulations) (J). These two control laws are grouped
in task CJ. Another possible control consists of trajectory tracking, used typically
for pointing towards a target outside the workspace (F). A second task of the same
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kind takes care of positions on the borderline of the workspace (B). Another task is
defined for the change of tools (CT): it includes moving to the tool rack, and actually
1 taking the tool. There are two tools available: one is a gripper, and can be used
to grip the target when it is inside the workspace; the other is a camera, which can
be pointed towards the target when it is outside. Finally, a background task can be
activated in the absence of other control laws, to maintain the current position (M)
(as a robot must never be out of control).

The application for this robot system consists in, when a target is indicated: if it
inside the workspace, go and grip it with the gripper; if borderline, go to a central
position with the camera aimed at it; or else if outside, extend to the border and
point at it with the camera.

6.2 Behaviors

Figure 17 shows the BZR node for the case study. The body describes the behaviors
of the different underlying real-time control tasks, at the level of abstraction of their
activation, which is appropriate for managing their interactions. From left to right we
have first, for task F, a simple variation of the delayable task of Fig. 4: from an initial
inactive state, upon reception of the input outWork signaling a target outside of the
workspace, a transition is taken according to the choice variable (to be controlled)
cF: if true then the output startF is sent out to the real-time tasks handler, the
trajectory following control law is started, and the next state is Active; otherwise it
is false, and then control goes to the Wait state, from where, when cF is true, the
task can be started. From both Active and Wait, the reception of stopF causes a
transition back to Idle. For B, when the target is at the border, we have a second
instance of the same behavior. The next one describes CJ, the movements inside the
workspace: it also follows the delayable pattern, with the choice variable cCJ, and a

Fig. 17 Example of the robot controller: BZR node, with contract
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more elaborate active state: it is hierarchically refined into a sub-automaton, where
initially the Cartesian control task is active, and upon reception of the exception
singularity, a switch is made to the joint control task; upon termination, control
reverts to the Cartesian mode.

On the lower side of the node, we have the automaton for the M task, where start
and end are controllable through cM. Underneath we have some equations defining
the stopping of tasks. Next to it is the automaton for the tool change task CT: it can
be triggered by the controller using variable cCT. Once active, when arriving at the
tool rack upon endCT, it either takes the tool if it is available (when take is true),
or waits there until it is. We also have an observer automaton Obs for the current
tool, switching states each time a new tool is taken.

This parallel automaton describes all possible sequencings of the tasks: it does not
explicitly care for their exclusion, or for managing the appropriateness of the tool.
This is shown next in the declarative contract, and compiled with DCS.

6.3 Contract

The application must launch robot tasks corresponding to the current state of the
target (inside, outside or at the border of the workspace) and change the tool to get
the right one for each task. So the control objective is first to ensure that we have the
right tool, and second, to allow at most one task to be active at a time, and also at
least one, as mentioned in Section 6.1.

The set {cF, cB, cCJ, cCT, cM} of local controllable variables, defined in the with
part, is used for ensuring this objective. The contract specifies that the node will
be controlled, such that, given any uncontrollable input trace, the output trace will
satisfy the two objectives. It can be seen in the upper part of Fig. 17: it is itself a
program, with equations defining variables. For the right tool for the right task, a
Boolean variable righttool is defined as the conjunction of two implications: they
state that when a task is active (aCJ, respectively aF or aB), it implies that the arm
carries the right tool (not cam, respectively cam). For mutual exclusion and default
control, an equation defines ex, which is the exclusive disjunction of active states for
the tasks. The contract also has an automaton, which will be visible when the node is
re-used, and makes the relation between cam and take. Given that only the body of
the node can produce outputs, we keep the observer there to produce cam, so these
two automata have different roles.

The assumption is that: assume_cam is true, which makes the relation between
the two automata mentioned above; the input take is only present when CT has
been activated (i.e., correspond to actual tool changes); only one of the inputs inside,
outside and borderline is true at the same time. The contract is to enforce both
Boolean expressions.

6.4 Simulation and typical scenario

Here is a typical scenario showing the intervention of the controller on the system, so
that control objectives are enforced. At some point task CJ is active, the target inside
the workspace, and the tool carried by the arm corresponds to not cam. Then, the
user clicks outside of the workspace, so the application receives the outWork input.
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Fig. 18 Two robots sharing an
exclusive camera

This causes the flow stopCJ to be true, and the automaton for CJ to move by the
transition conditioned by stopCJ to its Idle state.

It also causes the automaton for task F to quit its initial state; here, we have a
choice point conditioned by cF. Due to the first contract property, righttool must
be kept true, so given that the current tool is not cam, the controller can not allow
the transition to Active of F, and must give the value false to cF. Hence task F
goes to its Wait state.

Due to the other contract property, ex must be kept true, which forces the
controller to maintain at least one active state. Therefore it launches the task CT
using the controllable variable cCT, which will change the tool.

In a later reaction, at the end of the task CT, with the endCT event, if take is
true, the automaton observing the current tool goes to a state where cam is true.
Thus we have the right tool for task F, and the controller can release F from Wait
to Active, by giving value true to controllable variable cF.

This shows how mutual exclusion and, more interestingly because it is dynamical,
insertion of a reconfiguration task between two other tasks, can be obtained.

6.5 Example of modular contracts

We illustrate modular contracts by considering two robot systems, sharing the camera
tool, while each has its own gripper. The model for such a robot workshop is
illustrated in Fig. 18, where two instances of the rob node are in parallel. The
contract simply says that the exclusivity of cam1 and cam2 should be enforced, with
no further assumption, with the controllables take1 and take2.

Another modular contract example has been developed, with simplified behaviors
involving only delayable tasks, but showing the use of modularity, and also the
methodology: we first constructed a contract node for n such tasks, and then built
a 2n tasks node, with a first contract that revealed itself being not controllable, and
then refinements of the problem leading to a solution. On this example performance
evaluation showed a drastically improved scalability of the approach (Delaval et al.
2010).

7 Related work

As was noted by other authors, while classical control theory has been readily
applied to computing systems (Hellerstein et al. 2004), applying Discrete Control
Theory to computing systems is more recent: some focus on controlling multi-thread
code (Auer et al. 2009; Dragert et al. 2008) or workflow scheduling (Wallace et al.
1996), or on the use of Petri nets (Iordache and Antsaklis 2009, 2010; Liu et al. 2006)
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or finite state automata (Phoha et al. 2004). The work closest to ours (Wang et al.
2009) is a programming language-level approach, that focuses on deadlock avoidance
in shared-memory multi-threaded programs, and relies upon Petri net formal models,
where control logic is synthesized, in the form of additional control places in the Petri
nets, in order to inhibit behaviors leading to interlocking. A difference in motivation
is that they apply Discrete Control internally to the compilation, only for deadlock
avoidance, in a way independent of the application, whereas we treat expression
of objectives as a first class programming language feature: we know of no other
programming language doing this.

Some related work can be found in computer science, in the notions of program
synthesis. It consists in translating a property on inputs and outputs of a system,
expressed in temporal logics, into a lower-level model, typically in terms of transition
systems. For example, it is proposed as form of liberated programming (Harel 2008)
in a UML-related framework, with the synthesis of StateChart from Live Sequence
Charts (Harel et al. 2005; Kugler et al. 2009). Other approaches concern angelic non-
determinism (Bodik et al. 2010), where a non-deterministic operator is at the basis of
refinement-based programming. These program synthesis approaches do not seem
to have been aware of Discrete Control Theory, or reciprocally: there seems to be
a relationship between them, as well as with game theory, but it is out of the scope
of this paper. One difference is that we synthesize a constraint (on the controllable
variables) from a state machine (given as a model of the object to be controlled)
and a control objective (safety), as usual in the control approach (Ramadge and
Wonham 1987; Wang et al. 2009). In this sense, our language is mixed imperative
(writing the automata for not yet controlled components) and declarative (specifying
the properties to be enforced by control). Also, a meaningful difference is that we
distinguish between controllables and uncontrollables, which is more general. On
the other hand, we consider only safety properties; we are aware that it is possible to
consider liveness properties in synthesis, but we feel that it is more difficult to handle
it in a compositional and modular way. These declarative approaches encounter
methodological problems of incomplete specification, complexifying the obtention
of the state machine, whereas we obtain a maximal permissive controller (meaning
a minimal constraints on behaviors, which is a relation). However, when the control
objectives are not tight, we also have to find ways for completion of the constraint to
make it a function (deterministic) of uncontrollable inputs. The readability of state
machines synthesized in this work can be a motivation (Harel et al. 2005), whereas
we do not expect our automatically generated constraint to be read.

The notion of design by contracts has been introduced first in the Eiffel lan-
guage (Meyer 1992); contracts are require/ensure pairs on Eiffel functions which
are then used at compilation time to add defensive code to these functions. The
same design principle have been extended for reactive systems in Maraninchi and
Morel (2004), where reactive programs are given logical-time contracts, validated
automatically by model-checking. We use here the same principle of logical-time
contract, the difference with this latter work is essentially that our contracts are
enforced by controller synthesis, instead of being validated. A more generic model
of contracts has been proposed in Benveniste et al. (2007), defining an algebra of
contracts, which allows to consider the relation between sets of contracts defining
one system, whereas our language only allows one contract to be associated to one
node. Interface synthesis (Chakrabarti et al. 2002) is also related to our approach,
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consisting in generating interfacing wrappers for components, in order to adapt them
for the composition into given component assemblies, w.r.t. the communication pro-
tocols between them. The difference is that this work is about identifying constraints
on the environment of a component so that it is used correctly, whereas we constrain
the component so that it works correctly whatever the environment does (within the
assumptions).

Performing control using modularity/hierarchy and abstraction has also been
subject to various studies (Komenda et al. 2010; Komenda and van Schuppen
2005; Schmidt and Breindl 2008; deQueiroz and Cury 2002; Jiang and Kumar
2000; Marchand and Gaudin 2002; Lee and Wong 2002). For the modularity and
hierarchical aspect, the difference lies in the model that is used (asynchronous
versus synchronous automata) as well as in the abstraction techniques. In our case,
abstraction consists in abstracting the sub-systems by their contract, the abstraction
techniques used in control theory consists projecting the behavior of the sub-system
to some sub-alphabet and computing controllers on the resulting abstracted systems.
If both theory share hierarchical, modularity and abstraction features, the underlying
techniques are thus completely different.

8 Conclusion and perspectives

We propose an original contribution on the role of formal methods in software
and systems engineering: we encapsulate the formal DCS method into a language
compilation process. This way, it is integrated into a development process, where
the user/programmer is provided with tool support of the formal technique of DCS,
and the generation of executable code. The tool is concretely built upon the basis
of a reactive programming language compiler, where the nodes describe behaviors
that can be modeled in terms of transition systems. Our compiler integrates this
with a DCS tools, making it a new environment for formal methods. For this, we
define a construct for behavioral contracts in reactive programs, enabling mixed
imperative/declarative programming. We thereby exploit the dynamical behavior of
programs in the compilation, by using state and trace-based models of their control.

Future and ongoing work in this new research direction is addressing the lim-
itations of our current results. We are addressing language-level expressiveness,
notably w.r.t. quantitative aspects: we already have features of cost functions for
bounding or one-step optimal control, but timed aspects would be an improvement
(see e.g. Cassez et al. 2005). We could exploit more powerful DCS techniques, e.g.,
dynamical controller synthesis (i.e., relying on more states than in the automaton
to be controlled), and combination with static analysis and abstract interpretation
techniques as in Le Gall et al. (2005). We are exploring distributed execution schemes
for controllers programmed in BZR. Assistance and diagnosis in this uncommon
programming style is a very interesting issue: several situations can lead to compila-
tion failure (e.g., DCS failure), or unsatisfying result (e.g., too restrictive controller).
Currently, it can happen that a program in BZR can not be compiled because the
control problem has no solution: then the compiler returns an error message and no
code is generated. The user has to debug the program, by relaxing the contract, or
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changing the behaviors. Tools and precise methodologies should be developed so as
to handle such situations.

We have ongoing work exploring the application of our language for adaptive
systems at different levels: control of FPGA (Field Programmable Gate Array)-
based reconfigurable architectures, design and coordination of administration loops
in virtual machines, component-based adaptive middleware (Bouhadiba et al. 2011)
and control and robot systems design (Aboubekr et al. 2011).

References

Aboubekr S, Delaval G, Pissard-Gibollet R, Rutten E, Simon D (2011) Automatic generation of
discrete handlers of real-time continuous control tasks. In: Proc. 18th World congress of the
international federation of automatic control (IFAC). Milano, Italy, pp 786–793

Altisen K, Clodic A, Maraninchi F, Rutten E (2003) Using controller synthesis to build property-
enforcing layers. In: European symposium on programming. LNCS, vol 2618. Warsaw, Poland,
pp 126–141

Auer A, Dingel J, Rudie K (2009) Concurrency control generation for dynamic threads using
discrete-event systems. In: 47th Annual allerton conference on communication, control, and
computing, 2009. Allerton 2009, pp 927–934

Benveniste A, Caspi P, Edwards S, Halbwachs N, Le Guernic P, de Simone R (2003) The synchro-
nous languages twelve years later. Proc IEEE 91(1):64–83

Benveniste A, Caillaud B, Passerone R (2007) A generic model of contracts for embedded systems.
Res. Rep. RR-6214, INRIA

Bodik R, Chandra S, Galenson J, Kimelman D, Tung N, Barman S, Rodarmor C (2010) Pro-
gramming with angelic nondeterminism. In: Principles of programming languages, POPL,
pp 339–352

Bouhadiba T, Sabah Q, Delaval G, Rutten E (2011) Synchronous control of reconfiguration in fractal
component-based systems—a case study. In: Int. conf. on embedded software. EMSOFT 2011.
Taipei, Taiwan, pp 309–318

Cassandras C, Lafortune S (2007) Introduction to discrete event systems. Springer
Cassez F, David A, Fleury E, Larsen K, Lime D (2005) Efficient on-the-fly algorithms for the analysis

of timed games. In: Conf. on concurrency theory (CONCUR). LNCS, vol 3653, pp 66–80
Chakrabarti A, de Alfaro L, Henzinger TA, Mang FYC (2002) Synchronous and bidirectional

component interfaces. In: Computer aided verification. LNCS, vol 2404. Copenhagen, Denmark,
pp 414–427

Colaço J-L, Pagano B, Pouzet M (2005) A conservative extension of synchronous data-flow with
state machines. In: Embedded software (EMSOFT). New Jersey, USA, pp 173–182

Delaval G, Rutten E (2010) Reactive model-based control of reconfiguration in the fractal
component-based model. In: Component based software engineering. LNCS, vol 6092. Prague,
Czech R., pp 93–112

Delaval G, Marchand H, Rutten E (2010) Contracts for modular discrete controller synthesis. In:
Languages, compilers and tools for embedded systems. Stockholm, Sweden, pp 57–66

deQueiroz MH, Cury JER (2002) Synthesis and implementation of local modular supervisory control
for a manufacturing cell. In: Proceedings of the 6th international workshop on discrete event
systems, pp 377–382

Dragert C, Dingel J, Rudie K (2008) Generation of concurrency control code using discrete-
event systems theory. In: Proceedings of the 16th ACM SIGSOFT international symposium
on foundations of software engineering, SIGSOFT ’08/FSE-16. ACM, New York, NY, USA,
pp 146–157

Hamon G (2002) Calcul d’horloge et structures de contrôle dans Lucid Synchrone, un langage de
flots synchrones à la ML. PhD thesis, Univ. P. et M. Curie, Paris, France

Harel D (2008) Can programming be liberated, period? Computer 41(1):28–37
Harel D, Naamad A (1996) The STATEMATE semantics of statecharts. ACM Trans Softw Eng

Methodol 5(4):293–333



416 Discrete Event Dyn Syst (2013) 23:385–418

Harel D, Kugler H, Pnueli A (2005) Synthesis revisited: generating statechart models from scenario-
based requirements. In: Formal methods in software and systems modeling. LNCS, vol 3393,
pp 309–324

Hellerstein J, Diao Y, Parekh S, Tilbury D (2004) Feedback control of computing systems. Wiley-
IEEE

Hietter Y, Roussel J-M, Lesage J-J (2008) Algebraic synthesis of transition conditions of a state
model. In: Proc. of 9th int. workshop on discrete event systems (WODES’08), Göteborg, pp 187–
192

Iordache MV, Antsaklis PJ (2009) Petri nets and programming: a survey. In: Proceedings of the 2009
American control conference, pp 4994–4999

Iordache M, Antsaklis P (2010) Concurrent program synthesis based on supervisory control. In: 2010
American control conference

Jiang S, Kumar R (2000) Decentralized control of discrete event systems with specializations to local
control and concurrent systems. IEEE Trans Syst Man Cybern, Part B 30(5):653–660

Komenda J, van Schuppen JH (2005) Supremal sublanguages of general specification languages
arising in modular control of discrete-event systems. In: 44th IEEE conference on decision and
control, pp 2775–2780

Komenda J, Masopust T, van Schuppen JH (2010) Synthesis of safe sublanguages satisfying global
specification using coordination scheme for discrete-event systems. Discrete Event Dyn Syst
10:426–431

Kugler H, Plock C, Pnueli A (2009) Controller synthesis from LSC requirements. In: Fundamental
approaches to software engineering, FASE’09, York, UK, 22–29 March 2009

Le Gall T, Jeannet B, Marchand H (2005) Supervisory control of infinite symbolic systems using
abstract interpretation. In: 44nd IEEE conference on decision and control (CDC’05) and control
and European control conference ECC 2005. Seville, Spain, pp 31–35

Lee S-H, Wong KC (2002) Structural decentralized control of concurrent discrete-event systems. Eur
J Control 8(5):477–491

Liu C, Kondratyev A, Watanabe Y, Desel J, Sangiovanni-Vincentelli A (2006) Schedulability analy-
sis of petri nets based on structural properties. In: Sixth international conference on application
of concurrency to system design, 2006. ACSD 2006, pp 69–78

Maraninchi F, Morel L (2004) Logical-time contracts for the development of reactive embedded soft-
ware. In: 30th Euromicro conference, component-based software engineering track (ECBSE).
Rennes, France, pp 48–55

Marchand H (1997) Méthodes de synthèse d’automatismes décrits par des systèmes à événements
discrets finis. PhD thesis, Université de Rennes 1, IFSIC

Marchand H, Gaudin B (2002) Supervisory control problems of hierarchical finite state machines.
In: 41th IEEE conference on decision and control. Las Vegas, USA, pp 1199–1204

Marchand H, Bournai P, Le Borgne M, Le Guernic P (2000) Synthesis of discrete-event con-
trollers based on the signal environment. Discrete Event Dynamic Systems: Theory Appl 10(4):
325–346

Meyer B (1992) Applying “design by contract”. Computer 25(10):40–51
Phoha VV, Nadgar AU, Ray A, Phoha S (2004) Supervisory control of software systems. IEEE Trans

Comput 53(9):1187–1199
Ramadge PJ, Wonham WM (1987) Supervisory control of a class of discrete event processes. SIAM

J Control Optim 25(1):206–230
Schmidt K, Breindl C (2008) On maximal permissiveness of hierarchical and modular supervisory

control approaches for discrete event systems. In: 9th international workshop on discrete event
systems, 2008. WODES 2008, pp 462–467. IEEE

Wallace C, Jensen P, Soparkar N (1996) Supervisory control of workflow scheduling. In: Advanced
transaction models and architectures workshop (ATMA), Goa, India

Wang Y, Lafortune S, Kelly T, Kudlur M, Mahlke S (2009) The theory of deadlock avoid-
ance via discrete control. In Principles of programming languages, POPL. Savannah, USA,
pp 252–263



Discrete Event Dyn Syst (2013) 23:385–418 417

Gwenaël Delaval received his PhD in 2008 at INP Grenoble, France. Since 2010, he is assistant
professor at University Joseph Fourier of Grenoble. His research interest is the use of formal
methods for the safe design of embedded systems. More specifically, he works on the design and
compilation of programming languages for the design of synchronous reactive systems. Currently,
his activities are centered on the application of controller synthesis for the programming of reactive
systems, and the automatic distribution of synchronous programs.

Eric Rutten (PhD 90, Habil. 99 at U. Rennes, France) is with INRIA in Grenoble, France. His
research interests are in the field of reactive systems, applied to real-time embedded systems and
autonomic systems. His present activities are on model-based control of adaptive and reconfig-
urable computing systems, at the levels of hardware, operating system, middleware and software
components. He is using discrete control techniques, integrated in the compilation of a reactive
programming language.



418 Discrete Event Dyn Syst (2013) 23:385–418

Hervé Marchand received a Ph.D. degree in computer science from the Université de Rennes 1,
France in 1997. In 1998, he spent one year at the University of Michigan. Since 1998, he holds an IN-
RIA research scientist position (Rennes, France). His research interests include Supervisory Control,
automatic test generation and diagnosis of Discrete Events Systems and their applications to security.
He is also interested in high-level languages for reactive and real-time systems programming.


	Integrating discrete controller synthesis into a reactive programming language compiler 
	Abstract
	Introduction
	Motivation w.r.t. programming languages
	Motivation w.r.t. DCS
	Motivation w.r.t. adaptive and reconfigurable systems
	Typical examples
	Contribution and overview

	Reactive systems and their supervisory control
	Reactive programming and synchronous languages
	Nodes
	Node composition
	Basic semantic framework for nodes

	Discrete Controller Synthesis

	Behavioral contracts language
	Contract construct
	Simple contract node
	Composite contract node

	Complete syntax of the minimal contract language

	Trace semantics
	Compilation
	Principle and corresponding DCS problem
	Single contract enforcement
	Compiling a composite contract node

	Formal compilation rules
	Conformance to trace semantics
	Implementation
	Compilation process
	Costs issues
	Back end: executable code


	Example
	The robot arm case study
	Behaviors
	Contract
	Simulation and typical scenario
	Example of modular contracts

	Related work
	Conclusion and perspectives
	References


