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Abstract We introduce the concert (or cafeteria) queueing problem: A finite but
large number of customers arrive into a queueing system that starts service at a
specified opening time. Each customer is free to choose her arrival time (before
or after opening time), and is interested in early service completion with minimal
wait. These goals are captured by a cost function which is additive and linear in
the waiting time and service completion time, with coefficients that may be class
dependent. We consider a fluid model of this system, which is motivated as the fluid-
scale limit of the stochastic system. In the fluid setting, we explicitly identify the
unique Nash-equilibrium arrival profile for each class of customers. Our structural
results imply that, in equilibrium, the arrival rate is increasing up until the closing
time where all customers are served. Furthermore, the waiting queue is maximal
at the opening time, and monotonically decreases thereafter. In the simple single
class setting, we show that the price of anarchy (PoA, the efficiency loss relative
to the socially optimal solution) is exactly two, while in the multi-class setting
we develop tight upper and lower bounds on the PoA. In addition, we consider

A preliminary version of this paper appeared as Juneja and Jain (2009).

R. Jain

EE & ISE Departments, Viterbi School of Engineering, University of Southern California,
Los Angeles, CA, USA

e-mail: rahul.jain@usc.edu

URL: http://www-rcf.usc.edu/~rahuljai

S. Juneja (<)

School of Technology and Computer Science, Tata Institute of Fundamental Research,
Mumbai, India

e-mail: juneja@tifr.res.in

URL: www.tcs.tifr.res.in/sandeepj

N. Shimkin

Department of Electrical Engineering, Technion—Israel Institute of Technology,
Haifa 32000, Israel

e-mail: shimkin@ee.technion.ac.il

@ Springer



104 Discrete Event Dyn Syst (2011) 21:103-138

several mechanisms that may be used to reduce the PoA. The proposed model
may explain queueing phenomena in diverse settings that involve a pre-assigned
opening time.

Keywords Queueing - Nash equilibrium - Fluid limit - Price of anarchy

1 Introduction

In this paper, we introduce the concert queueing game. This model is motivated by
the following scenario. Before going to, say, a popular rock concert with unassigned
seats, one faces the following dilemma: Should one go early to secure good seats, but
wait a long time in queue, or go late when queues are smaller but the better seats
already taken? Similarly, in a busy cafeteria that opens at noon for lunch, should one
go early when the queues are long, or perhaps go hungry a bit longer and avoid
the long queues? Similar trade-offs govern customer decisions in many queueing
situations such as visiting a retail store on the day of a huge sale, queueing in front of
the book store before the release of a very popular book, visit to the DMV office, to
a movie theater, and so on. Similar, although not identical, tradeoffs may be found
in diverse areas that involve periodic congestion, from choosing the best time for
commuting to work, to choice of the start time for downloading a large file over
the Internet.

The proposed model is meant to study the emerging system behavior when users
are faced with such service delay vs. queueing delay trade-offs, and choose their
arrival times strategically. We assume that there is a large but finite number of
customers that need to be served in a first-come first-served manner. The server
at the queue becomes active at a particular time. Customers can choose to arrive
and queue up both before and after that time. The cost structure of each customer
is additive and linear in the waiting time and in the service completing time.
Alternatively, a customer may be interested in the number of users served before
her rather than the service completion time (see Remark 4 below). Multiple classes
of customers are allowed that differ in their cost coefficients. We primarily focus on
a finite number of classes, but also address briefly the same model with a continuum
of classes.

The analysis in this paper is carried out within a fluid model, which is motivated
as the fluid-scale limit of the stochastic queueing system with prescribed arrival
timing. This fluid model offers a great deal of analytical simplification. The game of
arrivals defined over this model belongs in the class of non-atomic games (Schmeidler
1973), where each customer is infinitesimal and therefore his effect on the others is
negligible. We show that this game has a unique Nash equilibrium point (in terms of
the aggregate arrival profile), and explicitly identify this point.

An important property of any equilibrium solution is the social efficiency loss it
entails, when compared to the social optimum. A popular measure of this loss is the
price of anarchy (PoA), which equals the maximum of the ratio of the social cost
of the equilibrium solution to that of the socially optimal one among all equilibria.
In our model, we show that the PoA in the single class setting is exactly 2 for all
parameter values. In the multi-class setting, we develop tight upper bounds and
corresponding lower bounds on the PoA that depend only on the range of the cost
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parameters across customer classes. Furthermore, we consider several mechanisms
that can be used to reduce the PoA; the analysis is carried out within the single-class
setting for simplicity. These mechanisms include service time restrictions, assigning
priorities to certain segments of the populations, or charging tariffs that depend on
the time of service. Equilibrium profiles associated with these mechanisms are easily
derived. These are discussed in Section 6; a key observation here is that by suitably
dividing the population into n segments, along any of these three ways, the PoA can
be optimized to equal 1 + 1/n, so that it converges to 1 as n — oo.

Strategic queueing problems that involve self-optimizing customers have been
extensively studied for over four decades, spanning problems of admission control,
routing, reneging, choice of priorities, pricing, and related issues. A sizable part of
this literature is summarized in the monograph (Hassin and Haviv 2003). A central
issue in this context is the comparison of the individual equilibrium and the socially
optimal solution. This may be traced back to Naor’s seminal paper (Naor 1969),
which considers these two solutions in the context of admission control to a single-
server queue, and suggests pricing as a means to induce the social optimum. Recently,
Haviv and Roughgarden (2007) provided bounds on the PoA for the problem of
routing into n parallel servers, and Gilboa-Freedman et al. (2009) studied the PoA
in Naor’s model. In Holt and Sherman (1982), an interesting perspective is taken
wherein time of arrival of customers is determined through a first-price auction.

Equilibrium arrival patterns to queues with a finite service period were apparently
first considered in Glazer and Hassin (1983), where a Poisson-distributed number of
homogeneous customers may choose their arrival times with the goal of minimizing
their waiting time. In this model, service ends at a specified time and customers are
indifferent to the time-of-day when their service is completed. Several extensions
and variations of this model have been considered, e.g., in Rapoport et al. (2004),
Lariviere and van Mieghem (2004), Hassin and Kleiner (2009), and are further
described in Hassin and Haviv (2003) (Chapter 6) and Hassin and Kleiner (2009).
The model of Wang and Zhu (2004) incorporates preferences for early service within
a multiple shift scheme, where the service period is divided into evenly-spaced shifts,
and the waiting time in each shift is determined by the number of customers who
choose this shift.

A related body of research exists in the transportation literature, where equilib-
rium trip-timing patterns were extensively studied in the context of the so-called bot-
tleneck or morning commute problem. Vickrey (1969) introduced a fluid flow model,
where homogeneous commuters choose their departure time for travel through a sin-
gle bottleneck of fixed flow capacity. The cost function for each commuter includes
a penalty for arriving early or late to the destination (relative to the desired arrival
time), in addition to the cost of delay in the bottleneck. Pointers to the extensive
ensuing literature regarding this model and its generalizations may be found in
Lindley (2004). In particular, Newell (1987) introduced commuter heterogeneity
in terms of their (linear) cost coefficients, in addition to the required arrival time.
Lindley (2004) provides existence and uniqueness results for the multiclass model
with nonlinear costs, under fairly general conditions. We note that our fluid model
can be considered a special case of these models with the desired arrival times all set
to zero though the bottleneck model does not have a predetermined opening time.
However, the explicit expressions presented here for the equilibrium as well as the
analysis of the PoA and the ways to reduce it are new.
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The organization of this paper is as follows: In Section 2 we describe our model.
We start with a brief description of the stochastic queueing system and its fluid
scale analysis, followed by a description of the arrival game for the fluid model. In
Section 3 we focus on the single-class case, for which the results are particularly
simple, and show that unique Nash equilibrium corresponds to a uniform arrival
profile over a finite interval. We generalize the results to the multi-class settings in
Section 4 where we consider finite number of classes. In both Sections 3 and 4, we
also compute and bound the price of anarchy for the derived equilibrium. We briefly
discuss the generalization to a continuum of classes in Section 5. In Section 6 we
discuss some ways to reduce the price of anarchy. In Section 7, we present numerical
results for a simple experiment that suggest that the equilibrium arrival profile that
is valid in the fluid regime may be close to equilibrium in the finite-N queue, for N
reasonably large. Finally, we end with a brief conclusion in Section 8.

2 Model description

This section introduced the fluid model that we analyze in this paper. We start with a
brief description of the underlying stochastic queueing system, discuss the fluid limit
of this model (with fixed arrival patterns), and then describe the game model that we
consider in the rest of the paper.

2.1 The stochastic queueing system

Consider a queueing system that caters to a finite number N of customers, which
are served on a first-come first-served basis. N may be random, with a finite mean
E(N). The required service times of these customers form an i.i.d. sequence (V;:
1 < j < N) that may have a general marginal distribution with rate u = 1/E(V)).
Each customer jindependently picks his arrival time, as a sample from a probability
distribution with CDF! F i(-). Service starts at time ¢ =0, and continues until all
customers are served. Customers may arrive and queue up both before and after
t = 0. For simplicity, assume at the outset that each F; is supported on a finite
time interval.

Suppose that customers wish to be served as early as possible, while minimizing
their waiting time. We capture these (possibly conflicting) goals through a linear cost
function. Let

cjwj, 7)) = ajw;+ Bjt;

denote j’s cost function, where w; is his waiting time in the queue, 7; his service
completion time, and «; > 0, B; > 0 are the respective cost sensitivities. The cost
parameters (o, ;) of each customer shall define his type (or class). The type of
each arriving customer is assumed to be randomly selected according to a known

IThroughout the paper, we describe probability measures (and, more generally, positive measures)
on the real line by their cumulative distribution function (CDF). Thus, F(f) corresponds to the
measure mp with mp{(—oo, t]} = F(f). We shall use the term F-measure (of a given set) to refer
to the m p-measure of that set.
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and common probability distribution over a given set of types. The customer’s type
is considered private information, that is, it is known to customer himself but not to
others.

Given the collection F = {F;} of arrival time distributions for all customers, both
w; and 7; become well-defined random variables, and we may consider the expected
cost C§ = Ey(ajw;+ BjTj), where Ef is the expectation induced by F. As usual, we
say that the collection F = {F} of arrival time distributions is a Nash equilibrium
point (NEP) for this problem if no user j can reduce his expected cost Cf by
unilaterally modifying his arrival time distribution F;. Our goal is to characterize
these NEPs and study their properties. This will be done within an approximate fluid
model, which greatly facilitates the analysis and leads to explicit solutions. We thus
turn to consider the fluid approximation of this system.

2.2 The fluid limit

This section motivates the fluid model that is the main subject of this paper, by
considering the fluid-scale limit of the above-described queueing system as the
number of arrivals becomes large. Our discussion here is limited to the case where
the arrival time distributions of all customers are pre-specified and not a result
of equilibrium considerations. For such a system we identify the fluid limit. Our
equilibrium analysis then focuses on the resultant fluid model. In this paper we do
not consider the equilibrium arrival distribution in the finite customer setting or its
convergence to the equilibrium fluid model arrival profile as the number of arrivals
increases to infinity. This is an interesting research direction that is deferred to
future work.

Consider a sequence of queueing systems indexed by n > 1, defined on a common
probability space, and let N be the population size (number of customers) in the nth
system. Assume that lim,,_, % = A > 0 (with probability 1). Let F/(-) denote the
arrival time distribution for customer i in the nth system. The service parameters are
as described above. In particular, the service time distribution does not dependent
on n, and has rate pu.

Let F'(t) = Zi]inl FI'(t) denote the aggregate arrival profile in the nth system.
Suppose that the collection { F/'} is given so that

%F”(nt) — F(1) (1)

as n — oo, uniformly on compact sets (u.o.c.), where F(-) is the fluid arrival profile.
It follows that F(-) is the CDF of a positive measure on the real line with total mass
A. More specifically, F is non-decreasing, right-continuous, with F(—oo0) =0 and
F(o00) = A.

Note that the time axis is scaled by a factor of n in Eq. 1. This accounts for the
increase in the overall service time requirement of all N” customers in the nth system.
Importantly, under this time scaling the service time of a single customer diminishes
to zero as n increases.

We further observe that the same fluid arrival profile F can arise from different
choices of individual arrival distributions, ranging from i.i.d. arrival times to deter-
ministic ones. The following simple example illustrates this point.
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Example 1 Suppose F is a uniform distribution on [—7, T] with mass A, namely
F@) = A% on that interval. Then, F can arise out of each of the following
possibilities.

a. IID arrivals: Each F}' corresponds to a uniform distribution on [-nT, nT] for
some T > 0,namely F'(1) = 525 on [-nT, nT). Then, 1 F*(nt) = 2= (451) and
this converges to F(t), almost surely, u.o.c. as n — oo.

b. Deterministic arrivals: F!' corresponds to the deterministic arrival time f =
(2i —n)T. Equivalently, F'(t) = 1{t > (2i — n) T}, where 1{-} denotes an indica-
tor function.

We next consider the queue-length process and its fluid limit. Let Q" (¢) denote
the queue length at time ¢ (including the customer in service), namely, Q" (¢) is the
cumulative number of arrivals minus service completions up to and including time ¢,
and let

Q" (nt)

n

0" () =

denote its scaled version. To specify the fluid limit of O”, let S(t) = utl{r > 0} denote
the fluid-scale potential service process (recall that service starts at r = 0). Also
define X () = F(t) — S(¢), and

O)=X@®+ sup[-X®]". 2)
0<s<t
Then, by standard results (see, for example, Chen and Yao 2001, Theorem 6.5 and
its proof) it follows that as n — oo, the following process-level convergence of the
scaled queueing process:

0"()— 00

holds, almost-surely, u.o.c. This process-level convergence result evidently relies on
the functional strong law of large numbers.

The limit queue process Q(f) corresponds to a fluid system with deterministic
input and output streams of fluid. The cumulative arrival process is given by F(?),
and the service rate is u(f) = pl1{t > 0}. This fluid model will be the subject of our
subsequent analysis.

2.3 The multiclass fluid model

We proceed to describe the concert arrival game for the fluid model with a finite
number of customer classes. The customer population is represented by the set
[0, A], where A stands for the total workload, and each customer corresponds to
a single point in this interval. These infinitesimal customers arrive at a service facility
with potential service rate u (in terms of fluid units per unit time), that activates
at time ¢ = 0. Thus, all customers may be served within 7y = A/u time units. All
customers join a single queue, and are served in the order of their arrival. If a non-
zero mass of customers arrives simultaneously (represented by a jump in F(¢)), then
their queueing order is determined randomly and with symmetric probabilities.
Customers may belong to different classes, which differ in terms of their cost
parameters. Let Z = {1, 2, ..., I} denote the set of customer classes. For each class
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i € 7, let A; denote the total workload carried by its members. Thus ) ; A; = A, and
serving all class i customers requires A;/u time units. The cost function for a class i
customer is given by

Ci(w, 1) = qw + Bit

where w is this customer’s waiting time in the queue, t > 0 his service completion
time, and o; > 0, B; > 0 are the respective cost sensitivities to the waiting time and
service completion time that specify his class or type.

Consider a customer who arrives at time ¢ and is placed at the end of a queue of
size g. His waiting time will be w = ¢q/u + max{0, —t} so that he completes his service
and leaves the system at 7 =t + w = g/ + max{0, t}. (Note that the service time of
individual customers is null since customers are infinitesimal.)

Let F; denote the class-i arrival profile. It is the CDF of a positive measure on
the real line with total mass A;. Thus, Fi(—oo) =0, F;(co) = A; and F;(t) is right-
continuous and non-decreasing in . An arrival profile is the collection { F;} of arrival
profiles, one for each class. The sum F(¢) = ), F;(t) denotes the aggregate arrival
profile. As discussed in Section 2.2, an arrival profile F; should be interpreted as
a deterministic summary of the arrival decisions of the individual customers, which
may themselves be deterministic or stochastic. The following restriction applies to
each F;.

Remark 1 To avoid lingering over some mathematical subtleties, we shall assume at
the outset that the measure represented by F; has no singular continuous component,
and is therefore the sum of an absolutely continuous component and a discrete
component (see Royden 1988, Pg. 108-113, for instance).

Given the aggregate arrival profile F =), F;, the queue-size process Q(?) is
uniquely defined by Eq. 2. Therefore, the expected waiting time W(¢) of a potential
arrival at time ¢ is well defined as well. Specifically, if Q(¢) is continuous at ¢,
then the waiting time is deterministic and given by W(t) = Q(#)/u + max{0, —t}. If
Q(®) has a jump at ¢ (due to an upward jump in the arrival profile F), then the
position of an arriving customer would be uniformly distributed in [Q(t—), O(t+)]
with average Q(t) = %(Q(t—), O(t+)), so that the expected waiting time is W(¢) =
[010) /u + max{0, —t}. Let Wg(¢) denote the expected waiting time that corresponds
to a given arrival profile F.

The expected cost of a class i customer that arrives at ¢ is now given by

Ch(t) = a;Wr(t) + Bi(t + Wr(D) . 3)

More generally, the expected cost incurred by a class i customer who selects his
arrival by sampling from probability distribution G is

CL(G) = / @W (D) + Bilt + Wr(6)) dG(@)

We proceed to define the Nash equilibrium for the induced game. A multi-strategy
for this game is a collection {G;(-), s € [0, A]} of probability distributions on the real
line, one for each customer s, represented by their CDFs.
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Definition 1 A multi-strategy {G;(-), s € [0, A]} is a Nash equilibrium point if

(i) F@ = fOA G,(t)ds is well defined for each ¢, and
(ii) For any customer s € [0, A] of class 7,

C'(Gy) < C'(G), for every CDF G.

That is, no customer s can improve his cost by modifying his own arrival time
distribution. Note that this definition makes use of the fact that the action of a
single (infinitesimal) customer does not affect the arrival profile F(¢). This property
is shared by the class of non atomic anonymous games (cf. Schmeidler 1973), to which
the present model belongs.

The specific consideration of each customer in the last definition is too detailed
for our purpose. A more useful definition may be given in terms of the class arrival
profiles.

Definition 2 An arrival profile {F;, i € I} is an equilibrium profile if, for each class
i, there exists a set 7; of F;-measure A; on which C}(t) is minimal, namely,

Ci(t) < C'(t) forallt €7 and —o0o <t < o00.

Essentially, this definition requires the cost Cz(f) to be minimal on the support
of F;.
The two definitions may be seen to be compatible in the following sense:

(i) First, given an equilibrium profile {F;, i € 7}, a compatible equilibrium multi-
strategy {Gs(-), s € [0, A]} may be obtained (for example) by letting G; = F;/A;
for each customer s of class i. Thus, all customers of a given class i are assigned
identical arrival distributions, which adds up to the given arrival profile F;

for that class. This immediately implies that F(7) 2 foA Gs(t)ds =), Fi(t), and
property (ii) of Definition 1 now follows since, for G; = F;/A;, we get by
Definition 2 that C;(GS) = min; C}(t), while the latter is clearly not larger than
Ci.(G) for any CDF G.

(ii) Conversely, an equilibrium multi-strategy {G,(-), s € [0, A]} induces a unique
arrival profile for each class, given by F;(t) = fOA G;()1{s € S;}ds, where S;
is the set of class i customers. Now, {F;} is an equilibrium profile. Indeed,
by Definition 1(ii) it follows that, for each s € S;, C%.(G;) = min, C (1), hence
there must exist a set of times 7, of G,-measure 1 on which C’f(t) attains that
minimal value. Therefore C'(¢) is minimal also on the union 7; = |, s, Zs, while
the F;-measure of 7; is A;, since the Gy measure of 7; is 1 for each s € S;
(as 1> Gy(7)) > Gy(7y) = 1). Thus, the requirements of Definition 2 are
satisfied.

3 Analysis of the single-class model

To bring out salient features of the analysis, we first consider the single-class case.
Here all customers share the same cost parameters, and we may drop the class index i
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from the notation. The results in this case are particularly simple: The equilibrium
arrival profile turns out to be a uniform distribution, and the price of anarchy exactly
equals 2.

The following lemma will be useful in simplifying the expression for the cost
function under equilibrium conditions. Some notation is introduced first. Recall that
Ty = A/p,and let

=inf{t > 0: F(t) < ut}.
This is the first time beyond 0 at which the server becomes starved.

Lemma 1 For any equilibrium arrival profile F,

(i) t*= Ty (i.e, the server works at full rate till the last customer is served).
(i) There are no point masses in F, so that F(t) is absolutely continuous in t.
(iii) Fort < Ty,

We(t) = F)/1n — . 4)

As is apparent from the proof below, Condition (ii) in Lemma 1 is applicable even
to the finite n queueing system (not just its fluid limit).

Proof of Lemma 1

(i) Clearly, r* < Ty, since all customers are served by 7', at full service rate.
Suppose that t* < T¢. Then F cannot be an equilibrium arrival profile. To see
this, note that Q(¢*) = 0 by definition of *, so that W(#*) = 0. Furthermore,
since t* < Ty, a positive mass of customers have not been served yet, and since
Q(t*) = 0 these customers have not arrived by ¢, so that F(#*) < A. Thus, those
customers that arrive after * can improve their cost by arriving at * instead
and getting served immediately. This implies that F cannot be an equilibrium
profile.

(ii) Suppose that F has a point mass of size A > 0 at some ¢ = ¢;. Then, a customer
that arrives at #; sees, on average, half (1/2) of the customers that arrive at #,
before her. However, by arriving at t; — € with € > 0, such a customer would
arrive ahead of this bunch, thereby reducing its waiting time by 1/2u — € at
least, and leaving earlier. Clearly, for € small enough this means that arriving
at ¢, is not optimal for such a customer. It follows that F has no point masses,
namely no discrete component. Since F has no continuous singular component
by assumption, it follows that F is absolutely continuous.

(iii) We have just established that F has no point masses. This implies that an
arrival at ¢ will see the entire queue Q(¢) before him. For t < 0, Q(t) = F(¢),
and the equality in Eq. 4 follows since —¢ is the customer wait before the
server becomes active, and F(f)/u is the remaining queueing delay once the
server becomes active. For 0 <t < Ty, Eq. 4 follows from part (i) of this
Lemma as service proceeds at full rate in the interval [0, T'¢], which implies
that Q(t) = F(t) — ut, while W) = Q@) /. ]
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It follows from Lemma 1 that under the equilibrium arrival profile F, the cost
Cr(?) at any time t < Ty equals

Cr(t) =(a+BFt)/1n — at. &)

Let Ty = —%g The cost in Eq. 5 becomes independent of ¢ for t € [Ty, T¢] if we
select F' = F* where F*(tf) = 0fort < Ty, F*(t) = A fort > Ty, and
t— Ty

FF)=A——, te[Ty T¢].
®) T,— T, € [Ty, Ty]

In that case, Eq. 5 gives Cp(t) = BA/u = BTy fort € [Ty, Ty].

Theorem 1 F* is the unique equilibrium arrival profile with To = =22 and T, = &

"o

Proof We first verify that F* is an equilibrium profile. First, as noted above, Cp« () =
BA/ 1 E cofort € [Ty, Ty].Fort > Ty we have W(t) = 0,hence Cr(t) = Bt > BTy =
co. For t < Ty, an arrival at ¢ is first in queue and gets served at 0, hence Cp«(f) =
a(—=t) > —aTy = cp. Thus, Cp-(f) is minimal on the interval [Ty, Tf], which has F*-
measure A. Thus, F* is an equilibrium arrival profile by Definition 2.

We next show that F* is the unique equilibrium. Let F be any equilibrium arrival
profile. By Definition 2, there exists a set 7 of F-measure A on which Cr(f) equals
some constant ¢, while Cp(f) > c¢; elsewhere. From Lemma 1, we know that all
customers are served by 7'y so that F(Ty) = A. Therefore, we can restrict the set 7°
to (—oo, Tr]. Moreover, as Cr(f) is continuous by Lemma 1, we can replace 7 with
its closure without changing the above properties. To summarize, 7 can be taken to
be a closed set which is bounded above by T';.

Let ¢, be the maximal point in 7. As just noted, t; < Ty. We claim that t; = T.
Indeed, if #; < Ty, then an arrival at time ¢, is the last to arrive and thus gets
served last at T'f, so that Cp(t)) > BTy = C (T ), which is a contradiction to t; € 7.
Therefore t; = Ty, implying that Ty € 7.

Now, by definition of 7, Ty € 7 implies that Cr(t) = Cp(Ts) = BT for every
t € T. Note that this cost is identical to the cost computed for F* on [Ty, T]. But
since Eq. 5 holds at any equilibrium, it follows that F(f) = F*(t) fort € T N [Ty, T].
But this implies that F(1) = F*(¢) for t € [Ty, T ], since F* is strictly increasing on
that interval while F(¢) is continuous and cannot increase outside the set 7 (as 7
has F-measure A). Finally, noting that F*(Ty) = 0 and F*(Ty) = A, F is completely
defined and equals F*. O

Remark 2 Observe that the equilibrium cost Cr(t) = BTy = BA/uu is independent of
a. To understand that, note that for the last arriving customer at ¢t = Ty, the waiting
time is zero and total cost is just the lateness cost 87T, which also has to be the cost
at other time instants ¢ € [Ty, Tf] at equilibrium.

Remark 3 The equilibrium queue size increases linearly for ¢ <0 according to
o) = F* () = %(l — Ty), and decreases linearly for ¢ > 0 according to Q(f) =

F*(t) — ut = %(Tl —1). The maximal queue size is obtained at time zero and

equals Q(0) = A ﬁ Interestingly, the latter is independent of the service rate u.
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We next evaluate the price of anarchy (PoA) for the single class model. Recall that
the social cost Jy is the sum of costs over all customers. For a given arrival profile
F, we obtain by Eq. 3 (with the class index dropped),

Jsoc(F) = f CrdF (1) = /(OéWF(l) + B+ Wr0)dF(@). (6)

The PoA quantifies the efficiency loss due to selfish decision making by individuals,
as the maximum ratio of the social cost at any equilibrium (J.q) to the optimal social
cost (Jopt). The PoA is then an upper bound on the above ratio for any equilibrium,
and equal to this ratio when the equilibrium is unique. Since, by Theorem 1, the
equilibrium arrival profile is unique, we simply define PoA as

J
PoA = =4

J, opt

Proposition 1 (PoA for the single-class model) Recall that Ty = A /. Then

(i) Jopt = %,BATf-
(if) Jeq = BATy.
(iii) Consequently, PoA = 2.

Proof

(i) At the socially optimal solution, the arrival instants of all customers are to be
selected to minimize the social cost. Since the fluid model is deterministic, the
arrival time of every customer can be set to the instant his service is due to start,
which eliminates all queueing delay and is therefore optimal. Thus, W () = 0.
It is also evident that starving the server before all work is done cannot be
optimal, so that the server must work at full rate u from t =0 to Ty = A/u.
Putting these two observations together implies that the uniform arrival profile
F(t) = At/ Ty for 0 <t < Ty is optimal. Therefore, by Eq. 6,

1
Jopt :/ﬂtdF(t) = SBAT}.

(This expression becomes obvious once we observe that the mean arrival time
isT f / 2.)
(i) Recall that the cost for each customer at the unique equilibrium profile F* is
constant and equal to 8T ;. Therefore, the social costis ABT .
m]

Thus, for the single class model, the social cost at equilibrium is always one half
the optimal cost, for any choice of cost parameters and service rate.

We close this section by pointing out an important extension to the basic
cost model.

Remark 4 (When order of service matters) The cost function considered so far
includes two components: the delayed service cost and the waiting cost in the queue.
In many settings of interest, such as queueing for a better seat, it is not the time at
which service is obtained that is important, but rather the number of customers that
obtain service before us. Fortunately, this leads to only minor changes in our fluid
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model. To see this, note that this change corresponds to replacing the cost function
C@t) =aW(@) + B+ W()) from Eq. 3 with

C(t) =aW(@) + BF(). (7)

For this new cost, we can repeat the argument in Lemma 1 to deduce that * = Ty in
equilibrium, and therefore W(¢) = F(t)/u — t. Thus, the cost (Eq. 7) equals

Cwt) = %(a +B) —at,

where f = Bu. Comparing with Eq. 5, it is evident that the two cost functions
coincide once B is replaced by . Thus, our previous results hold for the modified
cost function as well after making this substitution. In particular, the PoA remains 2.

4 The multiclass problem

We now turn to the multiclass fluid model, where customers can be heterogeneous in
terms of their cost parameters. As described in Section 2.3, we divide the customer
population into a finite number of classes, each characterized by distinct parameters.
In the next section we briefly consider the multiclass model with a continuum
of classes.

4.1 The equilibrium profile

We proceed to identify explicitly the equilibrium arrival profile. To that end, define
the cost ratio parameters
o

m; = N l:l,,]
a; + B

Let us re-order the class indices in increasing order of m;, so that m; < m;;. We will
assume for simplicity that all the cost ratio parameters m1; are distinct. When this is
not the case, one can simply unify customer classes that have identical m;’s, and all
the results of this section essentially hold.

Theorem 2 Supposem; < m, < --- < my. Then, the equilibrium profile { F;} exists, is
unique, and specified as follows: Let Ty < Ty < --- < T be an increasing sequence of
time instants defined by
A
T]:A/[,L, Ti_lzT,’— B l:O,l,...,I. (8)
um;

Then, F; corresponds to a uniform distribution on [T;_i, T;] with density pum,
namely

Fi(t) = um{T;_y <t <T;}. O]

We proceed to prove this result. To begin with, observe that Lemma 1 and its
proof remain unchanged in the multiclass case. Thus, under any equilibrium profile
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{ F;}, the server operates at its full rate u from time O till the last customer is served.
Hence all customers are served by time 7y = A/u. Furthermore, a customer that
joins the queue at time ¢ will leave it at time 7 = F(¢)/u. Therefore, the cost function
for a class i arrival at ¢ is given by

Ci() =ai(t — ) + Bit = (o + BT — it

(a; + ,Bi)% —ait. (10)

The next Lemma establishes the relationship between the arrival times of the
different classes at equilibrium.

Lemma 2 Let {F;} be an equilibrium profile.
(i) Ifaninterval (t,,t,) belongs to the support of Fi(t), then
Fi(t) = pm; fort e (11, 1) .

(ii) Letiand jbe two class indices so that m; < mj. Then all arrivals of class i occur
before those of class j.

The following lemma is useful for proving Lemma 2.

Lemma 3 Let {F;} be an equilibrium profile, and denote F =), F;. Then, there are
no gaps in the aggregate arrival profile, i.e., F(t;) — F(t;) > 0 for all t; > t, such that
0< F(t)) < A.

Proof Suppose, to the contrary, that there are no arrivals on (¢, ;). By our assump-
tions on ¢; there are some arrivals both before and after this interval. Since the server
operates at full rate over (¢, fb), it follows that the last customer to enter before t,
will not get served before t,. Therefore, by arriving just before t,, this customer will
reduce her waiting time while leaving at the same time as before, thereby improving
her cost. Thus, this arrival profile cannot be an equilibrium profile. O

Proof of Lemma 2

(i) By the equilibrium definition, it follows that C;(¢) is constant on (¢, ;). From
Lemma 1 it easily follows that each F; is absolutely continuous so it admits a
density that we denote by F;(¢).

Noting Eq. 10, it follows by differentiation that on that interval,

i

a; + Bi

Fi()=n = pum .
(ii) Suppose there are classes i and j with m; < m; such that some class j arrivals
arrive in some interval (¢, t,) just before class i arrivals in some interval (z,, f3)
with #; < t, < t3. That there will be non-zero arrivals in each of these two
intervals is given by Lemma 3. Let us compare the cost incurred by a class j
arrival on these two intervals. For t € (11, t;), Cj(?) is constant (by definition of
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the equilibrium) and equals C;(t,) (by continuity). Now, from item (i) we know
that F'(t) = um; on (f,, t3), hence on that interval,

o d Foy
Cj(l) = % ((Ol]-l-ﬂ])T —Otﬂf)

F'(0)
= (O{j-i-,Bj)T —aj=(a;+ Bpm; —a;

= (aj+ Bpm; —mj) <0.

This implies that the cost C;(¢) is strictly smaller on (#,, £3) than on (¢, 1,), which
shows that the latter interval cannot be in the support of F; at equilibrium,
contrary to our assumption. o

Proof of Theorem 2 To establish Theorem 2, we first show that an equilibrium
profile must have the indicated form. From Lemma 2(ii) it follows that the arrivals
of the different classes are ordered in increasing order of their m; parameters.
Now, from Lemma 3 it follows that the arrivals of each class i are supported on a
single interval [z;, T;], and that these intervals are contiguous so that t; = 7;_;. From
Lemma 2(i) we see that the arrival profile of each class i on its interval [T;_y, T;] is
uniform with rate um;. Computing the overall arrival volume on that interval gives
um;(T; — Ti_;) = A;, which implies the recursive relation in Eq. 8. Finally, 7; = A/u
follows from Lemma 3, as already indicated.

It is now a simple matter to verify that the indicated arrival profile is indeed an
equilibrium profile. Clearly, the cost C;(¢) is constant on [7;_;, T;] by construction.
Moreover, arguing as in the proof of Lemma 2, it is readily verified that C;(r) > 0
fort > T; and Cj(t) < 0 fort < T;_, thereby establishing that the cost C;(¢) is indeed
minimized on the support [T;_;, T;] of F;. O

We end this subsection with a few observations regarding the equilibrium profile.
The aggregate arrival profile F(f) =), Fi(f) can be expressed more explicitly as
follows. F(t) is piecewise linear, with slope pum; on [T,_;, T;]. The times 7T; are
given by

1

A.
Ti=A/u— —. 11
_Z o, (11)
J=i+1
At these times,

1 i

F(T)=A- )Y Aj=) A, (12)
j=it1 j=1

with linear interpolation on [7;_;, T;] at slope um; (see Fig. 1). Note that Ty < 0
(since m; < 1), so that arrivals start before 1 = 0 as in the single class case. Further,
the aggregate arrival profile is convex for t < Ty, meaning that the arrival rate is
increasing in time, reaching its peak towards the end of the service period. Still, the
queue length is strictly decreasing beyond ¢ = 0 (which again follows since m; < 1.)
Finally, arrivals are ordered in increasing order of m; = a’_i" 7> Of equivalently in
increasing order of ;‘;— which indicates the relative cost they attribute to waiting over

being late.
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Fig. 1 The cumulative F'= um
B 3
distribution of the aggregate
arrival profile in equilibrium F (t )
4
A

4.2 Price of anarchy

We proceed to compute and bound the Price of Anarchy (PoA) for the multiclass
model. To enhance readability, all derivations of the results of this subsection are
presented in the Appendix A.

We first compute the social cost at equilibrium, Jeq, and the optimal social
cost Jopt.

Proposition 2 In the multiclass model,

Bi ﬂ]}
Jeq A o . 13
“112—1 i mln{ o o =
and
Jopt = Z AiAjmin{B;, B} . (14)

l]—

The following simple bounds on J¢q and J,p; readily follow from Egs. 13 and 14:

1

1
Z j:Bi =< ;ﬂmaxAz (15)

’;M—

ﬂmln Z A; A - L,BminA2 (16)

i,j=1

where A = Zle Aj, Bmin = min;(B;), and Bmax = max;(B;). We proceed to derive
additional bounds on the ratio of Joq and Jqp.
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From equations Eqs. 13 and 14, we obtain the following explicit expression for
the PoA:

1 . i j
Zi.j:l A,’A]'Ol,‘ min [(:%_, %]

o Sl _ N (17)
opt Zi,jzl A,—A,-mln{ﬂ,—, ,B]}

Je
PoA 2 ¢4

~

As we will see below, the PoA ranges around the single-class value of 2. We proceed
to present some bounds on its value. Essentially, we will be interested in bounds that
depend only on the ranges of the cost parameters (¢; and ;) but not on the relative
size (A;) of the customer classes. We start with some special cases, where only one
parameter varies across classes.

Proposition 3

(i) Identical wait sensitivities. Suppose o; = ay: the wait sensitivities are identical for
all customer classes. Then

PoA =2.

(ii) Identical lateness sensitivities. Suppose B; = Po: the lateness sensitivities are iden-
tical for all classes. Then

PoA <2, (18)

and

PoA >2—(1 -1 (1—@>zl+ami", (19)

Qmax Amax

where omax = max; o, Omin = min; oy, and 1 is the number of classes.

Item (i) of the last proposition is evidently an exact extension of the PoA result for
the single-class case, giving the same value of 2. Regarding (ii), we first note the upper
bound of 2 is strict unless all the ¢;’s are equal as well. Thus, in this case, diversity in
the waiting sensitivities of the customers actually improves the POA compared to the
single class case. As for the lower bound, for two user classes (I = 2) with o < a,
it reads

PoA > 15405,
o2
We observe that this bound is tight, and is achieved when A; = A,.

We now turn to consider the general case, when both sets of cost parameters
may vary across customer classes. The following set of bounds is obtained simply by
bounding separately the ratios of each pair of corresponding terms in the numerator
and denominator of Eq. 17.

Proposition 4 Let H,,x = max; ; H(i, ) and H;, = min; ; H(i, j), where

(ai‘f'aj)min[ﬂ‘: ﬂj’}

o’ a

H(, j) = 2min{g;, B}
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Then
2Hpin < POA < 2H .. (20)
Consequently,
PoA < 14 Zmsx, 1)
Omin
,Bmax
PoA <1+ , (22)
ﬁmin
PoA > (1 + —““‘i“> Puin (23)
Omax lgmax

Equation 22 provides an upper bound on the PoA in terms of the g parameters
only. In fact, a tighter bound of this form may be derived through somewhat refined
analysis. This bound also points to the “worst case” conditions in terms of the PoA
when the (8;) parameters are given.

Proposition 5 PoA <1+ gL

We note that the bound of the last proposition is tight, in the sense that for any
set of B;’s, the bound is satisfied with equality for some (¢;, A;) parameters. Indeed,
as implied by the proof, setting the ;s in increasing order, equality is obtained for

A2 == A1_1 = 0, A]/A[ = «/,31/,31,and Ol]/O[l = ﬂ[/ﬂ] (Cf Eq 17)

5 The continuous parameter model

We next consider our model with a continuous set of customer classes, rather than
discrete. It may be argued that this model is more realistic, which comes at the
expense of larger computational (and possibly technical) difficulty. Our treatment
here will be brief and informal, and we will essentially rely on the discrete-parameter
results to infer the form of the equilibrium arrival profile in the present case.

Let g € I denote here the continuous class parameter. We can identify g with the
two cost parameters (o, ;) € ?)ti. Let g1(g) > be a density function on [, with total
mass [ g1(q)dg = A.Thus, g,(¢g) denotes the density of arrivals of class g. We assume
that there are no point masses in the cost parameter distribution, so that g; is finite.

Let my = oy /(g + By) € 10, 1] denote the cost ratio parameter for class g cus-
tomers. Since the equilibrium arrival profile is completely characterized by this
parameter, it will be useful to define its density. Thus, let g(r7) > 0 denote a density
function on [0, 1], which is obtained from g; as

g(m) = / 1m, = m)g)(@)dq .

We assume that g(m) is finite as well. Obviously, [ g(m)dm = A. Further, let

Gm) = /0 g(n)dn
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denote the (absolutely continuous) cumulative distribution function of g. For sim-
plicity, we will assume that g has finite support (i.e., m is bounded).

As in the discrete parameter case, let F(f) describe the aggregate arrival profile
of the customer population. The equilibrium arrival profile is defined as before.
Looking at the continuous model as the limit of the discrete one, with the number
of classes going to infinity, we may infer the following analogous properties of the
equilibrium arrival profile (see Lemmas 2 and 3, Theorem 2 and Fig. 1).

1. The server operates at full rate p till the last customer is served. Thus, the last
customer is served at Ty = A/u.

2. Aurrivals occur in increasing order of m. That is, customers of class g, arrive
before those of class g5 if my, < my,.

3. [If arrivals at time ¢ have cost ratio parameter m(¢), then

F(t) = um(p). (24)
It follows that all customers with m < m(t) arrive up to time ¢, hence
F(t) = Gm(1)).

We proceed to derive differential equations for m(f) and F(¢). Differentiating the last
equation gives

F'(t) = g(m@)m' (1)
and together with Eq. 24 we get

m(t)

0= ey =T

(25)

The boundary condition for this equation is obtained by noting that the last arrivals
occur at Ty = A/ and have maximal m. Thus, letting n1,,,, denote the maximal point
in the support of g(m),

m(Tf) = Mpmax-

m(f) may now be computed from the differential equation with a boundary condition.
The equilibrium arrival profile F(f) may then be computed using F(f) = G(m(?)).

We note that a direct equation for F(¢) follows by combining Eq. 24 with Eq. 25,
yielding

wF' (1)
gu=F (1)

with terminal conditions F'(Ty) = umma and F(Ty) = A. It is clearly seen that
F’(t) = 0 overt < Ty, hence F(t) is convex there.

It is easy to verify that the arrival profile thus defined is indeed an equilibrium
profile. Recall that the cost function for a class g arrival is given by (see Eq. 10):

F//(l) —

F F
Cyt) = (g + ,Bq)% gt = (g + By) (% - mqt> .
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It further follows by construction and Eq. 24 that customers with parameter m,
arrive at time f; defined by F'(t;) = um,;. We will show that ¢, minimized C,.
Differentiating, we get

F(t
C;(t) = (otg + By) (# — mq) .

Therefore, C;](t) = 0 att = t,. Furthermore,

F'(t
Cy(t) = (ag + By) u() .

But as observed above F(f) is convex on ¢t < Ty and hence so is C;. Thus, ¢, is a
minimizer there. It is also clear that the cost C; is increasing for ¢ beyond 7'r, hence
14 is a global minimizer of C;.

We turn to an example that illustrates the required computations in the simple
case of uniformly distributed cost parameters.

Example 2 Let the cost ratio parameter m of the customer population be uniformly
distributed on some interval [my, m;], namely
A

gim) = gol{mop <m <my}, go=-——.
m; —my
Then, by Eq. 25,

mO="Sme), t<Tp mTp=m,
8o

with the solution

(t=Ty)

m(t) = mleﬁ To <t <Ty.

Here T, must satisfy m(7,) = my, so that To = Ty — %’ log (2—(‘)) The equilibrium
arrival density F’ is given by

t=Ty)

F'(t) = gm@)m'(6) = gom (1) = um e To<t<Ty

Evidently, the arrival distribution at equilibrium turns out to be an exponentially
increasing function. Finally, the cumulative arrival distribution F(#) may be obtained
by integrating F” and using F(Ty) = A, yielding

F(t) = goml(eg%(t_Tf) —1)+A, To<t=<Ty
To close this section, we observe that the PoA bounds from Section 4.2, which

depend only on the range of the cost parameters « and S, should hold without
modification in the present continuous-parameter model as well.

6 Reducing the price of anarchy
We next discuss some ways in which the social inefficiency of the equilibrium

solution, hence the price of anarchy, may be reduced. For simplicity, we consider the
setting of a single customer class. The generalization to multi-class is conceptually
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straightforward, but requires more elaborate calculations. A key message of this
section is that the fluid model is sufficiently tractable to provide elegant and intuitive
answers to many natural methods for reducing the PoA.

We consider three methods in this context:

e Temporal segmentation, where certain parts of the population can be served only
after specified time thresholds.

e  Priority assignment, where certain parts of the populations are given absolute
service priority over others.

e Time-dependent tariffs, where customers who are served earlier are charged
more.

In these cases we show that by appropriately segmenting the population into n parts,
the PoA can be reduced from 2 to 1 + %

Both temporal segmentation and priority assignment can be viewed as partial
forms of customer scheduling through appointment setting, and may be applicable
whenever the latter is relevant. A familiar application which is handled along similar
lines is airplane boarding, where economy passengers are assigned different priority
based on their seat location. Price differentiation and segmentation are of course
important topics in operations research and economics, and our treatment here
barely scratches the surface.

We start the discussion by considering in some detail temporal segmentation with
two groups. Here we will compute explicitly the equilibrium for the different choices
of the temporal delay threshold and population shares, and establish the optimal
choices that lead to the minimal PoA of % This derivation is also of independent
interest, as it brings out some interesting structural properties of the equilibrium
at different levels of separation between the two populations. We then proceed
to consider (albeit in lesser detail) the n-level schemes for temporal and priority
segmentation, and conclude with a brief discussion on the use of differential tariffs.
Later, in the Appendix A, we also point out the performance degradation that
may occur with suboptimal pricing. Without loss of generality, we take A =1 in
this section.

6.1 Temporal segmentation: two segments

Consider the case where the population is divided into two segments. Specifically,
assume that a proportion a € (0, 1) of the population is allowed to be served at any
time ¢ > 0, while a proportion (1 — a) is allowed to be served only after some time
7 > 0. Call these the first population and second population, respectively. Note that
the restriction is only one-sided: no upper bounds are imposed on the service times
of the first population. We do allow the second population to queue up before time
7, so that after time 7 they join the end of the queue of population 1 customers at
the service facility (if any) and are served after them. Within the same population,
service is always in the order of customer arrivals. After time 7, customers from either
population join at the end of the main queue.?

2In another variation of this model, both populations can queue up together, but if a customer of
population 1 reaches his turn for service before time 7, he will need to wait till that time and let
population 1 customers pass him. The essential results are similar.
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We first note that the first population may be fully served by time 1‘7’ Therefore,

if we set 7 > ﬁ, then the server would be idle in the interval [T, ﬁ], which is clearly

inefficient. We therefore restrict attention to the case where 7 < £.
The following proposition summarizes our findings regarding the equilibrium
arrival distributions for different values of T < £. Let m denote the ratio =%, and

. - g A
define

tozg—(l—a)i. (26)
n apu

Proposition 6

(i) Fortmp<t< ﬁ, the equilibrium arrival profile of each population is unique, with
the first population arriving uniformly over the interval [f — u‘—’m f] at rate um,
and the second population arrives uniformly over the interval [1:0, i] at rate pum.
The PoA increases linearly from 2(a* + 1 — a) to 2 as t© decreases from ﬁ to 1.

(i) For 0 <7 < 19, in any equilibrium, the joint arrival profile of both populations
B 1

is uniform over the interval [ — ;], with rate um. Population 1 alone arrives

over the interval [ — % f], and the remainder from both populations arrive in

arbitrary order over |1, i] Here, the PoA equals 2.

The proof is presented in the Appendix A.

A central point to note is that population 2’s cost is not affected by this segmenta-
tion. The only effect is the potential gain to population 1. (Of course, in the stochastic
setting one can expect some loss to population 2 due to the increase in queue size
uncertainty as time progresses. This is an interesting point for future study.)

Another interesting observation is the phase change that occurs at the critical
value of 7 = ty. Above this value, population 1 obtains a concrete cost improvement
over the unsegmented case. Below this value, although population 2 does refrain
from arriving before 7, there is no gain or loss for either population.

Returning to the issue of equilibrium efficiency, the important observation is that
the PoA is minimized by setting 7 to the extreme value of ﬁ Here, the unique
equilibrium corresponds to both populations blissfully unaware of each other, as
population 1 finishes its service exactly at 7. The first population arrives as if the
second does not exist and the server facility opens at time 0, the second population
arrives as if the server facility opens at time a/p and queues up appropriately
before time a/u (see Fig. 2 for an illustration). Further observing that the minimum
of 2(a*> +1 —a) is obtained for a = 0.5, we obtain the main conclusion of this
subsection

Corollary 1 The PoA for a two-group temporal segmentation is minimized by setting
a=05andt = % The minimal value is %

Thus, the optimum is attained by splitting the two populations equally, and
minimizing their interaction by allowing the second to be served only when the first
has finished.
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Fig. 2 Equilibrium queue B al(o.+p)
length profile for the two
populations. Population 1
comprises a proportion and is
served in the interval [0, a/u].
Population 2 comprises (1 — a)
proportion and is allowed
service after time a/pu,
although it starts queueing
from time ry onwards

Unrestricted population

Balap) o alp

Delayed population

Queue length

0 alu m

6.2 Temporal segmentation: multiple segments

Suppose that we segment the population into n parts, with each allowed to be served
only after a certain time. We shall not go into a detailed analysis of this problem, but
rather use the insight from the two segment case, so that we divide the population
into n equal segments, of size % each, and eliminate their interaction by allowing the
i-th segment to be served only after the previous ones are expected to have finished,
namely at time % fori =1,2,...,n. Then the equilibrium cost for customers getting
served in a slot (% ﬁ) would equal % As this pertains to a 1/n proportion of the
population, the total cost equals

ﬁ<1+3+...+1>=£”“.

nuw\n n 2 n

Comparing with Proposition 1, it is immediately seen that the PoA equals ”7“, which
approaches the optimal value of 1 as n increases.

6.3 Priority queueing

Another way to achieve PoA equal to ”T“ is through dividing the population into
n separate segments and assigning different priorities to them. Specifically, suppose
that the population is divided into n segments with (a; : i < n) denoting the respective
proportions (the cost function is identical for each segment). The population segment
with lower index is given priority over the segment with higher index. Then, in
equilibrium customers arrive in disjoint intervals, customers of segment 1 arrive
first uniformly in the interval [ — %‘, ] and are served by the server in the
interval [0, %]. Similarly, customers of segment j > 2 arrive uniformly in the interval
(> 4 — a3, %] and are served in the interval (> DN EE

The cost incurred by segment i equals 8"/, ”; so that overall price of anarchy
equals

n j
22} a
j=1 i=1
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Through simple optimization, it can be seen that this is minimized by setting a; = %
for each jso that the PoA equals %

n

as in Section 6.2.

6.4 Charging tariffs

Recall that in Section 6.1 in the two population setting, we obtained the best PoA
when we divided the populations in equal parts and allowed the second population
to come after time ﬁ Then, the cost to each customer in the first population was ﬁ
less than that of customers in the second population. This suggests a procedure for
implementing discriminatory pricing.

For brevity, we restrict our discussion to the case where customers joining the
service facility queue by time zi” have to pay a constant tariff p while the customers
joining the service facility queue after this time pay no tariff. We refer to the former
as population 1 and latter as population 2. We assume here that demand of one unit
is fixed and is unaffected by the pricing strategy of the service provider. Again, we

allow population 2 to queue up before time ﬁ separately and join at the end of

service facility queue at time i In this case, they are served after population 1
customers at the service facility queue at that time, if any, and in their order of arrival
amongst population 2. We further assume that the tariff collected is returned to the
society so this does not enter into the price of anarchy calculations. We now discuss

the scenario p = % that corresponds to minimum PoA. For brevity, the discussion

of the remaining two cases p > % and p < % is kept brief and is relegated to
the Appendix A.

_ B
6.41p=4;
In this scenario, the first population arrives uniformly between [ — zi Zi] at rate
o’ 2p
um, and the other between [i — % i] at the same rate. The cost incurred by both

the populations is £: For the first population it is £ from waiting and time to service
" 2u

and another % from the tariff for coming early.
Thus, a customer is indifferent to coming as part of population 1 or 2. The revenue
collected by the service provider from tariffs equals %. The PoA, as before, equals

3/2. See Fig. 3 for an illustration of this scenario.

.
.
.
.

- Queue length

B o) B /(20 ) 12p M

Time =

Fig. 3 The dotted line denotes the queue profile before differential pricing. After differential pricing
the darkened line denotes the queue profile of population 1 that pays /(21) more than population
2 whose queue profile is shown using the lighter line. The cost to customer joining either of the two
populations equals B/u
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It is easily seen that by having n — 1 separate tariffs so that customers served in

the interval (”iﬂ, %) for i=0,1,2,...,n— 1) are charged amount lﬁt”’r’;" , we can
n+1

achieve PoA equal to = —.

7 Numerical experiments

In our analysis in a single class customer setting, we derived the unique equilibrium
arrival profile for an asymptotically limiting fluid regime where the number of
customers increased to infinity. We refer to this as the asymptotic equilibrium arrival
profile. When the number of customers is finite, the associated equilibrium arrival
profile may be more intricate and determining it may be a subject for interesting
future research. In this section we numerically test the efficacy of the asymptotic
equilibrium profile in the fixed N customer setting for a simple example to get a sense
of its closeness to equilibrium in finite- N queue, as N increases. We consider the case
where there are N single class customers with linear costs that follow two variants of
the asymptotic equilibrium strategy: In Case 1, the customers select their arrival times
by sampling from a uniform distribution over their support. In Case 2, the customers
arrive at deterministic evenly spaced intervals. As pointed out in Section 2, both cases
represent a finite-sample approximation to the uniform fluid distribution. To further
contrast the two cases, we assume that customer service times are exponentially
distributed in Case 1, while they are uniformly distributed with lower variance in
Case 2. We then, in both the cases, plot the expected cost incurred by a tagged
customer as a function of her arrival time for increasing values of N. We observe
that the resulting cost (suitably normalized) converges to a constant as N increases.
This convergence is faster in Case 2 where the system is less noisy. This suggests that
for reasonable values of N, the asymptotic equilibrium arrival profile may be close to
an actual equilibrium arrival profile, although as mentioned earlier, further research
is needed to establish this.

Case 1 We set the linear cost coefficients « =2 and g8 = 1. The customer service
times are exponentially distributed with rate u = 1. Each arrival selects her arrival
time as uniformly distributed in the interval N x [ — % i] Customers are served
on a first come first serve basis. We use simulation to estimate the expected waiting
time and hence the expected cost of the tagged customer that arrives at times
N x [ - % 0, 075, 078, %, i] The cost of the customer is normalized by dividing by
N. Figure 4 shows the normalized expected cost for the tagged customer as a function
of her normalized arrival time (arrival time divided by N) for N = 10, 50, 100, 500,
1,000 and 10,000. Ten thousand independent simulation replications are conducted
to estimate the expected waiting time in each configuration. Typically, the 95%
confidence width of the resulting estimator is within 0.5% of the value of the
estimator. When, N = 10,000, and the customer arrives at times N x % orat N x i,
this ratio was below 3%, again for 10,000 replications.

Note that the normalized expected cost of the tagged customer trivially equals 1
for her arrival time between N x [ - £, O]. As the graph shows, this cost is higher

op
than 1 and is increasing as the arrival time increases to % However, for large N

(for instance, N = 1,000) this cost more-or-less stabilizes to 1.
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Fig. 4 We consider N single class customers with « =2, 8 = 1, service times exponentially distrib-

uted with rate u = 1. Customers arrival times are uniformly distributed between N x [— %, i]
The graph shows the expected cost of a customer arriving to this queue at different times. Cost and

time are normalized by dividing by N

Intuitively, this can be understood by recalling the well known Lindley’s recursion
Wn+1 = maX(Wn + Sn - In+1a O), (27)

where W,, denotes the waiting time of customer # in a first come first serve queue, S,
denotes this customer’s service time and /,,;; denotes the inter-arrival time between
customer n and n + 1. In our model all customers that arrive before time zero wait
till time zero when the system initiates service. Lindley’s recursion is then valid for
all customers that arrive after time zero.

Note that, if in our simulations, we set

Wn+1 = Wn + Sn - In+17 (28)

for all arrivals after time zero, then it is easily seen that the resultant normalized
expected cost will be 1 for an arrival at any time during N x [0, /lt] However, the
expected waiting time increases (and hence the expected cost increases) due to the
relation 27 assigning higher value to a waiting time compared to Eq. 28 whenever an
arrival finds an empty queue.

The difference between the two expected costs (one computing waiting time using
Lindley’s recursion, other using linear recursion) may be small when the probability
of the queue emptying between time zero and the time of tagged customer’s arrival is
small. This probability is obviously small for tagged customer’s arrival time close to
zero (as there are many customers waiting for service at time zero) and increases as
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this arrival time gets closer to N/u. It can easily be shown that for a given € € (0, 1),
as N becomes large, the probability of the queue becoming empty in the interval
[0, W] goes to zero, and hence the normalized cost stabilizes to 1 with increasing
N monotonically.

Note that for finite N, under a symmetric equilibrium strategy, the tagged cus-
tomer must see constant cost at all times along the support of other customers arrival
distribution. Figure 4 suggests that to achieve this, customers must put relatively less
weight towards the end of their support compared to asymptotic equilibrium strategy.

Case 2 Here, the customers arrive at deterministic equi-spaced time intervals -
Customerifori=1,2,..., N arrives at

(_@_'_L(a-f—ﬁ)_i_(i—l)(a-f-ﬂ))_
apn 24« uw o

All parameter values are as in Case 1. The service times are assumed to be uniformly
distributed between [1/2, 3/2] ( so their variance equals 1/12 as compared to variance
of 1in Case 1). This may be more realistic in many applications (such as concert or
cafeteria queues) where the service times show little variability. Figure 5 shows the
normalized expected cost for the tagged customer as a function of her normalized
arrival time as in Case 1. As expected, the convergence to 1 is much faster in this

1.8 4
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4. ~—N=1,000
——N=500
—4—N=100
1.4 4 -B-N=50
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‘g 1.2 4
]
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Normalized arrival time

Fig. 5 We consider N single class customers with « =2, 8 = 1, service times are uniformly distrib-
uted between [1/2, 3/2]. Customers arrive at deterministic equally spaced intervals. The graph shows
the expected cost of a customer arriving to this queue at different times. Cost and time are normalized
by dividing by N

@ Springer



Discrete Event Dyn Syst (2011) 21:103-138 129

case. Note that for small values of N, the normalized cost may actually be less than
1 for tagged customers arrival at times that are just before the next arrival in the
deterministic arrival grid. Also, for the case N = 10, to understand the decrease in
the normalized cost experienced by the tagged customer arriving at normalized time
0.95 as compared to normalized time 1, note that the last arrival in the deterministic
arrival grid occurs at normalized time 0.925. Proximity to this arrival then leads to
higher waiting and hence overall cost to the tagged customer at normalized time 0.95
as compared to the tagged customer that arrives at normalized time 1.

8 Conclusion

In this paper we considered the queueing problem that may arise in settings such as
concert and movie theaters, cafeterias, DMV offices, Black Friday shopping queues,
etc., where a large number of customers may queue up before a facility that opens
for service at a particular time. The customers strategically select their arrival time
distributions to trade-off waiting time in queue with costs due to late arrival. We
developed a queueing framework for this problem for which we identified the fluid
limit. We observed that the fluid limit allows a great deal of tractability in analyzing
the strategic arrival problem faced by each customer. We identified the unique
arrival profile for each customer class in equilibrium, and showed that the price of
anarchy equals 2 in the single-class model while it varies around this value in the
multiclass case. We further discussed structural changes in the queueing discipline
and simple pricing schemes that can be used to reduce the price of anarchy. We
also demonstrated through a simple numerical example that the proposed asymptotic
equilibrium arrival profiles may be may be close to equilibrium in the finite- N queue,
for N reasonably large.

As part of future work, we plan to study the equilibrium properties of the fluid
model under more general cost functions as well as study the model introduced here
under the diffusion limit. Extension to multi-server queueing networks would also be
of interest in many applications particularly communication networks. We hope that
this analysis motivates further research in strategic analysis of queueing systems.
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Appendix A
Here we first present proofs for some propositions stated above, and then discuss

some supplementary results to Section 6.3 related to reduction in PoA through
charging tariffs.

A.1 Proofs for Sections 4.2 and 6.1

Proof of Proposition 2 Recall that the social cost is defined as the sum of costs of all
customers, at a given arrival profile. Consider the equilibrium arrival profile that was
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computed in Section 4.1. Since the equilibrium cost C;(¢) is the same for all members
of each class, say C;, we obtain

Jeg =Y AGCi. (29)

The cost C; may be computed in any point in [7;_;, T;]. Picking T;, we get

Ci=Ci(T) = (ai + i F(MTi)

— Ti .
It will be convenient to express this as

nwCi = BiF(T) + oj(F(T;) — nuTy) .
Substituting 7; and F(T;) from Egs. 11 and 12, we get

i n n o+ B
HCi:ﬂiZAj+ai A—ZA]‘—A—‘FZA]‘]i"Bj (30)
j=1 j=itl j=itl %
ﬂz
—ﬂlZA +a,ZA (31)
J=i+1

Note that we can observe three distinct components in this expression. The right
most sum is the influence of later arrivals (customer classes with j > i) on class i.
The influence of customer classes that arrive earlier (j < i) is summarized by the
preceding term, summed up to i — 1. The remaining term S;A; expresses the effect of
competition within class i customers.

Substituting the last expression in Eq. 29, we obtain

]eq=ZAiCi=Z% lgzZA +O‘12Aﬂ] . (32)
i i J=i+1

To obtain the required (more symmetric) form of J.q, note that the ratio g is
decreasing in i (since the opposite holds for m; by assumption). Therefore,

7ZAA,Q, Zﬂl Zf’f

J=i+1 o

1 Z IR (33)

l]_

Jeq

as claimed. We observe that the latter expression is independent of ordering of
the classes.

We next turn to the optimal social cost Jop, which is obtained by optimizing the
arrival times and server allocation for all customers. Here there would be no queues,
as each customer can arrive exactly when her turn to be served arrives. It may then
be seen through a simple interchange argument that the optimal ordering of arrivals
between classes is in decreasing order of 8;. Let o (i) be an index permutation so that
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Bs1y = -+ = Bsm. Then, class o (i) customers arrive uniformly with rate u between
7,1 and 7;, where 7; = ™! le:l As(j- The overall cost for this class becomes

i—1

Ti 1+ T; A(7 1
Ji = Ao Boiy— 5 f=22080 D Ao+ PRAU
P
so that
i1 !
(@)
Jopt = ZJ = Z ;l Bt | D Aoii + 80 |- (34)
i=1 Jj=1

Again, we can express Jop in @ more symmetric form. Indeed,

i—1

Jopt = Z Aoy | D AohBoi + Ao Boi + Z Ao(pBoii (35)

j=1 J=i+1

1
1 :
= Z Aoy Aoy min{Bo), Bo(j} (36)

ij=1

where the first equality follows by splitting the last sum in Eq. 34 into two equal
terms and changing order of summation in one of them, and the second equality
follows since B, ; is decreasing in i. Now, it may be seen that the last expression does
not depend on the permutation o, hence we can remove the permutation and finally
obtain Eq. 14. O

Proof of Proposition 3 Item (i) is immediate from Eq. 17. As for (ii), from the same
equation we obtain the upper bound

Zl_AA min {1, &
PoA =2— 37 <2. (37)
ZI/— AA

On the other hand, proceeding from the last expression and recalling that o; < «;
fori < j,

237y A (1 —min {1, &})

PoA =2 — (38)
Zz j=1 A A
2Y M (1 - 2
_ 2 . ]I ]( l) (39)
Zi,j:l Ai\
max; ; 1—% '2Zi<'AiA'
>0 ] ( ) J ] (40)
St A
. A
=2-— (1 - “m‘“) LipjMiby (41)
@) (T 8)

It is easily verified that the last fraction is maximized when all the A;’s are equal, and
in that case it equals (/ — 1)/1. Hence follows the lower bound in Eq. 19. O
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Proof of Proposition 4 The bounds in Eq. 20 follow immediately after noting that,
by collecting terms, Eq. 17 may be written as:

Z BiA? + ZK]A Ao +a,)m1n{ i ﬂj}
Y BAT + X A 2 min{B;, B}

so that H(i, j) is the ratio of the coefficients of the i, j terms. The remaining bounds
follow by appropriately bounding H(i, j). As for Eq. 21, assuming that ; < ; we get

PoA =

ﬁz .37 . A é
2H@D—‘%+aﬂmmu’”}§(%+a0%:1+aj§1+%@
:Bi ﬂi o ®min
(the case Bi > B; is symmetric since H(i, j) = H(j, i)). As for Eq. 22, supposing that
’3’ < b we get
Bi s [YBi
i~ +miny—, p; ; i
2H(l, ]-)= Loy { a; /8/} < 181+ﬂl <1+,Bmax

min{f;, B} ~ min{B;, B} Bmin”
Finally, to establish Eq. 23, consider again that g; < g; so that

2H(i, D—(al+a,)mm{1 1’3"}
a; aj B

— T & Qmin ,Bmin
B mmil T % (1 - a]) ﬂz} = (1 * amax) Brmax

Proof of Proposition 5 From Egs. 14 and. 15, we have

2550 Ay
Zl /— A A mln{ﬂtv ﬂ/}

We proceed to bound he last expression, by computing its maximum over A > 0,
where A = (Aq, ..., A)).

Let us reorder the class indices so that 81 < 8, < --- < B; (in case there are equal
coefficients we can collapse them into a single class). Denote the right-hand side of
Eq. 42 by F(A), and let N(A) and D(A) denote the nominator and denominator
of that expression. We will show that the maximum of F is attained when A, =

-=A;1=0and A;/A; = \/E/«/ﬂ The required bound is then the value of F at
this point.

A maximizer A of F must satisfy

PoA <

(42)

A 8F(A)

Fr(A) = e S

0, k=1,...,1

with equality if A; > 0. Since F = N/ D, we get

NiD- DN _
DEE
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or equivalently
N/
(43)

with equality if Ay > 0.
2 <k < I—1, and suppose that Ay > 0. We will show that this is impossible. Since

Consider three consecutive coordinates (Ag_1, Ak, Agy1) of the maximizer A, with
the right hand side of Eq. 43 is independent of k, we get at this point
Ny < ﬁ > N {/c+1

Diy = Dy~ Dy,

which implies that
Nl,c B Nllcfl > Nl/€+l B Nll< (44)

D;(_D}ﬁl a D;c+l _Nl/c.

Now, direct computation of the relevant derivatives gives
A ON(A)
Ne= A = L Ahi+ B A
i i

. 4 0D(A) .
Dké AL =22Aimln{,3i,/3k}

(IBk - ,Bk—l) Z,‘ Ai Zi Ai

so that
Nl/c B Nllc—l
D;{ - D;(_l N 2(/316 - ,Bk—l) Zizk Ai N 2 Zizk Ai

and similarly
N 1/<+1 - N l/c _ Zi A
D;H—l - D;c 2 Zi2k+1 A
Comparing the last two expressions, it is evident that Eq. 44 can hold only if A; = 0.
It follows that any maximizer A of F must have A, = ... A;_; = 0. To determine

A and Aj, observe that F now reduces to
Fhy = 2 BT Bt BN A + o3
BIAT +2B1A1 A2 + BoAA]
—0y 28 — Br)A 1 A2 0y 2(B2 — B1)
BiAT +2B1A 1A + BoA] Bih +2B1 + Ba/ A

where 1 2 A1/A,. Minimizing the last denominator over A (which is equivalent to
maximizing F) gives i — f2/A> =0, or A = /B,/Bi. Substituting this maximizing
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value back in F gives the upper bound F(A) =1+ /B;/B:. Recalling that the g;’s
were arranged in increasing order, this establishes the claimed upper bound. m]

Proof of Proposition 6 First consider 7o < 7 < ¢. As argued before, under any equi-
librium, the server will serve at a full rate till time 1/u. Clearly, the last customer

to be served in equilibrium will arrive at time 1/ and incur the cost ¢, £ B/ .
Note also that any customer from population 1 has the option of arriving at time

7 and be served by at most time a/u, resulting in an upper bound on her cost ¢; 2
a(% —17)+ B+ Therefore, the equilibrium cost for population 1 is upper bounded
by c;. It is easy to verify that ¢; < ¢, (using 7o < 7), which implies that population 1
customers will not be the last to arrive.

Hence, some member of population 2 is the last to arrive, and in equilibrium
the cost incurred by each customer of population 2 equals c,. Clearly, population
1 cannot arrive after time 7 and incur cost less than c,, as then a customer from
population 2 can replicate this to lower her own cost. Hence, since all customers in
population 1 have a constant cost, this population arrives uniformly in an interval
[t - ot 7] at rate um for some T < 7. Again, if T < 7, the last customer of this
population can improve her cost by arriving at 7, so t = 7. In particular, the cost
incurred by population 1 customers equals ¢, and they are served uninterruptedly till
time a/w, which results in the stated arrival profile. From population 2’s viewpoint,
then, in equilibrium the service opens at time a/u, and hence in equilibrium it must
follow the profile specified in the proposition.

It is straightforward to compute the PoA for the specified equilibrium, we omit
the details.

Now consider the case T < 1y. Let ¢; and ¢, be defined as above, and note that
now c; > ¢,. As before, we argue that no customer can have cost more than ¢,, while
population 2’s cost will equal c,. If all of population 1 arrives by time 7, the cost
incurred by its last customer (who will be served at time a/u and will need to wait
at least a/p — 7) is not less than ¢;. Hence, this cannot hold in equilibrium and some
customers from population 1 must arrive after time 7. But these must have the same
cost ¢, as population 2 customers in equilibrium (as any arrival of population 2 at that
time will incur the same cost). Thus, equilibrium cost for each customer must equal
¢, and the joint arrival profile must be as stated. Finally, population 2 customers
cannot come before 7 in equilibrium, since then a customer from population 1 that
arrives at 7 will have priority over them and thereby achieve better cost than c;.
However, beyond 7 arrivals from both populations have similar status, so that any
order of arrival that keeps the joint uniform distribution (hence cost ¢;) would
complete an equilibrium profile. The PoA clearly equals 2 since the joint arrival
distribution is the same as in the single-class case.

The case of T = 1y is borderline between the above two and can be treated by
either argument, we omit further details. O

A.2 Reducing the PoA through tariffs: supplements

This discussion supplements Section 6.3. We state two propositions: Proposition 7
specifies the equilibrium profile for p = (1 + c)%, ¢ > 0. Proposition 8 does this

forp=_1 - c)%, ¢ > 0. The arrival profiles in the two cases are illustrated in Fig. 6.
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Fig. 6 The dotted line in both the figures denotes the queue profile before differential pricing. The
darkened line in the top figure denotes the queue profile of population 1 that pays (1 +¢)/(2n)

more than population 2 whose queue profile is shown using the lighter line. Here the population 1

is served till T} = ﬁ — ﬁ and population 2 is served till 73 = /ll + ﬁ. The cost to customer joining

either of the two populations equals 5(1 + £). In the bottom figure, the darkened line denotes the
queue profile of population 1 that pays (1 — ¢)/(21) more than population 2 whose queue profile
. . . . . . . % 1

is shown using the lighter line. Here the population 1 is served till 7| = T % The cost to
customer joining either of the two populations equals %

The proofs of these propositions are straightforward. They rely on the fact that the
two populations: One that pays an additional tariff p and the other that doesn’t each
arrive over their respective arrival intervals at a constant rate um in such a way that
the cost incurred by a customer in either population is the same. For brevity we omit
the proofs.

Proposition 7 For p = (1 +¢) %, c>0:
1. Inunique equilibrium, (% — ﬁ) proportion of customers arrive as population 1, for
¢ <2, at rate um, uniformly over

-5-946-3]

and (% + i) proportion arrive as population 2 at rate um uniformly over

1 B cy 1 c
= (1+2), -+ |
2u 2au 27w 4u

For ¢ > 2, all customers come as population 2 as for ¢ = 2.
2. Furthermore, for ¢ < 2, the PoA equals

_ 3 c¢(l+c)
_54—7. (45)

For c > 2 it equals 3.
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Proposition 8 For p= (1 —¢) %, ce (0, 1):

. el s . 1 Bc
1. In unique equilibrium, proportion 5 + i B

at rate um, uniformly over

of customers arrive as population 1

B 1
[—m(l +0), ﬂj| .

1 _ _Be
2 7 2eth)

1 B 1
[@‘m“‘%]'

In addition, proportion
uniformly over

of customers arrive as population 2 at rate um,

2. Furthermore,

c(a + Bo)

PoA = .
2(a + B)

+ (46)

3
2
This equals 3/2 atc =0and 2 atc = 1.

Note that for tariff 0 < p < %, the cost to each customer remains fixed at E while

this had increased for p > %
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