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Abstract We develop a semantic translation approach for Simulink diagrams.
Simulink is a graphical tool for representing and simulating dynamical systems. We
propose a recursive approach for translating a class of Simulink diagrams to input/
output-extended finite automata (I/O-EFA). An I/O-EFA model of a Simulink dia-
gram can be used for further analysis such as test generation and formal verification.
We show that the translation approach is sound and complete: The input-state-
output behavior of an I/O-EFA model, as defined in terms of a step-trajectory, pre-
serves the input-state-output behavior of the corresponding Simulink diagram at
each sample time (assuming the same integration method for any of the continuous
blocks with dynamics).

Keywords Simulink · Input/output extended finite automata ·
Semantic translation · Formal model

1 Introduction

Simulink/Stateflow (S/S) (Simulink 2010) diagrams are graphical representations of
dynamical systems, and can capture both time-driven as well as event-driven dynam-
ics of hybrid systems. Stateflow diagrams are used for representing and simulating
event-driven dynamics. The S/S diagrams can be simulated to generate sample-runs
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(runs on sample times) which provide a means for their validation. Other means
of validation include testing and verification. In order to be able to test a S/S dia-
gram or verify an implementation of a S/S diagram, a model-based approach is
desirable, where the model can be used for automated test generation or as a formal
specification.

Simulink blocks can be time-driven or non time-driven. A time-driven block, such
as an Integrator block, represents the time-dependent mathematical relationships
between its inputs and outputs. On the other hand, non time-driven block, such as
a Stateflow block or a Discrete Event Subsystem block, may evolve upon
the occurrence of events. In this paper, we only study the semantic translation of
time-driven blocks, and for conciseness, we write “Simulink blocks” to mean only
the “time-driven Simulink blocks”.

We propose an approach for translating the behaviors of a Simulink diagram at
(discrete) sample times to input/output-extended finite automata (I/O-EFA) (Kumar
et al. 2006; Zhou and Kumar 2009). Note that a Simulink diagram can represent a
hybrid system that combines event-driven discrete and time-dependent continuous
behaviors, whereas I/O-EFA is a model of a reactive untimed infinite state system.
Yet, since we are only interested in capturing the behaviors of a Simulink diagram at
sample times, an I/O-EFA model (which is untimed) suffices.

Simulink provides a library of blocks (such as transfer functions, discontinuities,
math operations, logic and bit operations etc.), which can be interconnected in a
hierarchical fashion to form an overall Simulink diagram. We consider the blocks in
the Simulink library to be “atomic”, and formally define an atomic-block. Further we
formulate two rules, namely connecting-rule and conditioning-rule, used in Simulink
for building complex blocks by combining the simpler ones, and formally define a
class of Simulink diagrams formed using these rules. This recursive view of defining
the class of all Simulink diagrams leads to a recursive translation in form of I/O-EFA.

In order to obtain an I/O-EFA model recursively, we first present an algorithm
for translating an atomic-block to an I/O-EFA. Next for each rule of combining sim-
pler Simulink diagrams to construct a complex Simulink diagram, we develop a corre-
sponding rule for combining the I/O-EFA models of simpler Simulink diagrams to
build the I/O-EFA model of the more complex Simulink diagram.

We introduce the concept of a step of an I/O-EFA to emulate the computation of
a Simulink diagram at a sample time. A sequence of steps, namely, a step-trajectory,
generates outputs over a sequence of sample times. We show that the translation
approach is sound and complete: The input-state-output behavior of the I/O-EFA,
defined in terms of a step-trajectory, preserves the input-state-output behavior of the
corresponding Simulink diagram at each sample time (assuming the same integration
method for any of the continuous blocks with dynamics).

The contributions of the work include:

– The translation approach is recursive. Formal definitions of an atomic Simulink
block and a class of Simulink diagrams formed using the identified connecting-
rule and conditioning-rule are provided. These definitions can be used to create
a more complex Simulink diagram from the simpler ones.

– The model of I/O-EFA is amenable to automated test generation (Lee and
Yannakakis 1996) or verification (Takenaka et al. 2006). The model can be
directly supplied to a test generation or verification tool that accepts I/O-EFA
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models or programming languages such as C/C++ or Java since an I/O-EFA
model can be easily translated into these languages.

– The translation approach has no special restriction on the types of Simulink
blocks. The approach supports virtually all blocks in Simulink Library (in this
paper we only consider time-driven blocks) provided that the block can be
mathematically written as input-state-output functions over time. Also unlike
Agrawal et al. (2004), it does not require a clear separation between discrete and
continuous dynamics for modeling hybrid systems. As an illustration, consider
for example the bouncing ball example presented in the paper.

– The translation approach is sound and complete: The input-state-output behav-
ior of an I/O-EFA model, as defined in terms of a step-trajectory, preserves
the input-state-output behavior of the corresponding Simulink diagram at each
sample time (assuming the same integration method for any of the continuous
blocks with dynamics).

– The translation approach can handle the Simulink features such as multi-rate
diagrams, sample times with initial offsets, variable-step simulation etc.

– The translation approach is general in that it can be applied to other graphical
modeling and simulation tools such as LabView.

2 I/O-EFA

We present the notion of an input-output extended finite automaton (I/O-EFA) as
a formal model of representation for a Simulink diagram. I/O-EFA is a model of
a reactive untimed infinite state system in form of an automaton, extended with
discrete variables such as inputs, outputs, and data. Using I/O-EFA as a model, many
value-passing processes can be represented as finite graphs. An I/O-EFA consists
of locations (i.e., symbolic-state), data (i.e., numeric-state), numeric-inputs, numeric-
outputs, symbolic-inputs, symbolic-outputs, transitions, an initial location, initial data
values, and a final location. The locations (symbolic-states) together with the data
(numeric-states) form the state-space of a I/O-EFA. The locations are finite and form
the vertices of the automaton graph. The edges of the graph represent transitions
between the locations and are guarded by constraints over the data and the inputs.
The occurrence of a transition triggers a data update and an output assignment.

Definition 1 An input/output extended finite automaton (I/O-EFA) is a tuple
P = (L, D, U, Y, �, �, �0, D0, �m, E), where

– L is the set of locations (symbolic-states),
– D = D1 × · · · × Dn is the set of typed data (numeric-states),
– U = U1 × · · · × Um is the set of typed numeric-inputs,
– Y = Y1 × · · · × Yp is the set of typed numeric-outputs,
– � is the set of symbolic-inputs,
– � is the set of symbolic-outputs,
– �0 ∈ L is the initial location,
– D0 ⊆ D is the set of initial-data values,
– �m ∈ L is the final location, and



226 Discrete Event Dyn Syst (2012) 22:223–247

– E is the set of edges, and each e ∈ E is a 7-tuple, e = (oe, te, σe, δe, Ge, fe, he),

where

– oe ∈ L is the origin location,
– te ∈ L is the terminal location,
– σe ∈ � ∪ {ε} is the symbolic-input,
– δe ∈ � ∪ {ε} is the symbolic-output,
– Ge ⊆ D × U is the enabling guard (a predicate),
– fe : D × U → D is the data-update function,
– he : D × U → Y is the output-assignment function.

Initially, P starts from the initial location �0 and an initial data value d0 ∈ D0.
While at a certain state (�, d) ∈ L × D, a transition e ∈ E such that oe = � is enabled
if the input σe arrives, and the data d and input u are such that the guard Ge(d, u)

holds. Note when σe = ε, the transition is enabled when only the guard Ge(d, u)

holds; on the other hand when Ge(D, U) = True, then the transition is enabled when
only σe arrives. An enabled transition can be executed. The execution of an enabled
transition e at the state (oe, d) causes P to transit to the location te, the data value is
updated to fe(d, u), the output variable is assigned the value he(d, u), and a discrete
output δe is emitted.

3 Atomic-blocks: minimal Simulink diagrams

Simulink provides a library of blocks, which can be used as minimal systems, and the
corresponding Simulink diagrams will then be minimal Simulink diagrams. We refer
to such blocks as atomic blocks. The atomic-blocks can be composed in a recursive
fashion to construct more complex Simulink diagrams, and we discuss the rules of
composition in the next section.

An atomic-block can be stateful or stateless. A stateful block’s output depends on
the history of its inputs. An example of a stateful block is the Unit Delay block.
On the other hand, the output of a stateless block depends only on its current inputs.
An example of a stateless block is the Gain block, which simply outputs its input
signal, multiplied with a constant called the gain.

An atomic-block can be classified as continuous-time versus discrete-time, and is
associated with a sample-period. For a continuous-time block, sample-period is the
time between the instants when it is numerically simulated. For a discrete-time block,
sample-period is the time between the instants when the corresponding discrete-time
system evolves.

An atomic-block can be defined as follows.

Definition 2 An atomic Simulink block ψ can be represented as a tuple (Uψ, Yψ,

Dψ, Dψ

0 , {(Gψ

i , f ψ

i , hψ

i )}qψ

i=1, (Tψ, Tψ
o )), where

– Uψ = Uψ

1 × · · · × Uψ

mψ is the set of typed inputs,
– Yψ = Yψ

1 × · · · × Yψ

pψ is the set of typed outputs,

– Dψ = Dψ

1 × · · · × Dψ

nψ is the set of typed data,
– Dψ

0 ⊆ Dψ is the set of initial data conditions,
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– {(Gψ

i , f ψ

i , hψ

i )}qψ

i=1 is a set of triples, where

– Gψ

i ⊆ Dψ × Uψ is a predicate representing an enabling guard, such that
∨qψ

i=1 Gi=True,
– f ψ

i : Dψ × Uψ → Dψ is a data-update function,
– hψ

i : Dψ × Uψ → Yψ is an output-assignment function.

– Tψ is the sample period and Tψ
o is an offset (it is assumed zero by default if

unspecified).

Remark 1 The kth sampling time occurs at kTψ + Tψ
o . The value of the input

signal at the kth sampling time is denoted as u(k) = (u1(k), ..., umψ (k)) ∈ Uψ , and
similarly for other signals. At the kth sampling time, if the data d(k) and the input
u(k) are such that Gψ

i (d(k), u(k)) holds, the next data, d(k + 1) = f ψ

i (d(k), u(k)),
is computed, and the output value is assigned to y(k) = hψ

i (d(k), u(k)). Note that
for continuous-time blocks, the data-update and output-assignment functions corre-
spond to the ones obtained through discretization at sample times using an appropri-
ate integration method. Simulink allows different kinds of sample period that include
Discrete, Continuous, Inherited (−1), Constant (inf) and Triggered etc. Discrete
sample periods are the only kind for which the evolution times of the corresponding
system are known a priori. For blocks with other kinds of sample period, Simulink
determines the evolution times of the corresponding system from the block’s type
or by its context within the model during the compilation phase of simulation.
Given a Simulink diagram, the sample period of a non continues-time block can be
obtained from the get_param(object, ‘CompiledSampleTime’) command
after compiling the diagram. The sample-period of a continuous-time block, which
is used in discretization, can be chosen to be the greatest common divisor of all non
continuous-time blocks using the following rule (Tripakis et al. 2005): for 1 ≤ i, j ≤ n,

Tψ =
{

gcd({Tψi}) if Tψi
o = T

ψ j
o

gcd({Tψi , Tψi
o }) otherwise

, and Tψ
o =

{
Tψi

o if Tψi
o = T

ψ j
o

0 otherwise
. Also note for a

stateless atomic-block ψ , the set Dψ is empty (and accordingly, there are no initial
data conditions or data-update functions).

The following example illustrates the Definition 2.

Example 1 The Integrator block provides a continuous-time integration of the
input signal. It models the relations, ḋ(t) = u(t) with d(0) = d0, and y(t) = d(t), where
u is its input, d is its data, y is its output, t is the continuous-time variable, and d0

is the initial data condition. Using Euler’s Method the discretization is d(k + 1) =
d(k) + Tψu(k). Thus, the Integrator block can be represented as:

(
u, y, d, d0, {(−, d(k + 1) = d(k) + Tψu(k), y(k) = d(k))}, (Tψ, Tψ

o )
)
,

where Tψ is the sample-period and Tψ
o is an offset.

Note that the Integrator block can be configured further by setting certain
parameters to have a more complex behavior. An example is the Integrator block
ψ5 in Fig. 3. In Example 1 we did not include this much detail for the sake of simplicity
of illustration.
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We introduce the following concepts for the computation of an atomic block over
sample times.

Definition 3 Given an atomic-block ψ and an input u ∈ Uψ , we call the computation
of the corresponding output y ∈ Yψ a step of ψ over u. y is called the output of a step
of ψ over u. Given an input sequence {u(k)}K

k=0, a step-trajectory of ψ over {u(k)}K
k=0

is a sequence of steps of ψ , where the kth step (0 ≤ k ≤ K) in the sequence is over
the input u(k). Letting y(k)(0 ≤ k ≤ K) denote the output of ψ over u(k), {y(k)}K

k=0
is called the output of step-trajectory of ψ over {uk}K

k=0.

4 System-blocks: Simulink diagrams

A Simulink diagram, also called a system-block, can be constructed by recursively
composing atomic-blocks and other simpler system-blocks according to certain rules.
The following two rules are the among the rules that Simulink uses for the construc-
tion of complex Simulink diagrams from the simpler ones:

– Connecting-rule: A certain input of one system-block can be connected to a
certain output of another system-block. The connections over a set of system-
blocks 	 can be represented using a relation C ⊆ (	 × N)2, where N denotes the
set of port numbers. A connection c = ((ψ1, i), (ψ2, j)) ∈ C connects the output
port i of system-block ψ1 to an input port j of system-block ψ2. The “C-connected
	 system” thus formed is denoted 	/C. Note a possible choice for connections
is the“null-connection”, and {ψ}/∅ = ψ .

– Conditioning-rule: A system-block can be made conditionally executable when
a certain guard condition over certain variables, called control-inputs, holds.
Further the data may be reset when the guard condition holds, and the output
may be reset when the guard condition is violated. Given a system-block ψ , a
conditioning over ψ is a 5-tuple θ := (U θ , Gθ , f θ , hθ , (Tθ , Tθ

o)), where

– U θ = U θ
1 × · · · × U θ

mθ is the set of conditioning-inputs (also called control-
inputs),

– Gθ ⊆ U θ is a condition (predicate) over U θ ,
– f θ : Dψ → Dψ is a data-resetting function,
– hθ : Yψ → Yψ is an output-resetting function, and
– Tθ is a sample-period, Tθ

o is an offset.

When Gθ holds, ψ computes, and otherwise, hθ assigns the output. Also, when
Gθ becomes true, the first computation of ψ is preceded by a data-update by f θ .
The “θ -conditioned ψ” system thus formed is denoted ψ⇓θ .
The conditioning-rule can be implemented by placing a system-block inside a
certain Subsystem block (of Simulink Library) which can be configured to
specify the conditioning parameters. Note a possible choice for conditioning is
“null-conditioning”, denoted ⊥ := (−,True, id, id, ∞), in which case ψ⇓⊥ = ψ .
(Here id denotes the identity function.)
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Next we formally define the class of Simulink diagrams (also referred to as system-
blocks) formed using the above rules.

Definition 4 A certain class of Simulink diagrams (also referred to as system-blocks)
is recursively defined as follows.

1. ψ is an atomic-block, then ψ is a system-block.
2. 	 is a set of system-blocks, C ⊆ (	 × N)2 is a set of interconnections, then

C-connected 	, denoted 	/C, is a system-block.
3. ψ is a system-block and θ is a conditioning over ψ , then θ -conditioned ψ , denoted

ψ⇓θ , is a system-block.

Remark 2 For a system-block ψ := 	/C, we have:

– inputs Uψ = ∏
�∃((·,·),(ψ,i))∈C Uψ

i ,

– outputs Yψ = ∏
ψ∈	 Yψ ,

– data Dψ = ∏
ψ∈	 Dψ ,

– initial data Dψ

0 = ∏
ψ∈	 Dψ

0 , and

– sample-period Tψ and offset Tψ
o are obtained using the rule defined in Remark 1

over {Tψ, Tψ
o | ψ ∈ 	}.

Note the above definition of Tψ ensures that each computation of each system-block
ψ ∈ 	 coincides with some computation of the connected system-block ψ (i.e., no
computation of any system-block is missed).

Similarly, for a system-block ψ := ψ⇓θ , we have:

– inputs Uψ = Uψ × U θ ,
– outputs Yψ = Yψ ,
– data Dψ = Dψ ,
– initial data Dψ

0 = Dψ

0 ,

– sample-period Tψ =
{

Tθ if Tθ specified
Tψ otherwise

, and offset Tψ
o =

{
Tθ

o if Tθ specified
Tψ

o otherwise
.

Note by the Simulink grammar, for a system-block ψ := ψ⇓θ , Tθ is either specified
and in which case Tψ is inherited to be Tθ , or is unspecified and in which case Tψ is

inherited to be Tψ . Similarly for Tψ
o .

Example 2 Consider the Simulink diagram ψ of a counter shown in Fig. 1, where the
Unit Delay block ψ5 is a discrete-time atomic-block and the block ψ1 is a Enabled
Subsystem block. The output y5 increases by 1 at each sample-period when the
control input u is positive, and y5 resets to its initial value when the control input u is
not positive. The Saturation block ψ2 limits the value of y5 in the range between
−0.5 and 7. The sample-period of ψ5 is 0.01 s and others are either constant (inf) or
inherited (−1). Tψ5

o = 0 by default since unspecified. Using get_param command
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Fig. 1 Simulink diagram
of a counter

after compiling ψ , Tψ = Tψi = 0.01 for i = 1, 2, 3, 4, 5. ψ belongs to the class of
Simulink diagrams defined in Definition 4: ψ = {ψ1, ψ2}/C1, where

– ψ1 = ({ψ3, ψ4, ψ5}/C2)⇓θ , where

– C2 = {((ψ3, ·), (ψ4, ·)), ((ψ4, ·), (ψ5, ·)), ((ψ5, ·), (ψ4, ·))},
– θ = (U θ , uθ (k) > 0, d(k) = d0, (y3(k), y4(k), y5(k)) = (−, −, y50),−),

– C1 = {((ψ1, ·), (ψ2, ·))}, and
– ψ2, ψ3, ψ4, ψ5 are atomic-blocks.

Note since we choose the Pulse type of the source block Pulse Generator to
be Time based, ψ is a single-rate Simulink diagram. Thus the source block for
generating the inputs and the sink block Scope for displaying the outputs are not
considered as part of the Simulink diagram being translated, and hence not included
in ψ . If the Pulse type of the source block is chosen to be Sample based and the
sample time is different from 0.01, then ψ becomes a multirate Simulink diagram.

Example 3 Consider the multirate Simulink diagram ψ shown in Fig. 2, where
blocks ψ3 and ψ7 are discrete-time blocks with sample-period of 0.01 and 0.025 s,
respectively. The Zero-Order Hold block ψ8 is also a discrete-time block that

Fig. 2 A multirate Simulink diagram
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samples the incoming signal at 0.01. Blocks ψ5 and ψ6 are continuous-time blocks.
The sample-periods of other blocks are either constant (inf) or inherited (−1). All
offsets are 0 by default since unspecified. Thus, Tψi = 0.01 for i = 1, 2, 3, 4, 8 and
Tψ7 = 0.025. Since gcd(.01, .025) = .005, we opt to discretize ψ5 and ψ6 at a sample-
period of .005. Then Tψ5 = Tψ6 = 0.005, and also Tψ = 0.005.

ψ belongs to the class of Simulink diagrams defined in Definition 4: ψ = 	/C,
where 	 = {ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7, ψ8} and C is omitted. U = ∅, D = D3 ×
D5 × D6 × D7 with D0 = {(0, 0, 0, 0)}. Note the sink block Scope for displaying the
outputs is not considered as part of the Simulink diagram being translated, and hence
not included in ψ .

Example 4 Consider the Simulink diagram ψ of a bouncing ball shown in Fig. 3. ψ

models a hybrid-system of a bouncing ball that is thrown up with an initial velocity of
15m/s from an initial height of 10m. y5 (resp., y2) is the position (resp., velocity) of the
ball. ψ2 and ψ5 are continuous-time blocks. We have opted to discretize ψ2 and ψ5 at
a sample period of .01. The sample-periods of other blocks are either constant (inf)
or inherited (−1). Then Tψ = Tψi = 0.01 for i = 1, · · · , 7. ψ belongs to the class of
Simulink diagrams defined in Definition 4: ψ = 	/C, where 	 = {ψ1, ψ2, ψ3, ψ4, ψ5,
ψ6, ψ7} and C is omitted. U = ∅, D = D1 × D2 with D0 = {(15, 10)}.

4.1 Sorted-order

When system-blocks are composed using the connecting-rule to form a more com-
plex system-block, the input of one system-block becomes the output of another
system-block. To respect the interdependency of the inputs/outputs, Simulink defines
and uses the notion of an execution-order (which it refers as sorted-order) to deter-
mine the order in which the system-blocks included inside a connected system-block
are executed. Note that the conditioning-rule does not require defining a sorted-
order since it is applied to a single system-block.

Fig. 3 Simulink diagram of bouncing ball
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Given a system-block 	/C formed using the connecting-rule, the sorted-order of
the system-blocks {ψ ∈ 	} is given as an ordering function Ord : 	 → N , where
N is the set of natural numbers. The sorted-order induces a total-order over 	,
i.e., for ψ,ψ ′ ∈ 	, Ord(ψ) = Ord(ψ ′) if and only if ψ = ψ ′. Accordingly ψ ∈ 	

is executed before ψ ′ ∈ 	 if Ord(ψ) < Ord(ψ ′). The sorted-order value Ord(ψ)

can be displayed, as part of a label ascribed to a system-block ψ ∈ 	, by selecting
the option Sorted Order from Simulink Block Displays menu. Assuming,
without loss of generality of correctness of translation, that the Optimization on
Conditional Execution Behaviors is turned off, the label ascribed to ψ has
the format: Id(	/C) : Ord(ψ) : {Id(ψ)}, where Id is a function that associates a
certain identifier number to a system-block. The {Id(ψ)} part may be missing if ψ

is an atomic-block. Whenever we need to indicate the label ascribed to ψ ∈ 	, we
write it in the form: ψ[Id(	/C) : Ord(ψ){Id(ψ)}].

The notion of sorted-order is essential in defining the step of a system-block.

Definition 5 Given a system-block ψ and an input u ∈ Uψ , the step of ψ over u is
recursively defined as follows:

– If ψ is an atomic-block, then the step of ψ over u is as defined in Definition 3.
– If ψ = 	/C is a connected system-block, then for jmin ≤ j ≤ jmax, where jmin =

min{Ord(ψ) : ψ ∈ 	} and jmax = max{Ord(ψ) : ψ ∈ 	}, letting ψ j ∈ 	 denote
the system-block with Ord(ψ j) = j, a step of ψ over u is a sequence of steps,
whose jth element is the step of ψ j ∈ 	 over u j, the input of ψ j as determined by
the set of connections C.

– If ψ = ψ ′⇓θ is a conditioned system-block, then a step of ψ over u is the step of
ψ ′ over u if Gθ holds, and otherwise it is the execution of the output-resetting
function hθ . Also when Gθ becomes true, the first execution of the step of ψ ′
over u is preceded by the execution of the data-resetting function f θ .

Given an input sequence {u(k)}K
k=0, a step-trajectory of ψ over {u(k)}K

k=0 is a sequence
of steps of ψ , where the kth step (0 ≤ k ≤ K) in the sequence is over the input u(k).
Letting y(k)(0 ≤ k ≤ K) denote the output of ψ over u(k), {y(k)}K

k=0 is called the
output of step-trajectory of ψ over {uk}K

k=0.

Note in the 2nd item of Definition 5, when kTψ + Tψ
o = kψ j Tψ j + T

ψ j
o , a step of

ψ j is computed by h
ψ j

i if G
ψ j

i holds, and kψ j increases when k increases; otherwise
when kTψ + Tψ

o �= kψ j Tψ j + T
ψ j
o , the output of ψ j remains its previous value, and

kψ j remains unchanged when k increases.

Example 5 Consider the Simulink diagram ψ of the counter shown in Fig. 1 that was
also discussed in Example 2, and its sorted-order displayed in Fig. 1. We have,

ψ = 	1/C1 = {ψ1[0:1{1}], ψ2[0:2]}/C1,

ψ1 = (	2/C2)⇓θ = ({ψ3[1:0], ψ4[1:2], ψ5[1:1]}/C2)⇓θ.
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Then according to Definition 5 we have:

– A step of ψ = {ψ1, ψ2}/C1 is a step of ψ1 followed by a step of ψ2 since
Ord(ψ1) = 1 < Ord(ψ2) = 2.

– A step of ψ1 = ({ψ3, ψ4, ψ5}/C2)⇓θ is obtained as follows: If Gθ holds, the
sequence of steps of ψ3, ψ5, ψ4 is executed since Ord(ψ3) = 0 < Ord(ψ5) = 1 <

Ord(ψ4) = 2; and otherwise, hθ computes. Also when Gθ becomes true, the first
execution of the sequence of steps of ψ3, ψ5, ψ4 is preceded by the computa-
tion of f θ .

Example 6 Consider the multirate Simulink diagram ψ of Fig. 2 that was also dis-
cussed in Example 3, and its sorted-order displayed in Fig. 2. It can be seen that

ψ = {ψ1[0:2], ψ2[0:6], ψ3[0:7], ψ4[0:8], ψ5[0:3],

ψ6[0:4], ψ7[0:0], ψ8[0:5]}/C.

It then follows that a step of ψ is the sequence of steps of ψ7, ψ1, ψ5, ψ6, ψ8, ψ2, ψ3

and ψ4. Note for j = 1, · · · , 8, a step of ψ j is computed whenever kTψ = kψ j Tψ j , and
otherwise, ψ j retains its previous values of the data and the output.

Example 7 Consider the Simulink diagram ψ of the bouncing ball of Fig. 3 that
was also discussed in Example 4, and its sorted-order displayed in Fig. 3. It can be
seen that

ψ = {ψ1[0:7], ψ2[0:3], ψ3[0:2], ψ4[0:1], ψ5[0:5], ψ6[0:4], ψ7[0:0]}/C.

It then follows that a step of ψ is the sequence of steps of ψ7, ψ4, ψ3, ψ2, ψ6, ψ5

and ψ1.

5 Semantic translation of Simulink diagrams

We describe below our approach of how a Simulink diagram can be semantically
translated to an I/O-EFA.

For any system-block ψ , its I/O-EFA model is obtained by connecting two
I/O-EFA models, one for output-assignments and other for state-updates. We use
�

ψ

0−, �
ψ
m− to denote the initial/final location for first I/O-EFA, and �

ψ

0+, �
ψ
m+ to denote

the initial/final location for second I/O-EFA. The two I/O-EFA’s are connected using
two edges:

– succession-edge connecting the final location lψm− of the first I/O-EFA to the
initial location lψ0+ of the second I/O-EFA, and

– time-advancement edge connecting the final location lψm+ of the second I/O-EFA
to the initial location lψ0− of the first I/O-EFA that increments time: k := k + 1.

Translating atomic-blocks Figure 4 depicts the two I/O-EFA models connected by
the succession and time-advancement edges for an atomic-block ψ . A formal descrip-
tion of the translation is provided in the following algorithm.
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Fig. 4 I/O-EFA model of atomic-block ψ

Algorithm 1 For an atomic-block ψ =(Uψ,Yψ,Dψ,Dψ

0 , {(Gψ

i , f ψ

i ,hψ

i )}qψ

i=1, (Tψ,Tψ
o )),

– The 1st I/O-EFA of ψ is Pψ
− = (Lψ

−,−, Uψ, Yψ , −, −, �
ψ

0−,−, �
ψ
m−, Eψ

−), where

– Lψ
− = {�ψ

0−, �
ψ
m−}, and

– Eψ
− = {(�ψ

0−, �
ψ
m−, −,−, Gψ

i , −, hψ

i ) | i ≤ qψ }.
– The 2nd I/O-EFA of ψ is Pψ

+ = (Lψ
+, DPψ

, Uψ, Yψ , −, −, �
ψ

0+, DPψ

0 , �
ψ
m+, Eψ

+),
where

– Lψ
+ = {�ψ

0+, �
ψ
m+},

– DPψ := Dψ × K is the set of data, where K is the set of sampling times,
– DPψ

0 := Dψ

0 × {0} is the set of initial-data conditions, and
– Eψ

+ = {(�ψ

0+, �
ψ
m+, −,−, Gψ

i , f ψ

i , −) | i ≤ qψ }.
Note that f ψ = “nul” if ψ is a stateless block.

– The combined I/O-EFA model of ψ is Pψ = (Lψ, DPψ

, Uψ, Yψ , −, −,
�

ψ

0 , DPψ

0 , �
ψ
m, Eψ), where

– Lψ = Lψ
− ∪ Lψ

+,
– �

ψ

0 = �
ψ

0−,
– �

ψ
m = �

ψ
m+, and

– Eψ = Eψ
− ∪ Eψ

+ ∪ {(�ψ
m−, �

ψ

0+,−, −, −,−, −)} ∪ {(�ψ
m+, �

ψ

0−,−, −, −,−,

k = k + 1)}.

Translating for connecting-rule In the I/O-EFA models of a connected system-block
ψ = 	/C, the initial and final locations of the first (resp., second) I/O-EFA are
the initial and final locations of the first (resp., second) I/O-EFA model of ψ ∈ 	

that has the smallest and largest Ord(ψ)-value in 	, respectively. Also in order
to preserve the sorted-order, there is an edge from the final location of the first
(resp., second) I/O-EFA of ψ ∈ 	 to the initial location of the first (resp., second)
I/O-EFA of ψ ′ ∈ 	 if and only if Ord(ψ ′) = Ord(ψ) + 1. Also in order to allow
multirate system-blocks within a connected system-block, certain “bypass” edges
are introduced within each system-block ψ ∈ 	 connecting the initial location �

ψ

0−
(resp., �

ψ

0+) and final location �
ψ
m− (resp., �

ψ
m+) of the first (resp., second) I/O-EFA of

ψ . These edges are guarded by [kTψ + Tψ
o �= kψ Tψ + Tψ

o ], implying that ψ will be

bypassed at those values of k when kTψ + Tψ
o is not equal to kψ Tψ + Tψ

o . In contrast,

the converse guard condition of [kTψ + Tψ
o = kψ Tψ + Tψ

o ] is introduced for the
original set of edges originating at �

ψ

0− and �
ψ

0+. An illustration of the translating of
ψ = 	/C is depicted in Fig. 5, whereas a formalization is presented in Algorithm 2.
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Fig. 5 I/O-EFA model of system-block ψ = 	/C

Without loss of generality, we assume that if ((ψ, i), (ψ, j)) ∈ C, then yψ

i = uψ

j , i.e.,
the same variable has been used to denote the two signals.

Algorithm 2 For a connected system-block ψ = 	/C,

– The 1st I/O-EFA of ψ is Pψ
− = (Lψ

−, DPψ

− , Uψ, Yψ , −, −, �
ψ

0−, DPψ

0− , �
ψ
m−, Eψ

−),
where

– Lψ
− := ∪ψ∈	 Lψ

−,

– DPψ

− := K × ∏
ψ∈	 Kψ × Tψ × Tψ

o × ∏
ψ∈	 Tψ × ∏

ψ∈	 Tψ
o ,

– Uψ and Yψ are as defined in first part of Remark 2,

– �
ψ

0− = �
ψ

0− such that Ord(ψ) = min{Ord(ψ) : ψ ∈ 	},
– DPψ

0− = {0} × ∏
ψ∈	{0} × Tψ × Tψ

o × ∏
ψ∈	 Tψ × ∏

ψ∈	 Tψ
o ,

– �
ψ
m− := �

ψ
m− such that Ord(ψ) = max{Ord(ψ) : ψ ∈ 	}, and

– Eψ
− =⋃

ψ {(�ψ

0−, �
ψ
m−, −,−, [kTψ + Tψ

o = kψ Tψ + Tψ
o ] ∧ Gψ

i ,−, hψ

i ) | i ≤ qψ }
⋃

ψ {(�ψ

0−, �
ψ
m−,−,−, [kTψ + Tψ

o �= kψ Tψ + Tψ
o ],−, yψ(k)=yψ(k − 1))}

⋃{(�ψ
m−, �

ψ ′
0−,−, −,−, −, −) | Ord(ψ ′) = Ord(ψ) + 1 ≤ |	|, and ψ,

ψ ′ ∈ 	}.
– The 2nd I/O-EFA of ψ is Pψ

+ = (Lψ
+, DPψ

+ , Uψ, Yψ , −, −, �
ψ

0+, DPψ

0+ , �
ψ
m+, Eψ

+),
where

– Lψ
+ := ∪ψ∈	 Lψ

+,
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– DPψ := Dψ × K× ∏
ψ∈	 Kψ × Tψ × Tψ

o × ∏
ψ∈	 Tψ × ∏

ψ∈	 Tψ
o ,where Dψ

is as defined in first part of Remark 2,
– Uψ and Yψ are as defined in first part of Remark 2,

– �
ψ

0+ = �
ψ

0+ such that Ord(ψ) = min{Ord(ψ) : ψ ∈ 	},
– DPψ

0+ = Dψ

0 × {0} × ∏
ψ∈	{0}× Tψ × Tψ

o × ∏
ψ∈	 Tψ × ∏

ψ∈	 Tψ
o , where Dψ

0
is as defined in first part of Remark 2,

– �
ψ
m+ := �

ψ
m+ such that Ord(ψ) = max{Ord(ψ) : ψ ∈ 	}, and

– Eψ
+ =⋃

ψ {(�ψ

0+, �
ψ
m+,−, −, [kTψ + Tψ

o =kψ Tψ +Tψ
o ]∧Gψ

i , (dψ(k + 1), kψ) =
( f ψ

i , kψ + 1),−) | i ≤ qψ }
⋃

ψ {(�ψ

0+, �
ψ
m+,−, −, [kTψ +Tψ

o �= kψ Tψ +Tψ
o ], dψ(k+1) = dψ(k),−)}

⋃ {(�ψ
m+, �

ψ ′
0+, −,−, −, −,−) | Ord(ψ ′) = Ord(ψ) + 1 ≤ |	|, and ψ,

ψ ′ ∈ 	}.
– The combined I/O-EFA of ψ is Pψ = (Lψ, DPψ

, Uψ, Yψ , −, −, �ψ

0 , DPψ

0 , �ψ
m, Eψ),

where

– Lψ := Lψ
− ∪ Lψ

+,
– DPψ := DPψ

+ ,

– �
ψ

0 = �
ψ

0−,

– DPψ

0 = DPψ

0+ ;

– �
ψ
m := �

ψ
m+, and

– Eψ = Eψ
− ∪ Eψ

+ ∪ {(�ψ
m−, �

ψ

0+,−, −,−, −, −)} ∪ {(�ψ
m+, �

ψ

0−,−, −,−, −, k =
k + 1)}.

Remark 3 If ψ is a single-rate system-block, then the I/O-EFA model of ψ = 	/C

presented in Algorithm 2 can be simplified since in this case Tψ = Tψ and Tψ
o = Tψ

o

for each ψ ∈ 	, and so kTψ + Tψ
o = kψ Tψ + Tψ

o for each k. Accordingly,

Eψ
− = ⋃

ψ Eψ
− ∪ {(�ψ

m−, �
ψ ′
0−,−, −, −,−, −) | Ord(ψ ′)

= Ord(ψ) + 1 ≤ |	|, and ψ, ψ ′ ∈ 	}, and

Eψ
+ = ⋃

ψ Eψ
+ ∪ {(�ψ

m+, �
ψ ′
0+,−, −, −,−, −) | Ord(ψ ′)

= Ord(ψ) + 1 ≤ |	|, and ψ,ψ ′ ∈ 	}.

Example 8 Consider 	2/C2 = {ψ3, ψ4, ψ5}/C2 of Example 2, where Ord(ψ3) <

Ord(ψ5) < Ord(ψ4). The I/O-EFA model for 	2/C2, obtained using Algorithm 2
for the connecting-rule and Remark 3, is shown in Fig. 6. The dotted boxes contain
the 1st/2nd I/O-EFAs of ψ ∈ 	2, and also of 	2/C2.

Example 9 Consider the multirate Simulink diagram of Fig. 2 that was discussed in
Example 3. The I/O-EFA model of ψ , obtained using Algorithm 2 for the connecting-
rule, is shown in Fig. 7.
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Fig. 6 I/O-EFA model of 	2/C2 of Example 2

Translating for conditioning-rule In the translation of a conditioned system-block
ψ = ψ⇓θ , the 1st I/O-EFA of ψ is the 1st I/O-EFA of ψ together with (i) a newly

added location �
ψ

0−, that also serves as the initial location of the first I/O-EFA model

Fig. 7 I/O-EFA model of multirate Simulink diagram of Example 3
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Fig. 8 I/O-EFA model of system-block ψ = ψ⇓θ

of ψ , (ii) two newly added edges for capturing the conditional execution of ψ , and
(iii) a “bypass edge” when the condition Gθ doesn’t hold. The 2nd I/O-EFA of ψ is

the 2nd I/O-EFA of ψ together with (i) a newly added location �
ψ

0+, that also serves
as the initial location of the second I/O-EFA model of ψ , (ii) a newly added edge
for capturing the conditional execution of ψ , and (iii) a “bypass edge” when the
condition Gθ doesn’t hold. An extra binary-valued data-variable dθ , with initial value
0, is introduced to keep track of the period over which Gθ holds. An illustration of
the translating of ψ = ψ⇓θ is depicted in Fig. 8, whereas a formalization is presented
in Algorithm 3.

Algorithm 3 For a conditioned system-block ψ = ψ⇓θ ,

– The 1st I/O-EFA model of ψ is Pψ
− = (Lψ

−, Dθ , Uψ, Yψ , −,−, �
ψ

0−, Dθ
0 , �

ψ
m−, Eψ

−),
where

– Lψ
− = Lψ

− ∪ {�ψ

0−},
– Dθ = {0, 1},
– Uψ and Yψ are as defined in second part of Remark 2,
– Dθ

0 = {0},
– �

ψ
m− = �

ψ
m−, and

– Eψ
− = Eψ

− ∪ {(�ψ

0−, �
ψ

0−,−, −, Gθ ∧ [dθ = 0], ( f θ ; dθ := 1),−)} ∪ {(�ψ

0−, �
ψ

0−,

−, −, Gθ ∧ [dθ = 1], −, −)} ∪ {(�ψ

0−, �
ψ
m−, −, −,¬Gθ ,−, hθ )}.

– The 2nd I/O-EFA model of ψ is Pψ
+ = (Lψ

+, DPψ

, Uψ, Yψ , −, −, �
ψ

0+, DPψ

0 , �
ψ
m+,

Eψ
+), where

– Lψ
+ = Lψ

+ ∪ {�ψ

0+},
– DPψ = DPψ × Dθ ,
– DPψ

0 = DPψ

0 × Dθ
0 ,

– �
ψ
m+ = �

ψ
m+, and

– Eψ
+ = Eψ

+ ∪ {(�ψ

0+, �
ψ

0+,−, −, Gθ ,−, −)} ∪ {(�ψ

0+, �
ψ
m+,−, −, ¬Gθ , (dψ(k +

1), dθ ) = (dψ(k), 0),−)}.
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– The combined I/O-EFA model of ψ is Pψ = (
Lψ, DPψ

, Uψ, Yψ , −, −, �
ψ

0 , DPψ

0 ,

�
ψ
m, Eψ

)
, where

– Lψ = Lψ
− ∪ Lψ

+,

– �
ψ

0 = �
ψ

0−,

– �
ψ
m = �

ψ
m+, and

– Eψ = Eψ
− ∪ Eψ

+ ∪ {(�ψ
m−, �

ψ

0+, −,−, −, −,−)} ∪ {(�ψ
m+, �

ψ

0−,−, −,−, −, k =
k + 1)}.

Remark 4 Algorithms 1, 2 and 3 provide translation under the fixed-step simulation
semantics of Simulink. The algorithms can be modified to follow the variable-step
simulation semantics as well. The variable-step solvers in the Simulink dynamically
increase (or reduce) the step size (i.e., the value of Tψ) if the error exceeds (or falls
under) a specific limit Erceiling (or Erfloor). To see the modification, suppose the error
calculation formula is fe(yψ(k), yψ(k − 1), · · · , Tψ). Then the time-advancement

edge (�
ψ
m+, �

ψ

0−, −,−, −, −, k = k + 1) will be replaced by the following set of edges:

{(�ψ
m+, �

ψ

0−,−, −, [ fe > Erceiling], Tψ = Tψ/2, k = k + 1),

(�
ψ
m+, �

ψ

0−, −,−, [ fe < Erfloor], Tψ = 2 ∗ Tψ, k = k + 1),

(�
ψ
m+, �

ψ

0−,−, −, [Erfloor < fe < Efceiling], −, k = k + 1)}.

Example 10 Consider ψ1 = (	2/C2)⇓θ of Example 2. The I/O-EFA model of
	2/C2 was obtained in Example 8, and the I/O-EFA model of ψ1, obtained using
Algorithm 3 for the conditioning-rule, is shown in Fig. 9. The dotted boxes contain
the 1st/2nd I/O-EFAs of 	2/C2, and also of ψ1.

Example 11 Consider the Simulink diagram ψ = {ψ1, ψ2}/C of the counter shown in
Fig. 1 that was also discussed in Example 2. The I/O-EFA model for ψ1 was obtained

Fig. 9 I/O-EFA model of ψ1 of Example 2
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Fig. 10 I/O-EFA model of counter of Example 2

in Example 10, and the I/O-EFA model of ψ , obtained using Algorithm 2 for the
connecting-rule and Remark 3, is shown in Fig. 10.

Consider the Simulink diagram ψ of the bouncing ball of Fig. 3, and also discussed
in Example 4. The I/O-EFA model of ψ , obtained using Algorithm 2 for the
connecting-rule and Remark 3, is shown in Fig. 11.

Fig. 11 I/O-EFA model of bouncing ball of Example 4
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6 Validation of translating approach

In order to show that the translating approach is sound and complete, we introduce
the concept of a step and of a step-trajectory of an I/O-EFA model of a system-block.
In the I/O-EFA model Pψ of a system-block ψ , each increment of k corresponds to
an execution of a path π = (�

ψ

0 , · · · , �
ψ
m, �

ψ

0 ). A computation along the kth execution
of such a path gives an output value y(k) for an input u(k).

Definition 6 Given an I/O-EFA model Pψ of a system-block ψ and input u ∈ Uψ , a
step of Pψ over u is the computation of a sequence of edges starting from �

ψ

0 and
ending at �

ψ
m, followed by the time-advancement edge. Given an input sequence

{u(k)}K
k=0, a step-trajectory of Pψ over {u(k)}K

k=0 is a sequence of steps, where the
kth step (0 ≤ k ≤ K) in the sequence is over the input u(k). Letting y(k)(0 ≤ k ≤ K)

denote the output of ψ over u(k), {y(k)}K
k=0 is called the output of step-trajectory of

Pψ over {uk}K
k=0.

Next we show that the input-output behavior of an I/O-EFA model at a sam-
pling time, defined in terms of a step, preserves the input-output behavior of the
corresponding Simulink diagram at the same sampling time, defined in terms of a
step.

Lemma 1 Given a system-block ψ and an input u(k) and at the kth sampling time,
let yψ(k) and yPψ

(k) be the outputs of the steps of ψ and Pψ , respectively, over u(k).
Then yψ(k) = yPψ

(k), where Pψ is obtained from the Algorithms 1, 2 and 3.

Proof If ψ is an atomic-block, then from Algorithm 1 and Definitions 5 and 6,
a step of both ψ and Pψ at the kth sampling time k compute: yψ(k) =
hψ

i (d(k), u(k)), where

– d(k) =
{

f ψ

i (d(k − 1), u(k − 1)) if k > 0
d0 otherwise

}

, if Gψ

i (d(k), u(k)) holds, and

– i ≤ qψ .

If ψ = 	/C, then from Algorithms 2 and Definitions 5 and 6, a step of both ψ and
Pψ over u(k) at the kth sampling time compute (yψ j min (k), . . . , yψ j(k), . . . yψ j max (k)),
where ψ j ∈ 	 and:

(i) If kTψ + Tψ
o = kψ j Tψ j + T

ψ j
o : yψ j(k) = h

ψ j

i (d(k), u(k)), where

– d(k) =
{

f
ψ j

i (d(k − 1), u(k − 1)) if k > 0
d0 otherwise

}

, if G
ψ j

i (d(k), u(k)) holds,

– i ≤ qψ j , and
– u

ψ j
r (k) = y

ψ j′
s (k) if ((ψ j, r), (ψ j′ , s)) ∈ C.

(ii) If kTψ + Tψ
o �= kψ j Tψ j + T

ψ j
o : yψ j(k) = yψ j(k − 1).
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If ψ = ψ⇓θ , then from Algorithms 3 and Definitions 5 and 6, a step of both ψ and
Pψ over u(k) at the kth sampling time compute:

yψ(k) =
{

hψ

i (dψ(k), uψ(k)) if Gθ (u(k)) ∧ Gψ

i (dψ(k), uψ(k)) holds,
hθ (dψ(k), uψ(k)) otherwise,

}

, where

dψ(k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{
f θ (dψ(k − 1), uψ(k − 1)) if k > 0
dψ

0 otherwise

}

if Gθ (u(k)) becomes true

at the kth sampling time
f ψ

i (dψ(k − 1), uψ(k − 1)) if Gθ (u(k)) remains true.{
dψ(k − 1) if k > 0
dψ

0 otherwise

}

otherwise

��
The following proposition shows that the input-output behavior of an I/O-EFA

model over a sequence of sampling times, defined in terms of a step-trajectory,
preserves the input-output behavior of the corresponding Simulink diagram over the
same sequence of sampling times, defined in terms of a step-trajectory.

Proposition 1 Given a system-block ψ and an input sequence {u(k)}K
k=0, let

{yψ(k)}K
k=0 and {yPψ

(k)}K
k=0 be the outputs of step-trajectories of ψ and Pψ , respec-

tively, over {u(k)}K
k=0. Then {yψ(k)}K

k=0 = {yPψ

(k)}K
k=0, where Pψ is as obtained from

the Algorithms 1, 2 and 3.

Proof The proof follows from Lemma 1 and Definitions 5 and 6. ��

Example 12 To validate our model, a simulation for a certain input sequence (pulse
with period 1.2 s and pulse width 25%) was obtained for the Simulink diagram ψ of
Fig. 1 (using fixed-step discrete solver) and is shown in Fig. 12. The simulation of the
I/O-EFA model Pψ was done in Stateflow. Since a step of Pψ is defined to be the

Fig. 12 Simulation of counter
of Example 2 and its I/O-EFA
model in Fig. 10
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y2 in Simulink diagram of Counter
u in I/O-EFA model of Counter
y2 in I/O-EFA model of Counter
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Fig. 13 Simulation of
multirate Simulink diagram
Example 3 and its I/O-EFA
model in Fig. 7
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0

0.1
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0.7

y7 in multirate Simulink diagram
y7 in I/O-EFA model of multirate diagram

execution of a cycle starting from and ending at the initial location and visiting the
final location once, the sample-period for the Stateflow model of Pψ was scaled down
by the length of the cycle (the number of locations of Pψ). The simulation result of
Pψ (using fixed-step discrete solver) is also shown in Fig. 12.

A simulation was obtained for the multirate Simulink diagram ψ of Fig. 2 (using
fixed-step continuous solver ode1 Euler) and is shown in Fig. 13. The simulation of
the I/O-EFA model Pψ was done in Stateflow (note the computer can not check the
equality of two floating numbers, one way to handle this is to duplicate the set of
Tψs and Tψ

o s, relabel and amplify them to make them integers). Recall Tψ = 0.005.
The sample-period for the Stateflow model of Pψ was scaled down by the number of
locations of Pψ . The simulation result of Pψ (using fixed-step discrete solver) is also
shown in Fig. 13.

Fig. 14 Simulation of
bouncing ball of Example 4
and its I/O-EFA model in
Fig. 11
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A simulation was obtained for the Simulink diagram ψ of Fig. 3 (using fixed-step
continuous solver ode1 Euler) and is shown in Fig. 14. The simulation of the I/O-EFA
model Pψ was done in Stateflow. Recall the sample-period of ψ is 0.01. The sample-
period for the Stateflow model of Pψ was scaled down by the number of locations
of Pψ . The simulation result of Pψ (using fixed-step discrete solver) is also shown in
Fig. 14.

7 Related work

We briefly introduce the works related to ours, discussing succinctly their features.
Agrawal et al. (2004) presented a translation algorithm for converting a restricted
subclass of S/S diagrams into a semantically equivalent hybrid automaton. For the
subclass of S/S diagrams considered, there exists a clear separation between the
discrete and the continuous dynamics: All mode changes are made through switches,
and whose controlling variables are restricted to be the outputs of the Stateflow
modules. In general, however, the discrete modes do not have to be determined by
the output variables of the Stateflow modules, and switches do not have to be used
to switch continuous dynamics. Our approach does not require a clear separation
between discrete and continuous dynamics for modeling hybrid systems. Also our
translation approach has no special restriction on the types of Simulink blocks. The
approach supports virtually all blocks in Simulink Library (in this paper we only
consider time-driven blocks) provided that the block can be mathematically written
as input-state-output functions over time. Alur et al. (2008) described a translation
scheme for deriving hybrid automata models from S/S models. However, no formal
algorithms are provided. We presented formal algorithms for the translation. Tri-
pakis et al. (2005), Caspi et al. (2003) and Scaife et al. (2004) describes a technique
for translating discrete-time Simulink diagrams into Lustre programs. Lustre is a
synchronous language and the translation is a mapping between elements of Simulink
diagrams (for example, signals and atomic blocks) and Lustre programs (for example,
flows and operators/nodes). The execution sequence of Simulink blocks in the Lustre
programs is determined by Lustre compiler. Also only the discrete-time blocks are
translated. In our approach, the execution sequence of Simulink blocks is directly
captured in the I/O-EFA model. Also, our approach supports virtually all time-
driven blocks in Simulink Library. Gadkari et al. (2007) mentioned a translation
of S/S diagrams into the language of SAL (Sal 2010) for the purposes of test
generation. However the details of the translation were not given. Jersak et al.
(2000) reported translation of Simulink diagrams to a model of concurrent processes
communicating with FIFO queues or registers, called a SPI model, in contrast to
I/O-EFA model in our approach. There has also been work on code-generation
for Simulink diagrams (Lublinerman and Tripakis 2008a; Lublinerman et al. 2009;
Lublinerman and Tripakis 2008b). One emphasis is in intellectual property reuse
(i.e., code reuse for a group of atomic blocks) and so their approach is modular.
In contrast we focus on formal modeling of Simulink diagrams with the goal
of providing models that are readily amenable for further analysis (verification,
test-generation, etc.).
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8 Conclusion

We presented a recursive approach for translating a class of Simulink diagrams as
input/output-extended finite automata (I/O-EFA), which is amenable to automated
test generation or verification. We treat the blocks in the Simulink library to be
“atomic” and formulate two rules used in Simulink for building complex blocks by
combining the simpler ones. We provided a recursive and formal definition for the
class of Simulink diagrams formed using these rules.

We presented algorithms for (i) translating an atomic-block as an I/O-EFA, (ii)
combining the I/O-EFA models of simpler Simulink diagrams to build the I/O-
EFA model of a more complex Simulink diagram, constructed using certain rules of
composition. We introduced the concept of a step (resp., step-trajectory) of an I/O-
EFA to emulate the computation of a Simulink diagram at a sample time (resp., over
a sequence of sample times). We showed that the translating approach is sound and
complete: The input-output behavior of an I/O-EFA model, as defined in terms of
a step-trajectory, preserves the input-output behavior of the corresponding Simulink
diagram at each sample time (assuming the same integration method for any of the
continuous blocks with dynamics). Finally, the translation approach has no specific
restriction on the types of Simulink blocks or the structure of Simulink diagrams
supported and can handle multirate Simulink diagrams, sample times with initial
offsets and variable-step simulation etc.
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