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Abstract. This paper concerns an optimal control problem defined on a class of switched-mode hybrid

dynamical systems. The system’s mode is changed (switched) whenever the state variable crosses a certain

surface in the state space, henceforth called a switching surface. These switching surfaces are parameterized by

finite-dimensional vectors called the switching parameters. The optimal control problem is to minimize a cost

functional, defined on the state trajectory, as a function of the switching parameters. The paper derives the

gradient of the cost functional in a costate-based formula that reflects the special structure of hybrid systems. It

then uses the formula in a gradient-descent algorithm for solving an obstacle-avoidance problem in robotics.
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1. Introduction

Switched-mode systems are hybrid dynamical systems having the following form,

�x 2 f� x; u; tð Þf g�2A; ð1Þ

where x 2 Rn is the state variable, u 2 Rk is an exogenous input, t 2[0, T ] for a given

time-interval [0, T ], and A is a given set of modes. For every a 2 A, the function fa:

Rn � Rk � [0, T ] Y Rn is called a modal function. The term a 2 A can be viewed as a

logical variable, and the set of rules governing its assignment, henceforth called the

switching law, typically is implemented by a supervisory controller. Such hybrid systems

arise in various application domains, including robotics (Arkin, 1998; Egerstedt, 2000),

production control (Boccadoro and Valigi, 2003), power converters (Flieller et al., 1998),
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scheduling of medical treatment (Verriest, 2003), and, generally, situations where a

controller has to switch its attention among various subsystems or sensory sources

(Brockett, 1995; Hristu-Varsakelis, 2001).

Optimal control problems on switched-mode dynamical systems typically involve the

minimization of a cost functional defined on the state and input trajectories as a function

of the input and the switching times. Branicky et al. (1998) established a general

framework for the optimal control problem and Sussmann (1999) and Shaikh and Caines

(2002) derived suitable variants of the maximum principle. The special case of auton-

omous systems, where the input term u is absent, has been considered in Egerstedt et al.

(2003), Xu and Antsaklis (2002a, b); these references considered the switching times as

the design variables (for a given sequence of modes) and devised various nonlinear-

programming algorithms for the optimal control problem. Another important special case

arises when the dynamical system is piecewise affine and the cost functional is quadratic.

This case has been investigated in Bemporad et al. (2002), Giua et al. (2001), Johansson

and Rantzer (2000), and Riedinger et al. (1999), with results related to the computational

complexity required for solving the optimal control problem.

This paper addresses such an optimal control problem in the setting of nonlinear,

autonomous systems. Unlike the above-mentioned references (Egerstedt et al. 2003; Xu

and Antsaklis, 2002a, b), the design variable does not consist of the switching times, but

rather of parameters of the switching surfaces. The switching surfaces, contained in the

system’s state space, define a feedback law for switching among the modes according to

the manner they are traversed by the system’s state trajectory. In various application

domains like robotics (Arkin, 1998), it is common to construct the switching surfaces in

ad-hoc ways that make simple the implementation of the corresponding feedback laws.

In this paper we assume that the surfaces are given in parametric forms that depend each

on a finite-dimensional variable, and we consider a given cost functional, defined on the

system’s state trajectory, as a function of these variables.

Our motivation comes from problems in behavior-based robotics (Arkin, 1998), where

it is required to navigate mobile robots towards their targets while avoiding obstacles

along the way. It is a common practice to surround each obstacle by a circle referred to as

the guard. When the robot is contained inside the area defined by the guard it is

instructed to move away from the obstacle (avoid-obstacle mode), whereas when it is

outside of the areas defined by the guards, it is instructed to move towards the target

(approach-goal mode). A related problem is how to choose the guards’ radii so as to

minimize a given cost functional that penalizes the distance from the target as well as

proximity to the obstacles. This is a problem of choosing an optimal feedback law from a

parameterized set, and we will address a variant thereof later in the paper (in Section 3).

First, however, we will develop the theoretical framework in a broader setting of

switched-mode systems that can be applied in other areas as well. Some of the theoretical

results derived below are contained, in briefer forms, in Boccadoro et al. (2004) and

Wardi et al. (2004), which constitute preliminary versions of this paper.

The underlying system that we consider is nonlinear, autonomous, and its dynamics

are characterized by the following equation,

�x ¼ fi xð Þ; for all t 2 �i�1; �i½ �; i ¼ 1; . . . ;N þ 1; ð2Þ
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with the appropriate one-sided derivatives at the boundary points � ij1 and � i. Here x 2
Rn is the state variable, the initial state x0 = x(0) and the final time T 9 0 are given, and fi:

Rn Y Rn is the ith modal function; the collection of the intervals [� ij1, � i), i = 1,...,N + 1,

with �0: = 0 and �N + 1: = T, constitutes a partition of the time-interval [0, T ). The modal

functions are chosen from a given set { fa}a2A, and they as well as the switching times

� i, i = 1, . . . ,N, are determined in the following recursive fashion. Given fi and � ij1 Q 0

for some i = 1, 2,..., let A(i) Î A be a given finite set of modes, labelled the set of modes

enabled by fi. For every a 2 A(i), let Sa Î Rn be an nj1-dimensional surface. Now we

define � i by

�i :¼ min t > �i�1 : x tð Þ 2 [�2A ið ÞS�
� �

; ð3Þ

and we note that it is possible to have � i = V. If � i G V then we pick
�� 2 A ið Þ such that

x �ið Þ 2 S��, and we set fiþ1 ¼ f��.1 This recursive procedure is initialized by defining �0: =

0 and with a proper choice of f1, possibly depending on the initial condition x0. Put in

words, the definitions of � i and the next switching function, fi+1, are quite simple. Starting

at time � ij1 with the modal function fi, the system’s state evolves according to the

equation �x ¼ fi xð Þ, until one of the surfaces S��, for some �� 2 A ið Þ, is reached. The time

of hitting this surface defines � i, and the index of the surface, ��, defines fi+1.

In this paper, the surfaces S� are defined by the solution points of parameterized

equations from Rn to R. We denote the parameter by a and suppose that a 2 Rk for some

integer k Q 1. For every � 2 A; let g� : Rn � Rk ! R be a continuously differentiable

function. For a given fixed value of a 2 Rk, denoted here by a�, the switching curve S� is

defined by the solution points x of the equation g� x; a�ð Þ ¼ 0. Note that under mild

assumption S� is a smooth (nj1)V dimensional manifold in Rn, and a� can be viewed

as a control parameter of this surface. Using the terminology defined earlier, we will

replace the index a by i; thus, Si is the solution set of the equation

gi x; aið Þ ¼ 0; ð4Þ

which is parameterized by the control variable ai 2 Rk.

Next, let L: Rn Y R be a continuously differentiable function, and consider the cost

functional J, defined by

J ¼
Z T

0

L xð Þdt: ð5Þ

This cost functional J can be viewed as a function of the control parameters a1, a2,...,

since the state trajectory depends on the switching surfaces. These parameters need

not be independent of each other, and they may be tied together by simple con-

straints. For example, consider the robotic application discussed earlier, and suppose

that the terrain has a single obstacle. Then there is only one guard, whose radius,

denoted by a, determines the switchover times of the vehicle between the approach-goal

mode and the avoid-obstacle mode. That guard may be traversed multiple times, in which

case we have the condition that ai = a for all i = 1, 2,...,. In any event, the optimal

control problem is to minimize J over all possible (feasible) values of these control

parameters. Our approach to this problem is to derive a characterization of the deriv-
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ative terms dJ
dai

, i = 1, 2, . . . , which will give us both an optimality condition and a way to

apply gradient-descent algorithms.2

As already mentioned the optimal control problem, and hence its solution, depend on

the initial condition x0, and a word must be said in justification of this fact. In the

classical setting of optimal control, the solution sought generally depends on the specific

initial conditions. Exceptions, typically involving the optimal control via a state-feedback

law that is independent of the initial conditions, are possible in some cases involving

linear systems (e.g., the LQR problem and minimum-time problems whose solutions are

characterized by bang-bang control). A similar situation arises in hybrid systems [see

Bemporad et al. (2002), and Shaikh and Caines (2003)]. This paper addresses the general

nonlinear problem, and hence we expect its solution to depend on x0. The derived initial-

state-dependent control law may have some advantages over an open-loop control. In our

specific robotic example, a circular guard may be crossed multiple times, and hence the

closed-loop control is specified by a single number, the guard’s radius, as compared to

the multiple switching times required to specify the open-loop control. Moreover, in the

general case, closed-loop control often has better performance robustness with respect to

a system’s parameter variations than open loop control.

The rest of the paper is organized as follows. In Section 2 we derive a costate-based

formula for the partial derivatives, based on the special structure of the system and its

hybrid nature. Section 3 deploys these formulae in a gradient-descent algorithm for

solving an obstacle-avoidance problem in robotics. Finally, Section 4 concludes the

paper and suggests directions for future research.

2. Formulation of the gradient

This section derives expressions for the derivatives of the cost functional with respect to

the control parameters. We point out that the functional J may be nondifferentiable, and

even discontinuous, at points where the state trajectory is tangent to the switching

surface, and this issue will be brought up later in the context of a concrete example

problem. However, the present section focuses on the local property of differentiability,

and hence it assumes throughout that the derivatives exist. Accordingly, we will assume

a given sequence of switching surfaces and modal functions, so that the system has the

following structure. The state equation is given by equation (2) with given and fixed

initial state x0 := x(0) and final time T 9 0, where we define �0 := 0 and �N + 1 = T. The

switching times � i are defined by equations (3)Y(4). Defining xi by xi = x(� i), (4) assumes

the form

gi xi; aið Þ ¼ gi x �ið Þ; aið Þ ¼ 0; ð6Þ

where we note that xi generally depends on ai. The cost functional J is defined by

equation (5), and it is viewed as a function of the control variables ai, i = 1, 2,.... These

control variables may have to satisfy various equality or inequality constraints; for

instance, in the earlier-discussed case of a single guard that may be traversed multiple
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times, we have seen that ai = a1 for all i = 2, . . . ,N. The functions fi, gi, and L are assumed

to have the following properties.

ASSUMPTION 2.1 (i) The functions fi and gi, i = 1 ,...,N + 1, and L are continuously

differentiable throughout Rn, Rn+k, and Rn, respectively. (ii) There exists a constant K 9 0

such that, for every x 2 Rn and for all i = 1 ,...,N + 1,

fi xð Þk k � K xk k þ 1ð Þ: ð7Þ

This assumption guarantees the existence of unique solutions to equations of the form�x ¼ fi xð Þ, with an initial condition xij1 at a time � ij1, for any interval [� ij1, � i].

Furthermore, let us define the terms Ri and Li by

Ri :¼ fi xið Þ � fiþ1 xið Þ ð8Þ

and

Li :¼ @gi

@x
xi; aið Þ fi xið Þ; ð9Þ

where we recognize the last term as the Lie derivative of gi in the direction of the vector

field fi
3.

Obviously, J is a function of the control parameters ai, i = 1,...,N, via equations (5),

(2), and (6). Let us fix a1,...,aN. In this section we are concerned with the total

derivatives dJ
dai

, and to ensure their existence, we make the following assumption.

ASSUMPTION 2.2 For all i = 1,...,N, Li m 0.

The derivative dJ
dai

can be related to the total derivative term dJ
d�i

in the following way.

PROPOSITION 2.1 The following equation is in force,

dJ

dai

¼ � 1

Li

dJ

d�i

@gi

@a
xi; aið Þ: ð10Þ

Proof: Taking derivative with respect to ai in equation (6) and applying the chain rule

we obtain,

@gi

@x
xi; aið Þ dxi

d�i

d�i

dai

þ @gi

@a
xi; aið Þ ¼ 0: ð11Þ

Noting that dxi

d�i
¼ fi xið Þ and recalling equation (9), we get that

d�i

dai

¼ � 1

Li

@gi

@a
xi; aið Þ: ð12Þ

Finally, noting that dJ
dai
¼ dJ

d�i

d�i

dai
, equation (10) follows from (12). Í
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The term dJ
dai

can be computed via equation (10) once we can compute the derivative

term dJ
d�i

. The computation of the latter term is quite complicated since, by equations (2)

and (6), � j, j = i + 1,...,N, are all functions of � i. Therefore, much of the rest of the

analysis in this section concerns the development of a formula for dJ
d�i

. To begin, we

establish some preliminary results. By equation (5),

J ¼
Z T

0

L x tð Þð Þdt ¼
XN

j¼ 0

Z �jþ 1

�j

L x tð Þð Þdt; ð13Þ

where we recall that, by definition, �0 := 0 and �N +1 := T. Taking the derivative with

respect to � i we obtain,

dJ

d�i

¼
XN

j¼ 0

Z �jþ 1

�j

@L

@x
x tð Þð Þ dx tð Þ

d�i

dt þ L x ��jþ 1

� �� � d�jþ 1

d�i

� L x �þj

� �� � d�j

d�i

 !

;

ð14Þ

where the superscripts j and + at � j+1 and � j indicate left limit and right limit,

respectively. Now x(I) is continuous at all t 2 [0, T ] and L(I) is continuous in x, and hence

L(x(� j
j)) = L(x(� j

+)). Moreover, since �0 = 0 and �N + 1 = T, we have that d�0

d�i
¼ d�N þ 1

d�i
¼ 0.

Therefore, we have that

XN

j¼ 0

L x ��jþ 1

� �� � d�jþ 1

d�i

� L x �þj

� �� � d�j

d�i

� �
¼ 0:

Consequently, and by (14),

dJ

d�i

¼
XN

j¼ 0

Z �jþ1

�j

@L

@x
x tð Þð Þ dx tð Þ

d�i

dt: ð15Þ

Since by (2) x(t) does not depend on � i for all t G � i, we conclude that

dJ

d�i

¼
XN

j¼ i

Z �jþ 1

�j

@L

@x
x tð Þð Þ dx tð Þ

d�i

dt: ð16Þ

The question is then how to compute the derivative term
dx tð Þ
d�i

, from which (16) will yield
dJ
d�i

. To derive a formula for the above derivative term we linearize the state equation (2).

This state equation is defined in a piecewise manner, and hence we linearize it one-piece-

at-a-time. Thus, let us denote by Fi(t, �) the state transition matrix of the linearized

equation �z ¼ @fi xð Þ
@x

z. Then we have the following immediate result.

LEMMA 2.1 Let z(I): [� i, � i + 1] Y Rn be a continuous function, and let r 2 Rn be a given

vector. Suppose that for every t 2 [� i, � i + 1], we have that

z tð Þ ¼
Z t

�i

@fiþ1

@x
x �ð Þð Þz �ð Þd� þ r: ð17Þ
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Then, for every t 2 [� i, � i + 1],

z tð Þ ¼ �iþ1 t; �ið Þr: ð18Þ

Proof: Follows immediately by differentiating (17) with respect to t. Í
Now fix i 2{1,. . ., N} and consider a time-point t 2 [� j, � j + 1) for some j 2{i,. . .,N}.

The term
dx tð Þ
d�i

involves the aforementioned linearized systems and their respective state

transition matrices. To tie these systems together in the time domain across the

switchover points � i, we define the n�n matrices Qj,i, j = i,. . .,N, in the following

recursive manner.

�i;i ¼ �iþ1 �iþ 1; �ið Þ�1; ð19Þ

and for every j = i,. . .,Nj1,

�jþ1;i ¼ I � 1

Ljþ1

� Rjþ1

@gjþ 1

@x
xjþ 1; ajþ 1

� �� �
�jþ 1 �jþ 1; �j

� �
�j;i: ð20Þ

With these matrices we now can obtain the following expression for
dx tð Þ
d�i

that results from

the linearized system.

LEMMA 2.2 For every j = i,. . .,N, and for every t 2 (� j, � j + 1),

dx tð Þ
d�i

¼ �jþ1 t; �j

� �
�j;i�iþ 1 �iþ 1; �ið ÞRi: ð21Þ

Proof: We prove the statement by induction on j = i,. . .,N. Consider first the case

where j = i. For every t 2 (� i, � i + 1),

x tð Þ ¼ x �ið Þ þ
Z t

�i

fiþ1 x �ð Þð Þd�: ð22Þ

Taking derivatives fwith respect to � i (and recalling that xi := x(� i)),

dx tð Þ
d�i

¼ fi xið Þ � fiþ 1 xið Þ þ
Z t

�i

@fiþ 1

@x
x �ð Þð Þ dx �ð Þ

d�i

d�

¼ Ri þ
Z t

�i

@fiþ 1

@x
x �ð Þð Þ dx �ð Þ

d�i

d� ð23Þ

(see (8)). By Lemma 2.1 as applied to
dx tð Þ
d�i

,

dx tð Þ
d�i

¼ �iþ 1 t; �ið ÞRi: ð24Þ

By (19) and (24), (21) follows with j = i.
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Suppose now that (21) holds for some j 2{i,. . .,Nj1}. We next prove it for j + 1. Note

that for every t 2 [� j, � j +1],

x tð Þ ¼ x �j

� �
þ
Z t

�j

fjþ 1 x �ð Þð Þd�; ð25Þ

and in particular, for t = � j +1,

x �jþ1

� �
¼ x �j

� �
þ
Z �jþ1

�j

fjþ 1 x �ð Þð Þd�: ð26Þ

Now let us compare the derivatives with respect to � i in equations (25) and (26). The

derivative in (25) yields
dx tð Þ
d�i

, whose value is given by (21) by dint of the induction’s

hypothesis. The derivative in (26) yields the same expression as the derivative in (25)

(with � j + 1 instead of t) plus the additional term fjþ 1 xjþ1

� � d�jþ 1

d�i
. In other words, we have

that

dx �jþ 1

� �

d�i

¼ dx tð Þ
d�i

				
t¼�jþ1

þ fjþ 1 xjþ 1

� � d�jþ 1

d�i

¼ �jþ 1 �jþ1; �j

� �
�j;i�iþ 1 �iþ 1; �ið ÞRi þ fjþ 1 xjþ 1

� � d�jþ 1

d�i

; ð27Þ

where the last equality follows from (21).

Consider next t 2 (� j +1, � j +2) We have that

x tð Þ ¼ x �jþ 1

� �
þ
Z t

�jþ 1

fjþ2 x �ð Þð Þd�; ð28Þ

and by taking derivatives with respect to � i, we obtain,

dx tð Þ
d�i

¼
dx �jþ 1

� �

d�i

� fjþ 2 xjþ 1

� � d�jþ 1

d�i

þ
Z t

�jþ 1

@fjþ 2

@x
x �ð Þð Þ dx �ð Þ

d�i

d�: ð29Þ

Now plug equation (27) for the first term in the RHS of (29) to obtain,

dx tð Þ
d�i

¼ �jþ 1 �jþ 1; �j

� �
�j;i�iþ 1 �iþ 1; �ið ÞRi þ Rjþ 1

d�jþ 1

d�i

þ
Z t

�jþ1

@fjþ 2

@x
x �ð Þð Þ dx �ð Þ

d�i

d�: ð30Þ

By Lemma 2.1 we have, for all t 2 (� j+1, � j+2),

dx tð Þ
d�i

¼ �jþ 2 t; �jþ 1

� �
�jþ 1 �jþ 1; �j

� �
�j;i�iþ 1 �iþ 1; �ið ÞRi þ Rjþ1

d�jþ 1

d�i

� �
: ð31Þ

(27)
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The last term in (31),
d�jþ 1

d�i
, can be computed from (27) as follows. By definition of � j + 1,

gj+1(xj+1, aj+1) = 0. Taking derivative with respect to � i we get that

@gjþ 1

@x
xjþ1; ajþ1

� � dx �jþ 1

� �

d�i

¼ 0; ð32Þ

and hence, and accounting for (27),

@gjþ 1

@x
¼ xjþ 1; ajþ1

� �
�jþ 1 �jþ 1; �j

� �
�j;i�iþ 1 �iþ 1; �ið ÞRi þ fjþ 1 xjþ 1

� � d�jþ 1

d�i

� �

¼ 0:

According to (9) and solving for
d�jþ 1

d�i
in (33) we get, after some straightforward algebra,

d�jþ 1

d�i

¼ � 1

Ljþ1

� @gjþ 1

@x
xjþ1; ajþ 1

� �
�jþ 1 �jþ 1; �j

� �
�j;i�iþ 1 �iþ 1; �ið ÞRi: ð34Þ

Plugging this in (31) we obtain, for every t 2 (� j+1, � j+2),

dx tð Þ
d�i

¼ �jþ2 t; �jþ 1

� �
I � 1

Ljþ1

� Rjþ 1

@gjþ1

@x
xjþ 1; ajþ 1

� �� �

� �jþ1 �jþ 1; �j

� �
�j;i�iþ 1 �iþ 1; �ið ÞRi: ð35Þ

It now follows from (20) that

dx tð Þ
d�i

¼ �jþ2 t; �jþ 1

� �
�jþ1;i�iþ 1 �iþ 1; �ið ÞRi; ð36Þ

which verifies equation (21) for j + 1, and hence completes the proof. Í
The derivative term dJ

d�i
now can be obtained by plugging equation (21) in equation

(16). The resulting term would be quite complicated, but it can be simplified by using the

costate technique that is common in the study of optimal control. Due to the discontinuity

of the state equation (2) at the switching times, the costate is not expected to be

continuous at these points. Therefore, we will define it in a piecewise manner in the

intervals [� i, � i +1], i 2 {1,...,N}. For every i = 1,...,N, define the function pi : [� i, � i + 1]

Y Rn by

pi �ð ÞT¼
Z �iþ 1

�

@L

@x
x tð Þð Þ�iþ1 t; �ð Þdt þ

XN

j¼ iþ 1

Z �jþ 1

�j

@L

@x
x tð Þð Þ�jþ1 t; �j

� �
dt

��j; i�iþ 1 �iþ 1; �ð Þ; ð37Þ

and for every � 2 (� i, � i+1], define the costate p (�) by p (�) = pi (�). Observe that p (�) is

thus defined for every � 2 (�1, T], and as we shall see, it needs not be defined for � 2 [0,

(33)
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�1]. Note that (37) does not have the typical form of the costate, however, we will show

that this costate satisfies equation (39), below, which is a familiar form of the costate

equation. Moreover, the discontinuities of the costate will be shown to be captured by the

recursive equation (40). Finally, we will show that the derivative dJ
d�i

is related to the

costate by equation (38).4 All of this will be proved next.

PROPOSITION 2.2 The following relations hold.

1. For all i = 1, . . . , N,

dJ

d�i

¼ pi �ið ÞT Ri: ð38Þ

2. For all i = 1, . . . , N,

�
pi �ð Þ ¼ �

@fiþ 1

@x
x �ð Þð Þ

� �T

pi �ð Þ �
@L

@x
x �ð Þð Þ

� �T

ð39Þ

throughout the interval (� i, � i+1).

3. The following recursive relations hold for the boundary conditions: pN (T) = 0, and

for all i = N, . . . , 2,

pi�1 �ið Þ ¼ I � 1

Li

� Ri

@gi

@x
xi; aið Þ

� �T

pi �ið Þ: ð40Þ

Whereas equations (38) and (39) admit simple proofs, the proof of equation (40) is

technically involved and it requires the following lemma, concerning a recursive relation

of the matrices Qj, i in their second index.

LEMMA 2.3 For every i = 2, . . . , N, and for all j = i, . . . , N,

�j; i�1 ¼ �j; i�iþ 1 �iþ 1; �ið Þ I � 1

Li

� Ri

@gi

@x
xi; aið Þ

� �
: ð41Þ

Proof: Fix i 2 {2, . . . , N}. We will prove (41) by induction on j = i, . . . , N.

First, consider the case where j = i. By (19) with ij1,

�i�1; i�1 ¼ �i �i; �i�1ð Þ�1:

Therefore, and by (20), the left-hand side (LHS) of (41) has the following form,

�i; i�1 ¼ I � 1

Li

� Ri

@gi

@x
xi; aið Þ:

By equation (19), the RHS of (41) (with j = i) has the same form. This proves (41) for

j = i.
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Next, suppose that (41) is in force for some j 2 {i, . . . , Nj1}, and consider the case of

j + 1. An application of (20) yields,

�jþ 1;i�1 ¼ I � 1

Ljþ 1

� Rjþ 1

@gjþ 1

@x
xjþ 1; ajþ 1

� �
� �

�jþ 1 �jþ 1; �j

� �
�j; i�1;

and by using the induction’s hypothesis (equation (41)) in the last term we obtain,

�jþ 1;i�1¼ I � 1

Ljþ1

� Rjþ 1

@gjþ 1

@x
xjþ 1; ajþ 1

� �� �
�jþ1 �jþ 1; �j

� �
�j;i�iþ 1 �iþ 1; �ið Þ

� I � 1

Li

� Ri

@gi

@x
xi; aið Þ

� �
: ð42Þ

Now we recognize the first three multiplicative terms in the RHS of (42) as the RHS of

(20), and therefore, plugging in the LHS of (20), we obtain,

�jþ1; i�1 ¼ �jþ 1;i�iþ 1 �iþ 1; �ið Þ I � 1

Li

� Ri

@gi

@x
xi; aið Þ

� �
:

But this is equation (41) with j + 1, thus completing the proof. Í
Proof of Proposition 2.2:

1. Fix i 2 {1, . . . , N}. Plug � i for � in (37) to get

pi �ið ÞT ¼
Z �iþ1

�i

@L

@x
x tð Þð Þ�iþ1 t; �ið Þdt

þ
XN

j¼ iþ 1

Z �jþ 1

�j

@L

@x
x tð Þð Þ�jþ 1 t; �j

� �
dt ��j; i�iþ 1 �iþ 1; �ið Þ: ð43Þ

Accounting for (19), (43) implies that

pi �ið ÞT ¼
XN

j¼i

Z �jþ 1

�j

@L

@x
x tð Þð Þ�jþ 1 t; �j

� �
dt ��j;i�iþ 1 �iþ 1; �ið Þ: ð44Þ

Therefore, and by (16) and (21), (38) is obtained.

2. The differential equation (39) immediately follows from the definition of pi (�)T in

equation (37).

3. By (37), for all � 2 (�N, T ),

pN �ð ÞT¼
Z T

�

@L

@x
x tð Þð Þ�N þ 1 t; �ð Þdt;

and hence pN (T ) = 0.
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Next, fix i 2 {2,. . .,N}. Consider (37) with ij1 and evaluate it at � = � i to obtain,

pi�1 �ið ÞT ¼
XN

j¼ i

Z �jþ 1

�j

@L

@x
x tð Þð Þ�jþ 1 t; �j

� �
dt ��j;i�1: ð45Þ

Use Lemma 2.3 to plug in the RHS of (41) in (45) to get,

pi�1 �ið ÞT ¼
XN

j¼ i

Z �jþ 1

�j

@L

@x
x tð Þð Þ�jþ 1 t; �j

� �
dt

��j; i;�iþ 1 �iþ 1; �ið Þ I � 1

Li

� Ri

@gi

@x
xi; aið Þ

� �
: ð46Þ

By (44) we recognize the RHS of (46) as pi �ið ÞT I � 1
Li
� Ri

@gi

@x
xi; aið Þ

� �
, whence (40)

follows.

This completes the proof. Í
In summary, the derivatives dJ

dai
can be computed as follows: compute the state

trajectory forward in time by equation (2), and then compute the costate trajectory

backwards by equations (39) and (40). Then, dJ
d�i

is given by (38), and dJ
dai

is given in terms

of dJ
d�i

via (10).

3. Robotics example

As an example we consider the problem of controlling an autonomous mobile robot in

the framework of behavior-based control (Arkin, 1998). The robot has to reach a pre-

specified target from a given initial condition (position, orientation) while avoiding an

obstacle along the way. Typically, the obstacle is surrounded by a circular guard that

determines the mode of the robot: avoid-obstacle mode when the robot is within the area

defined by the guard, and approach-goal mode, when outside of that area. The radius of

the guard often is determined by ad-hoc ways that balance the distance from the obstacle

with proximity to the goal (see Arkin, 1998; Egerstedt, 2000 and references therein).

One potential problem with this approach is that the robot may traverse the guard, and

hence change its mode, many times in a short time-interval, since each change of the

mode may steer it back towards the guard. To get around this problem we replace the

single guard with two circles having a common center at the obstacle. When in the goal-

approach mode the robot is outside of the inner circle, and it will change its mode once

that circle is traversed. Likewise, in the avoid-obstacle mode the robot is inside the outer

circle, and it will change its mode once it traverses that circle. We denote the radii of

these circles by a1 and a2, where a2 Q a1, and we will consider these radii as the control

parameters of our optimization problem.
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The robot dynamics are of the unicycle type, i.e.,

x� ¼ v cos�
y� ¼ v sin�
�
� ¼ !;

where (x, y) is the position of the robot and � is its orientation, while v and ! are its

translational and angular velocities. v is assumed to have a constant value, while ! is

controlled through the particular behavior (mode) currently in force. Let the target be

located at a given point (xg, yg) 2 R2, and let the obstacle be located at another given

point, (xo, yo) 2 R2 (the subscripts are Fg_ for Bgoal^ and Fo_ for Bobstacle^). In the ap-

proach-goal mode, henceforth denoted by Mode 1, the controlled velocities are given by

Mode 1 :
v ¼ 1

! ¼ C1 �g � �
� �

;




where �g = arctan(( ygjy)/(xgjx)) and C1 9 0 is a given constant. In other words, the

translational velocity has the constant value of 1, and the angular velocity acts to orient

the robot towards the target. Similarly, in the avoid-obstacle mode (henceforth denoted

by Mode 2), the controlled velocities are given by

Mode 2 :
v ¼ 1

! ¼ C2 �� �oð Þ;




where �o = arctan(( yojy)/(xojx)), and C2 is a given constant. The translational velocity

has the same constant value of 1, while the angular velocity steers the robot away from

the obstacle.

The performance function that we minimize penalizes distance from the target as well

as proximity to the obstacle, and it was defined, in a somewhat arbitrary fashion, as

follows.

J ¼
Z T

0

xg � x tð Þ
� �2 þ yg � y tð Þ

� �2 þ �e�� x0�x tð Þð Þ2þ y0�y tð Þð Þ2½ �
� �

dt; ð47Þ

where � 9 0 and � 9 0 are two given constants. As earlier mentioned, we view J as a

function of the radii a1 and a2. Thus, we define the functions gi (x, y, ai), i = 1, 2, by

gi x; y; aið Þ ¼ xo � xð Þ2 þ yo � yð Þ2 � a2
i ;

and we note that the system switches between Mode i and Mode i + 1(mod2) when gi (x,

y, ai) = 0.

To make the problem concrete we fixed its parameters as follows,

C1 ¼ 1:2; C2 ¼ 0:5; T ¼ 3; � ¼ 10; � ¼ 10

xg; yg

� �
¼ 2:25; 2ð Þ; xo; yoð Þ ¼ 1; 1ð Þ; x0;y0; �0

� �
¼ 0; 0; 0ð Þ:

We minimized J by applying the well-known and well-tested steepest-descent algorithm

with Armijo stepsizes (see Polak (1997) for a detailed discussion), and we computed the
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Figure 2. Cost functional and its gradient’s magnitude as functions of the iteration count.

Figure 1. Trajectory of the robot for various parameter values.
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derivatives dJ
dai

, i = 1, 2 by Proposition 2.2. The results are shown in Figure 1, where the

initial parameter-values were a1 = 0.5, a2 = 0.7. a1 did not vary much, but a2 changed

and approached its final value of 0.61. The trajectories of the robot according to the

various parameter values are shown. Figure 2 indicates that convergence has indeed

taken place: the cost value declines from 9.62 to about 9.2, while the gradient’s

magnitude declines from about 0.57 to about 0.

Now it should be clear that such an algorithm has to be deployed with caution. The

reason is that, if the motion trajectory approaches a guard in a tangential fashion, then the

cost functional is no longer continuous at the parameter point. Slight perturbation causing

the trajectory to miss the guard may result in the elimination of one or more mode-

switchings, and such perturbations in the switching schedule result in the disconti-

nuities. This situation arises when Assumption 2.2 fails to be satisfied, i.e., the Lie

derivative Li satisfies the equation Li = 0. Addressing this difficulty in an algorithmic

framework is the subject of an on-going research.

4. Conclusions

This paper considers the problem of minimizing a cost functional defined on the state

trajectory of switched-mode hybrid dynamical systems with respect to their switching

times. The switching times are not the free parameters, but rather are determined

whenever the state trajectory intercepts a controlled surface in the state space. The

parameters controlling the surfaces are the variables of the optimization problem.

The problem is cast in the framework of optimal control, where variational principles

are used to derive a costate-based formula for the gradient of the cost functional with

respect to the control parameters. An example concerning a robot approaching a target

while avoiding an obstacle is provided. The example suggests that the problem may have

inherent discontinuities, which generally arise whenever the state trajectory approaches

the controlled surface in a tangential fashion. This presents a challenge, since such

discontinuities require a special care when using gradient-descent algorithms. Future

research will address this challenge in the context of designing optimal navigation

systems for mobile robots operating in obstacle-ridden environments.

Notes

1. We can assume without loss of generality that �
�

is unique, otherwise we can choose �
�

according to some

predetermined rule.

2. We use the term d J
dai

to mean the total derivative with respect to ai, and similarly, throughout the paper, terms

like d
d�i

will mean total derivatives as well. In contrast, we reserve the partial-derivative notation to situations

where the function in question is assumed to be given in closed form in terms of its variables. For instance,

the function gi(xi, ai) is assumed to have this form, and hence we will use the term @gi

@xi
for the partial

derivative.

3. We henceforth adhere to the notational convention that, for a function f : Rn Y Rm, the derivative ¯f/¯x is an

m � n matrix. Therefore, the term @gi

@x
xi; aið Þ is an n-dimensional row vector, and Li 2 R.

4. Note that pi(�) is defined for all � 2[� i, � i + 1] via (37), and hence the term pi(� i) is defined unambiguously.
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