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INTRODUCTION

The dynamic linearization problem [1] and the flatness problem [2] were posed for finding non-
linear control systems to which the linear theory can be generalized. The dynamic linearizability
of an arbitrary flat system was proved and a dynamic feedback method was developed for solving
control problems for flat systems in [3]. It turned out that numerous nonlinear control systems
in various engineering fields are flat and control problems for them can be solved by this method
(see references in [3]). Flatness conditions were obtained and a method for computing a flat output
was devised in [4, 5], and they proved to be efficient in some cases. The problem on the flatness of
an arbitrary dynamically linearizable system has so far been open.

The aim of the present paper is to bridge the gap. We show that a system is dynamically
linearizable if and only if it can be covered by a trivial system (Theorem 5); moreover, a flat
system can cover only a flat system (see Theorem 6). These two facts imply that each dynamically
linearizable system is flat (see Theorem 1). A method for finding a plane observer for such systems
is illustrated by Example 2. At the same time, Theorem 6 permits one to prove the nonflatness
of a system by constructing a covering from this system to some nonflat system (see Example 1).
Moreover, we analyze the regularity condition for a dynamic feedback [1] and represent three
equivalent but more understandable conditions (see Theorem 3). These new conditions clarify the
notion of dynamic feedback from various viewpoints; the regularity condition is still used in the
verification (see Example 2). At the end of the present paper, we prove Theorems 3–6.

DYNAMIC FEEDBACK

We consider systems of the form

ẋ = f(t, x, u), x ∈ Rn, u ∈ Rm, (1)

where x = (x1, . . . , xn) is the state of the system, u = (u1, . . . , um) is the control (or the output),
f is a smooth vector function, and ẋ ≡ dx/dt. Here and throughout the following, smoothness is
understood as infinite differentiability.

A dynamic feedback (dynamic compensator) for system (1) is defined as a system of the form

ξ̇ = a(t, ξ, x, v), u = b(t, ξ, x, v), ξ ∈ Rl, v ∈ Rm, (2)

with state ξ, input (x, v), and output u satisfying the solution correspondence condition: for each
solution (x(t), u(t)) of system (1), there exist vector functions ξ(t) and v(t) that, together with
the functions x(t) and u(t), identically satisfy Eq. (2). The set (x(t), ξ(t), v(t)) of functions thus
obtained is a solution of the system

ẋ = f(t, x, b(t, ξ, x, v)), ξ̇ = a(t, ξ, x, v) (3)

with state (x, ξ) ∈ Rn+l and control v. The second equation in system (2) defines the inverse
mapping of the set of solutions of system (3) into the set of solutions of system (1). Therefore,
the dynamic feedback (2) can be treated as a transformation of system (1) into system (3). More-
over, to each solution of system (3) there corresponds exactly one solution of system (1), and
infinitely many solutions of system (3) can correspond to a solution of system (1).
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1748 CHETVERIKOV

The regularity condition for a dynamic feedback was used in [1] instead of the correspondence
of solutions. In what follows, we state this condition and prove that it is equivalent to the solution
correspondence condition (see Theorem 3).

Let s(t) = (x(t), u(t)) be a solution of system (1). We say that system (1) is dynamically
linearizable in a neighborhood of a solution s(t) if there exist functions a and b that define a
dynamic feedback (2) in the neighborhood of s(t) such that system (3) obtained with the use of
this feedback can be reduced by an invertible change of variables

z = Z(t, x, ξ), t = t, v = v (4)

to a linear control system of the form ż = Az + Bv, where A and B are constant matrices. If the
above-mentioned conditions are satisfied for l = 0, i.e., ξ is absent, then system (1) is said to be
statically linearizable. Rigorous definitions of neighborhood of a solution and dynamic feedback in
a neighborhood of a solution will be given below.

System (1) is said to be flat in a neighborhood of a solution s(t) if in this neighborhood there
exist functions

hi
(
t, x, u, u̇, . . . , u(li)

)
, i = 1, . . . , r, (5)

such that the variables x and u can be expressed via t, the functions (5), and their derivatives
along the trajectories of system (1) up to some finite order and if any finite set of functions (5),
their derivatives along the trajectories of system (1), and the function t is functionally independent.
The set of functions (5) is referred to as a flat (or linearizing) output (observer) of system (1).

It was shown in [3] that the flatness of a control system implies its dynamic linearizability.
The converse statement is the main result of the present paper.

Theorem 1. If system (1) is dynamically linearizable in a neighborhood of a solution s(t), then
it is flat in the neighborhood of s(t).

To state the remaining results and prove them, we use the infinite-dimensional geometric ap-
proach to control systems, which was developed earlier in [6, 7] for partial differential equations.

A GEOMETRIC MODEL OF CONTROL SYSTEMS

To system (1), we assign the infinite-dimensional space R∞ with coordinates

t, x1, . . . , xn, u
(j)
1 , . . . , u(j)

m , j = 0, 1, . . . , (6)

where the coordinates u(0)
i correspond to the variables ui and the coordinates u(j)

i correspond to the
derivatives djui/dtj, j > 0. The range of the variables (6) corresponding to system (1) is denoted
by E ∞. Each solution s(t) = (sx(t), su(t)) of system (1) and each point t0 in whose neighborhood
this solution is defined determine the point in E ∞ with coordinates

t0, x0 = sx (t0) , u
(l)
0 = ∂lsu (t0) /∂tl, l ≥ 0,

which is referred to as the infinite jet of the solution s(t) at the point t0. Each point of E ∞ is the
infinite jet of some solution (for the proof, see [5]). A neighborhood of a solution s(t) is understood
as a neighborhood of some infinite jet of that solution in E ∞. In particular, a basic neighborhood
is a subset in E ∞ given by a system of inequalities of the form

|t− t0| < ε, |xi − xi,0| < ε, i = 1, . . . , n,∣∣∣u(l)
j − u

(l)
j,0

∣∣∣ < ε, j = 1, . . . ,m, l = 0, . . . , k,

where ε is a positive real number and k is a positive integer.
On the set E ∞, one introduces the structure of an infinite-dimensional smooth manifold. This

implies the definition of usual notions of smooth theory on E ∞: smooth functions, vector fields,
differential forms, etc. More precisely, a smooth function on E ∞ is defined as a function smoothly
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depending on a finite (but arbitrary) set of variables (6). The algebra of smooth functions on E ∞

is denoted by F (E ). Each differentiation of this algebra is a sum (in general, infinite) of the form

g0

∂

∂t
+

n∑
l=1

gl
∂

∂xl
+

m∑
i=1

∞∑
j=0

g
(j)
i

∂

∂u
(j)
i

,

where gl, l = 0, . . . , n, and g(j)
i , i = 1, . . . ,m, j = 0, 1, . . ., are some smooth functions on E ∞. Each

differentiation of this kind is called a vector field on E ∞. The set of vector fields on E ∞ is a module
over the algebra F (E ) and is denoted by D (E ).

A differential 1-form on E ∞ is defined as a 1-form depending on finitely many variables (6), that
is, a finite sum

g0dt +
n∑
l=1

gldxl +
m∑
i=1

k∑
j=0

g
(j)
i du

(j)
i , g0, gl, g

(j)
i ∈ F (E ).

By Λ1(E ) we denote the F (E )-module of differential 1-forms on E ∞. The algebra F (E ) and
the modulez D (E ) and Λ1(E ) are related by ordinary algebraic operations. In particular, the Lie
derivative of a function g (respectively, a 1-form ω) along a vector field X is denoted by Xg
(respectively, Xω).

The vector field

D =
∂

∂t
+

n∑
l=1

fl
(
t, x, u(0)

) ∂

∂xl
+

m∑
i=1

∞∑
j=0

u(j+1)
i

∂

∂u
(j)
i

defined on E ∞ is called the total derivative with respect to t on E ∞. The Lie derivative along
D coincides with the derivative along the trajectories of system (1), and the phase curves of this
field coincide with the graphs of solutions of system (1) in E ∞ (see [7]). Therefore, as the geometric
model of system (1), we take the pair (E ∞,D), which is called the diffeotope (or the infinite
continuation) of system (1) (for details, see [6, 7]).

THE GEOMETRIC INTERPRETATION OF FLATNESS
AND DYNAMIC LINEARIZABILITY

Let (S ∞,DS ) and (E ∞,DE ) be two diffeotopes. A mapping

F : S ∞ −→ E ∞ (7)

is said to be smooth if the corresponding induced mapping F ∗ takes each smooth function on E ∞

to a smooth function on S ∞, i.e., if F ∗(F (E )) ⊂ F (S ), where, by definition, F ∗(g) = g ◦ F .
The mapping (7) is a diffeomorphism if it is a smooth one-to-one mapping and the inverse mapping
is also smooth.

A diffeomorphism (7) preserving the independent variable, i.e., such that F ∗(t) = t, is called a
C -diffeomorphism (or a Lie–Bäcklund isomorphism) if

F∗ (DS ) = DE . (8)

Systems are said to be C -diffeomorphic if their diffeotopes are related by a C -diffeomorphism.
To obtain the definition of a C -diffeomorphism in a neighborhood of a point θ ∈ S ∞, one
should replace the manifolds S ∞ and E ∞ in the above definitions by neighborhoods of the points
θ ∈ S ∞ and F (θ) ∈ E ∞, respectively. Since the phase curves of the total derivative D coincide
with the graphs of solutions of the corresponding system, it follows from condition (8) that each
C -diffeomorphism takes the solutions of one system to the solutions of the other system. Therefore,
C -diffeomorphic systems are equivalent, and a controllable system can be C -diffeomorphic only to
a controllable system. Throughout the following, by E ∞ we denote a diffeotope of system (1), and
a system of the form

ẏ = v, y, v ∈ Rr, (9)

is said to be trivial. System (9) is flat, and (y1, . . . , yr) is its flat output. The following assertion
was proved in [3].
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1750 CHETVERIKOV

Theorem 2. System (1) is flat in a neighborhood of a point θ ∈ E ∞ if and only if there exists
a C -diffeomorphism F of a neighborhood of this point into an open subset of the diffeotope of a
trivial system (9). Furthermore, the functions F ∗ (y1) , . . . , F ∗ (yr) form a flat output of system (1).

By E ∞1 we denote the diffeotope of system (3), and by Ek we denote the F (E1)-module spanned
by the forms dt, dxi, d xis, dbj , dDE1 (bj) , . . . , dDk

E1
(bj), i = 1, . . . , n, s = 1, . . . , l, j = 1, . . . ,m.

The dimension of a F (E1)-submodule E ⊂ Λ1 (E1) at a point θ ∈ E ∞1 is defined as the dimension
of the space of covectors {ωθ | ω ∈ E}. By dimE we denote the integer-valued function on E ∞1
whose value at a point θ is equal to the dimension of E at θ. The dynamic feedback (2) of
system (1) is said to be regular in a neighborhood of a point θ ∈ E ∞1 if dimEl − dimEl−1 = m in
this neighborhood.

Theorem 3. Let the module El−1 have a constant dimension in a neighborhood of a point of the
diffeotope (E ∞1 ,DE1) of system (3). Then the following conditions are equivalent in the neighborhood
of that point :

(a) the solution correspondence condition ;
(b) the regularity condition for the dynamic feedback ;
(c) each finite function set

t, x1, . . . , xn, b1, . . . , bm,DE1 (b1) , . . . ,DE1 (bm) ,D2
E1

(b1) , . . . (10)

is functionally independent on E ∞1 ;
(d) the set of variables ξ contains a subset ζ =

(
ξi1 , . . . , ξiq

)
such that system (3) is equivalent

to the system
ẋ = f(t, x, u), ζ̇ = g

(
t, ζ, x, u, u̇, . . . , u(l)

)
, ζ ∈ Rq; (11)

moreover, the equivalence is given by the relations

x = x, u = b(t, ξ, x, v), ζ =
(
ξi1 , . . . , ξiq

)
. (12)

One can show (e.g., see Lemma 4.4 in [5]) that the set of points of the diffeotope E ∞1 in whose
neighborhoods the module El−1 has a constant dimension is open and dense everywhere in E ∞1 .
Throughout the following, we consider only such points of the diffeotope E ∞1 .

Let s(t) = (sx(t), su(t)) be some solution of system (1). We say that the dynamic feedback (2) is
defined in a neighborhood of a solution s(t) if system (11) equivalent to system (3) is defined, where
t, x, u, u̇, . . . , u(l) are coordinates of a point in a neighborhood of some infinite jet of the solution
s(t) and ζ are coordinates of a point in some open subset of Rq.

A smooth mapping (7) satisfying the condition F ∗(t) = t is referred to as a covering if it satisfies
condition (8), the tangent mapping F∗,θ is a vector space epimorphism at each point θ ∈ S ∞, and
the dimension of the kernel F∗,θ is constant for all θ ∈ S ∞.

The dimension of the covering is defined as the dimension of the fiber of the mapping F , or,
which is the same, the dimension of the kernel F∗,θ. Any C -diffeomorphism is a covering of zero
dimension. If the mapping (7) is a covering and (S ∞,DS ) and (E ∞,DE ) are the diffeotopes of
systems S and E , respectively, then we say that the system S covers the system E , or F is a
covering of the system E by the system S .

Theorem 4. A dynamic feedback (2) for system (1) defines a finite-dimensional covering of
system (1) by system (3). Each finite-dimensional covering of system (1) defines a dynamic feedback
for system (1).

System (1) is said to be regular at a point θ ∈ E ∞ if the rank of the matrix ∂f/∂u at this point
is equal to m.

Theorem 5. A regular system (1) is dynamically linearizable in a neighborhood of a point θ of
its diffeotope if and only if there exists a finite-dimensional covering of the neighborhood of θ by
some open subset of the diffeotope of a trivial system.
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CONSTRUCTION OF A FLAT OBSERVER
FOR DYNAMICALLY LINEARIZABLE SYSTEMS

Let (E ∞,DE ) and (E ∞1 ,DE1) be the diffeotopes of system (1) and some flat system, respec-
tively, let ν : E ∞1 → E ∞ be a covering, and let y = (y1, . . . , yr) be some flat output of the
flat system. For k ≥ 0, by Λ1

k (E1) we denote the module spanned over F (E1) by the 1-forms
dt, dy1, . . . , dyr, dDE1y1, . . . , dDE1yr, dD

2
E1
y1, . . . , dD

k
E1
yr. We also set

Lk =
{
ω ∈ Λ1(E ) | ν∗(ω) ∈ Λ1

k (E1)
}
.

The sets Lk are F (E )-modules, since ν∗(fω) = ν∗(f)ν∗(ω) ∈ Λ1
k (E1) for ω ∈ Lk and f ∈ F (E ).

Let kd be an integer such that the forms

ν∗ (dx1) , . . . , ν∗ (dxn) , ν∗ (du1) , . . . , ν∗ (dum)

lie in Λ1
kd

(E1). A point θ ∈ E ∞ in whose neighborhood the modules Lk, k = 0, . . . , kd have a
constant dimension is said to be ν-regular.

Theorem 6. If there exists a covering ν of some flat system in of the diffeotope of system (1)
by the diffeotope of some flat system, then system (1) is flat in a neighborhood of any ν-regular
point.

Note that the covering in Theorem 6 can be infinite-dimensional. This permits one to prove
nonflatness of systems. To this end, it suffices to find a covering of some nonflat system S by the
system in question. It is convenient to take a system with one-dimensional control as S , since for
such systems flatness can be verified by simple methods [1, 3].

Example 1. The system of equations

ẋ1 = u1, ẋ2 = x3u
2
1 + x2u2, ẋ3 = x3u2 (13)

with state (x1, x2, x3) and control (u1, u2) covers the nonflat system

ż1 = u1, ż2 = u2
1,

where z1 = x1 and z2 = x2/x3. By Theorem 6, system (13) is not flat.
Theorem 5 and 6 readily imply the assertion of Theorem 1. In this case, a flat output of a dynam-

ically linearizable system is constructed as follows. Let a dynamic feedback linearizing system (1)
be constructed. It follows from the proof of Theorem 5 that such a feedback implies that system (3)
is flat. Theorem 3 claims that systems (3) and (11) are equivalent. Let y = (y1, . . . , yr) be a flat
output of system (11). If q = 0, then systems (1) and (11) coincide; therefore, y is a flat output of
system (1) as well.

If q > 0, then for each k ≥ 0 by M (k) we denote the submodule of elements of Λ1
k (E1) that

do not contain dξi1 , . . . , dξiq but contain only differentials of the functions (10). We construct a
basis of the module M (k). Each module M (k) contains dt. The minimum value of k for which
the module M (k) differs from the linear span of dt is denoted by k0. It follows from the proof of
Theorem 6 that the module M (k0) has a basis that consists of the forms dt, dh1, . . . , dhm1 . Moreover,
the 1-forms dt, dh1, . . . , dhm1 , D (dh1) , . . . ,D (dhm1) are linearly independent and lie in M (k0+1).
This set of forms is supplemented by the exact forms dhm1+1, . . . , dhm2 , where m1 ≤ m2 ≤ m,
to form a basis in M (k0+1). By successively constructing bases of the modules M (k0+2), . . . ,M (kd),
we obtain the set of functions h1, . . . , hmd . Since the forms dh1, . . . , dhmd contain only the coordinate
differentials (10), it follows that h1, . . . , hmd are the coordinate functions (10) and form a flat output
of system (1) (see the proof of Theorem 6).

Example 2. The system of equations

ẋ1 = u2, ẋ2 = x2u1, ẋ3 = x2 + u1 (14)
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with state (x1, x2, x3) and control (u1, u2) can be linearized by the dynamic feedback

ξ̇1 = v1 + x1, u1 = v1/x2, u2 = v2. (15)

The regularity condition is valid for this feedback, since m = 2, l = 1, the basis of the module E0

consists of the forms dt, dx1, dx2, dx3, dξ1, dv1, dv2, and the basis of the module E1 consists of these
forms and the forms dv(1)

1 and dv
(1)
2 . System (3) obtained with the use of the feedback (15) reads

ẋ1 = v2, ẋ2 = v1, ẋ3 = x2 + v1/x2, ξ̇1 = v1 + x1 (16)

and has the flat output h1 = x3 − lnx2 and h2 = ξ1 − x2.
The diffeotope of system (16) has the coordinates t, x1, x2, x3, ξ1, u1, u2, u

(1)
1 , u

(1)
2 , . . . The forms

dt, dh1 = dx3 − dx2/x2, and dh2 = dξ1 − dx2 form a basis of the module Λ1
0 (E1). Therefore, the

module M (0) is spanned by the forms dt and dh1. Likewise, the set of forms dt, dh1, D (dh1) = dx2,
and D (dh2) = dx1 forms a basis of the module M (1), and the forms D2 (dh1) = d (x2u1) and
D2 (dh2) = du2 complement that basis to a basis of M (2). Since kd = 2, it follows that the
functions h1 = x3 − lnx2 and Dh2 = x1 form a flat output of system (14).

PROOF OF THEOREM 3

First, we define auxiliary notions and state a lemma used in the proof of Theorems 3 and 6.
Consider an arbitrary system with state z = (z1, . . . , zs) and control v = (v1, . . . , vm). Let (E ∞1 ,D)
be the diffeotope of this system. By Gp we denote the F (E1)-module spanned by the 1-forms
dt, dz1, . . . , dzs, dv

(0)
1 , . . . , dv(0)

m , dv(1)
1 , . . . , dv(p)

m if p ≥ 0 and by the 1-forms dt, dz1, . . . , dzs if p = −1.
Consider the quotient modules Gp/Gp−1 for p ≥ 0. By [Ω]p we denote the coset in Gp/Gp−1 of a
form Ω ∈ Gp. Note that D (Gp) ⊂ Gp+1. Therefore, for each p ≥ 0 the Lie derivative along D
induces a mapping

D : Gp/Gp−1 → Gp+1/Gp, D[Ω]p = [DΩ]p+1. (17)

Lemma 1. The mapping (17) is an isomorphism of modules, and its restriction to each point
is an isomorphism of linear spaces.

First, let us show that the mapping (17) is a homomorphism. If Ω ∈ Gp, then [Ω]p+1 = 0.
Therefore,

D (f [Ω]p) = D[fΩ]p = [D(fΩ)]p+1 = [D(f)Ω + fDΩ]p+1

= D(f)[Ω]p+1 + f [DΩ]p+1 = f [DΩ]p+1 = fD[Ω]p;

i.e., the mapping (17) preserves the module structure.

The set of elements
[
dv

(p)
1

]
p
, . . . ,

[
dv(p)

m

]
p

is a basis of the quotient module Gp/Gp−1. The homo-

morphism (17) takes this basis to the basis
[
dv

(p+1)
1

]
p+1

, . . . ,
[
dv(p+1)

m

]
p+1

of the quotient module

Gp+1/Gp. Therefore, the mapping (17) is an isomorphism.
The image and preimage of the isomorphism (17) are modules of constant dimension. Therefore,

the restriction of D to any point is an isomorphism of linear spaces. This completes the proof of
Lemma 1.

We apply Lemma 1 to system (3), where z = (x1, . . . , xn, ξ1, . . . , ξl). We set E−1 = G−1. Since
D (Ek−1) ⊂ Ek, we see that the following restrictions of the isomorphism (17) are defined for
nonnegative p and k :

D :
Ek−1 ∩Gp

Ek−1 ∩Gp−1

=
Ek−1 ∩Gp +Gp−1

Gp−1

−→ Ek ∩Gp+1 +Gp

Gp

=
Ek ∩Gp+1

Ek ∩Gp

. (18)

A restriction of a monomorphism is a monomorphism. On the other hand, the relations Ek =
D (Ek−1) + E0 and E0 ⊂ Gp for p ≥ 0 prove that the mapping (18) is an epimorphism. Therefore,
the mapping (18) is an isomorphism.
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We set dk,p = dim (Ek ∩Gp). By comparing the dimensions of the image and preimage of the
isomorphism (18), we obtain dk−1,p − dk−1,p−1 = dk,p+1 − dk,p for any p, k ≥ 0. By summing
the resulting relations for p = 0, . . . , k − 1, we obtain dk−1,k−1 − dk−1,−1 = dk,k − dk,0.

Since G−1 ⊂ Ek ⊂ Gk, we have dk−1,−1 = dimG−1 and dk,k = dimEk. Therefore,

dimEk − dimEk−1 = jk, k ≥ 0, (19)

where jk = dk,0−dk−1,−1 = dim ((Ek ∩G0)/G−1). Therefore, the regularity condition can be repre-
sented in the form jl = m. Note also that Ek−1 ⊂ Ek. Therefore, jk−1 ≤ jk ≤ dim (G0/G−1) = m.

To prove the theorem, we successively prove the implications (b) ⇒ (c), (a) ⇒ (c) ⇒ (b), and
(c)⇒ (d)⇒ (a). By θ we denote a point of the diffeotope E ∞1 occurring in the theorem.

(b)⇒ (c). Suppose the contrary: there exist j0 and k such that in a neighborhood of the point
θ the function Dkbj0 can be expressed via the remaining functions in the set t, xi, bj,Dbj, . . . ,Dkbj,
where i = 1, . . . , n, j = 1, . . . ,m. This implies that the form dDkbj0 is a F (E1)-linear combination
of differentials of the above-mentioned functions. By taking account of (19), we obtain jk < m.
If k > l, then this contradicts the regularity condition jl = m, since jk ≥ jl.

If k ≤ l, then dDlbj0 = Dl−k (dDkbj0
)

is a linear combination of the remaining forms in the set
dt, dxi, dbj , dDbj, . . . , dD

lbj, and we have arrived at a contradiction with the relation jl = m.
(a) ⇒ (c). Since the functions (6) are functionally independent on E ∞, it follows that in a

neighborhood of the point θ for any function Φ of the variables (6) there exists a point θ̃ at which
the function Φ is nonzero. Let θ̃ be the infinite jet of the solution (x(t), u(t)) of system (1). Then

Φ
(
t, x1(t), . . . , xn(t), u1(t), . . . , um(t),

∂u1(t)
∂t

, . . . ,
∂um(t)
∂t

,
∂2u1(t)
∂t2

, . . .

)
6≡ 0. (20)

It follows from the solution correspondence condition that there exists a solution (x(t), ξ(t), v(t))
of system (3) such that u(t) = b(t, ξ(t), x(t), v(t)). The restriction of the function

Φ
(
t, x1, . . . , xn, b1, . . . , bm,D (b1) , . . . ,D (bm) ,D2 (b1) , . . .

)
to this solution coincides with the function (20) and hence does not vanish identically. Since Φ is
an arbitrary function, we find that the variables (10) are functionally independent.

(c)⇒ (b). It follows from condition (c) that the number of functions (10) whose differentials lie
in El is less than the dimension of the module El: dimEl ≥ 1 + n+m(l + 1). On the other hand,
relations (19) with k = 0, . . . , l and dimE−1 = 1+n+l imply that dimEl = 1+n+l+j0+j1+· · ·+jl.
Hence we obtain l + j0 + j1 + · · · + jl ≥ m(l + 1). And since j0 ≤ j1 ≤ · · · ≤ jl, it follows that
l ≥ (l+ 1) (m− jl), which is possible only for jl = m. By taking account of relation (19), we obtain
the regularity condition (19).

(c)⇒ (d). We take indices i1, . . . , iq so as to ensure that the covectors dξi1 |θ , . . . , dξiq
∣∣
θ

comple-
ment the linearly independent set dt|θ, dx1|θ , . . . , dxn|θ , db1|θ , . . . , dbm|θ , dDb1|θ , . . . , dDl−1bm

∣∣
θ

to a basis of the space El−1|θ. The corresponding forms are linearly independent in some neigh-
borhood of the point θ; since the module El−1 has a constant dimension in a neighborhood of this
point, it follows that these forms comprise a basis of this module. We have earlier proved the
implication (c) ⇒ (b). Consequently, the set of forms dDlb1, . . . , dD

lbm complements the basis of
El−1 to a basis of El. Since jl ≤ jk ≤ m for k > l, it follows from the relation jl = m and from (19)
that dimEk−dimEk−1 = m for all k > l. Therefore, we can successively repeat our considerations
for El+1, El+2, . . . Thus the differentials of the functions ξi1 , . . . , ξiq and (10) are linearly indepen-
dent. Moreover, they form a basis of the module Λ1 (E1) of all 1-forms on E ∞1 in a neighborhood
of the point θ. Indeed, the forms dξ1, . . . , dξl lie in El−1 and hence can be expressed via the above-
mentioned forms. Moreover, by using the definition of jl, from the relation jl = m = dim (G0/G−1),
we obtain G0 ⊂ El. Hence it follows that the forms dv1, . . . , dvm lie in El. Consequently, the forms
dv

(j)
i for all i and j can be expressed via dξi1 , . . . , dξiq and the differentials of the functions (10).

Therefore, the forms dt, dξs, dxp, dv
(j)
i , which comprise a basis of Λ1 (E1), can be expressed via

the above-mentioned forms. Therefore, the latter also form a basis of Λ1 (E1), and the functions
ξi1 , . . . , ξiq and (10) form a coordinate system in some neighborhood of the point θ ∈ E ∞1 .
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We set gj = Dξij , j = 1, . . . , q. Since the form dξij lies in El−1, it follows that its derivative
dgj lies in El and hence gj is a function of the variables t, ζ, x, u, u̇, . . . , u(l). By comparing the
total derivative in system (11) with respect to t and on E ∞1 in the coordinates ξi1 , . . . , ξiq and (10),
we find that they coincide. This implies that the corresponding diffeotopes are C -diffeomorphic;
consequently, systems (3) and (11) are equivalent.

(d) ⇒ (a). Let (x(t), u(t)) be some solution of system (1), and let ζ(t) be the corresponding
solution of the system

ζ̇ = g
(
t, ζ, x(t), u(t), u̇(t), . . . , u(l)(t)

)
.

Then (x(t), u(t), ζ(t)) is a solution of system (11). It follows from condition (d) that it is obtained
by the transformation (12) from some solution (x(t), ξ(t), v(t)) of system (3). This implies the
solution correspondence condition and the assertion of Theorem 3.

PROOF OF THEOREM 4

It follows from Theorem 3 that system (3) is equivalent and hence C -diffeomorphic to sys-
tem (11). System (11) is a covering of system (1); moreover, the corresponding mapping F pre-
serves the variables t, x, and u and “forgets” the variables ζ; i.e., F is a covering of dimension q.
Since the composition of a C -diffeomorphism with a covering is a covering, we have a covering of
system (1) by system (3).

Conversely, let F be a finite-dimensional covering of system (1), and let ζ1, . . . , ζq be coordinates
in the fiber of F . Then in the variables t, ζ, x, and u the system that is a covering of system (1)
has the form (11) for some l ≥ 0. The corresponding dynamic feedback is given by the system

η̇(1) = η(2), . . . , η̇(l) = v, ζ̇ = g
(
t, ζ, x, η(1), . . . , η(l), v

)
,

u = η(1), η(1), . . . , η(l) ∈ Rm,

with (ml + q)-dimensional state ξ =
(
η(1), . . . , η(l), ζ

)
.

PROOF OF THEOREM 5

It was shown in [3] that each linear control system is flat. And since an invertible change of
variables of the form (4) defines a C -diffeomorphism of system (3) into a linear control system,
it follows from the dynamic linearizability of system (1) that system (3) is C -diffeomorphic to a flat
system. But each C -diffeomorphism is a mapping of a flat system into a flat system. Therefore,
system (3) is flat. This, together with Theorem 2, implies that system (3) is C -diffeomorphic
to a trivial system, and it follows from Theorem 4 that there exists a finite-dimensional covering
of system (1) by system (3). Since the composition of a C -diffeomorphism with a covering is a
covering, it follows that system (1) can be covered by the trivial system.

Conversely, suppose that there exists a finite-dimensional covering of system (1) by a trivial
system. Just as above, we consider the coordinates ζ1, . . . , ζq in the fiber of F . The trivial system
in the variables t, ζ, x, and u has the form (11). Let y = (y1, . . . , yr) be its flat output, and
suppose that the variables x and ζ can be expressed via t and y and the derivatives of y of
order < µ. Then it follows from the regularity of system (1) that the variables u can be expressed
via t, y, and the derivatives of y of order < µ + 1. We choose functions η1, . . . , ηl of the variables
t, y, ẏ, . . . , y(µ) so as to ensure that the Jacobian matrix ∂(η, x, ζ)/∂ỹ is nondegenerate at the point
θ, where ỹ =

(
y, ẏ, . . . , y(µ)

)
. Then the first derivatives ζ̇ and η̇ of the functions ζ and η along the

trajectories of system (11) depend on t, y, ẏ, . . . , y(µ) and y(µ+1). We set v = y(µ+1). By passing
from the variables t, ỹ, and y(µ+1) to the variables t, η, x, ζ, and v, from the expressions for ζ̇, η̇,
and u we obtain a dynamic feedback for system (1). This feedback is a linearization of system (1),
since the replacement of the variables η, x, and ζ by the variables ỹ reduces the corresponding
system (3) to the linear control system y(µ+1) = v.

PROOF OF THEOREM 6

Consider a covering ν from the diffeotope E ∞1 of a flat system into a diffeotope E ∞ of system (1)
as well as a ν-regular point θ′ ∈ E ∞. By the definition of a ν-regular point, there exists a neigh-
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borhood U ⊂ E ∞ in which the modules L0, . . . ,Lkd have a constant dimension. Let θ be a point
of the diffeotope E ∞1 such that ν(θ) = θ′. Since the modules Λ1

k (E1) define integrable distributions,
we have dΛ1

k (E1) ⊂ Λ1
k (E1) ∧ Λ1 (E1) for each k ≥ 0. Hence it follows that

ν∗ (dLk) = dν∗ (Lk) ⊂ dΛ1
k (E1) ⊂ Λ1

k (E1) ∧ Λ1 (E1) . (21)

Let us show that
(ν∗)−1 (Λ1

k (E1) ∧ Λ1 (E1)
)

= Lk ∧ Λ1(E ). (22)

Since ν∗ is a morphism of vector bundles, it suffices to prove the corresponding formula for the
restrictions of the morphism ν∗ to the fibers of the bundle, i.e., for homomorphisms of linear spaces.
In turn, this is a consequence of the following lemma.

Lemma 2. If A : L→M is a monomorphism of linear spaces and K ⊂M is a subspace, then
A−1(K ∧M) = A−1(K) ∧ L.

To prove the lemma, it suffices to choose embedded bases of the spaces K, A(L), and M and
compare the bases of spaces on the left- and right-hand sides of the equation.

Consider a point θ̃ in a neighborhood of the point θ ∈ E ∞1 and set

M = Λ1 (E1)
∣∣
θ̃
, L = Λ1(E )

∣∣
ν(θ̃)

, K = Λ1
k (E1)

∣∣
θ̃
, A = ν∗|ν(θ̃) .

We have A−1(K) = Lk|ν(θ̃), and it follows from Lemma 2 that relation (22) is valid at an arbitrary
point θ̃. Finally, from (21) and (22), we obtain the Frobenius condition for the module Lk :

dLk ⊂ (ν∗)−1 (Λ1
k (E1) ∧ Λ1 (E1)

)
= Lk ∧ Λ1(E ). (23)

We take an arbitrary k ∈ {0, 1, . . . , kd}. In the neighborhood U , the dimension of the module
Lk is constant; therefore, this module has a basis, which is denoted by {ω1, . . . , ωs}. Each form
on E ∞ depends on finitely many coordinates (6). Let E0 be a manifold with the coordinates (6) on
which the forms ω1, . . . , ωs depend. Then the forms ω1, . . . , ωs define a distribution on E0. It follows
from (23) that this distribution is integrable. Therefore, for each k ∈ {0, 1, . . . , kd} the module Lk

has a local basis of exact forms in the neighborhood U .
Obviously, dt ∈ L0, since ν∗(t) = t. Let k0 be the minimum index for which the module Lk0 is

not a linear span of dt, and let {dt, dh1, . . . , dhm1} be a basis of the module Lk0 in a neighborhood
of the point θ′. Then the forms

ν∗(dt), ν∗ (dh1) , . . . , ν∗ (dhm1) (24)

lie in Λ1
k0

(E1) and are linearly independent at each point of the corresponding neighborhood in E ∞1 ,
since ν is a covering; consequently, ν∗ is a monomorphism.

It follows from Lemma 1 that the form (24) and the forms

D (ν∗ (dh1)) = ν∗ (Ddh1) , . . . , D (ν∗ (dhm1)) = ν∗ (Ddhm1) (25)

are linearly independent at each point. Indeed, a flat system can be treated as a system that
has no state variables and whose flat output (y1, . . . , yr) is a control. In addition, the module
Gp [see (7)] is spanned by the forms dt, dy(0)

1 , . . . , dy(0)
r , dy(1)

1 , . . . , dy(p)
r . Since the forms (24) are

linearly independent, it follows that the cosets [ν∗ (dh1)]k0−1 , . . . , [ν
∗ (dhm1)]k0−1 are also linearly

independent. Then Lemma 1 implies that the cosets [Dν∗ (dh1)]k0
, . . . , [Dν∗ (dhm1)]k0

are linearly
independent, whence it follows that so are the forms (24) and (25) and hence the forms

dt, dh1, . . . , dhm1 , d (Dh1) , . . . , d (Dhm1) . (26)

The forms (26) lie in Lk0+1. We complement this set of forms to a basis of the module Lk0+1;
to this end, we add the exact forms dhm1+1, . . . , dhm2 , where m2 = dim Lk0+1−m1−1. This can be
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performed as follows. We have shown above that the module Lk0+1 has a basis of exact forms. Let

that basis consist of the forms dz1, . . . , dzm2+m1+1. We take a basis minor of the matrix
∂t, h,Dh

∂z
at

the point θ′. The functions zi corresponding to nonbasis columns can be chosen as hm1+1, . . . , hm2

in a neighborhood of θ′.
By successively repeating these considerations for Lk0+2, . . . ,Lkd , we obtain a basis of the mod-

ule Lkd , which consists of the forms dt, dh1, . . . , dhmd and some of their derivatives along the
trajectories of system (1). Since the forms dx1, . . . , dxn, du1, . . . , dum lie in Lkd , it follows that they
are F (E )-linear combinations of dt, dh1, . . . , dhmd and the derivatives of dh1, . . . , dhmd . Therefore,
x1, . . . , xn, u1, . . . , um are functions of t, h1, . . . , hmd and the derivatives of h1, . . . , hmd along the
trajectories of system (1).

Just as above, one can show that each finite subset of the forms dt, dDjhi, i = 1, . . . ,md, j ≥ 0,
is F (E )-linearly independent. Therefore, (h1, . . . , hmd) is a flat output, and system (1) is flat. This
completes the proof of Theorem 6.

Finally, if {dt, dh1, . . . , dhs} is a basis of the F (E )-module Lk, then {dt, dν∗ (h1) , . . . , dν∗ (hs)}
is a basis of the F (E1)-module M (k). This justifies the algorithm of constructing a flat observer
for dynamically linearizable systems.
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