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Abstract
We investigate what we call generalized ovoids, that is families of totally isotropic subspaces
of finite classical polar spaces such that each maximal totally isotropic subspace contains
precisely one member of that family. This is a generalization of ovoids in polar spaces as
well as the natural q-analog of a subcube partition of the hypercube (which can be seen as a
polar space with q = 1). Our main result proves that a generalized ovoid of k-spaces in polar
spaces of large rank does not exist.
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1 Introduction

An ovoid of a polar space is a family of points O such that each generator (maximal totally
isotropic subspace) contains precisely one element of O. The study of ovoids goes back to
the geometric construction of certain Suzuki groups by Tits [15]. Ovoids in polar spaces
were systematically defined and studied by Thas [13]. A generalized ovoid, as introduced
here, is a family of totally isotropic subspaces O such that each generator contains precisely
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one element of O. This is the natural q-analog of a subcube partition of a hypercube. Let us
sketch this connection in broad strokes and in some greater detail later in Sect. 3.

A subcube partition is a partition of the hypercube {0, 1}n into subcubes. Here we express
subcubes as strings in {0, 1, ∗}. There are countless works written on them, see the references
within Filmus et al. [7]. Following Filmus et al. [7], we call a subcube partition irreducible
if the only sub-partitions whose unions are a subcube are singletons and the entire partition.
We say that a subcube s ∈ {0, 1, ∗}n mentions coordinate i if si ∈ {0, 1}. A subcube partition
F is tight if it mentions all coordinates, that is for each coordinate i ∈ {1, . . . , n} there exists
an s ∈ F such that si �= ∗. A subcube partition is called homogeneous if all its subcubes
have the same dimension. The main goal of Filmus et al. [7] is to determine the minimum
size of a tight irreducible subcube partitionF for any given n, but also other natural extremal
questions are investigated. More recently, but in the same vibe, Alon and Balogh estimate
the total number of partitions of the hypercube in [1].

The investigation in [7] is mainly motivated by complexity theory, see [8], and was
extended to hypercubes with larger alphabets as well as linear subspaces instead of sub-
cubes, see also Bamberg et al. [4]. If we consider hypercubes as distance-regular graphs
with classical parameters, cf. Table 6.1 in [6], or as thin spherical buildings of one of the
types Bn/Cn/Dn restricted to generators, then it is natural to also consider the generalization
to dual polar graphs, respectively, the graph of generators of polar spaces. Note that here
points of {0, 1}n correspond to generators of the polar space, while points of the polar space
correspond to (n − 1)-dimensional subcubes of {0, 1}n . Thus, we can study the q-analog of
subcube partitions in this setting. This is precisely the study of generalized ovoids.

Our results are devided into two parts.We give a limited number of constructions in Sect. 4.

Theorem 1.1 Let r ≥ 4. Then in Q+(2r − 1, q) there exist at least 2�r/2−1� pairwise non-
isomorphic families O of (r − 2)-spaces such that each generator contains precisely one
element of O.

Then in Sect. 5 we will prove our main result, the asymptotic non-existence of generalized
ovoids:

Theorem 1.2 Let p be a prime and let k be a positive integer. Then there exists a constant
r0(p, k) such that for all r ≥ r0(p, k) the following holds: For any positive integer h, put
q = ph. Let P be a polar space of rank r over the field with q elements. Then P does not
possess a familyO of k-spaces such that each generator of P contains precisely one element
of O.

Theorem 1.2 is a generalization of a classical result by Blokhuis and Moorhouse who
observed the following in Theorem 1.6 in [5].

Theorem 1.3 [5] Let p be a prime, h a positive integer, and q = ph. Let O be a partial
ovoid of any finite classical polar space naturally embedded in a vector space of dimension
n over the field with q elements. Then

|O| ≤
(
p + n − 2

p − 1

)h

+ 1 ≤ (p + n − 1)h(p−1) + 1.

Subsequently, the result byBlokhuis andMoorhouse has been slightly improved byArslan
and Sin, see [2]. The rank of a polar space satisfies n − 2 ≤ 2r ≤ n. An ovoid of a rank r
polar space has size at least qr−1 + 1 = ph(r−1) + 1. For p fixed and r sufficiently large, this
is clearly more than (p+n−1)h(p−1) ≤ (p+2r +1)h(p−1). Hence, for k = 0, Theorem 1.2
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is a special case. We will provide a quantitative statement of Theorem 1.2 in Sect. 5. In the
abstract we claim something slightly stronger, namely thatO having subspaces of dimension
at most k shows non-existence. This will also follow from the quantitative discussion in
Sect. 5.

2 Polar spaces

For an extensive and detailed introduction about finite classical polar spaces, we refer to
Hirschfeld and Thas [9]. We only repeat the necessary definitions and information. Note
that in this article, we will work with algebraic dimensions, not projective dimensions. The
subspaces of dimension 1 (vector lines), 2 (vector planes) and 3 (vector solids) are called
points, lines and planes, respectively. We denote the vector space of dimension n over the
field with q elements by V (n, q).

We start with the definition of finite classical polar spaces.

Definition 2.1 Finite classical polar spaces are incidence geometries consisting of subspaces
that are totally isotropic with respect to a non-degenerate quadratic or non-degenerate reflex-
ive sesquilinear form on a vector space V (n, q).

A bilinear form for which all vectors are isotropic is called symplectic; if f (v,w) =
f (w, v) for all v,w ∈ V , then the bilinear form is called symmetric. A sesquilinear form
on V is called Hermitian if the corresponding field automorphism θ is an involution and
f (v,w) = f (w, v)θ for all v,w ∈ V . We now list the finite classical polar spaces of rank r .

• The hyperbolic quadric Q+(2r − 1, q) arises from a hyperbolic quadratic form on
V (2r , q). Its standard equation is X0X1 + · · · + X2r−2X2r−1 = 0.

• The parabolic quadricQ(2r , q) arises from a parabolic quadratic form on V (2r + 1, q).
Its standard equation is X2

0 + X1X2 + · · · + X2r−1X2r = 0.
• The elliptic quadricQ−(2r+1, q) arises from an elliptic quadratic form on V (2r+2, q).

Its standard equation is g(X0, X1) + · · · + X2r−2X2r−1 + X2r X2r+1 = 0 with g a
homogeneous irreducible quadratic polynomial over Fq .

• The Hermitian polar space H(2r − 1, q) (where q is a square) arises from a Hermitian
form on V (2r , q), constructed using the field automorphism x 	→ x

√
q . Its standard

equation is X
√
q+1

0 + X
√
q+1

1 + · · · + X
√
q+1

2r−1 = 0.
• The Hermitian polar spaceH(2r , q) (where q is square) arises from a Hermitian form on

V (2r + 1, q), constructed using the field automorphism x 	→ x
√
q . Its standard equation

is X
√
q+1

0 + X
√
q+1

1 + · · · + X
√
q+1

2r = 0.
• The symplectic polar space W(2r − 1, q) arises from a symplectic form on V (2r , q).

For this symplectic form we can choose an appropriate basis {e1, . . . , er , e′
1, . . . , e

′
r } of

V (2r , q) such that f (ei , e j ) = f (e′
i , e

′
j ) = 0 and f (ei , e′

j ) = δi, j , with 1 ≤ i, j ≤ r .

In this article all polar spaces we will handle are finite classical polar spaces. We also give
the definition of the rank and the parameter e of a polar space.

Definition 2.2 The subspaces of maximal dimension (being r ) of a polar space of rank r are
called generators. We define the parameter e of a polar space P over Fq as the number e
such that the number of generators through an (r − 1)-space of P equals qe + 1.

The parameter of a polar space only depends on the type of the polar space and not on its
rank. In Table 1 we give the parameter e of the polar spaces.

An important concept, associated to polar spaces, are polarities.
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Table 1 The parameter e Polar space e

Q+(2r − 1, q) 0

H(2r − 1, q) 1/2

W (2r − 1, q) 1

Q(2r , q) 1

H(2r , q) 3/2

Q−(2r + 1, q) 2

Definition 2.3 A polarity on V (n, q) is an inclusion reversing involution ⊥ acting on the
subspaces of V (n, q). In other words, ⊥2 is the identity, and any two subspaces π and σ

satisfy π ⊆ σ ⇔ σ⊥ ⊆ π⊥.

Consider a non-degenerate sesquilinear form f on the vector space V = V (n, q), or
the bilinear form f , based on a non-degenerate quadratic form Q on the vector space V =
V (n, q), with f (v,w) = Q(v + w) − Q(v) − Q(w). For a subspace W of V , we can define
its orthogonal complement with respect to f :

W⊥ = {v ∈ V | ∀w ∈ W : f (v,w) = 0}.

The map⊥ that maps the subspaceW onto the subspaceW⊥, is a polarity, and every polarity
arises in this way. To every (finite classical) polar space a polarity is associated (but not the
other way around). The image of a subspace π with dimension t on the polar space P of
rank r under the corresponding polarity is its tangent space Tπ (P), which is the subspace
spanned by the (t + 1)-spaces through π such that they are contained in the polar space, or
meet the polar space in π . Moreover, note that Tπ (P) ∩ P is a cone with vertex π and with
basis a polar space P ′ of the same type as P , and with rank r − t .

We will work with the Gaussian binomial coefficient

[
a
b

]
q
for positive integers a, b and

q ≥ 2:

[
a
b

]
q

=
b∏

i=1

qa−b+i − 1

qi − 1
= (qa − 1) . . . (qa−b+1 − 1)

(qb − 1) . . . (q − 1)
.

We write
[a
b

]
if the field size q is clear from the context. The number

[a
b

]
q equals the number

of b-spaces in V (a, q), and the equality
[a
b

]
q = [ a

a−b

]
q
follows immediately from duality.

Lemma 2.4 [6, Lemma 9.4.1] The number of k-spaces in a finite classical polar space P of
rank r and with parameter e, embedded in a vector space over the field Fq , is given by

[
r

k

] k∏
i=1

(qr+e−i + 1).

Hence, the number of points in P is
[r
1

]
(qr+e−1 + 1). The number of generators in P is∏r

i=1(q
r+e−i + 1).
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3 Generalized ovoids in polar spaces

In the following we formally define generalized ovoids for polar spaces. First note that polar
spaces are a q-analog of the hypercube. For this, the following table for translating between
{0, 1}r and a polar space of rank r is helpful.

Hypercube Polar Space

Dimension r Rank r
Point x ∈ {0, 1}r Generator
Subcube of dimension r − 1 Point
Subcube of dimension r − 2 Line
Subcube of dimension r − d Subspace of rank d
Union of subcubes Ai Union of all generators which contain one Ai
2r points

∏r
i=1(q

i+e−1 + 1) generators
2r subcubes of dimension r − 1 (qr+e−1 + 1)

[r
1
]
points

Note that for q = 1 the last two counts are the same in both columns, illustrating how the
word q-analog is justified. Of course this is well-known: In terms of distance-regular graphs,
the known families of distance-regular graphs with classical parameters (r , q, 1, qe + 1) are
the hypercubes for q = 1. Furthermore, they are the dual polar graphs for q a prime power,
which are pseudo Dr (q) graphs, see [6]. In terms of diagram geometry or building theory,
the Coxeter–Dynkin diagram of a hypercube is Br = Cr .

Definition 3.1 A partial generalized ovoid O of a polar space P is a set of totally isotropic
(nontrivial) subspaces of P such that each generator contains at most one element of O.

Definition 3.2 Ageneralized ovoidO of a polar spaceP is a set of totally isotropic (nontrivial)
subspaces of P such that each generator contains precisely one element of O.

Note that unlike ovoids, generalized ovoids always exist, for instance the set of all gen-
erators is a generalized ovoid. For consistency with the definitions in [7], one might want to
allow |O| = 1 withO’s only element being the trivial subspace (as each subspace is incident
with the trivial subspace), but here we will exclude it.

Definition 3.3 A generalized ovoid O is reducible if there exists a subset O′ ⊆ O, where
|O′| ≥ 2, such that the union of all generators which contain one element of O′, have a
non-trivial subspace π as their intersection.

A generalized ovoid O is reducible if there exists a subset O′ ⊆ O, where |O′| ≥ 2, such
that there is a non-trivial subspace π contained in all generators that contain an element of
O′.

That is, if O is reducible, then we can replace the subspaces in O′ by π and obtain a
smaller generalized ovoid.

Example 3.4 Suppose that a polar space P possesses an ovoid O. Replace one point P of O
by a set of lines L of P such that L corresponds to an ovoid of P in the quotient of P . Then
the new generalized ovoid is reducible.
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3.1 Homogeneous generalized ovoids

A particular case occurs when all the elements of a generalized ovoid have the same dimen-
sion. Particularly, classical ovoids have this property.

Definition 3.5 AgeneralizedovoidO of a rank r polar space ishomogeneous if all its elements
have the same (algebraic) dimension k. In this case we call O an (r , k)-ovoid.

Lemma 3.6 Let O be an (r , k)-ovoid in a non-degenerate polar space P of rank r and type
e, then |O| = ∏k

i=1(q
r+e−i + 1).

Proof Since there are
∏r

i=1(q
r+e−i +1) generators inP , and

∏r−k
i=1 (qr−k+e−i +1) generators

through a k-space inP , we have that the lemma follows from a double counting of the couples
{(α, π) | α ∈ O, α ⊂ π, π ∈ P, dim(π) = r}. ��

For hypercubes, a notion of tightness is necessary as otherwise subcubes of arbitrary small
size exist. In particular, small dimensional examples might hide in high dimension. For polar
spaces, this is not the case. Let us briefly justify this. For example, a partition of a hypercube
{0, 1}r into subcubes of dimension r − k has always size 2k . For a polar space, a set of
totally isotropic k-spaces such that each generator contains precisely one k-space, has size∏k

i=1(q
r+e−i + 1) for some e ∈ {0, 1/2, 1, 3/2, 2}. Note that this corresponds to 2k and is

independent of r for q = 1, while for q a prime power the definition of the size depends on
r .

Lemma 3.7 If there exist an (r , k)-ovoid in P with rank r and parameter e, then there exist
an (r − 1, k)-ovoid in a polar space P ′ of rank r − 1 and parameter e.

Proof LetO be an (r , k)-ovoid in P and let P be a point in P , not contained in an element of
O. Consider the tangent hyperplane TP (P) of P . We know that TP ∩ P is the cone 〈P,P ′〉
with vertex the point P and basis the polar space P ′ of the same type as P , but with rank
r − 1. For every element π ∈ O ∩ TP (P), let π ′ be the subspace 〈P, π〉 ∩ P ′, and let
O′ = {π ′ | π ∈ O}. As we know that every generator through P contains an element of O,
it follows that O′ is an (r − 1, k)-ovoid in P ′. ��

4 Examples for generalized ovoids

4.1 Non-homogeneous examples

Our main concern in the non-homogeneous case is the minimum size of a generalized
ovoid in a given polar space. We denote the type of a generalized ovoid O as a sequence
1n12n23n3 . . . rnr if O consists of ni subspaces of dimension i .

Here a small table of the smallest generalized ovoids and their type is given, for small
rank 3 polar spaces. The column “Size” denotes the size of the smallest generalized ovoid
which we have found. The column “Type” denote the type of one witness. The examples and
bounds where found using an ILP solver. We do not include Q+(5, q) as there ovoids exist.
Only for W (5, 2) we did conduct a complete search.

The homgenous example for Q−(7, 2) is described in Sect. 4.4.4. There exists a homo-
geneous generalized ovoid of lines in W (5, 3). This generalized is ovoid has a stabilizer S
of size 7 and is the union of 40 line orbits of size 7 under the action of S. We wonder if it is
true that W (5, q) possesses a generalized ovoid of lines for all q .
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Polar space Size Type

W (5, 2) 21 16215

Q−(7, 2) ≤ 153 2153

W (5, 3) ≤ 232 1122140380

4.2 Recursive construction

We start with the following lemma, which follows immediately from the proof of Lemma 3.7.

Lemma 4.1 LetO be an (r , k)-ovoid in a polar space P , where r > k ≥ 2. Then there exists
an (r − 1, k)-ovoid in the quotient of a point of P .

Lemma 4.2 Let O be an (r , l)-ovoid in a non-degenerate polar space P of rank r and
parameter e, and letO′ be an (r − l, k)-ovoid in a polar spaceP ′ of rank r − l and parameter
e. Then there exist an (r , k + l)-ovoid in P .

Proof LetO be an (r , l)-ovoid in P . For every l-space α in O, we consider its tangent space
Tα(P), which is a cone with vertex α, and basis a non-degenerate polar space P ′ of rank
r − l and type e. In this polar space P ′, we take an (r − l, k)-ovoid O′, and let Oα the set
of all (k + l)-spaces {〈α, τ 〉|τ ∈ O′} in P . It is easy to see that the set O′′ = ⋃

α∈O Oα

of (k + l)-spaces is an (r , k + l)-ovoid in P: every generator of P contains precisely one
element α ∈ O, and hence it contains a unique space 〈α, τ 〉 since τ belongs to an ovoid of
the quotient space of α. ��
Remark 4.3 1. Note that the (r , k+ l)-ovoid constructed in the previous lemma is reducible,

since the set of all generators containing an element of Oα contains the subspace α.
2. We can generalize this construction for non-homogeneous ovoids:

LetP be a polar space, and letO be a generalized ovoid. Then, for every elementπ inO, we
take a generalized ovoidOπ in the quotient space of π . Now, Let Fπ = {〈π, τ 〉|τ ∈ Oπ }.
Then

⋃
π∈O Fπ is another generalized ovoid in P .

4.3 The Thas–Payne–Kelly construction

There exists a construction of ovoids, respectively, m-ovoids due to Thas and Payne [14],
respectively, Kelly [10]. This construction generalizes to our setting. LetP be Q+(2r −1, q)

(r ≥ 2), H(2r −1, q) (r ≥ 2), Q+(2r −1, q) (r ≥ 4), respectively, in PG(2r −1, q). LetP1

be Q(2r − 2, q), H(2r − 2, q), Q−(2r − 3, q), respectively, naturally embedded in P . Let
P2 be Q+(2r − 3, q), H(2r − 3, q), Q+(2r − 5, q), respectively, naturally embedded in P1.
Let O2 be a (r − c, r − 2c)-ovoid of P2, where c = 1 in the first two cases, and c = 2 in the
third case. Note thatO2 always exists: LetP3 be Q(2r −4, q), H(2r −4, q), Q−(2r −7, q),
respectively, naturally embedded in P2. Then we can take the generators of P3 for O2. Note
that for r = 2, r = 2, r = 4, respectively, O2 can be the empty set.

LetP1 \P2 be denote the (r −1)-spaces ofP1 which are not inP2. Let P0, . . . , Pm denote
the generators in 〈P2〉⊥ (here m = 1, m = √

q, or m = 2(q + 1), respectively, as 〈P2〉⊥
is isomorphic to Q+(1, q), H(1, q), or Q+(3, q), respectively). Let Si denote the set of all
(r − 1)-spaces spanned by Pi and one element of O2.
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Proposition 4.4 Let

O = (P1 \ P2) ∪
m⋃
i=0

Si .

Then O is a (r , r − c)-ovoid of P .

Proof Let �i denote the number of generators in Pi . Recall that the generators of P1 form
a (r , r − c)-ovoid and has size �1. We have �2 = m · |O2| = m · �3 = m · |Si | for any
i ∈ {1, . . . ,m}. Hence, it is clear that |O| = �1, so O has the right size. It remains to check
that each generator of P contains at least one element of O.

Suppose that there is a generator γ inP containing no element ofO. Then, by the definition
of O, β = γ ∩ P1 is contained in P2. Thus, γ contains one of the elements Pi . Hence, it
contains one element of Si . ��
Now we can show Theorem 1.1 which we will rephrase here.

Proof of Theorem 1.1 We prove the claim by induction. For r = 4, Q−(5, q) is a (r , r − 2)-
ovoid of Q+(7, q). For r = 5, Q−(7, q) is a (r , r − 2)-ovoid of Q+(9, q). If there are �

pairwise non-isomoprhic (r − 2, r − 4)-ovoids of Q+(2r − 3, q), then, by Proposition 4.4,
we find 2� pairwise non-isomorphic (r , r − 2)-ovoids of Q+(2r − 1, q) (we can uniquely
identify the Q−(2r − 3, q) in the construction above as it contains the majority of elements
the obtained (r , r − 2)-ovoid). ��
We will give more arguments for the existence of (r , r − 1)-ovoids in the below.

4.4 More constructions of (r, r − 1)-ovoids

There seem to exist many constructions for (r , r − 1)-ovoids. Here we list some of them.
These demonstrate that (r , r − 1) are plentiful in some polar spaces.

4.4.1 Examples of (r, r − 1)-ovoids in Q+(2r − 1, q), H(2r − 1, q), and Q(2r, q)

LetP be one of Q+(2r−1, q), H(2r−1, q), and Q(2r , q), respectively, with corresponding
parameter e ∈ {0, 1/2, 1}. Let P ′ be one of Q(2r − 2, q), H(2r − 2, q), and Q−(2r − 1, q),
respectively. Then the generators of P ′ have rank r − 1 and each generator of P contains
precisely one generator of P ′. Hence, P ′ is an (r , r − 1)-ovoid.

Proposition 4.5 The number of pairwise non-isomorphic (r , r − 1)-ovoids in P is at least
the number of pairwise non-isomorphic partial ovoids with at most X ≤ qr+e−1/5

elements in P ′.

Proof We know that the generators ofP ′ form an (r , r −1)-ovoidO. LetR be a partial ovoid
of P ′. Construct a new (r , r − 1)-ovoidO′ by repeating the following for each point P inR:

Consider the quotient space Q of P . This is a polar space of the same type as P and rank
r − 1. In Q, the elements of P ′ through P correspond to a polar space Q′ of the same type
as P ′ and rank r − 2. Let Q′′ in Q be isomorphic with Q′, but with Q′ �= Q′′. Replace all
(r−1)-spaces S through P with S/P ∈ Q′ by all (r−1)-spaces S through P with S/P ∈ Q′′.

The resulting set O′ is still an (r , r − 1)-ovoid as each generator through P contains
precisely one of the generators of Q′′. The fact that R is a partial ovoid guarantees that we
can do this independently for all P in R.
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For two non-isomorphic choices of R, the resulting (r , r − 1)-ovoids must be non-
isomorphic. First note that for each point in the partial ovoid R in P ′ we remove at most∏r−2

i=1 (qr−1+e−i+1)−∏r−2
i=1 (qr−2+e−i+1) elements ofP ′, which is the number of generators

in the polar space Q′
of rank r − 2 and parameter e + 1, minus the number of generators in the polar space

P ′′ = Q′ ∩ Q′′ of rank r − 2 and parameter e, see Lemma 2.4. Since the partial ovoid of P ′
has size at most X , we find that the procedure above removes at most

X
(∏r−2

i=1 (qr−1+e−i + 1) − ∏r−2
i=1 (qr−2+e−i + 1)

)
∏r−1

i=1 (q
r+e−i + 1)

= X(qr−2 − 1)qe

(qr+e−2 + 1)(qr+e−1 + 1)

of the generators of P ′ from O. For X ≤ qr+e−1/5 this fraction is at most 1
5 . Hence,

the hyperplane containing P ′ is the unique hyperplane of the ambient vector space which
contains at least 4

5 of the elements of O. Hence, we can reconstruct P ′ from O′. Hence, we
can reconstructR fromO′. Hence, non-isomorphic partial ovoids ofP ′ yield non-isomorphic
(r , r − 1)-ovoids. ��

4.4.2 Examples of (r, r − 1)-ovoids in Q+(2r − 1, q)

We want to find a set Y of comaximal subspaces of Q+(2r − 1, q) such that each maximal
subspace contains precisely one element of Y . As there are two types of maximal subspaces
and each comaximal subspace lies in one of each type, we are simply asking for a perfect
matching in the (bipartite) graph of maximal subspaces of Q+(2r − 1, q), two adjacent if
they meet in a comaximal subspace. The graph has 2v := 2

∏r−1
i=1 (q

i +1) vertices and degree
k := (qr −1)/(q−1). It is easy to say that such perfect matchings exist using Hall’s marriage
theorem.More precisely, a result by Schrijver [11] shows that a bipartite graph on 2v vertices
and degree k has at least

(
(k − 1)k−1

kk−2

)v

perfect matchings. In our case this is at least

(
k2

k − 1

(
1 − 1

k

)k
)v

≥
(

k2

k − 1
· 1

e + 1

)v

≥
(
q(r−1)

e + 1

)v

≥
(
q(r−1)

e + 1

)q(r2)

.

Hence, it is clear that (r , r − 1)-ovoids are plentiful and a classification is impossible. It is
clear that almost all of these (r , r − 1)-ovoids are not contained in a hyperplane (as there are
far fewer hyperplanes).

4.4.3 An example of (3, 2)-ovoid in Q+(5, q)

Let Q = Q+(5, q) be the non-degenerate hyperbolic quadric in PG(5, q), with polarity ⊥,
and let � be a line in PG(5, q), disjoint from Q. It is known that �⊥ ∩ Q is a non-degenerate
elliptic quadric Q3 = Q−(3, q).

Lemma 4.6 Let P be a point in �⊥. If P ∈ Q3, then 〈P, �〉 ∩ Q = {P}, and if P /∈ Q3, then
〈P, �〉 ∩ Q is a conic Q(2, q).
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Proof If P ∈ Q, then 〈P, �〉 is a plane contained in the tangent hyperplane of P , and
containing a line � disjoint from Q. This implies that 〈P, �〉 does not contain lines, and
hence, P is the only point from Q contained in it.

If P /∈ Q, then 〈P, �〉 is a plane not contained in a tangent hyperplane of a certain point
P ′, as otherwise, P ′ ∈ �⊥. Hence, 〈P, �〉 ∩ Q is a non-degenerate conic Q(2, q). ��

Nowwe investigate how a solidσ through � can intersect Q. Note that the only possibilities
for the intersection σ ∩ Q are a Q−(3, q), Q+(3, q) or the cone PQ(2, q), as we know that
it should contain a line �, disjoint from Q.

Lemma 4.7 Let m be a line in �⊥.
1. If m ∩ Q = {P}, then 〈m, �〉 ∩ Q = PQ(2, q).
2. If m ∩ Q = {P1, P2}, then 〈m, �〉 ∩ Q = Q−(3, q).
3. If m ∩ Q = ∅, then 〈m, �〉 ∩ Q = Q+(3, q).

Proof 1. If m ∩ Q = {P}, then 〈m, �〉 is contained in the tangent hyperplane TP (Q). If
〈m, �〉 would contain a plane of Q, then � cannot be disjoint from this plane, and hence,
disjoint from Q. This implies that 〈m, �〉 does not contain planes of Q, and hence, it
should intersect Q in the cone PQ(2, q).

2. If m ∩ Q = {P1, P2}, then, by Lemma 4.6, we know that 〈m, �〉 contains two planes π1

and π2 such that πi ∩ Q = Pi , and furthermore 〈m, �〉 is not contained in the tangent
hyperplanes TP1(Q) nor TP2(Q). Hence 〈m, �〉 ∩ Q = Q−(3, q).

3. If m ∩ Q = ∅, then, by Lemma 4.6, we know that all planes through � meet Q in a conic.
Hence, 〈m, �〉 ∩ Q = Q+(3, q).

��
Now we take a line spread S in �⊥. Let α be the number of tangent lines to Q in S. Since

we know that |S| = q2 + 1 and S partitions the q2 + 1 points of Q3, we can check that the

number of bisecants in S is equal to the number of lines disjoint to Q in S, which is q2+1−α
2 .

For every line m ∈ S, let Fm be the set of lines of Q in 〈m, �〉. Note that Fm contains the
2q + 2 lines of Q+(3, q) if m ∩ Q = ∅, that Fm contains the q + 1 lines of a cone PQ(2, q)

if |m ∩ Q| = 1 and |Fm | = 0 if |m ∩ Q| = 2.

Theorem 4.8 Let F = ⋃
m∈S Fm. Then F is a (3, 2)-ovoid in Q.

Proof We have to prove that every plane in Q contains precisely one line ofF . First note that

|F | = 2(q + 1) · q2+1−α
2 + (q + 1) ·α = q3 + q2 + q + 1. As we know that a (3, 2)-ovoid in

Q+(5, q) contains this number of lines, it is sufficient to prove that every plane in Q contains
at most one line in F . Suppose there is a plane π containing two lines l1, l2 of F . Then l1
and l2 intersect in a point, and hence, π should be contained in one of the solids 〈m, �〉 for
m ∈ S. But then, π ∩ � �= ∅, which gives a contradiction, since � is disjoint from Q. ��

4.4.4 An example of (3, 2)-ovoid in Q−(7, 2)

A m-system of a polar space P is a family M of (m + 1)-spaces of P such that S⊥ ∩ T is
trivial for all distinct S, T ∈ M . See [12]. Let X be the point set of the classical 1-system
of Q−(7, q) which can be obtained by field reduction from Q−(3, q2). For this, denote the
extensions to Fq2 of PG(7, q) and Q−(7, q) by PG(7, q2) and Q+(7, q2) respectively. In
PG(7, q2) there exist two disjoint 3-spaces ρ and ρ⊥ meeting Q+(7, q2) in an ovoid O
isomorphic with Q−(3, q2). Then, the set X = {pp⊥ ∩ PG(7, q) | p ∈ O} is a 1-system of
Q−(7, q). The lines of Q−(7, q) meet X in 0, 1, 2, or q + 1 points. There are
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• q4 + 1 lines in X ,
• (q4 + 1)(q + 1)q4/2 secants,
• (q4 + 1)(q + 1)(q3 + q) tangents,
• (q4 + 1)(q5 − q4)/2 passants.

For q = 2, (q5 − q4)/2 = q3 and taking the union of lines in X and all passants has size
(q3 + 1)(q4 + 1) = 153. Indeed, this is a (3, 2)-ovoid of Q−(7, 2): A plane π intersect the
X in a line or in a conic. If π ∩ X is a line, then the π contains precise one line of X and
no passant. If π ∩ X is a conic, then π contains no line of X and precisely one passant (as
q = 2). While this construction is reminiscent of the constructions given in Sects. 5.3 and
5.4 of [3], we could not generalize it.

5 The non-existence of (r, k)-ovoids for r � k

Here we will show the following quantitative version of Theorem 1.2.

Theorem 5.1 Let k be a positive integer. Let q = ph be a prime power and let P be a polar
space of rank r and parameter e over the field with q elements, where r ≥ k + 1. Let O be a
partial (r , k)-ovoid of P . Then

|O| ≤
(
k−1∏
i=1

(qr−i+1 − 1)(qr+e−i + 1)

(qi+1 − 1)q2r+e−k−i

)
· (p + 2r − 2k + 3)kh(p−1)

≤ 2k−1(p + 2r − 2k + 3)kh(p−1).

We will need a technical lemma for the proof.

Lemma 5.2 Let r ≥ k + 1. Let P be a finite classical polar space of rank r with parameter
e naturally embedded in V (n, q). Let H be a tangent hyperplane of P in V (n, q). Then the
number of k-spaces of P in H is

q2r+e−k−1 + qr − qr+e−1 − 1

(qr − 1)(qr+e−1 + 1)

of the total number of k-spaces in P .

Proof Using Lemma 2.4, we find that the number k-spaces in a rank r polar space of type e
is

[
r

k

] k∏
i=1

(qr+e−i + 1).

Note that since H is a degenerate hyperplane, we know that H ∩ P is a cone with vertex
P = H⊥ and basis a polar space P ′

H with the same parameter e, and with rank r − 1.
Now we calculate the number of k-spaces in H .
We first count the number of k-spaces of P in H through P . By investigating the quo-

tientspace of P , we find that this number is equal to the number of (k − 1)-spaces in P ′
H ,

and hence, is equal to

[
r − 1

k − 1

] k−1∏
i=1

(qr−1+e−i + 1).
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Now we count the number of k-spaces of P in H not though P . For this, we can project
each of these k-spaces to the basis P ′

H , and see that this number of k-spaces is equal to the
number of k-spaces in P ′

H times the number of k-spaces in a (k + 1)-space through P , but
not containing P . This gives that this number of k-spaces of P in H not through P is equal
to

[
r − 1

k

] k∏
i=1

(qr−1+e−i + 1) · qk .

This now implies that the number of k-spaces in P ∩ H is X of the number of k-spaces
in P with

X = qk
[r−1

k

] ∏k
i=1(q

r−1+e−i + 1) + [r−1
k−1

]∏k−1
i=1 (qr−1+e−i + 1)[r

k

] ∏k
i=1(q

r+e−i + 1)

= q2r+e−k−1 + qr − qr+e−1 − 1

(qr − 1)(qr+e−1 + 1)
.

��
Proof of Theorem 5.1 Wewill prove the result by induction. Theorem 1.3 shows the claim for
k = 1.

Let k ≥ 2. We can assume that the assertion is true for (r − 1, k − 1). Recall that the
collineation group of P acts transitively on k-spaces of P , so each such k-space lies in the
same number of degenerate hyperplanes.

Hence, by Lemma 5.2, we know that a degenerate hyperplane contains on average

|O| · q
2r+e−k−1 + qr − qr+e−1 − 1

(qr − 1)(qr+e−1 + 1)

k-spaces of O. Let H be such a degenerate hyperplane containing at least this number of
k-spaces of O.

The other elements ofO, not contained in H meet H in a (k − 1)-space. LetO′ be the set
of all these (k − 1)-spaces, and note that such a (k − 1)-space cannot contain the vertex H⊥.

If we project all elements ofO′ to the basis of the cone H ∩P , we see thatO′ corresponds
to a partial (r − 1, k − 1)-ovoid in the quotient of H⊥ and we can apply our bound for these
parameters. Furthermore, for some L ∈ O′,

{K/L : K ∈ O, K ∩ H = L}
is a partial (r − k + 1, 1)-ovoid, that is a partial ovoid. Hence, by Lemma 1.3, each element
of O′ lies in at most (p + 2r − 2k + 3)h(p−1) elements of O. Hence,

|O| ≤ |O′|(p + 2r − 2k + 3)h(p−1) + |O|q
2r+e−k−1 + qr − qr+e−1 − 1

(qr − 1)(qr+e−1 + 1)
,

which implies that

|O| ≤ (qr − 1)(qr+e−1 + 1)

q2r+e−k−1(qk − 1)
|O′|(p + 2r − 2k + 3)h(p−1)

≤ (qr − 1)(qr+e−1 + 1)

q2r+e−k−1(qk − 1)

(
k−2∏
i=1

(qr−i − 1)(qr−1+e−i + 1)

(qi+1 − 1)q2r−1+e−k−i

)

· (p + 2r − 2k + 3)(k−1)h(p−1)(p + 2r − 2k + 3)h(p−1)
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This shows the claimed bound.
��

For p and k fixed, the last bound in Theorem 5.1 is a polynomial in r . Lemma 3.6 states
the size of an (r , k)-ovoid and it is an exponential function in r . As an exponential function
grows faster than any polynomial, this shows Theorem 1.2. Also note that when comparing
the size of an (r , k)-ovoid with the given bound, then h cancels on both sides.

Lastly, let us note the following non-homogeneous variant of Theorem 1.2 which follows
immediately from Theorem 5.1. It can be interpreted as a variant of the observations in [4,
7] that a tight irreducible subcube partition, respectively, a tight irreducible affine vector
space partition can only have a small number of subcubes, respectively, subspaces of large
dimension (recall from Sect. 3 that large dimensions in the hypercube setting correspond to
small dimensions in polar spaces).

Corollary 5.3 Let k be a positive integer. Let q = ph be a prime power and let P be a polar
space of rank r over the field with q elements, where r ≥ k + 1. Then for k, p fixed, and
r → ∞, the proportion of elements of O of dimension at most k is o(1).

6 Future work

Herewe show that (r , k)-ovoids are rare for k small compared to r . It would be very interesting
to provide more concrete bounds, maybe even just for k = 2. Conversely, we show that there
are plenty of examples for (r , r − 1)-ovoids in polar spaces with parameter e ∈ {0, 1/2, 1}.
This suggests that for r − k small, (r , k)-ovoids exist, but we lack constructions. This is also
true for the non-homogeneous case.

More generally, an (r , k)-ovoid covers each generator of a polar space precisely once.
Hence, it is a design in some sense and the following question is natural: Can we find a
familyD of k-spaces such that each t-space contains precisely λ elements ofD? Our question
specializes to the case (t, k, λ) = (r , k, 1). The related existencequestionof covering t-spaces
with k-spaces, that is, if we can cover each generator with the same number of k-spaces, has
been recently answered in [16] by Weiß.
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