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Abstract
In this paper, we study block-transitive automorphism groups of t-(k2, k, λ) designs. We
prove that a block-transitive automorphism group G of a t-(k2, k, λ) design must be point-
primitive, and G is either an affine group or an almost simple group. Moreover, the nontrivial
t-(k2, k, λ) designs admitting block-transitive automorphism groups of almost simple type
with sporadic socle and alternating socle are classified.
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1 Introduction

Let P be a finite set with v elements, called points, and let B be a set of k-subsets of P
called blocks. Then a t-(v, k, λ) design is a structure D=(P,B), such that every set of t
distinct points is contained in exactly λ blocks. A t-(v, k, λ) design is nontrivial if t < k < v

and simple if repeated blocks are not allowed. All the t-(v, k, λ) designs are supposed to be
nontrivial and simple in this article. An automorphism ofD is a permutation ofP which leaves
B invariant. The full automorphism group of D is denoted by Aut(D) and any subgroup of
Aut(D) is called an automorphism group ofD. If a subgroupG of Aut(D) acts transitively on
the set of points (resp. blocks), then we say thatD is point-transitive (resp. block-transitive).
Owing to the result of Block [1], D is point-transitive if D is block-transitive. Similarly, if
the automorphism group G acts primitively on points, then we say that D is point-primitive,
otherwise, D is said to be point-imprimitive.
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In [9], Montinaro and Francot showed that a flag-transitive automorphism group G of
a 2-(k2, k, λ) design, with λ | k, is either an affine group or an almost simple group, and
then classified the case of almost simple type [8, 9], and the case of affine type [7]. As
a generalization of this result, in this paper we study block-transitive t-(k2, k, λ) designs
without the condition that λ | k. Since (P, BG) is a block-transitive 1-design for any non-
empty subset B of P if G is a transitive permutation group on P, we always suppose that
t ≥ 2 in this paper. We now state the main results.

Theorem 1 A block-transitive automorphism group G of a t-(k2, k, λ) design must be point-
primitive, and G is either an affine group or an almost simple group.

Recall that for a primitive permutation group of almost simple type, the socle of the group
is an alternating group, a classical group, an exceptional group of Lie type or a sporadic
group. Based on Theorem 1, we analyze the sporadic case and alternating case in Section 4
and Section 5, respectively.

Theorem 2 Let G be a block-transitive automorphism group of a t-(k2, k, λ) design with
sporadic socle. Then Soc(G) = HS, the Higman-Sims simple group, and t = 2, k = 10.
Moreover, one of the following holds:

(1) λ ∈ {2i · 3 · 52 · 7 | i = 5, 6, 7, 8, 9};
(2) λ ∈ {27 · 32 · 7} ∪ {2i · 32 · 5 · 7 | i = 6, 7, 8, 9};
(3) λ ∈ {2i · 32 · 52 · 7 | i = 0, 1, . . . , 9}.
Remark 1 (a) 7 � |GB | for B ∈ B. Let α ∈ P, then Gα = M22 if G = HS, and Gα = M22 :

2 if G = HS : 2.
(b) In Theorem 2, Case (1) holds if and only if 3 | |GB |, Case (2) holds if and only if

5 | |GB |, Case (3) holds if and only if 3 � |GB | and 5 � |GB |, and there is no design with
15 | |GB |, here B is a block of the 2-(102, 10, λ) design.

(c) In Theorem 2, there exist block-transitive, but not flag-transitive 2-(102, 10, λ) designs,
which are given in Example 1. If G = HS is flag-transitive, then λ = 27 · 32 · 7 or
26 · 32 · 5 · 7, and the designs are given in Lemma 4.4.

Theorem 3 Let D = (P,B) be a t-(k2, k, λ) design, G ≤ Aut(D) be block-transitive with
alternating socle An. Then G = An(n > 6), the point-stabilizer Gα = (S� × Sn−�) ∩ An,

and one of the following hold:

(1) � = 1, v = n = k2, and D is a t-(k2, k,
(k2−t
k−t

)
) design, where P = {1, 2, . . . , k2}, and

B = P{k}, the set of all k-subsets of P;
(2) � = 2, n = 9, and D is a 2-(62, 6, λ) design, where λ ∈ {22 · 5, 32 · 5, 23 · 3 · 5, 24 · 32 ·

5} ∪ {2i · 33 · 5 | i = 2, 3, 4, 5};
(3) � = 3, n = 50, and D is a 2-(1402, 140, λ) design with 43 | λ. Especially, 19 · 232 · 29 ·

31 · 37 · 41 · 43 | λ if G is flag-transitive.

Remark 2 In Theorem 3, the designs of Case (1) are complete, and all designs of Case (2)
are given in Table 1. The existence of designs of Case (3) is an open question. Thus we ask:

Question: If a block-transitive 2-(1402, 140, λ) exists for some λ ?

2 Preliminaries

We first collect some useful results about t-(v, k, λ) designs. The first lemma is well known.
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Reduction for block-transitive t-(k2, k, λ) designs

Lemma 2.1 Let D = (P,B) be a t-(v, k, λ) design, then D is a s-(v, k, λs) design for any s
with 1 ≤ s ≤ t, and

λs = λ
(
v−s
t−s

)

(k−s
t−s

) .

As a generalization of the t-(v, k, λ) design, we give the definition of the t-(v, K , λ)

design, where K is a set of positive integers such that k ≤ v for every k ∈ K .

Definition 1 Let P be a finite set with v elements, called points, λ and t be positive integers
where 2 ≤ t ≤ v, K be a set of positive integers such that t ≤ k ≤ v for every k ∈ K . Let B
be a finite collection of subsets of P, called blocks. Then the incidence structure D=(P,B)

is called a t-(v, K , λ) design if |B| ∈ K for every B ∈ B, and each subset of t distinct points
is contained in exactly λ blocks.

Let D be a t-(v, K , λ) design. In particular, D is a t-(v, k, λ) design if K = {k}, and D
is a pairwise balanced design if t = 2, that is a 2-(v, K , λ) design. Let α ∈ P, and k ∈ K .

Let r (k)
α be the number of blocks having size k through α, b(k) the number of blocks of size

k, and rα the number of blocks in P(α), here P(α) is the set of blocks through α. Then
∑

k∈K
r (k)
α = rα, (1)

∑

k∈K
r (k)
α

(k−1
t−1

) = (
v−1
t−1

)
λ, (2)

and for each k ∈ K ,
∑

α∈P
r (k)
α = b(k)k. (3)

Now let D=(P,B) be a t-(v, k, λ) design with t ≥ 2. Let P ′ be a subset of P with
|P ′| = v0, and

B′ = {B ∩ P ′ : |P ′ ∩ B| ≥ t}.
Then (P ′,B′) is a t-(v0, K , λ) design, here the block-set B′ is allowed to have the same
elements, and K = {|B ∩P ′| : |P ′ ∩ B| ≥ t}. We call the design (P ′,B′) the induced design
by P ′, which helps us to analyze the parameters of D.

The following lemma is a modification of the proposition first given and proved in [12,
Lemma 2]. For completeness, we give detailed proof here.

Lemma 2.2 [12, Lemma 2] Let D = (P,B) be a t-(v, k, λ) design. Let G ≤ Aut(D) be
block-transitive, α be a point of P, r be the number of blocks containing α, and let n be a
nontrivial subdegree of G. Then the following statements hold:

(i) r divides k · |Gα|.
(ii) r divides kλs

( n
s−1

)
, and then (v − 1)(v − 2) · · · (v − s + 1) divides k(k − 1) · · · (k − s +

1)
( n
s−1

)
for every s with 2 ≤ s ≤ t .

Proof Let P(α) be the set of blocks of D containing the point α, and B ∈ P(α). The
point-transitivity and block-transitivity of G imply that

|G : Gα,B | = |G : Gα||Gα : Gα,B |,
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and

|G : Gα,B | = |G : GB ||GB : Gα,B |.
So

v|Gα : Gα,B | = b|GB : Gα,B |,
and then

k|Gα : Gα,B | = r |GB : Gα,B |,
which leads that r divides k · |Gα|.

Let � �= {α} be a nontrivial Gα-orbit with |�| = n. For any integer s with 2 ≤ s ≤ t,
D = (P,B) is a s-(v, k, λs) design. This follows thatP ′ = �∪{α} induces a s-(n+1, K , λs)

design D′ and
∑

k0∈K
r (k0)
α

(k0−1
s−1

) = ( n
s−1

)
λs, (4)

by Equation (2). For each k0 ∈ K , we let P ′(α)(k0) = {B0 : |B0 ∩ P ′| = k0, B0 ∈ P(α)},
then r (k0)

α = |P ′(α)(k0)| since the repeated blocks are allowed. Moreover, the fact �Gα = �

implies that P ′(α)(k0) is a union of orbits of Gα on P(α). This together with the equality
k|Gα : Gα,B | = r |GB : Gα,B | for any B ∈ P(α), gives that r divides k|P ′(α)(k0)|, and then
r | kr (k0)

α . By Equation (4), we have r divides kλs
( n
s−1

)
for any s with 2 ≤ s ≤ t . It follows

that (v − 1)(v − 2) · · · (v − s + 1) divides k(k − 1) · · · (k − s + 1)
( n
s−1

)
by Lemma 2.1. �

According to Lemma 2.2, we get the following useful corollary:

Corollary 2.1 Let D = (P,B) be a t-(v, k, λ) design, α be a point of P, and let n be a
nontrivial subdegree of G. If G ≤ Aut(D) is block-transitive, then

v − 1

k − 1
| kn.

In particular, if D is a t-(k2, k, λ) design, then k + 1 | n.

Proof By Lemma 2.1, we have r = λ1 = λ2(v−1)
k−1 , thus v−1

k−1 | kn, for r divides kλ2
( n
2−1

)
by

Lemma 2.2. �

The last proposition of this section gives the connection between groups and designs, and
we will use it for searching the block-transitive t-designs.

Proposition 2.1 [2, Proposition 1.3] Let G be a permutation group on P , having orbits
O1, ..., Om on the set of t-subsets of P , and B a k-subset of P . Then (P, BG) is a t-design if
and only if the ratio of the number of members of Oi contained in B to the total number of
members of Oi is independent of i . The group G acts block-transitively on the design, and is
flag-transitive if and only if the set wise stabilizer of B in G acts transitively on B.

For convenience, we call the k-subset B of P a base block of (P, BG) if (P, BG) is a
t-design, here G is a permutation group of P.
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3 Reduction

We first prove that a block-transitive t-(k2, k, λ) design must be point-primitive.

Lemma 3.1 Let D = (P,B) be a nontrivial t-(k2, k, λ) design admitting a block-transitive
automorphism group G. Then t ≤ 7 and G is point-primitive.

Proof Firstly, by [3, Theorem 1.1], for a nontrivial t-(v, k, λ) design D, if G ≤ Aut(D) is
block-transitive, then we have t ≤ 7. Secondly, by [2, Proposition 2.1(i)], we know that G is
point-primitive if t ≥ 4. So we assume that t = 2 or 3 in the following, and suppose for the
contrary that G is point-imprimitive.

If t = 3, then by [6, Theorem 2.2], we have that

v ≤ k(k − 1)

2
+ 1.

It follows that k2 ≤ k(k−1)
2 + 1 since v = k2, which is impossible. Hence t = 2.

Assume that G preserves a partition C of the points into d imprimitivity classes of size c.
Then v = cd, and the sizes of the intersections of each block with the imprimitivity classes
determine a partition of k, say x = (x1, x2, ..., xd) with

∑d
i=1 xi = k. According to [2,

Proposition 2.2],

d∑

i=1

xi (xi − 1) = k(k − 1)(c − 1)

v − 1
. (5)

It follows that k + 1 divides gcd(c − 1, v − 1) since v = k2. Recall that v − 1 = cd −
1 = d(c − 1) + d − 1, which implies that k + 1 divides gcd(c − 1, d − 1), and then
k + 1 ≤ min{c − 1, d − 1}. On the other hand, by the fact v = cd = k2, we know that
min{c−1, d −1} ≤ k −1, hence k +1 ≤ k −1, a contradiction. So the lemma is proved. �

The O’Nan-Scott theorem classifies primitive groups into five types: (i) Affine type; (ii)
Almost simple type; (iii) Simple diagonal type; (iv) Product type; (v) Twisted wreath product
type.More details refer to [5]. The following three propositions are devoted to prove Theorem
1 by combining the O’Nan-Scott theorem with the techniques developed in [9, 14].

Proposition 3.1 Let G be block-transitive automorphism group of a t-(k2, k, λ) design. Then
G is not of simple diagonal type.

Proof By Lemma 3.1, G is point-primitive. Assume that D = (P,B) is a t-(v, k, λ) design
and G ≤ Aut(D) is of simple diagonal type. Then there is a nonabelian simple group T
such that Tm ≤ G ≤ Tm : (Out(T ) × Sm), where m ≥ 2 and v = |T |m−1. Let α ∈ P.

From [9, Lemma 2.3], there is a nontrivial orbit � of Gα on P such that |�| ≤ m|T |. Thus
k + 1 ≤ m|T | by Corollary 2.1. Since v = k2 = |T |m−1, we have

|T |m−1
2 < m|T |,

which implies that |T |m−3 < m2. Therefore, m = 2 or m = 3.
By Lemma 2.2(i), r | k|Gα|, we obtain that (k + 1) | |Gα| since r = λ1 =

(k + 1)λ2 by Lemma 2.1. Recall that |Gα| = |G|
v

and G ≤ Tm : (Out(T ) × Sm),

then |Gα| | |T ||Out(T )|m!, hence (k + 1) divides |T | · |Out(T )|m!, which implies that

(k + 1) | |Out(T )|m! for gcd(k + 1, |T |) = 1. Then k = |T |m−1
2 < k + 1 < |Out(T )|m!, so

we have |T | < 4Out(T )|2 when m = 2, and |T | < 6|Out(T )| when m = 3. At this point,
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the final part of the proof of [13, Proposition 3.4] can be applied to show that no cases occur.
�

Proposition 3.2 Let G be block-transitive automorphism group of a t-(k2, k, λ) design. Then
G is not of product type.

Proof Assume that D = (P,B) is a t-(v, k, λ) design, and G ≤ Aut(D) is point-primitive
and of product type by Lemma 3.1. Then there is a group K with a primitive action (of almost
simple or diagonal type) on a set � of size v0 ≥ 5, such that P = �m and G ≤ Km � Sm =
K 	 Sm, where m ≥ 2. According to [9, Theorem 2.5], there is a nontrivial orbit � of Gα on
P such that |�| ≤ m(v0−1)

s−1 , where s is the rank of K on �. It follows that k + 1 ≤ m(v0−1)
s−1

from Corollary 2.1. Then

v
m
2
0 = v

1
2 = k < k + 1 ≤ m(v0 − 1)

s − 1
< mv0.

Thus vm−2
0 < m2, which implies that m = 2, or m = 3 and v0 ≤ 9. At this point, the final

part of the proof of [9, Theorem 2.5] can be applied to show that no cases occur. �

Proposition 3.3 Let G be block-transitive automorphism group of a t-(k2, k, λ) design. Then
G is not of twisted wreath product type.

Proof Assume that D = (P,B) is a t-(v, k, λ) design and G ≤ Aut(D) is point-primitive
and of twisted wreath product type by Lemma 3.1. Let N = T1 × T2 ×· · ·× Tm, where each
Ti ∼= T (i ∈ {1, 2, . . . ,m}) is a nonabelian simple group and m ≥ 6 [5]. Let α ∈ P, then
G = NGα, N is is regular on P and v = |T |m . Then there is an orbit � of Gα on P \ {α}
such that |�| ≤ m|T | by [9, Proposition 2.4]. Then k + 1 ≤ m|T | by Corollary 2.1. On the
other hand, k + 1 > |T |m2 , since k2 = v = |T |m . Then |T |m2 < m|T |, which is impossible
for m ≥ 6. �

Proof of Theorem 1 It follows immediately from Lemma 3.1 and Propositions 3.1–3.3. �

Let D = (P,B) be a t-(k2, k, λ) design and G ≤ Aut(D) be a block-transitive point-
primitive group of almost simple type. Let X � G ≤ Aut(X), where X is a non-abelian
simple group. Then X is a sporadic group, an alternating group, a classical group, or an
exceptional group of Lie type. In the following, we handle the first two cases separately.

4 Sporadic case

First, we give a lemma that is similar to Lemma 3.1 of [9].

Lemma 4.1 Let D be a t-(k2, k, λ) design admitting a block-transitive automorphism group
G. If α is a point of D, then k+1

gcd(k+1,|Out(X)|) divides |Xα|.
Proof According to Theorem 1, G is point-primitive. Since X �G, then X is point-transitive
and |X : Xα| = |G : Gα| = v. It implies that |Gα| = |G|

|X | |Xα|. Moreover, we have r | k|Gα|
and r = (k + 1)λ2, thus k + 1 divides |Gα|. Hence k + 1 divides |G|

|X | |Xα|, and then k + 1
divides |Out(X)||Xα|. �

Next, wewill use the following lemmas to prove Theorem 2. In the following, pi ||x means
that pi | x, but pi+1 � x, here p is a prime, and x, i are two positive intergers.
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Lemma 4.2 Let G be a block-transitive automorphism group of a t-(k2, k, λ) design with
sporadic socle. Then Soc(G) = HS, t = 2, k = 10, and the number of blocks b is divided
by 7.

Proof Suppose that X = Soc(G) is sporadic. Then X is one of the 26 sporadic simple groups
listed in [11]. Since G is point-primitive by Theorem 1, Gα is a maximal subgroup of G, and
v = k2 = |G : Gα| = |X : Xα| for X � G. Note that |Out(X)| = 1 or 2 for the sporadic
simple group X , thus G = X or G = X : 2.

If X = M11, then G = M11 for Out(M11) = 1, and k = 2, 3, 22, 2 · 3 or 22 · 3 since
|M11| = 24 · 32 · 5 · 11 and k2 | |M11|. However, M11 does not have maximal subgroup
of index 22, 32, 24 or 22 · 32 by [11], thus k = 12 and Xα = F55, which is impossible as
13 � |Xα| by Lemma 4.1. Similarly, we can rule out the cases that X ∈ {M12, J2, McL}.

If X = M22, then G = M22 or M22 : 2. Then k = 2i3 j , where i = 0, 1, 2, 3, and
j = 0, 1, for k2 | |M22|.However, G does not have maximal subgroup of index k2 by [11]. It
follows that X �= M22. Similarly, we can rule out the remaining the sporadic simple groups
except for X = HS.

If X = HS, then G = HS or HS : 2, and k = 2i3 j5m, where i = 0, 1, 2, 3, 4, j = 0, 1,
m = 0, 1, for |HS| = 29 · 32 · 53 · 7 · 11. Hence k = 10 and Xα = M22 by [11].

By Lemma 3.1,G is point-primitive and t ≤ 7. If t ≥ 3, thenD is a 3-(102, 10, λ3) design
by Lemma 2.1 and

b = λ0 = v(v − 1)(v − 2)λ3
k(k − 1)(k − 2)

= 5 · 11 · 72 · λ3

2
.

Moreover, b | |G| as G is block-transitive, which is impossible since 72 � |G|. So we
may assume that D is a 2-(102, 10, λ) design in the following. The primitive permutation
representations of G on 100 points are given in [11]. We know that 7 ‖ |G| and G has a
unique conjugate class of elements of order 7 if G = HS or HS : 2, and each element of
order 7 fixes only 2 points. This implies that GB does not have an element of order 7 for any
B ∈ B, and then 7 | b. �
Lemma 4.3 Let D = (P,B) be a 2-(102, 10, λ) design admitting a block-transitive auto-
morphism group G with Soc(G) = HS. Then one of the following holds:

(1) λ ∈ {2i · 3 · 52 · 7 | i = 5, 6, 7, 8, 9};
(2) λ ∈ {27 · 32 · 7} ∪ {2i · 32 · 5 · 7 | i = 6, 7, 8, 9};
(3) λ ∈ {2i · 32 · 52 · 7 | i = 0, 1, . . . , 9}.
Proof Since Soc(G) = HS and v = 100, then G = HS or HS : 2, and the point-stabiliser
Gα = M22 or M22 : 2 respectively, here α ∈ P . If G = HS : 2, then HS � G and
Gα ∩ HS = M22, this implies that HS is also primitive on P. By Atlas [11], the suborbit
lengths of G and HS on P are the same, that is 1, 22, 77, then their orbit lengths on P{2}
are the same, here P{2} is the set of 2-subsets of P. On the other hand, each HS-orbit on
P{2} is contained in a HS : 2-orbits on P{2}. Thus HS-orbits and HS : 2-orbits on P{2} are
the same, it turns out that (P, BHS) is a 2-(102, 10, λ) design if and only if (P, BHS:2) is a
2-(102, 10, λ′) design for a 10-subset B of P by Proposition 2.1, here λ′ = λ or 2λ. So we
just consider the case of G = HS in the following. Recall that |G| = 29 · 32 · 53 · 7 · 11.

Suppose that B is a base block of D. Let B{2} be the set of 2-subsets of B, O1 and O2 be
the two orbits of G = HS on P{2}, then |O1| = 1100 and |O2| = 3850 for the nontrivial
suborbits of G on P are 22 and 77. By Proposition 2.1,

|B{2} ∩ O1|
|O1| = |B{2} ∩ O2|

|O2| ,
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then

|B{2} ∩ O1| = 10, |B{2} ∩ O1| = 35 (6)

for B{2} = (B{2} ∩ O1) ∪ (B{2} ∩ O2) and O1 ∩ O2 = ∅.

Now we prove this lemma by considering the order of GB . If 3 | |GB |, then there exists
an element of order 3 in GB for 32 ‖ |HS| and HS has no element of order 32. According
to [11], G has a unique conjugate class of elements of order 3. Let g ∈ G be a representative
of the unique conjugate class, where

g =(1, 56, 98)(2, 78, 67)(3, 32, 44)(4, 68, 29)(5, 48, 24)(7, 94, 85)(9, 82, 33)(10, 15, 66)

(11, 99, 58)(12, 54, 70)(13, 55, 74)(14, 42, 97)(16, 51, 73)(17, 100, 60)(18, 57, 31)

(19, 77, 36)(20, 95, 88)(21, 37, 26)(22, 92, 52)(25, 96, 91)(27, 64, 86)(30, 84, 38)

(34, 93, 35)(39, 41, 90)(43, 89, 79)(46, 59, 53)(50, 87, 75)(61, 65, 63)

(62, 71, 80)(72, 81, 76),

and suppose that g ∈ GB by the block-transitivity of G. Thus B is a union of 〈g〉-orbits
on P. Using GAP [10], we obtained 4800 different base blocks from 〈g〉-orbits satisfying
Equations (6), and among these designs, λ ∈ {2i · 3 · 52 · 7 | i = 5, 6, 7, 8}.

If 5 | |GB |, then there exists an element of order 5 in GB for 53 ‖ |HS| and HS has no
element of order 52 or 53. According to [11], G has 3 conjugate classes of elements of order
5. Let g1, g2, g3 be representatives of the conjugate classes, where

g1 =(1, 2, 10, 50, 70)(3, 42, 9, 39, 18)(4, 34, 72, 53, 38)(5, 83, 22, 8, 19)(6, 99, 69, 48, 21)

(7, 11, 62, 57, 16)(12, 75, 91, 15, 67)(13, 51, 43, 24, 85)(14, 64, 92, 79, 55)(17, 59, 93,

71, 58)(20, 32, 30, 82, 94)(23, 37, 68, 47, 86)(25, 87, 78, 98, 40)(26, 97, 46, 74, 100)

(27, 84, 81, 65, 52)(28, 29, 36, 49, 80)(31, 77, 61, 73, 76)(33, 60, 95, 63, 41)(35, 44,

88, 89, 90)(45, 56, 54, 66, 96),

g2 =(1, 32, 26, 61, 35)(2, 30, 97, 73, 44)(3, 13, 91, 38, 60)(4, 95, 42, 51, 15)(5, 47, 62,

45, 59)(6, 92, 84, 29, 87)(7, 66, 58, 8, 37)(9, 43, 67, 34, 63)(10, 82, 46, 76, 88)

(11, 96, 17, 19, 68)(12, 72, 41, 39, 24)(14, 52, 80, 40, 48)(16, 54, 71, 22, 23)

(18, 85, 75, 53, 33)(20, 100, 77, 90, 70)(21, 64, 27, 28, 25)(31, 89, 50, 94, 74)

(36, 78, 99, 79, 81)(49, 98, 69, 55, 65)(56, 93, 83, 86, 57),

and

g3 =(2, 37, 34, 35, 74)(3, 95, 18, 55, 86)(4, 87, 49, 22, 17)(5, 41, 9, 33, 92)(6, 54, 43,

60, 70)(7, 83, 65, 20, 88)(8, 36, 31, 61, 19)(11, 67, 45, 27, 13)(12, 48, 50, 68,

71)(14, 52, 82, 69, 16)(15, 21, 78, 77, 63)(23, 46, 64, 26, 56)(24, 81, 75, 91, 38)

(25, 90, 89, 42, 47)(28, 93, 66, 85, 99)(29, 40, 72, 51, 39)(30, 96, 73, 76, 100)

(32, 59, 98, 58, 94)(62, 80, 79, 84, 97).

By the block-transitivity of G, suppose that gi ∈ GB for i = 1, 2, 3. Thus B is a union of
〈gi 〉-orbits on P. Using GAP [10], we obtained 190 different base blocks, and among these
designs, λ ∈ {27 · 32 · 7} ∪ {2i · 32 · 5 · 7|i = 6, 7, 8}.
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Reduction for block-transitive t-(k2, k, λ) designs

It is obvious that 3 � |GB | if 5 | |GB |, and 5 � |GB | if 3 | |GB |. Now we consider
the case that 3 � |GB | and 5 � |GB |. Since |GB | = |G|

b , 7 | b and b = 110λ, then
λ ∈ {2i · 32 · 52 · 7 | i = 0, 1, . . . , 9}, where b is the number of blocks. Therefore, the lemma
holds. �

Proof of Theorem 2 It follows immediately from Lemmas 4.2–4.3. �

LetD be a 2-(v, k, λ) designD with k | v, and G ≤ Aut(D). In 1984, Camina and Gagen
prove that if G is block-transitive and λ = 1, then G is flag-transitive [4]. However, for the
case that λ > 1, the block-transitivity and k | v cannot imply flag-transitivity.

Example 1 Suppose that G = HS acts primitively on P = {1, 2, . . . , 100}. Then there exist
many block-transitive, but not flag-transitive 2-(102, 10, λ) designs. The following are some
examples.

(1) D1 = (P, BG
1 ), where B1 = {1, 6, 8, 25, 28, 45, 56, 91, 96, 98}, λ = 25 · 3 · 52 · 7.

(2) D2 = (P, BG
2 ), where B2 = {1, 2, 10, 34, 35, 37, 44, 53, 57, 74}, λ = 26 · 32 · 5 · 7.

(3) D3 = (P, BG
3 ), where B3 = {1, 6, 8, 28, 43, 45, 56, 79, 89, 98}, λ = 26 · 3 · 52 · 7.

(4) D4 = (P, BG
4 ), where B4 = {2, 12, 34, 35, 37, 48, 50, 68, 71, 74}, λ = 27 · 32 · 5 · 7.

(5) D5 = (P, BG
5 ), where B5 = {2, 6, 8, 11, 28, 45, 58, 67, 78, 99}, λ = 27 · 3 · 52 · 7.

(6) D6 = (P, BG
6 ), where B6 = {2, 7, 20, 34, 35, 37, 65, 74, 83, 88}, λ = 28 · 32 · 5 · 7.

(7) D7 = (P, BG
7 ), where B7 = {1, 2, 6, 8, 28, 45, 56, 67, 78, 98}, λ = 28 · 3 · 52 · 7.

Now we give a result on the flag-transitive 2-(102, 10, λ) designs.

Lemma 4.4 Let D = (P,B) be a 2-(102, 10, λ) design admitting a flag-transitive automor-
phism group G = HS. Then λ = 27 · 32 · 7 or 26 · 32 · 5 · 7.
Proof Let G = HS acting primitively on P = {1, 2, . . . , 100}. If G is flag-transitive,
then 10 | |GB | for each B ∈ B. Moreover, |GB | = |G|

b = |G|
110λ , this implies that λ ∈

{27 · 32 · 7} ∪ {2i · 32 · 5 · 7|i = 6, 7, 8} by Lemma 4.3, and D is one of the 190 designs
which obtained in the proof of Lemma 4.3. Among these designs, if G is flag-transitive, then
λ = 27 · 32 · 7 or 26 · 32 · 5 · 7, and up to isomorphism there are 2 designs which are listed
in the following.

(i) D1 = (P, BG
1 ), where B1 = {1, 7, 10, 20, 44, 53, 57, 65, 83, 88}, λ = 27 · 32 · 7.

(ii) D2 = (P, BG
2 ), where B2 = {1, 5, 26, 32, 35, 45, 47, 59, 61, 62}, λ = 26 · 32 · 5 · 7.

�

5 Alternative case

Now we deal with the case that Soc(G) = An . In the following, we let �{�} denote the set of
all �-subsets (i.e. subsets of size �) of the set �, for � = 1, 2, . . . , n.

Lemma 5.1 Let D = (P,B) be a t-(k2, k, λ) design, G ≤ Aut(D) be block-transitive with
alternating socle An . Then G = An(n > 6), the point-stabilizer Gα = (S� × Sn−�) ∩ An,

and one of the following hold:

(1) � = 1, v = n = k2, and D is a t-(k2, k,
(k2−t
k−t

)
) design, where P = {1, 2, . . . , k2}, and

B = P{k}, the set of all k-subsets of P;
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Table 1 Twelve block-transitve 2-(62, 6, λ) designs D = (�
{2}
9 , BA9 )

Line λ Base block B Flag-transitivity

1 22 · 5 {{1, 2}, {1, 3}, {2, 3}, {4, 5}, {4, 6}, {5, 6}} Yes

2 32 · 5 {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {6, 7}, {8, 9}} No

3 23 · 3 · 5 {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {5, 8}} Yes

4 23 · 3 · 5 {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {5, 7}, {6, 7}} No

5 23 · 3 · 5 {{1, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 6}} Yes

6 22 · 33 · 5 {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {7, 8}} No

7 24 · 32 · 5 {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 6}, {4, 7}} No

8 23 · 33 · 5 {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {4, 5}, {6, 7}} No

9 23 · 33 · 5 {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {5, 6}, {5, 7}} No

10 23 · 33 · 5 {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 5}, {6, 7}} No

11 24 · 33 · 5 {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {5, 6}, {6, 7}} No

12 25 · 33 · 5 {{1, 2}, {1, 3}, {1, 4}, {2, 5}, {3, 6}, {5, 7}} No

(2) � = 2, n = 9, and D is a 2-(62, 6, λ) design, where λ ∈ {22 · 5, 32 · 5, 23 · 3 · 5, 24 · 32 ·
5} ∪ {2i · 33 · 5 | i = 2, 3, 4, 5};

(3) � = 3, n = 50, and D is a 2-(1402, 140, λ) design.

Proof SinceLemmas3.3−3.5 of [9] also hold under our conditions,wehaveG = An(n > 6),
with Gα = (S� × Sn−�) ∩ An, and either � ≤ 2, or � = 3 and n = 50. The detailed proofs
are not provided here, and please refer to [9].

Firstly, we assume that � = 1. Then P = �n, v = n = k2, Gα = An−1 for α ∈ P. Since
An−1 is (n− 3)-transitive, then Gα is (k − 1)-transitive for k − 1 ≤ n− 3. It follows that Gα

is transitive on P(α), which implies that G is flag-transitive, r = (
v−1
k−1

)
, and b = (

v
k

)
. That

is, D = (�n,�
{k}
n ).

Secondly, assume that � = 2. Then P = �
{2}
n , v = n(n−1)

2 , and the non-trivial orbits
of Gα on P are �i = {γ : |γ ∩ α| = i}, i = 0, 1. It follows that subdegrees of G are
1,

(n−2
2

)
, and 2

(n−2
1

)
. By Corollary 2.1, (k + 1) | 2(n − 1). It implies that n = 9, k = 6 for

k2 = v = n(n−1)
2 . Thus D is a t-(62, 6, λ) design. If t ≥ 3, then

b = v(v − 1)(v − 2)λ3
k(k − 1)(k − 2)

.

Thus 17 | b, and then 17 | |A9| for G is block-transitive, which is impossible. Therefore,
t = 2. Using GAP [10], we obtain all non-isomorphic designs by Proposition 2.1, which are
listed in Table 1, and three of them are flag-transitive.

Thirdly, we assume that � = 3 and n = 50. Then P = �
{3}
50 , v = 1402, and k = 140. If

t ≥ 3, then

b = v(v − 1)(v − 2)λ3
k(k − 1)(k − 2)

.

It implies that 239 | b, and then 239 | |A50|, which is impossible. Therefore, t = 2,
b = 140r , and r = 141λ. �
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Reduction for block-transitive t-(k2, k, λ) designs

Next, let D = (P,B) be a 2-(1402, 140, λ) design, P = �
{3}
50 , and G = A50 ≤ Aut(D)

be block-transitive. We will give some properties of this design, especially on the parameter
λ.

Let Oi = {{α, β}||α ∩ β| = i, α, β ∈ P}, i = 0, 1, 2, be the G-orbits on P{2}. Then

|O0| =
(50
3

) · (47
3

)

2
, |O1| =

(50
3

) · (47
2

) · (3
1

)

2
, |O2| =

(50
3

) · (47
1

) · (3
2

)

2
,

and Oi (α) = {β|{α, β} ∈ Oi }, i = 0, 1, 2, are Gα-orbits on P \ {α} for and a point α ∈ P.

It is obvious that

|O0(α)| =
(
47

3

)
, |O1(α)| =

(
47

2

)
·
(
3

1

)
, |O2(α)| =

(
47

1

)
·
(
3

2

)
.

Let B be a block and B{2} be the set of all 2-subsets of B. By Proposition 2.1, the ratio
of the number of members of Oi contained in B to the total number of members of Oi is
independent of i, i = 0, 1, 2, 3. Thus

|B{2} ∩ O0|
|O0| = |B{2} ∩ O1|

|O1| = |B{2} ∩ O2|
|O2| ,

which implies that

|B{2} ∩ O0| : |B{2} ∩ O1| : |B{2} ∩ O2| = 115 : 23 : 1.
Thus |B{2} ∩ O0| = 70 · 115 = 8050, |B{2} ∩ O1| = 70 · 23 = 1610, |B{2} ∩ O2| = 70 for
|B{2}| = (140

2

) = 70 · 139.
Furthermore, if G is flag-transitive, then |B ∩Oi (α)|r = λ|Oi (α)| for i = 1, 2, 3, and so

|B ∩ O0(α)|
|O0(α)| = |B ∩ O1(α)|

|O1(α)| = |B ∩ O2(α)|
|O2(α)| = λ

r
= 1

141
.

Hence |B ∩ O0(α)| = 115, |B ∩ O1(α)| = 23, and |B ∩ O2(α)| = 1.
From now on, we assume that the following hypothesis holds:
HYPOTHESIS: Let p be a prime divisor of |An | and 5 ≤ p ≤ 43. Let g ∈ An be a cycle

of length p, T = 〈g〉, and �̄p = Fix�50(g).
Let α ∈ P, � = αT . It is clear that � = {α} if |α ∩ �̄p| = 3. In the following

proposition, we will consider the case that |α ∩ �̄p| < 3. Let �(i0) = {β|i0 ∈ β, β ∈ �},
and �{2}(i0) = {{β1, β2}|i0 ∈ β1 ∩ β2, {β1, β2} ∈ �{2}} for i0 ∈ �50\�̄p. Define two triples
with respect to �:

μ(�) = (|�{2} ∩ O0|, |�{2} ∩ O1|, |�{2} ∩ O2|),
and

νβ(�) = (|� ∩ O0(β)|, |� ∩ O1(β)|, |� ∩ O2(β)|)
for β ∈ �. It is obvious that |�{2} ∩ O0| + |�{2} ∩ O1| + |�{2} ∩ O2| = |�{2}| = (p

2

)
, and

|� ∩ O0(β)| + |� ∩ O1(β)| + |� ∩ O2(β)| = p − 1.

Proposition 5.1 Let α ∈ P, � = αT . Then the following hold:

(1) If |α ∩ �̄p| = 2, then μ(�) = (0, 0,
(p
2

)
), and νβ(�) = (0, 0, p − 1).

(2) If |α ∩ �̄p| = 1, then μ(�) = (0,
(p
2

) − p, p), and νβ(�) = (0, p − 3, 2).
(3) If |α∩�̄p| = 0, thenμ(�) = (

(p
2

)−3p, 3p, 0), or (
(p
2

)−2p, p, p), and νβ(�) = (p−7,
6, 0), or (p − 5, 2, 2) respectively.
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Proof (1) Suppose that |α ∩ �̄p| = 2. Then |�| = p, and |β1 ∩β2| = |α ∩ �̄p| = 2 for each
{β1, β2} ∈ �{2}, hence |�{2} ∩O2| = (p

2

)
and |�∩O2(α)| = p−1. Thusμ(�) = (0, 0,

(p
2

)
),

and να(�) = (0, 0, p − 1).
(2) Suppose that |α ∩ �̄p| = 1, and α = { jp, i1, i2}, here α ∩ �̄p = { jp}. Then |�| = p

and �{2} ∩ O0 = ∅, � ∩ O0(α) = ∅ since jp ∈ β, for any β ∈ �.

Let i g11 = i0 and i g22 = i0 for i0 ∈ �50\�̄p, here g1, g2 ∈ T . Then �(i0) = {αg1 , αg2},
and �{2}(i0) = {{αg1 , αg2}}. Since each point of � contains jp, we have

|�{2} ∩ O2| = |
⋃

i0∈�50\�̄p

�{2}(i0)| =
∑

i0∈�50\�̄p

|�{2}(i0)|,

because�{2}(i0)∩�{2}( j0) = ∅ for any two distinct i0, j0 ∈ �50\�̄p.Otherwise, there exists
one 2-subset {β1, β2} ∈ �{2} such that { jp, i0, j0} ∈ β1 ∩ β2, which implies that β1 = β2, a
contradiction. Thus |�{2} ∩ O2| = p, and

|� ∩ O2(α)| = |�(i1) ∪ �(i2)| − |{α}| = |�(i1)| + |�(i2)| − |�(i1) ∩ �(i2)| − |{α}| = 2.

Therefore μ(�) = (0,
(p
2

) − p, p), and να(�) = (0, p − 3, 2).

(3) Suppose that |α ∩ �̄p| = 0. Then |�| = p, |�(i0)| = 3, and |�{2}(i0)| = (3
2

) = 3, for
each element i0 ∈ �50\�̄p. Since �{2}(i0) ∩ �{2}(i1) ∩ �{2}(i2) = ∅ if i0, i1, i2 ∈ �50 \ �̄p

are different from each other, we have

|�{2} ∩ O1| + |�{2} ∩ O2| =|{β1, β2}||β1 ∩ β2| > 0, {β1, β2} ∈ �{2}}|
=|

⋃

i0∈�50\�̄p

�{2}(i0)|

=
∑

i0∈�50\�̄p

|�{2}(i0)| −
∑

i0 �= j0∈�50\�̄p

|�{2}(i0) ∩ �{2}( j0)|

≤3p,

(7)

and

|�{2} ∩ O2| = |
⋃

i0 �= j0∈�50\�̄p

(�{2}(i0) ∩ �{2}( j0))| =
∑

i0 �= j0∈�50\�̄p

|�{2}(i0) ∩ �{2}( j0)|.

Since �{2} ∩ O1 and �{2} ∩ O2 are unions of T -orbits on �{2}, then p | |�{2} ∩ O1| and
p | |�{2} ∩ O2| for FixP (T ) ∩ � = ∅. Suppose that |�{2} ∩ O2| = mp (0 ≤ m ≤ 3), then

|�{2} ∩ O1| + mp = |
⋃

i0∈�50\�̄p

�{2}(i0)| =
∑

i0∈�50\�̄p

|�{2}(i0)| − mp = (3 − m)p.

Therefore, m ≤ 1, and μ(�) = (
(p
2

) − 3p, 3p, 0), or (
(p
2

) − 2p, p, p).
Next, we consider να(�). Since

⋂
i0∈α �(i0) = {α}, we have

|� ∩ O1(α)| + |� ∩ O2(α)| =|{β|β ∩ α �= ∅, β ∈ �\{α}}|
=|

⋃

i0∈α

(�(i0)\{α})|

=
∑

i0∈α

|�(i0)\{α}| −
∑

i0 �= j0∈α

|(�(i0) ∩ �( j0))\{α}|
(8)
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Reduction for block-transitive t-(k2, k, λ) designs

For the case |�{2} ∩ O2| = 0, we have |� ∩ O2(α)| = 0 and �(i0) ∩ �( j0) = {α} for any
i0, j0 ∈ α, i0 �= j0. Then |� ∩ O1(α)| = ∑

i0∈α |�(i0)\{α}| = 3(3 − 1) = 6 by Equation
(8). Thus να(�) = (p − 7, 6, 0).

For that case |�{2} ∩ O2| = p, there is a point β ∈ � such that |α ∩ β| = 2 for T is
transitive on�.Thus the elements ofα has an arrangement i1i2i3,where α = {i1, i2, i3}, such
that i g11 = i2, i

g1
2 = i3, here 1 �= g1 ∈ T . If i g13 = i1, then αg1 = α, which is impossible.

Thus i g13 �= i1. It follows that

{αg1 , αg−1
1 } ⊆ � ∩ O2(α).

Note that αg1 �= αg−1
1 , otherwise p | 2m. If |� ∩ O2(α)| ≥ 3, then there exists another point

β ∈ � such that |β ∩ α| = 2. If β ∩ α = {i1, i2}, then there exists an element g2 �= g1 ∈ T
such that i g21 = i2, i

g2
3 = i1, this implies that g1 = g2, which is a contradiction. Similarly,

β ∩ α �= {i2, i3}. Thus β ∩ α = {i1, i3}. Let β = αg2 , g2 ∈ T , here g2 �= g1 ∈ T . Then

{i1, i3} = {i1, i2}g2 or {i1, i3} = {i2, i3}g2 . It turns out {i1, i2} ∈ αg−1
2 or {i2, i3} ∈ αg−1

2 , thus
g1 = g2 and i g13 = i1, which is impossible. Hence |� ∩ O2(α)| = 2. By Equation (8), we
have

|� ∩ O1(α)| + 2 =
∑

i∈α

|�(i)\{α}| −
∑

i �= j∈α

|(�(i) ∩ �( j))\{α}|

=
∑

i∈α

|�(i)\{α}| − |{αgm , αgp−m }|.

Thus |� ∩ O1(α)| + 2 = 3(3 − 1) − 2 = 4, and then |� ∩ O1(α)| = 2. Therefore να(�) =
(p − 5, 2, 2).

Now the proposition follows from the fact that |� ∩Oi (β)| = |� ∩Oi (α)| for i = 0, 1, 2,
β ∈ �. �

Remark 3 Note that, if |α ∩ �̄p| = 0 and p = 5, then the elements of α must have an
arrangement i1i2i3, such that i g11 = i2, i

g1
2 = i3, but i

g1
3 �= i1, where α = {i1, i2, i3} and

1 �= g1 ∈ T , since |α(2)| = 6, here α(2) is the set of all ordered pairs of elements of α. Thus
|�{2} ∩ O2| �= 0, it follows that μ(�) = (0, 5, 5) and νβ(�) = (0, 2, 2).

Proposition 5.2 Let �1 = αT
1 , �2 = αT

2 be two T -orbits of length p on P, and �
{2}
1,2 =

{{β1, β2}|β1 ∈ �1, β2 ∈ �2}. Then p | |�{2}
1,2 ∩ O2|, and the following hold:

(1) If |α1 ∩ �̄p| = 1, and |α2 ∩ �̄p| = 0, then |�{2}
1,2 ∩ O0| ≥ p(p − 6).

(2) If |α1 ∩ �̄p| = |α2 ∩ �̄p| = 0, then |�{2}
1,2 ∩ O0| ≥ p(p − 9).

Proof Let �
{2}
1,2(i0) = {{β1, β2}|i0 ∈ β1 ∩ β2, β1 ∈ �1, β2 ∈ �2}. Since �

{2}
1,2 ∩ O2 is a

union of T -orbits on �
{2}
1,2, and �

{2}
1,2 ∩ FixO2(T ) = ∅ for both cases, we get p | |�{2}

1,2 ∩ O2|.
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Moreover,

|�{2}
1,2 ∩ O1| + |�{2}

1,2 ∩ O2| =|{{β1, β2}||β1 ∩ β2| > 0, βi ∈ �i }|
=|

⋃

i0∈�50\�̄p

�
{2}
1,2(i0)|

=
∑

i0∈�50\�̄p

|�{2}
1,2(i0)| −

∑

i0 �= j0∈�50\�̄p

|�{2}
1,2(i0) ∩ �

{2}
1,2( j0)|

≤
∑

i0∈�50\�̄p

|�{2}
1,2(i0)|

=
∑

i0∈�50\�̄p

|�1(i0)| · |�2(i0)|.

Thus |�{2}
1,2 ∩ O0| ≥ p2 − p|�1(i0)| · |�2(i0)|, and the proposition holds. �

Remark 4 Since

|�{2}
1,2 ∩ O2| = |

⋃

i0 �= j0∈�50\�̄p

(�
{2}
1,2(i0) ∩ �

{2}
1,2( j0))| =

∑

i0 �= j0∈�50\�̄p

|�{2}
1,2(i0) ∩ �

{2}
1,2( j0)|,

we have |�{2}
1,2 ∩ O2| = 0 if and only if |�{2}

1,2 ∩ O1| = 6p or 9p, respectively.

Now we consider the parameter λ of the block-transitive 2-(1402, 140, λ) designs. It is
clearly that 47 � λ by the fact 47 ‖ |G|, b = 22 · 3 · 5 · 7 · 47 · λ and the block-transitivity of
G.

Lemma 5.2 Let D = (P,B) be a 2-(1402, 140, λ) design admitting G = A50 as a block-
transitive automorphism group. Then 43 | λ.

Proof Let g ∈ G be a cycle of length 43. Suppose that there exists a block B ∈ B such that
g ∈ GB . Then B is a union of orbits of T = 〈g〉 on P. Owing to FixP (g) = �̄

{3}
43 and 43 | k,

we assume that B = �1 ∪ �2 ∪ �3 ∪ �, where �i = αT
i (i = 1, 2, 3) are T -orbits of length

43, and � ⊆ FixP (g), it is obvious that |αi ∩ �̄43| = 0, 1 or 2.
Note that

70 = |B{2} ∩ O2| ≥ |�{2}
1,2 ∩ O2| + |�{2}

1,3 ∩ O2| + |�{2}
2,3 ∩ O2| +

3∑

i=1

|�{2}
i ∩ O2|.

By Proposition 5.1, μ(�i ) = (0,
(43
2

) − 43, 43) if |αi ∩ �̄p| = 1, and μ(�i ) = (0, 0,
(43
2

)
)

if |αi ∩ �̄p| = 2. Thus |αi ∩ �̄43| �= 2 for i = 1, 2, 3, and at most, there is one point αi ,

i = 1, 2 or 3, such that |αi ∩�̄43| = 1.Assumewithout loss of generality that |α1∩�̄43| = 1.
Then μ(�1) = (0,

(43
2

) − 43, 43), thus μ(�i ) = (
(43
2

) − 3 · 43, 3 · 43, 0) for i = 2, 3, and

|�{2}
i, j ∩ O2| = 0 for (i, j) = (1, 2), (1, 3) and (2, 3) by Proposition 5.2. This implies that

|�{2}
i, j ∩ O1| = 6 · 43 for (i, j) = (1, 2), (1, 3) and |�{2}

2,3 ∩ O1| = 9 · 43. It turns out

|B{2} ∩ O1| ≥|�{2}
1,2 ∩ O1| + |�{2}

1,3 ∩ O1| + |�{2}
2,3 ∩ O1| +

3∑

i=1

|�{2}
i ∩ O1|

=2 · 6 · 43 + 9 · 43 + ((43
2

)
− 43

) + 2 · 3 · 43
=2021,
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which contradicts the fact that |B{2} ∩ O1| = 1610. Hence, |αi ∩ �̄43| = 0 for i = 1, 2 and
3. Then

|B{2} ∩ O0| ≥|�{2}
1,2 ∩ O0| + |�{2}

1,3 ∩ O0| + |�{2}
2,3 ∩ O0| +

3∑

i=1

|�{2}
i ∩ O0| + |

3⋃

i=1

�i | · |�|

≥3 · 43(43 − 9) + 3
(
(
43

2

)
− 3 · 43) + 11 · 129

=8127.

which contradicts the fact that |B{2} ∩O0| = 8050. Therefore, FixB(g) = ∅, and then 43 | b.
It follows that 43 | λ for b = 140 · 141λ. �

Next, we consider the parameter λ of the flag-transitive 2-(1402, 140, λ) designs.

Lemma 5.3 Let D = (P,B) be a 2-(1402, 140, λ) design admitting G = A50 as a flag-
transitive automorphism group. If p is a prime and 29 ≤ p ≤ 43, then p | λ.

Proof Let g ∈ G is a cycle of length p. Suppose that there exists a block B ∈ B such that
g ∈ GB .Then B is a union of orbits of T = 〈g〉 onP.Assume that B = �1∪�2∪· · ·∪�m∪�,

where �1, �2, . . . , �m are orbits of length p of T , and � ⊆ FixP (g).
We first claim that m �= 0. In fact, if m = 0, then B ⊆ FixP (g). Let β ∈ B. Then

β ∈ �̄
{3}
p , and there is a unique point β ′ ∈ B such that |β ∩ β ′| = 2. Let

B = {β1, β
′
1} ∪ {β2, β

′
2} ∪ · · · ∪ {β70, β

′
70},

where |βi ∩ β ′
i | = 2 for i = 1, 2, . . . , 70. That is, B is parted into disjoint subsets.

Without loss of generality, we assume that βi = {i1, i2, i3}, β ′
i = {i1, i2, i4} for i =

1, 2, . . . , 70, and S{2}
βi ,β

′
i
= {{i1, i2}, {i1, i3}, {i2, i3}, {i1, i4}, {i2, i4}}. Then S{2}

βi ,β
′
i
∩ S{2}

β j ,β
′
j
=

∅ for i, j = 1, 2, . . . , 70 and i �= j, because |O2(β) ∩ B| = 1 for each β ∈ B. Hence we
have

⋃70
i=1 S

{2}
βi ,β

′
i

⊆ �̄
{2}
p , thus 5 · 70 ≤ (50−p

2

)
, a contradiction for p ≥ 29. It turns out

m ≥ 1.
Let�i = αT

i for i = 1, 2, . . . ,m, here αi ∈ P.Then |αi ∩�̄p| = 0, 1 or 2.By Proposition
5.1, ναi (�i ) = (0, 0, p − 1) if |αi ∩ �̄p| = 2, and ναi (�i ) = (0, p − 3, 2) if |αi ∩ �̄p| = 1.
For both cases, |�i ∩ O2(αi )| ≥ 2, which is impossible for |B ∩ O2(αi )| = 1. Therefore,
|αi ∩ �̄p| = 0 for i = 1, 2, . . . ,m.

Note that p � 140 for 29 ≤ p ≤ 43, it implies that |�| > 0. Then

�1 ∪ �2 ∪ · · · ∪ �m ⊆ O0(β)

for β ∈ �, hencemp ≤ 115 since |B∩O0(β)| = 115.Thusm ≤ 3.Recall that αi ∩�̄p = ∅,

we have |�i (i0)| = 3, i0 ∈ �50\�̄p, for i = 1, 2, . . . ,m. Then

|O0(α1) ∩ �1| =|�1\{α1}| − |
⋃

i0∈α1

(�1(i0) \ {α1})|

≥|�1\{α1}| −
∑

i0∈α1

|�1(i0) \ {α1}|

=p − 1 − 3 · 2 = p − 7.
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Similarly, we have |O0(α1) ∩ �i | ≥ p − 9 for i = 2, . . . ,m. Equalities hold if and only if
|O2(α1) ∩ �i | = 0 for each i . Since

|O0(α1) ∩ B| =|O0(α1) ∩ �1| +
m∑

i=2

|O0(α1) ∩ �i | + |�|

≥p − 7 + (m − 1)(p − 9) + (140 − mp) = 142 − 9m,

and |O0(α1) ∩ B| = 115, then m = 3 and

|O0(α1) ∩ �1| + |O0(α1) ∩ �2| + |O0(α1) ∩ �3| =
p − 7 + 2(p − 9).

Thus |O0(α1) ∩ �1| = p − 7, |O0(α1) ∩ �i | = p − 9 for i = 2, 3. By the above analysis,
we have |O2(α1) ∩ �i | = 0 for i = 1, 2, 3, and then

∑3
i=1 |O2(α1) ∩ �i | = 0, which is

impossible for |O2(α1) ∩ B| = ∑3
i=1 |O2(α1) ∩ �i | = 1. Therefore, FixB(g) = ∅, and then

p | b. Since b = 140 · 141λ, it follows that p | λ. �

Lemma 5.4 Let D = (P,B) be a 2-(1402, 140, λ) design admitting G = A50 as a flag-
transitive automorphism group. Then 19 · 232 | λ.

Proof Let p = 19 or 23. Firstly, we prove p | λ by proving FixB(g) = ∅, here
g = (i1i2 · · · i p)( j1 j2 · · · jp) be a product of two disjoint p-cycles. Let T = 〈g〉, �̃1 =
{i1, i2, . . . i p}, �̃2 = { j1, j2, . . . jp}, and �̃3 = Fix�50(T ).

Suppose for the contrary that there exists a block B ∈ B such that g ∈ GB . Then B is
a union of orbits of T on P. Let B = �1 ∪ �2 ∪ · · · ∪ �m ∪ �, where �1, �2, . . . , �m are
orbits of length p of T , and � ⊆ FixP (T ). Let �i = αT

i for i = 1, 2, . . . ,m, here αi ∈ P.

Since p � k, |�| �= 0. Let β ∈ �, and β1 be the unique point such that |β ∩ β1| = 2. Then
β1 ∈ �, otherwise, |O2(β1) ∩ βT

1 | ≥ p − 1, a contradiction. Let

� = {β1, β
′
1} ∪ {β2, β

′
2} ∪ · · · ∪ {βw, β ′

w},
where w = 140−pm

2 , and |βi ∩ β ′
i | = 2 for i = 1, 2, . . . , w. Similar to the proof of Lemma

5.3, we have

5 · 140 − pm

2
= |

w⋃

i=1

S{2}
βi ,β

′
i
| ≤ |�̃{2}

3 | =
(
50 − 2p

2

)
,

thus m ≥ 6.
Since |O2(αi ) ∩ �i | = p − 1 if |αi ∩ �̃3| = 2, it turns out |αi ∩ �̃3| = 0 or 1 for

i = 1, 2, . . . ,m. Assume without loss of generality that |α1 ∩ �̃3| = 1. Note that |O2(α1) ∩
�1| = 2 if |α1 ∩ �̃1| = 2 or |α1 ∩ �̃2| = 2. Thus |α1 ∩ �̃1| = 1 and |α1 ∩ �̃2| = 1. Assume
that α1 = {i1, j1, k1}, where i1 ∈ �̃1, j1 ∈ �̃2, and k1 ∈ �̃3. Then |O1(α1) ∩ �1| = p − 1
and |O2(α1) ∩ �1| = 0. Suppose that |O2(α1) ∩ �2| = 1, then |O2(α1) ∩ �i | = 0 for
i = 3, 4, . . . ,m. It follows that |O1(α1) ∩ �i | = |�i (i1)| + |�i (i2)|, i = 3, 4, . . . ,m.

Thus |O1(α1) ∩ �i | = 2 if |αi ∩ �̃3| = 1, and |O1(α1) ∩ �i | = 3 if |αi ∩ �̃3| = 0 for
i = 3, 4, . . . ,m. It follows that

23 = |O1(α) ∩ B| ≥ p − 1 + 2(m − 2) ≥ 26,

a contradiction. Therefore |α1 ∩ �̃3| = 0. Similarly, we have |αi ∩ �̃3| = 0, i = 2, . . . ,m.

Let β ∈ �, then
⋃m

i=1 �i ⊆ O0(β) ∩ B. This implies that pm ≤ 115, and so m = 6 and
p = 19.
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Since 115 = |O0(β) ∩ B| = | ⋃m
i=1 �i | + |O0(β) ∩ �|, then there exists a unique point

γ ∈ � such that |β ∩γ | = 0. Thus |δ ∩β| ≥ 1 and |δ ∩γ | ≥ 1 for each point δ ∈ � \ {β, γ },
because of |O1(α) ∩ B| + |O2(α) ∩ B| = 24 for each α ∈ B. On the other hand, owing to
the above discussion and 66 − 5 · 140−19·6

2 = 1, there is only one 2-subset {i0, j0} ∈ �̃
{2}
3 ,

such that {i0, j0} � α for any point α ∈ �. Let {a1, a2} �= {i0, j0} ∈ �̃
{2}
3 , then there exists

a point δ ∈ � such that {a1, a2} ⊆ δ. However, |δ ∩ β| ≥ 1 and |δ ∩ γ | ≥ 1, which is
impossible. Therefore, FixB(g) = ∅, and then 19 · 23 | λ.

Now let g0 ∈ G be a cycle of length p, T0 = 〈g0〉. Recall that �̄p = Fix�p (T ).

Suppose that g0 ∈ GB for a block B ∈ B. Then B is a union of T0-orbits on B. Let
B = �1 ∪ �2 ∪ · · · ∪ �m ∪ �, where �1, �2, . . . , �m are orbits of length p of T0, and
� ⊆ FixP (T0). Let �i = α

T0
i for i = 1, 2, . . . ,m, here αi ∈ P.

If m > 1, similar to the proof of Lemma 5.3, we have that |αi ∩ �̄p| = 0, and μ(�i ) =
(
(p
2

) − 3p, 3p, 0) and ναi (�i ) = (p − 7, 6, 0) for i = 1, 2, . . . ,m, because of |O2(αi ) ∩
�i | ≤ 1. Since |O2(α1) ∩ B| = ∑m

i=1 |O2(α1) ∩ �i | = 1, then there exists a unique point
β ∈ ⋃m

i=2 �i such that |α1∩β| = 2.Without loss of generality, we assume that |α2∩α1| = 2,
then

|O1(α1) ∩ �2| + |O2(α1) ∩ �2| = |
⋃

i0∈α1

�2(i0)| =
∑

i0∈α1

|�2(i0)| −
∑

i0 �= j0∈α1

|�2(i0) ∩ �2( j0)|.

Since |O2(α1) ∩ �2| = 1, we have
∑

i0 �= j0∈α1

|�2(i0) ∩ �2( j0)| = 1.

Thus |O1(α1) ∩ �2| = 7. Similarly, we have |O1(α1) ∩ �i | = 9 for i = 3, . . . ,m. Thus

|O1(α1) ∩ B| = |O1(α1) ∩ �1| +
m∑

i=2

|O1(α1) ∩ �i | = 6 + 7 + 9(m − 2) = 23,

which is impossible.
If m = 1, then

|O0(α1) ∩ B| ≥ |�| = 140 − p,

a contradiction. Therefore m = 0 and B ⊆ FixP (T ).

Similar to the proof of Lemma 5.3, we know that there are 350 different 2-subsets of
�̄23 which are contained in the points of B. On the other hand, |�̄{2}

23 | = 351, it turns out,

there is only one 2-subset {i0, j0} ∈ �̄
{2}
23 , such that {i0, j0} � β for any point β ∈ B.

Choosing α = {i1, i2, i3} ∈ B such that α ∩ {i0, j0} = ∅. Then for each j ∈ �̄23\α, there is
a point γ ∈ B such that {ie, j} ⊆ γ, here e = 1, 2, 3, and at most, γ contains two of these
2-subsets. Thus 3·24

2 ≤ |(O1(α)∪O2(α))∩B| = 24,which leads a contradiction. Therefore,
FixB(g0) = ∅ if p = 23.

Note that 232 ‖ |G|, the group G = A50 has no element of order 232 and exactly has two
conjugate classes of elements of order 23. It turns out, 23 � |GB | for each B ∈ B. Therefore,
232 | b, and then 232 | λ. �

Remark 5 Let g ∈ G be an element of order 19. Then B ⊆ FixP (g) if g ∈ GB for some
B ∈ B, and g is a cycle of length 19 according to the proof of Lemma 5.4.

Proof of Theorem 3 It follows immediately from Lemmas 5.1–5.4. �
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