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Abstract
We observe that on the binary finite fields the classification of 2-to-1 binomials is equivalent
to the classification of o-monomials, which is a well-studied and elusive problem in finite
geometry. This connection implies a complete classification of 2-to-1 binomials b = xd+uxe

for a large set of values of (d, e). Further, we show that a number of the known infinite families
of 2-to-1 maps can be traced back to o-polynomials or to difference maps of APN maps. We
also provide some connections between 2-to-1 maps and hyperovals in non-desarguesian
planes.

Keywords 2-to-1 binomial · o-monomial · Hyperoval

Mathematics Subject Classification 11T06 · 51E21

1 Introduction

We call f : F2n → F2n a 2-to-1 map if every y ∈ F2n has either no or exactly two preimages,
that is | f −1(y)| ∈ {0, 2}. These maps appear naturally in many areas of research that relate to
binary finite fields, like APN functions, bent functions [2] and hyperovals in finite geometry.
Applications to the construction of special codes are for instance considered in [14, 17].
Compared to permutations, 2-to-1 maps have been less studied so far. A first systematic
study has been started recently in [18] and was continued in [15, 19, 22]. Some of these
papers describe infinite families of 2-to-1 maps. The presented there proofs are often quite
technical, relying for instance on the study of related resultants that are partly calculated
with computer help. In this paper, we show that many of these constructions arise naturally
from previously known combinatorial objects. This connection implies then on the one side
simple proofs along with natural explanations for the 2-to-1 property, and on the other side
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it suggests a generic method for producing 2-to-1 maps, which may be designed to satisfy
some additional properties if required.

In Sect. 2, we give some background of hyperovals in the desarguesian plane which we
use in later sections. In Sect. 3, we show that all 2-to-1 binomials on F2n are constructed
from certain hyperovals in the desarguesian plane and vice versa (Theorem 3.2). Using the
classification of o-monomials of low degree, we obtain a complete classification of 2-to-1
binomials b = xd + uxe for a large set of exponents (d, e) (Theorem 3.5). In Sect. 4, we use
hyperovals and (in one case) APN maps to give short clear proofs of the 2-to-1 property for
many infinite families of maps considered in [15, 19]. Our techniques also allow to extend
these families of 2-to-1 maps in a straightforward manner and to prove a stronger version
of a conjecture [19, Conjecture 12] on a specific family of 2-to-1 maps (Proposition 4.3).
More importantly, our proof steps suggest a generic method for producing 2-to-1 maps with
specific properties. In Sect. 5, we observe that hyperovals in non-desarguesian planes can
also be used to construct 2-to-1 maps, similar to the desarguesian case.

2 Background on hyperovals in PG(2, 2n)

A hyperoval in the desarguesian projective plane PG(2, 2n) is a set of 2n +2 points such that
no three of them are collinear. The following well-known result shows that the hyperovals in
PG(2, 2n) correspond to a special class of permutations on F2n (see e.g. [12]).

Theorem 2.1 Let n ≥ 2. A hyperoval in PG(2, 2n) can be written in the form

H( f ) = {(1, t, f (t)) : t ∈ F2n } ∪ {(0, 1, 0), (0, 0, 1)},
where f is a permutation of F2n with f (0) = 0, f (1) = 1 and such that for every a ∈ F2n

the map ga(x) = ( f (x + a) + f (a))x2
n−2 is also a permutation. Conversely, for every such

a permutation f the set H( f ) is a hyperoval.

We call polynomials f that satisfy the conditions in Theorem 2.1 (and thus define hyperovals)
o-polynomials.

The following connection between o-polynomials and 2-to-1 maps is easy to verify, see
e.g. [16].

Theorem 2.2 A polynomial f ∈ F2n [x] with f (0) = 0 and f (1) = 1 is an o-polynomial if
and only if the map f (x) + ax is 2-to-1 on F2n for every a ∈ F

∗
2n .

Recall that any map of the finite field F2n is uniquely described by a polynomial over
F2n of degree not exceeding 2n − 1, since x2

n = x for any x ∈ F2n . Therefore, by abuse
of notation, we consider the exponents of polynomials as elements in Z2n−1. For a unit d in
Z2n−1, we denote by 1/d its inverse.

Next we list the known o-polynomials of F2n :

• Translation hyperovals: f (x) = x2
i
where gcd(i, n) = 1,

• Segre hyperoval: f (x) = x6 if n is odd,

• Glynn I hyperoval: f (x) = x3·2
n+1
2 +4 if n is odd,

• Glynn II hyperoval: f (x) = x2
(n+1)/2+2(3n+1)/4

if n ≡ 1 (mod 4) and f (x) =
x2

(n+1)/2+2(n+1)/4
if n ≡ 3 (mod 4),

• Cherowitzo hyperoval: f (x) = x2
(n+1)/2+2(n+1)/2+2+2(3n+1)/4+4 if n is odd,
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• Payne hyperoval: f (x) = x5/6 + x3/6 + x1/6 if n is odd.

The list is completed by the more complicated Subiaco [5] and Adelaide [4] o-polynomials.
Given a polynomial f ∈ F2n [x], let f̄ (x) denote a polynomial describing the map satis-

fying f̄ (0) = 0 and f̄ : y �→ y f (1/y) for y ∈ F
∗
2n . Observe that x f (x

2n−2) (mod x2
n + x)

is the unique such polynomial of degree less than 2n .
There are several transformations that preserve the property of being an o-polynomial.

Theorem 2.3 Let f be an o-polynomial on F2n . The following are then also o-polynomials
on F2n :

• f −1 (the compositional inverse),
• f̄ , defined by f̄ (0) = 0 and f̄ : y �→ y f (1/y) for y ∈ F

∗
2n ,

• f (x2
j
)2

n− j
for any 1 ≤ j ≤ n − 1,

• f (x + 1) + f (1).

A polynomial g ∈ F2n [x] is called o-equivalent to the o-polynomial f ∈ F2n [x] if it
can be obtained from f via a transformation appearing in Theorem 2.3. For o-monomials
Theorem 2.3 reduces to:

Corollary 2.4 Let f (x) = xd be an o-monomial on F2n . Then

x1/d , x1−d , x
1

1−d , x
d

d−1 , x
d−1
d

are the o-monomials that are o-equivalent to f .

3 Every 2-to-1 binomial is induced by an o-monomial

By Theorem 2.2, every o-monomial induces 2-to-1 binomials. In [15], the authors observe
experimentally that all 2-to-1 maps in odd dimension up to n = 7 can be explained like this.
For n even, the authors mention the obvious 2-to-1 map x �→ x2

n−2 + x as a counterexample
that all 2-to-1 maps are constructed via o-monomials. This is however not correct: Indeed
the map x �→ x2

n−2 + x is induced by the o-monomial x2
n−2 which is o-equivalent to x2 by

Corollary 2.4, since 1 − 2 ≡ 2n − 2 (mod 2n − 1).
We show in this section, that all 2-to-1 binomials on finite binary fields are induced by

o-monomials. We would like to note that this statement can with some effort be deduced
from Lemma 1 in [16] and the surrounding discussions.

Lemma 3.1 Let d < e, u ∈ F
∗
2n and b(x) = xd + uxe be a 2-to-1 binomial on F2n . Then

gcd(e − d, 2n − 1) = 1.

Proof Wehave b(x) = xd(1+uxe−d). Now assume gcd(e−d, 2n−1) > 1. Then x �→ xe−d

is not a permutation, so 1 + uxe−d = 0 has either 0 or gcd(e − d, 2n − 1) many non-zero
solutions. Then b(x) = 0 has either precisely 1 or more than 2 solutions, violating the 2-to-1
property. 
�
Theorem 3.2 Let d < e. If b(x) = xd + uxe is a 2-to-1 binomial on F2n for some u ∈ F

∗
2n ,

then gcd(e − d, 2n − 1) = gcd(e, 2n − 1) = gcd(d, 2n − 1) = 1. For such exponents e, d,
the following four statements are equivalent:

1. There is one u ∈ F
∗
2n such that the binomial b(x) = xd + uxe is 2-to-1 on F2n .
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2. For every u ∈ F
∗
2n the binomial b(x) = xd + uxe is 2-to-1 on F2n .

3. xd/e is an o-monomial on F2n .
4. The map h : F2n → F2n , defined by

h(1) = 0 and h(α) = αd + 1

αe + 1
for α �= 1,

is a permutation of F2n .

Proof We have b(x) = xd(1+ uxe−d) with gcd(e− d, 2n − 1) = 1 using Lemma 3.1. Note
that 0 always has 2 preimages under b since b(0) = 0 and 1 + uxe−d = 0 has precisely
one non-zero solution. We may thus restrict ourselves to considering x �= 0 and uxe−d �= 1.
Then consider the equation b(x) = b(αx) with x, α ∈ F

∗
2m . Clearly, b is 2-to-1 if and only

if for each fixed x this equation has precisely 2 solutions, one of which is α = 1. We have
xd(1 + uxe−d) = αd xd(1 + uαe−d xe−d), which is equivalent to

(αe + 1)uxe−d = αd + 1. (1)

For each x �= 0, uxe−d �= 1 we must have exactly one α ∈ F2n \ {0, 1} that satisfies
this equation. Thus there is a one-to-one correspondence between Su = {x : x ∈ F2n , x �=
0, uxe−d �= 1} and T = {α : α ∈ F2n , α �= 0, 1}: For each fixed x ∈ Su , Eq. (1) has one
solution α ∈ T and vice versa.

We now show gcd(d, 2n − 1) = gcd(e, 2n − 1) = 1. Assume gcd(d, 2n − 1) > 1.
Then there are α ∈ T such that αd = 1. For this α, the right hand side of Eq. (1) vanishes,
so the equation can only have a solution if αe = 1. But then αe−d = 1, contradicting
gcd(e − d, 2n − 1) = 1. We conclude gcd(d, 2n − 1) = 1. Repeating the same arguments
for e instead of d also yields gcd(e, 2n − 1) = 1.

In particular, αe �= 1 for α ∈ T , so dividing Eq. (1) by αe + 1 yields

uxe−d = αd + 1

αe + 1
.

If x ranges over all elements in Su , then the left hand side ranges exactly over all elements
F2n \{0, 1}, independently of the choice of u. Thus, the number of solutions x ∈ Su of Eq. (1)
for a fixed α ∈ T only depends on d and e; it is in particular independent of u ∈ F

∗
2n , so

bu′(x) = xd + u′xe is also 2-to-1 for any u′ ∈ F
∗
2n . We conclude with Theorem 2.2 that

b(x) = xd + uxe is 2-to-1 for a fixed u ∈ F
∗
2n if and only if b(x) = xd/e + ux is 2-to-1 for

all u ∈ F
∗
2n , i.e. x

d/e is an o-monomial on F2n . 
�
Observe that the map h in 4. of Theorem 3.2 is the composition of permutations g1(x+1),

defined in Theorem 2.1, and x �→ xe. Hence the equivalence of statements 3. and 4. in
Theorem 3.2 is not new.

By Theorem 3.2, every 2-to-1 binomial can be traced back to an o-monomial. Hence a
complete classification of 2-to-1 binomials is equivalent to a classification of o-monomials
which is a known hard open problem. All presently known o-monomials are described in
Sect. 2. The o-monomials on F2n with n ≤ 30 have been classified by computer search [10];
no examples outside of the infinite families were found.

The next result was conjectured by Segre and Bartocci in [21] and confirmed in [11] by
Hernando and McGuire. A short elegant proof of it is presented by Zieve in [24].

Theorem 3.3 [11] If xd is an o-monomial on F2n for infinitely many n then d = 6 or d = 2k

for a positive integer k.
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Recall that a polynomial is called an exceptional permutation polynomial, if it defines
a permutation on F2n for infinitely many n, [23]. Theorems 2.1 and 3.3 imply that the
polynomial

h(x) = g1(x + 1) = xd + 1

x + 1

is an exceptional permutation polynomial if and only if d = 6 or d = 2k . Using the fact that
any permutation polynomial on F2n of degree at most 2n/4 is exceptional, Theorem 3.3 yields
the complete classificationof o-monomials of degree atmost 2n/4+1.Thiswasgeneralized for
arbitrary o-polynomials of degree less 2n/4−1 by Florian Caullery and Kai-Uwe Schmidt [3].

Theorem 3.4 [3, Theorem 1.2.] If f is an o-polynomial on F2n of degree less than 2n/4−1

then f is o-equivalent to x6 or x2
k
for a positive integer k.

Theorem 3.2 and the above discussions yield a complete classification of 2-to-1 binomials
b(x) = xd+uxe for a large set of exponents (d, e). Recall that the condition gcd(d, 2n−1) =
gcd(e, 2n − 1) = 1 is necessary for b(x) to be 2-to-1 on F2n .

Theorem 3.5 Let d < e, u ∈ F
∗
2n and b(x) = xd + uxe with gcd(d, 2n − 1) = gcd(e, 2n −

1) = 1. Set

S =
{
d

e
,
e

d
, 1 − d

e
, 1 − e

d
,

e

e − d
,

d

d − e

}
⊆ Z2n−1,

where we take the elements in S to be between 1 and 2n − 2. Suppose, that at least one
element in S does not exceed 2n/4 + 1. Then the binomial b(x) is 2-to-1 on F2n if and only
if 6 ∈ S or 2k ∈ S for some positive integer k.

Proof This follows fromTheorems 3.2, 3.3 and the fact that any permutation of degree≤ 2n/4

is exceptional. Note that the set S contains exactly the exponents of o-monomials that are
o-equivalent to xd/e on F2n . 
�

4 Explaining some known infinite families of 2-to-1 maps

In this section we show that many of the infinite families of 2-to-1 maps presented in [15, 19]
can be traced back to a binomial and thus to an o-monomial via Theorem 3.2. In fact, six of
the ten families of 2-to-1 quadrinomials presented in [15] are such cases. Along with a simple
explanation of the 2-to-1 property, the connection to hyperovals suggests a straightforward
way for extending these families. The next theorem generalizes the families presented in [15,
19], where only a = 1 was considered. More precisely, we extend the statements and clarify
greatly the proofs of [15, Theorems V.1.1,2,5; Theorems V.4, V.5] and [19, Theorems 5 and
6(1)].

Theorem 4.1 The following polynomials define 2-to-1 maps on F22m+1 for any a ∈ F
∗
22m+1 :

• F1(x) = x2
m+1+2 + x2

m+1 + x2 + ax,
• F2(x) = x2

m+1+2 + ax2
m+1+1 + (a + 1)x2

m+1 + x2 + ax,
• F3(x) = x2

n−2 + x2
n−2m+1 + x2

n−2m+1−2 + ax,
• F4(x) = x6 + x4 + ax3 + (a + 1)x2 + ax,
• F5(x) = ax6 + x5 + x3 + x,
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• F6(x) = x2
m+1+2m + x2

m+1 + x2
m + ax3 + ax2 + ax,

• F7(x) = x16 + ax12 + x8 + a2x6 + x4 + a4x3, if m is even or equivalently if 3 � 2m + 1.

Proof F1: Note that x2
m+1

is an o-monomial belonging to a translation hyperoval. Since

2m+1

2m+1 − 1
≡ 2m+1(2m+1 + 1) ≡ 2m+1 + 2 (mod 22m+1 − 1),

by Corollary 2.4, x2
m+1+2 is an o-monomial, too. Then, by Theorem 2.3, also (x+1)2

m+1+2+
1 = x2

m+1+2 + x2
m+1 + x2 is an o-polynomial, proving the statement.

F2: Take again the o-monomial x2
m+1

. This monomial is o-equivalent to x
2m+1+2
2m+1+1 , and

thus the map x �→ x
2m+1+2
2m+1+1 + ax is 2-to-1 for any non-zero a. The map x �→ x2

m+1+1 is a
permutation, since gcd(2m+1 + 1, 22m+1 − 1) = 1. The composition of these two maps is
x �→ x2

m+1+2 + ax2
m+1+1, which is then 2-to-1 for any non-zero a. Finally, the substitution

x �→ x + 1 yields that x �→ x2
m+1+2 + (a + 1)x2

m+1 + ax2
m+1+1 + x2 + ax is 2-to-1 for

any non-zero a.
F3: We start with the o-monomial x �→ x2

m+1+2 which is o-equivalent to the translation
o-monomial x �→ x2

m+1
as described in the proof for F1. Then x �→ (x + 1)2

m+1+2 + 1 =
x2

m+1+2 + x2
m+1 + x2 = F3(x) is an o-polynomial by Theorem 2.3.

F4: We start with the o-monomial x �→ x2, implying the 2-to-1 maps x �→ x2 + ax for
every non-zero a. Substituting x �→ x3, we get the 2-to-1 maps x �→ x6 + ax3 and then the
substitution x �→ x + 1 leads to the result.

F5: We take the Payne o-polynomial P(x) = x5/6 + x3/6 + x1/6, so x �→ x5/6 + x3/6 +
x1/6 + ax is 2-to-1 for any non-zero a. Then P(x6) = ax6 + x5 + x3 + x is 2-to-1, since
x �→ x6 permutes F22m+1 .

F6: Start with the 2-to-1 maps x �→ x2
m +ax , a �= 0 belonging to a translation hyperoval.

The substitution x �→ x3 yields x �→ x2
m+1+2m + ax3 and then the substitution x �→ x + 1

gives the result.
F7: Observe that F7(x) = (x4+x2+x)◦(x4+ax3). Note that the zeros of the polynomial

x4 + x2 + x are in F8, since this polynomial describes the absolute trace map on F8. Since
3 � 2m + 1, the map x �→ x4 + x2 + x is bijective on F22m+1 . It then suffices to show
that x �→ x4 + ax3 is 2-to-1 for any non-zero a. For this, consider the o-monomial x4. By
Corollary 2.4, x4/3 is also an o-monomial, and thus x �→ x4/3+ax is 2-to-1 for any non-zero
a. Substituting x �→ x3 yields that x �→ x4 + ax3 is 2-to-1 and the result follows. 
�

Our proof of Theorem 4.1 shows that all 2-to-1 maps in its statement are secondary
constructions, more precisely, compositions of permutations with 2-to-1 maps induced by
o-polynomials via Theorem 2.2. Of course the list of Theorem 4.1 can be continued. For
instance, in the proof of F3, we also prove that x �→ x2

m+1+2 + x2
m+1 + x2 + ax is 2-to-1

on F22m+1 for any non-zero a. Another such example is the one given in Proposition 4.3.
Observe that the substitution x �→ x + 1 appears several times in the proofs of Theorem 4.1.
The reason for this is that if the exponents of a sparse 2-to-1 polynomial have small binary
weights, then the substitution x �→ x + 1 produces again a sparse polynomial.

The connections we described so far can be applied to confirm a conjecture posed in [19,
Conjecture 12].

Conjecture 4.2 The map F = x + x3 + x2
m+1 + x2

m+1+2 is 2-to-1 over F22m+1 .
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We prove the conjecture in a more general form by showing that it is induced by the
Glynn I o-monomial.

Proposition 4.3 For every a ∈ F
∗
22m+1 , the map Fa(x) = ax + (a + 1)x2 + ax3 + x2

m+1 +
x2

m+1+2 is 2-to-1 on F22m+1 .

Proof Let G(x) = x3·2m+1+4 be the o-monomial belonging to the Glynn I hyperoval. By

Corollary 2.4, we have that x
3·2m+1+4
3·(2m+1+1) is an o-monomial that is o-equivalent to G. Note that

3 · 2m+1 + 4 ≡ (2m+1 + 2)(2m+1 + 1) (mod 22m+1 − 1), so

3 · 2m+1 + 4

3 · (2m+1 + 1)
≡ (2m+1 + 2)(2m+1 + 1)

3 · (2m+1 + 1)
≡ 2m+1 + 2

3
(mod 22m+1 − 1).

We conclude that x
2m+1+2

3 is an o-monomial, and thus x �→ x
2m+1+2

3 + ax is 2-to-1 for every
a ∈ F

∗
22m+1 . The substitution x �→ x3 yields that x �→ x2

m+1+2 + ax3 is 2-to-1 too, and a
further substitution x �→ x + 1 yields the result. 
�

Next we note, that another infinite family given in [19, Theorem 7(1)] is readily explained
by an APN map. Recall that a map f : F2n → F2n is APN if the difference map D f ,a(x) =
f (x + a) + f (x) is 2-to-1 for every non-zero a.

Proposition 4.4 [19, Theorem 7(1)] The map given by f (x) = x2
m+2 + x2

m+1 + x2
m + x3 +

x2 + x is 2-to-1 on F22m+1 .

Proof Up to the constant term, this is the difference map DW ,1(x) for the APN Welch
monomial W (x) = x2

m+3 [8]. 
�
Again, the family only uses DW ,1, by considering DW ,a for an arbitrary non-zero a, we can
easily extend this result the result to construct the 2-to-1 maps f (x) = ax2

m+2 +a2x2
m+1 +

a3x2
m + a2

m
x3 + a2

m+1x2 + a2
m+2x on F22m+1 .

We conclude this section by observing that our proof ideas can also be used for secondary
constructions of 2-to-1 maps with special properties like large/small degree, large/small
multivariate degree or number of non-zero terms in its polynomial representation. Indeed,
any o-polynomial o(x) induces 2-to-1 polynomials b(x) = o(x) + ax for any non-zero a.
Compositions of b(x)with permutations yield a large number of 2-to-1 maps. In order for the
final 2-to-1 map to have some special properties, the permutations used in the compositions
need to be chosen appropriately. For example, by composing with permutation monomials it
could be possible to control the degree as well as the multivariate degree. Composing with
an affine polynomial helps to control the number of terms.

5 2-to-1 maps from hyperovals in non-desarguesian planes

A hyperoval is a set of 2n + 2 points in a projective plane of order 2n such that no three
points are collinear. Using the definition, it is elementary to show that each line in the
projective plane meets the hyperoval in exactly 0 or 2 points (i.e. all lines are either exterior
or secants). In the previous sections, we explored the connection between 2-to-1 maps and
hyperovals in the desarguesian plane PG(2, 2n). However, the 2-to-1 property is intrinsic
to the geometric object and can thus also be recovered from hyperovals in non-desarguesian
planes. The situation is a bit more delicate in the general case. Since the collineation group
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of non-desarguesian planes is different from the one of the desarguesian plane, we can in
general no longer assume that a similar statement to Theorem 2.1 holds. Next we discuss the
case of semifield planes (i.e. translation planes constructed from semifields; or, equivalently,
translations planes whose dual is also a translation plane).

Let us first recall some definitions. A (finite) semifield is a finite set with two binary
operations, addition and multiplication, that satisfies all axioms of a division ring, except
for multiplicative associativity. The additive group of a semifield is always an elementary
abelian p-group. A finite semifield S of size q = pn defines a projective plane of order
pn , just like the finite field does: We define the points of �(S) as {(1, a, b) : a, b ∈ S} ∪
{(0, 1, a) : a ∈ S} ∪ {(0, 0, 1)}. The q2 points {(1, a, b) : a, b ∈ S} are called the affine
points of �(S). If ∗ is the multiplication of the semifield, then the lines are defined by la,b =
{(1, a, a ∗ x +b) : x ∈ S}∪ {(0, 1, a)} for any a, b ∈ S, la = {(1, a, y) : y ∈ S}∪ {(0, 0, 1)},
l∞ = {(0, 1, y) : y ∈ S}∪{(0, 0, 1)}. Recall that a translation hyperoval in a projective plane
of order 2n is a hyperoval H such that

• the line at infinity l∞ is secant to H, and
• there is a subgroup of order 2n in the translation group acting regularly on the 2n affine

points of H.

Theorem 5.1 [9, Proposition 2.3.] Let � be a semifield plane of order 2n. A translation
hyperoval in � is equivalent to a set of one of the following forms:

(a) H( f ) = {(1, t, f (t)) : t ∈ F2n } ∪ {(0, 1, 0), (0, 0, 1)}, where f is a bijective, additive
map,

(b) H( f ) = {(1, g(t), t) : t ∈ F2n } ∪ {(0, 1, α), (0, 1, 0)}, where g is a 2-to-1 additive map
and α ∈ F

∗
2n .

Since the hyperoval intersects the lines la,b = {(1, x, y) : y = a ∗ x + b} in 2 or 0 points,
we immediately get that translation hyperovals of type a) yield 2n − 1 many 2-to-1 maps
ha(x) = f (x) + a ∗ x for any a ∈ F

∗
2n where f is the polynomial defining the hyperoval of

type a). This of course generalizes the desarguesian case, see Theorems 2.1 and 2.2. With a
bit more effort ([9, Eq. (6)]) a polynomial g defining a hyperoval of type b) yields also 2n −2
many 2-to-1 maps via ha(x) = a ∗ g(x) + x for any a /∈ {0, α}. Note that the maps ha are
additive, since f and g are.

Examples of sporadic hyperovals of both types in the binary Knuth semifield planes are
found in [9, Tables 1 and 2]. An infinite family of hyperovals in Knuth semifield planes is
given in [9, Theorem 2.5]. Using these hyperovals and the above discussion, we can hence
obtain 2-to-1 maps. Note that it is not particularly hard to come up with a direct proof of
the 2-to-1 property of these maps, but the result serves as an example how 2-to-1 maps can
naturally be constructed using tools from finite geometry.

Corollary 5.2 Let g(y) = y2 + y and define an operation ∗: F2n × F2n → F2n via x ∗ y =
xy+(y Tr(x)+x Tr(y))2, whereTr denotes the absolute tracemap. Then f (y) = a∗g(y)+x
is 2-to-1 for any a /∈ {0, 1}.
Proof By [9, Theorem 2.5] the polynomial g(y) = y2 + y defines a hyperoval in the Knuth
binary semifields of type (b) with α = 1. The result follows from the preceding discussions.

�

Again, we can apply a collineation of the projective plane to transform the o-polynomial
g(y) = y2 + y into another (equivalent) translation o-polynomial of type (b) (for instance,
g′(y) = y2

n−1 + y2
n−2

, as observed in [9]), yielding further 2-to-1 maps.
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Wewant to note that translation hyperovals have also been constructed in translation planes
that are not semifield planes, e.g. André planes [6] and Hall planes [13]. It has however also
been observed that not all semifield planes contain a translation hyperoval [1]. For a complete
classification of all hyperovals in all nondesarguesian planes of order 16 found by computer,
see [20]. We leave as an open question if any hyperoval implies a construction for 2-to-1
maps.
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