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Abstract
Dobbertin in 1999 proved that the Welch power function x2

m+3 was almost perferct nonlin-
ear (APN) over the finite field F22m+1 , where m is a positive integer. In his proof, Dobbertin
showed that the APNness of x2

m+3 essentially relied on the bijectivity of the polynomial
g(x) = x2

m+1+1 + x3 + x over F22m+1 . In this paper, we first determine the differential
and Walsh spectra of the permutation polynomial g(x), revealing its favourable cryptograh-
phic properties. We then explore four families of binary linear codes related to the Welch
APN power functions. For two cyclic codes among them, we propose algebraic decoding
algorithms that significantly outperform existing methods in terms of decoding complexity.

Keywords Permutation · Differential spectrum · Walsh spectrum · Linear codes · Cyclic
codes · Algebraic decoding

Mathematics Subject Classification 94B05 · 94B35 · 11T06 · 11T71

1 Introduction

Let F2n denote the finite field of 2n elements and F
∗
2n be its multiplicative group. Nonlinear

functions over F2n have wide applications in cryptography and coding theory. In symmetric
cryptography, block ciphers are designed by appropriate compositions of linear permutations
and S-boxes that are the only nonlinear component. Hence the cryptographic properties
of the nonlinear S-boxes are crucial to the security of the ciphers. Differential and linear
attacks [5, 36] are two of the most powerful cryptographic attacks against block ciphers, and
the link between these two approaches was investigated in [17]. To ensure good resistance
to differential attacks, the differential uniformity of the nonlinear function used in an S-
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box should be low. The lowest possible differential uniformity is 2 and functions with this
property are called almost perfect nonlinear (APN) functions. There has beenmuch work and
progress on APN functions; see, for example, [11, 13]. The nonlinearity quantifies the level
of resistance of the function to the linear attack: the higher is the nonlinearity, the better is
the resistance of the function against the linear attack. Besides the differential uniformity and
the nonlinearity, there are also some other cryptographic criteria that measure the resistance
of the nonlinear functions to various known attacks. For further details about this topic,
the reader is referred to [13, 44] and references therein. The study on the cryptographically
significant functions during the past decades shows that it is difficult to design a function
attaining all good cryptographic criteria, and trade-offs must be considered.

Linear codes, particularly cyclic codes, have wide applications in reliable data storage and
communication systems. In coding theory one of the most important topics is to construct
linear codeswith desirable properties and to explore efficient decoding for them.Constructing
linear codes from nonlinear functions was extensively explored in the past decades [14, 22,
26, 32], andmany optimal linear codes have been obtained from cryptographically significant
functions [15, 24, 27, 28, 38], such as perfect nonlinear functions, almost perfect nonlinear
functions, bent functions and plateaued functions. In thoseworks, theminimumdistances and
weight distributions of the constructed codes and their duals were intensively studied (see for
instance a recent survey by Li andMesnager [32]). There are other parameters of linear codes,
such as the covering radius [21] and coset weight distribution [18], that are of fundamental
interest, particularly when evaluating the performance of linear codes in error correction.
Nevertheless, due to their intractabilities, there has been limited research progress on such
topics. It is well known that the problem of random syndrome decoding is NP-complete [4].
There do exist certain linear codes with efficient decoding. For instance, BCH codes, due
to their special property, allow for efficient decoding with polynomial-time complexity [2].
However, efficiently decoding non-BCH cyclic codes remains a significant open problem,
despite recent efforts to develop decoders for generic cyclic codes by investigating generalized
error-locator polynomials [1, 16, 33].

In this paper, we first investigate important cryptographic properties, namely, the differen-
tial spectrum and Walsh spectrum, of the permutation polynomial f (x) = x2

m+1+1 + x3 + x
over F22m+1 , which we call theWelch permutation since it was used to prove the APNness of
the Welch power function F(x) = x2

m+3 [29]. In the second part, we explore two families
of cyclic codes and two families of linear codes that are closely related to the Welch power
function. For the two binary cyclic codes, we propose efficient algebraic decoders with com-
plexity in the order of O(N (log N )3), where N = 22m+1 − 1 is the code length. For the
second family of binary linear codes, it is shown to have at most five nonzero weights, which
provides a partial resolution to the conjecture by Ding [24].

The remainder of this paper is organized as follows. Section2 recalls basic definitions and
auxiliary results. Section3 determines the differential spectrum andWalsh spectrum of g(x).
Section4 explores the properties and decoding of binary codes derived from the Welch APN
power function, and Sect. 5 summarizes our contributions in this work.
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2 Preliminaries

2.1 Cryptographic properties of vectorial Boolean functions

For a vectorial Boolean function F(x) from F2n to F2n , denote

NF (a, b) = |{x ∈ F2n | F(x + a) + F(x) = b}|. (1)

The differential uniformity of F(x) is defined by

�F = max
{
NF (a, b) | a ∈ F

∗
2n , b ∈ F2n

}
.

Nyberg defined a mapping F(x) to be differentially δ-uniform if �F = δ [40]. It is clear that
the equation F(x + a) + F(x) = b have solutions in pairs. Thus, �F = 2 is the smallest
possible value for the differential uniformity of F(x). A function F(x) is said to be almost
perfect nonlinear (APN) if its differential uniformity is equal to 2. Equivalently, a function
F(x) is APN if its derivative function DaF(x) = F(x + a) + F(x), for any a ∈ F

∗
2n , is a

two-to-one function over F2n .
Besides the differential uniformity, the differential spectrum of F(x) is also an important

notion for measuring its resistance against variants of differential cryptanalysis [6, 7, 9, 19].
Its definition is given as follows.

Definition 1 Let F(x) be a function from F2n to itself and NF (a, b) be defined as in (1).
Denote

ωi = | {(a, b) ∈ F
∗
2n × F2n | NF (a, b) = i

} |.
The differential spectrum of F(x) is defined as the multi-set of NF (a, b) for all (a, b) ∈
F

∗
2n × F2n , which can be given by

�F = [ω0, ω1, . . . , ωδ], (2)

where δ is the differential uniformity of F(x).

It is easily seen that ωi = 0 in differential spectrum if i is odd. Moreover, we have the
following properties

δ∑

i=0

ωi = 2n(2n − 1) and
δ∑

i=0

(i × ωi ) = 2n(2n − 1). (3)

For any APN function over F2n , there are only two possible values 0 and 2 in its differential
spectrum. Thus, from the equalities in (3), the differential spectrum of an APN function can
be uniquely determined.

Another important criterion of a vectorial Boolean function F(x) is its nonlinearity, which
can be given in terms of the (extended) Walsh transform of F(x).

Definition 2 The extended Walsh transform of a vectorial Boolean function F(x) at (a, b)
is defined by

WF (a, b) =
∑

x∈F2n
(−1)Tr

n
1(bF(x)+ax),

where a, b ∈ F2n . The extended Walsh spectrum of F(x) is the multi-set

�F = {WF (a, b) : a, b ∈ F2n , b �= 0} . (4)
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The nonlinearity of F is given by

NL(F) = 2n−1 − 1

2
max{|WF (a, b)| : a, b ∈ F2n , b �= 0}.

Remark 1 Note that for a Boolean function G(x) from F2n to F2, the extended Walsh trans-
form reduces to the original Walsh-Hadamard transform

Ĝ(λ) =
∑

x∈F2n
(−1)G(x)+Trn1(λx), λ ∈ F2n .

Next we recall some results about the Walsh transforms of quadratic Boolean functions.
Given a quadratic Boolean function Q(x) from F2n to F2, the function B(x, z) = Q(x +
z) + Q(x) + Q(z) is a bilinear function in x and z. When x, z are expressed as vectors in
F
n
2, the bilinear function can be written as B(x, z) = x Bzᵀ, where B = (

bi j
)
is the n × n

symplectic matrix of Q(x) satisfying that all diagonal elements of B are zero and bi j = 1 for
1 ≤ i, j ≤ n if and only if the multivariate form of Q(x) contains the term xi x j [35]. The
rank of Q(x) is defined as the rank of its symplectic matrix B, which is always even. Let

VQ = {x ∈ F2n | Q(x + z) + Q(x) + Q(z) = 0,∀ z ∈ F2n }.
By the rank-null theorem we have dimF2

(
VQ

) + Rank(Q) = n. Note that
⎛

⎝
∑

x∈F2n
(−1)Q(x)

⎞

⎠

2

=
∑

x∈F2n
(−1)Q(x)

∑

z∈F2n
(−1)Q(x+z)+Q(x)+Q(z) = 2n

∑

x∈VQ

(−1)Q(x),

where VQ is the F2-linear space defined as above. It is readily seen that Q(x) is linear over
VQ . Hence one has

∑

x∈F2n
(−1)Q(x) =

{
±2n−Rank(Q)/2, if Q(x) = 0 for any x ∈ VQ,

0, otherwise.

Moreover, when λ runs through F2n , the distribution of the Walsh transform Q̂(x) can be
given as follows.

Lemma 1 ([31, Theorem 6.2]) Let Q(x) be a quadratic form on F2n to F2 with rank 2h. Then
its Walsh transform has the following distribution

Q̂(λ) =
∑

x∈F2n
(−1)Q(x)+Trn1(λx) =

{±2n−h, 22h−1 ± 2h−1 times,
0, 2n − 22h times.

2.2 Linear codes from nonlinear functions

In this section we recall basics of linear codes and the two generic constructions for linear
codes from nonlinear functions. Below we focus only on binary linear codes while the basics
are valid for linear codes over finite fields in general [2, 35].

Basics of linear codes

An [N , k, d] binary linear code C is a k-dimensional subspace of F
N
2 with minimum

(Hamming) weight d . The code C can be defined either by its generator matrix G as
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C = {xG | x ∈ F
k
2} or by its parity-check matrix H as C = {c ∈ F

n
2 | cHT = 0}. The dual

code C⊥ is given by C⊥ = {
x ∈ F

N
2 | x1c1 + · · · + xN cN = 0, ∀ (c1, . . . , cN ) ∈ C} , which

has the parity-checkmatrix H of C as its generatormatrix. For a received vector y = c+ewith
certain codeword c ∈ C and error vector e ∈ F

N
2 , the syndrome equation s = yHT = eHT

associates the error e with a coset of C in FN
2 . The coset leader for each coset is defined as the

element with minimum weight in the coset. A binary linear code C is called cyclic if for any
c = (c1, . . . , cN ) ∈ C, its cyclic shift σ(c) = (cN , c1, . . . , cN−1) is contained in C. An [N , k]
binary cyclic code C can be equivalently seen as an ideal in F

N
2 [x]/(xN − 1). In this way, a

binary cyclic code C can be uniquely defined by a binary monic polynomial g(x) dividing
xN − 1, known as the generator polynomial of C. Equivalently, the code C = 〈g(x)〉, can be
uniquely given by its complete defining set SC = {i : g(αi ) = 0, 0 ≤ i < N }, where α is an
N -th primitive root of unity. Since g(αi ) = 0 iff g(α2i ) = 0 for any 0 ≤ i < N , the set SC
is usually partitioned into disjoint cyclotomic cosets modulo N . A subset of SC that consists
of coset leaders from each coset in SC can uniquely define C, and is therefore termed as the
primary defining set of C. When the (complete) defining set SC contains d − 1 consecutive
integers, the cyclic code C has minimum distance at least d according to the BCH bound [2].

Let C be a binary linear code of length N and minimum weight d . The space FN
2 can be

then partitioned into cosets with respect to C. For each coset, the coset leader is defined as
one element with minimum weight in the coset. When the minimum weight of a coset is no
greater than 
 d−1

2 �, it has a unique coset leader; when its minimum weight is larger, a coset
may have several elements with the minimum weight, indicating that the coset leader is not
unique. For a received vector y = c+ewith certain codeword c ∈ C and error vector e ∈ F

N
2 ,

the syndrome s = yHᵀ = eHᵀ associates the error e with a coset of C in F
N
2 . In particular,

for the case of s = 0, it corresponds to the code C, of which the coset leader is the zero vector.
This indicates that when a codeword c is transmitted and the received vector y = c + e is
another codeword of C, the process of error detection by the parity-check equation s = yHᵀ

fails. The probability of the detection failure of the code C can be expressed in terms of its
weight distribution, which is defined as (A0, A1, . . . , AN ), where Ai denote the number of
codewords with Hamming weight i in the code C and it is obvious that A0 = 1. Thanks
to the MacWilliams identity, the weight distribution of C can be derived from the weight
distribution (1, B1, . . . , BN ) of its dual C⊥.

For a nonzero syndrome s = yHᵀ = eHᵀ, it belongs to a coset with a nonzero coset
leader. The corresponding coset leader has the same syndrome as e, and it will be deemed as
the error e added to the received vector y, since the coset leader has the minimum weight.
The process can uniquely correct the error e when its weight is within the packing radius of
C given by t = 
 d(C)−1

2 �, for which the coset leader is unique; when an error e has weight
beyond the packing radius t , it is likely that the corresponding coset doesn’t have unique coset
leader anymore. In this case, the error e cannot be uniquely decoded and the decoder may
fail to return a correct codeword. The performance of the aforementioned error correction
procedure can be evaluated in terms of weight distributions of cosets [2]. Unfortunately, a
complete picture of weight distributions of all cosets is intractable. Instead, some attempts
have been made in calculating the coset distribution (1, K1, K2, . . . , KN ), where Ki denotes
the number of coset leaders with weight i , of the linear code C [18].

The largest weight of coset leaders of C is known as the covering radius of C, which is
defined by ρ(C) = max{min{d(y, c) : c ∈ C} : y ∈ F

N
2 }. The covering radius of C is a

basic geometric parameter, which is a measure of the maximum distortion when C is used
for data compression, and is the maximum weight of a correctable random error when C is
used for error correction [21]. It is clear that the covering radius of a code is lower bounded
by its packing radius t . The equality of such an inequality is achieved by perfect codes. In
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addition, a linear code C is called a quasi-perfect if ρ(C) = t + 1; and a quasi-perfect code is
called uniformly packed code if ρ(C) is the same as the external distance of C, which is the
number of non-zero weights in its dual C⊥.

Generic construction 1

Let F be a function from F2n to itself with F(0) = 0, and β be a primitive element of F2n . A
binary linear code C of length 2n−1 can be constructed from F via the following parity-check
matrix

H =
[

1 β β2 . . . β2n−2

F(1) F(β) F(β2) . . . F(β2n−2)

]
, (5)

where each symbol stands for the column of its coordinate with respect to a basis of F2n over
F2. It is easy to verify that the dual code C⊥ is given by

C⊥ =
{(
Trn1(ax + bF(x))

)
x∈F∗

2n
: a, b ∈ F2n

}
.

For the nonlinear function F , the code C has dimension 2n − 1 − 2n. In particular, when
F(x) is a power function xd , the code C is a cyclic code with primary defining set {1, d}.
This generic construction has a long history and pertains to Delsarte’s Theorem [22]. Note
that for the dual code C⊥, the Hamming weight of a codeword ca,b ∈ C⊥ is given by

wt(ca,b) = 2n − 1 − #
{
x ∈ F

∗
2n : Trn1(ax + bF(x)) = 0

}

= 2n−1 − 1

2

∑

x∈F2n
(−1)Tr

n
1(ax+bF(x)) = 2n−1 − 1

2
WF (a, b). (6)

Therefore, theweight distribution ofC⊥ can be directly derived from the extendedWalsh spec-
trum of F(x) given by {WF (a, b) : a, b ∈ F2n } . This relation has led to a well-established
coding-theory characterization of APN functions, almost bent (AB) functions [14].

Theorem 1 ([14]) Let F be a function from F2n to itself with F(0) = 0 and n being odd. Let
the code C be defined by a parity-check matrix H as in (5). Then F(x) is an APN function
if and only if the code C has minimum distance 5. Furthermore, F(x) is an AB function if
and only C⊥ is a [2n − 1, 2n − 1− 2n] uniformly packed code with minimum distance 5 and
packing radius 3.

Generic construction 2

Let D = {d1, d2, . . . , d�} be a subset of F2n . A binary linear code having D as its defining
set is given by

CD = {
ca = (

Trn1(ad1),Tr
n
1(ad2), . . . ,Tr

n
1(ad�)

) : a ∈ F2n
}
.

It is clear that the code CD has length � and dimension at most n.
When the defining set D is properly chosen, the code CD can have good or optimal

parameters. The above construction is generic in the sense that all linear codes could be
produced by selecting proper defining sets D. By considering defining sets D as the support
or image of certain functions F over Fn

2, researchers have proposed many families of few-
weight linear codes with new code lengths, see e.g., [23–26, 37, 45]. Interested readers may
refer to a recent survey by Li and Mesnager in [32] and references therein for more details
about these two generic approaches.
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3 Differential andWalsh spectra of theWelch permutation

For the Welch permutation g(x) = x2
m+1+1 + x3 + x over F2n with n = 2m + 1, this section

will determine its differential spectrum �g as defined in (2) and its Walsh spectrum �g as
defined in (4).

Theorem 2 Let n = 2m + 1 and g(x) = x2
m+1+1 + x3 + x. Then the function g(x) over F2n

is differentially 4-uniform. Furthermore, its differential spectrum is given by
[
ω0 = 22n−1 + 22n−3 − 3 · 2n−2, ω2 = 22n−2, ω4 = 22n−3 − 2n−2] .

Proof For (a, b) ∈ F
∗
2n × F2n , let N (a, b) be the number of solutions of the derivative

equation g(x + a) + g(x) = b in F2n . Note that

g(x + a) + g(x) + b

= x2
m+1

a + xa2
m+1 + a2

m+1+1 + x2a + xa2 + a3 + a + b

= ax2
m+1 + ax2 + (a2

m+1 + a2)x + g(a) + b.

Since a �= 0, g(x + a) + g(x) + b = 0 is equivalent to that

x2
m+1 + x2 + cx + d = 0, (7)

where

c = a2
m+1−1 + a and d = g(a) + b

a
. (8)

Note that c = 0 if and only if a = 1. Next we consider the following linearized equation

x2
m+1 + x2 + cx = 0. (9)

If c = 0, i.e., a = 1, then (9) have two solutions in F2n , which are 0 and 1. If c �= 0, i.e.,
a /∈ F2, then by raising (9) to the power 2m , we get

x + x2
m+1 + c2

m
x2

m = 0. (10)

Adding up (9) and (10), we get

c2
m
x2

m + x2 + (c + 1)x = 0,

which implies

x2
m = x2

c2m
+ c + 1

c2m
x . (11)

Substituting (11) into (10), we get

x4 + (c2
m+1 + c2 + 1)x2 + c2

m+1+1x = 0. (12)

The above arguments show that when c �= 0, the solutions of (9) must be those of (12). Note
that the left hand side of (12) is a linearized polynomial over F2n with degree 4 and it may
have 1, 2 or 4 roots in F2n . Thus, the equation (9) also may have 1, 2 or 4 solutions in F2n .
Moreover, note that

c = a2
m+1−1 + a = a2

m+1 + a2

a
.
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Besides x = 0, for any given a ∈ F2n \ F2, it can be observed that x = a must be a solution
of (9). Thus, when c �= 0, i.e., a ∈ F2n\F2, the number of solutions of (9) in F2n is 2 or 4.

Denote the number of a ∈ F2n\F2 such that (9) has two (resp. four) solutions in F2n by
M1 (resp. M2). In what follows, we need to determine M1 and M2. We further investigate
the equation (12). Since x = 0 and x = a are its solutions, the polynomial on the left hand
side of (12) has a factorization over F2n as follows

x4 + (c2
m+1 + c2 + 1)x2 + c2

m+1+1x = x(x + a)

(

x2 + ax + c2
m+1+1

a

)

,

where c = a2
m+1+a2

a . By verifying that a2 + c2
m+1+1

a = c2
m+1 + c2 + 1, we can check the

validity of the above factorization. To determine the exact number of solutions to (9), we
should investigate the solutions of the following quadratic equation

x2 + ax + c2
m+1+1

a
= 0. (13)

Note that

Trn1

(
c2

m+1+1

a3

)

= Trn1

(
a2 + a2

m+2

a2m+1 · a
2m+1 + a2

a4

)

= Trn1

(
a4 + a2 · a2m+1 + a2

m+2 · a2m+1 + a2 · a2m+2

a2m+1 · a4
)

= Trn1

(
1

a2m+1 + 1

a2
+ a2

m+2

a4
+ a2

m+1

a2

)

= Trn1

(
1

a

)
+ Trn1

(
1

a

)
+ Trn1

(
a2

m+1

a2

)

+ Trn1

(
a2

m+1

a2

)

= 0.

Thus, (13) has two solutions in F2n . This also shows that for any a ∈ F2n\F2, (12) always
has four solutions in F2n . By Theorem 1 in [20], one can get the solutions of (13), which can
be represented as

x1 = a
m∑

i=1

(
c2

m+1+1

a3

)22i−1

, and x2 = x1 + a.

Note that xi �= 0 and xi �= a, i = 1, 2. Otherwise, by (13), it leads to c = 0, contradicting
the fact that a ∈ F2n \ F2. Next we should verify that whether x1 is a solution of (9) or not.
If x1 is a solution of (9), so does x2.

Let y = x1
a , then (13) becomes into

y2 + y + c2
m+1+1

a3
= 0. (14)
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If x1 is a solution of (9), we have

y2
m+1 + a2

a2m+1 y
2 + ca

a2m+1 y = 0. (15)

Substituting (14) into (15), we get

y2
m+1 + y +

( c
a

)2m+1+1 = 0. (16)

On the other hand, we can compute y2
m+1 + y from (14) by

y2
m+1 + y =

m∑

i=0

(
y2 + y

)2i =
m∑

i=0

(
c2

m+1+1

a3

)2i

.

The computation details are given as follows:

y2
m+1 + y

=
m∑

i=0

(
c2

m+1+1

a3

)2i

=
m∑

i=0

(
1

a2m+1 + 1

a2
+ a2

m+2

a4
+ a2

m+1

a2

)2i

=
m∑

i=0

⎛

⎝
(

1

a2

)2m

+ 1

a2
+

(
a2

m+1

a2

)2

+ a2
m+1

a2

⎞

⎠

2i

= Trn1

(
1

a2

)
+ 1

a2m+1 + a2
m+1

a2
+

(
a2

m+1

a2

)2m+1

= Trn1

(
1

a2

)
+ 1

a2m+1 + a2
m+1

a2
+ a2

a2m+2

= Trn1

(
1

a2

)
+ 1 +

(
a2

m+1+a2

a2

)2m+1

· a
2m+1+a2

a2

= Trn1

(
1

a2

)
+ 1 +

( c
a

)2m+1+1
.

(17)

By (17) and (16), we can conclude that for each a ∈ F2n \F2, the solution x1 of (13) is also a

solution of (9) if and only if Trn1

(
1
a2

)
= Trn1

( 1
a

) = 1. This implies that for each a ∈ F2n\F2,

(9) has two (resp. four) solutions in F2n if and only if Trn1
( 1
a

) = 0 (resp. Trn1
( 1
a

) = 1). It is
obvious that the number of a ∈ F2n \ F2 such that Trn1

( 1
a

) = 0 (resp. Trn1
( 1
a

) = 1) is equal
to 2n−1 − 1. Thus, we obtain that M1 = M2 = 2n−1 − 1.

For each given a ∈ F
∗
2n , denote the linearized polynomial on the left hand side of (9)

by La(x). Then, La(x) is a linear transformation from the vector space F2n to itself. Let
Ai = {a ∈ F2n\F2 | Trn1( 1a ) = i}, where i = 0, 1. Then F

∗
2n = {1} ∪ A0 ∪ A1. The above

arguments have shown that the kernel of the linear transformation La(x), denoted by kerLa ,
contains two elements of F2n if a ∈ {1} ∪ A0 and four elements if a ∈ A1. Note that the
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linear transformation La(x) can also be regarded as a homomorphism from the additive group
of F2n to itself. Thus, by the homomorphism theorem, the image of La(x) has cardinality

2n
|kerLa | = 2n−1 if a ∈ {1} ∪ A0 and has cardinality 2n−2 if a ∈ A1. Moreover, for each
element d in the image of La(x), there exist exactly |kerLa | elements x’s in F2n such that
La(x) = d .

For convenience, let Ba denote the image of the linear transformation La(x) = x2
m+1 +

x2+cx , where a ∈ F
∗
2n . We have obtained that |Ba | = 2n−1 if a ∈ {1}∪ A0 and |Ba | = 2n−2

if a ∈ A1. By (8), for a given element a ∈ F
∗
2n , the correspondence between d and b

is one-to-one. Recall that N (a, b) denotes the number of solutions of (7) in F2n . Thus,
we can conclude that for each a ∈ {1} ∪ A0 (resp. a ∈ A1 ), N (a, b) = 2 (resp. 4) iff
b ∈ aBa + g(a) = {ad + g(a) | d ∈ Ba}. In other cases, we all have N (a, b) = 0. Thus, the
number of pairs (a, b) ∈ F

∗
2n × F2n such that N (a, b) = 2 (resp. 4) is equal to 2n−1 · 2n−1

(resp.
(
2n−1 − 1

) · 2n−2). This together with (3) gives the differential spectrum of g(x). �

Note that Trn1(ag(x)) = Trn1

(
a(x2

m+1+1 + x3 + x)
)
is a quadratic Boolean function from

F2n to F2. According to Lemma 1, the Walsh transform of Trn1(ag(x)) heavily depends on
its rank. Below is an auxiliary result for the rank of Trn1(ag(x)).

Lemma 2 Let s, n, l be positive integers satisfying gcd(s, n) = 1 and let

Q(x) =
l∑

i=1

Trn1(ci x
2si+1),

where ci ∈ F2n and at least one ci is nonzero for 1 ≤ i ≤ l. Then, the rank 2h of Q(x) is in
the range n − 2l ≤ 2h ≤ n.

Proof We consider the following equation

Q(x) + Q(z) + Q(x + z)

= Trn1

(
l∑

i=1

(
ci x

2si z + ci xz
2si

))

= Trn1

(
l∑

i=1

(
ci x

2si z + c2
−is

i x2
−is

z
))

= Trn1

(

z
l∑

i=1

(
ci x

2si + c2
−is

i x2
−is

))

= 0

for all z ∈ F2n . The above equation holds if and only if

l∑

i=1

(
ci x

2si + c2
−is

i x2
−is

)
= 0,
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Table 1 Walsh spectrum of g(x) Value Frequency

0 9 · 22n−4 + 3 · 2n−3 − 1

±2m+1 (5·2n−1−2)
3

(
2n−2 ± 2

n−3
2

)

±2m+2 (2n−1−1)
3

(
2n−4 ± 2

n−5
2

)

which is equivalent to

l∑

i=1

(
ci x

2si + c2
−is

i x2
−is

)2ls =
l∑

i=1

(
c2

ls

i x2
s(l+i) + c2

s(l−i)

i x2
s(l−i)

)

=
2l∑

i=l+1

c2
ls

i−l x
2si +

l−1∑

j=0

c2
s j

l− j x
2s j

= 0.

(18)

We can rewrite (18) in the following form

2l∑

i=0

ai x
2si = 0, (19)

where ai = c2
si

l−i for i = 0, 1, . . . , l−1, al = 0 and ai = c2
ls

i−l for i = l+1, l+2, . . . , 2l. Since
gcd(s, n) = 1, according to [10, Corollary 1], the equation (19) has at most 22l solutions in
F2n . The desired result then follows. �

With Theorem 2 and Lemma 2, we are ready to prove the following theorem.

Theorem 3 Let n = 2m + 1 and g(x) = x2
m+1+1 + x3 + x be the Welch permutation of F2n .

Then the extended Walsh spectrum of g(x) is given in Table 1.

Proof It is easily seen that

Wg(0, b) =
∑

x∈F2n
(−1)Tr

n
1(bx) =

{
2n, if b = 0,
0, if b �= 0.

When a �= 0,

Wg(a, b) =
∑

x∈F2n
(−1)

Trn1

(
ax2

m+1+1+ax3+(a+b)x
)

.

Denote Trn1

(
ax2

m+1+1 + ax3
)
by Qa(x), which is a quadratic Boolean function from F2n

to F2. Note that

Qa(x) = Trn1
(
ax2

m+1+1 + ax3
)

= Trn1
(
a2

m
x2

m+1 + a2
2m
x2

2m+1
)

.
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Then, by Lemma 2 and taking s = m and l = 2, we can conclude that the rank of Qa(x)
is n − 3 or n − 1. When a runs through F

∗
2n , assume that the number of a ∈ F

∗
2n such that

Qa(x) has rank n − (2i − 1) is Ni , i = 1, 2. Then, by Lemma 1, when (a, b) runs through
F2n × F2n , the extended Walsh transform Wg(a, b) of g(x) has the following distribution

Wg(a, b) =

⎧
⎪⎨

⎪⎩

0, (2n − 1) + N1(2n − 2n−1) + N2(2n − 2n−3) times,

±2m+1, N1(2n−2 ± 2
n−3
2 ) times,

±2m+2, N2(2n−4 ± 2
n−5
2 ) times.

Next we calculate the fourth power sum of Wg(a, b). On one hand, we have
∑

a,b∈F2n

(
Wg(a, b)

)4 = 24n + 24m+4 · 2n−1 · N1 + 24m+8 · 2n−3 · N2. (20)

On the other hand, we have
∑

a,b∈F2n

(
Wg(a, b)

)4

=
∑

x,y,u,v∈F2n

∑

b∈F2n
(−1)Tr

n
1(b(x+y+u+v))

∑

a∈F2n
(−1)Tr

n
1(a(g(x)+g(y)+g(u)+g(v)))

= 22nT , (21)

where T denotes the number of (x, y, u, v) ∈ (F2n )
4 satisfying

{
x + y + u + v = 0,
g(x) + g(y) + g(u) + g(v) = 0.

Let N (a, b) be the number of solutions of g(x + a) + g(x) = b in F2n . Then, we have
T = ∑

a,b∈F2n
N (a, b)2. Using the notation and results in Theorem 2, we have

T =
∑

a,b∈F2n
N (a, b)2 = 22n + 4ω2 + 16ω4 = 4 · (22n − 2n

)
. (22)

Combining (20), (21), (22) and the fact that N1 + N2 = 2n − 1, we obtain N1 and N2. Thus,
the value distribution of the extended Walsh transform of g(x) can be derived as in Table 1.

�
According to Theorem 3 and Definition 2, we get the following corollary.

Corollary 1 Let n = 2m + 1 and g(x) = x2
m+1+1 + x3 + x be the Welch permutation over

F2n . Then, the nonlinearity nl(g(x)) of g(x) is equal to 2n−1 − 2m+1.

4 Binary codes related to theWelch APN function

4.1 Binary cyclic codes related to theWelch APN function

In this subsection we will discuss the properties of two families of binary cyclic codes, which
are closely related to the Welch APN power function, and then present algebraic decoding
for them.
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Recall that n = 2m + 1 and β is a primitive element of F2n . We start from a family of
binary cyclic codes C1 with primary defining set SC1 = {1, d}, where d = 2m + 3 is the
Welch exponent. That is to say, the matrix

H =
[
1 β β2 . . . β2n−2

1 βd β2d . . . β(2n−2)d

]
(23)

is a parity-check matrix of C1. Note that the Walsh spectrum of xd was obtained by Canteaut
et al. in [12]. Based on their result, it was known that xd is an AB function. Therefore, it
follows from Theorem 1 that C1 is a [2n − 1, 2n − 1− 2n] double-error-correcting uniformly
packed codewith packing radius 3. Belowwe discuss the algebraic decoding of this uniformly
packed code.

Notice that for a cyclic code C with length N and a BCH bound 2t , when an error has
weight t , one can decode C by the well-known BCH decoder [2]:

• calculate the syndrome s j = y(α j ) = ∑N−1
i=0 yiαi j for 1 ≤ j ≤ 2t from the received

vector y, where α is an N -th primitive root of unity;
• determine the error-locator polynomial

σ(x) = (1 − αi1x) · · · (1 − αit x) = 1 + σ1x + · · · + σt x
t ,

where i1, . . . , it are the t locations of the error, from the key equation

si+t + σ1si+t−1 + · · · + σt si = 0 for 1 ≤ i ≤ t .

by the Berlekamp–Massey algorithm;
• use the Chien algorithm to search roots α−i1 , . . . , α−it of σ(x), thereby determining

i1, . . . , it ;
• use the Forney algorithm to determine the error values ei1 , . . . , eit (which is only needed

for nonbinary codes).

For the code C1 defined by H in (23), although it hasminimum distance 5, we cannot apply
BCH decoder when there are double errors in the received vector. Under such a circumstance,
one can consider directly the following system of syndrome equations

{
x1 + x2 = s1,
xd1 + xd2 = s2,

(24)

where xt = β it for t = 1, 2 and β is a primitive element in F2n . The task is to efficiently find
x1, x2 for a given syndrome s = (s1, s2) = yHᵀ.

Letting yt = xt/s1 for t = 1, 2, Eq. (24) is equivalent to y1 = y2 + 1 and yd1 + yd2 = s2
sd1
.

That is to say, it suffices to focus on finding the solution to the equation (y + 1)d + yd = b,
where b = s2

sd1
. Dobbertin [29] showed that for theWelch exponent d = 2m +3, the derivative

equation of xd can be written as

(x + 1)d + xd =
(
x + x2

m
) (

x2 + x + 1
) + 1 = g

(
x + x2

m
)

+ 1,

where g(x) = x2
m+1+1 + x3 + x is the corresponding Welch permutation. Let z = x + x2

m
.

The task of correcting double errors for C1 therefore can be rearranged as follows:
Step 1: solve the equation g(z) = c = 1 + s2/sd1 ;
Step 2: solve the equation y + y2

m = η, where η is the solution obtained in Step 1;
Step 3: determine error positions i1, i2 from xt = s1yt for t = 1, 2.

123



T. Helleseth et al.

For the first step, one can find the preimage of c with the help of the compositional inverse
g−1(x) of the permutation g(x). Nevertheless, we don’t have an explicit expression of the
compositional inverse g−1(x) yet. A straightforward way is to exhaust possible z ∈ F2n for
the equation g(z) + c = 0. For each evaluation g(z), the Chien search method can reduce
the computational complexity from O(t2) to O(t). The optimization in this part is negligible
for t = 2. Another way is to calculate gcd(z2

n−1 − 1, g(z) + c) over the polynomial ring
F2n [x], which gives a linear term z + z0. This method can be further optimized based on the
form of g(z). As observed in [29], the equation g(z) = c for c �= 0 can be rewritten as

z2
m+1 = z2 + 1 + c

z
.

Raising this equation to the power of 2m+1 gives

z2 = z2
m+1+1 + 1 + c2

m+1

z2m+1 =
(
z2 + 1 + c

z

)2

+ 1 + c2
m+1

z2 + 1 + c
z

.

Rearranging the above equation gives

g0(z) = z9 + cz6 + z5 + cz4 + (c2
m + c)2z3 + c2z + c3.

Dobbertin showed that g0(z) can only have one solution in F2n . Hence, an alternative way
to solve g(z) = c is to calculate gcd(g(z) + c, g0(z)). To compare this calculation with the
typical root searching and the calculation of gcd(z2

n−1 − 1, g(z) + c), we recall the result
from [30].

Theorem 4 ([30, Theorem 5.4]) Let Fq be the finite field of q elements and Fq [x]t be the
polynomials in Fq [x] of degree t. Let e, d be positive integers such that q > d(2e−d +1)/2
and e > d. Let tdivg , t÷g , t−,×

g be the polynomial divisions, divisions, addition/multiplications

in Fq . Given a polynomial g ∈ Fq [x]e, the average number E

[
twg

]
of operations w ∈

{div,÷,−,×} performed on (uniform distributed) inputs from Fq [x]d is bounded in the
following way:

∣∣∣∣∣∣

E

[
tdivg

]

d + 1
− 1

∣∣∣∣∣∣
≤ de

q
,

∣∣∣∣∣∣

E

[
t÷g

]

e + d + 1
− 1

∣∣∣∣∣∣
≤ de

q
,

∣∣∣∣∣∣

E

[
t−,×
g

]

de
− 1

∣∣∣∣∣∣
≤ de

q
.

Note that gcd(z2
n−1 − 1, g(z) + c) = gcd(g(z) + c, g1(z)), where g1 is the remainder

polynomial with degree less than deg(g). Hence gcd(z2
n−1−1, g(z)+c) hasmore operations

than gcd(g(z) + c, g0(z)), where deg(g0) = 9. According to the above theorem, for the
polynomial g(z) + c ∈ F2n [x] of degree e = 2m+1 + 1, calculating gcd(g(z) + c, g0(z))
with d = deg(g0) = 9 on average takes d + 1 = 10 polynomial divisions, e + d + 1 =
2m+1 + 10 ≈ √

q divisions and ed = 9(2m+1 + 1) ≈ 9
√
q addition and multiplications in

Fq for q = 2n = 22m+1. On the other hand, finding roots of g(z) = c with Chien search
method for t = 2 takes on average tq

2 = q operations in Fq . In this sense, it is better to
calculate gcd(g(z) + c, g0(z)) in solving the equation g(z) = c for Step 1.

Suppose η is the root of g(z) = c in Step 1. From the equality y2
m + y = η, we can

obtain the quadratic equation y2 + y = η2 + η2
m+1

. Let θ = β2 + β2m+1
. Then, it satisfies

Trn1(θ) = 0. Suppose for a normal basisβ2i , i = 0, 1, . . . , n−1, the element θ = ∑n−1
i=0 θiβ

2i

123



Investigation of the permutation and linear codes

and y = ∑n−1
i=0 yiβ2i−1

. Then we obtain the following system of n linear equations with rank
n − 1 in n variables in F2:

⎡

⎢⎢⎢⎢⎢
⎣

1 0 0 . . . 1
1 1 0 . . . 0
0 1 1 . . . 0
...

. . .
. . .

...

0 0 0 1 1

⎤

⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎣

y0
y1
y2
...

yn−1

⎤

⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎣

θ0
θ1
θ2
...

θn−1

⎤

⎥⎥⎥⎥⎥
⎦

,

which has solutions yi = yn−1 + ∑i
j=0 θ j for i = 0, 1, . . . , n − 2 and yn−1 ∈ F2. Here

we provide this elementary process to show its complexity is in order of O(n) instead of the
typical complexity O(n3) for solving linearized equations over F2n .

With the two solutions y1, y2 in Step 2, the two corresponding error positions i1, i2 can
be immediately obtained from β i1 = x1 = y1s1, β i2 = x2 = y2s1.

We now discuss another family of binary cyclic codes closely related to theWelch permu-
tation. For the Welch permutation g(x) = x2

m+1+1 + x3 + x , we define a cyclic code C2 with
the primary defining set {1, 3, 2m+1 + 1}. We see that the code C2 is a subcode of the trivial
double-error-correctingBCHcode, namely, its primary defining set is {1, 3}. Interestingly, the
code C2 actually has properties rather similar to that of the triple-error-correcting BCH code
with primary defining set {1, 3, 5}. With the fact that (22(m+1) + 1) ≡ 3 (mod 22m+1 − 1),
we see that the defining set of C2 can be written as {1, 2k + 1, 22k + 1}, where k = m + 1.
The first author and Bracken [8] showed that C2 has minimum distance 7. Note that the dual
code C⊥

2 is given by

C⊥
2 =

{(
Trn1(ax

2m+1+1 + bx3 + cx)
)

x∈F∗
2n

: a, b, c ∈ F2n

}
.

Luo [34] determined the weight distribution of binary codes given by

Dk =
{(

Trn1(ax
22k+1 + bx2

k+1 + cx)
)

x∈F∗
2n

: a, b, c ∈ F2n

}
,

when n/ gcd(n, k) is odd. From [34, Theorem 1] one can readily see that the codes D1 and
Dm+1 have exactly the same weight distribution with a 5-weight spectrum

{
2n−1, 2n−1 ± 2(n−1)/2, 2n−1 ± 2(n+1)/2

}
.

This implies that C2 with defining set {1, 3, 2m+1} and the triple-error-correcting BCH code
with defining set {1, 3, 5} have exactly the same weight distribution. Since the terms x2

m+1+1

and x3 have algebraic degree 2, the code C⊥
2 is a super-code of first-order binary Reed-Muller

codes in the second-order Reed–Muller code. It is worth noting that in this context, Kai–Uwe
Schmidt has made significant contributions, including first-order generalized Reed–Muller
codes [41] and complementary sets in the context of sequence design [42].

Charpin et al. [18] showed that the coset weight distribution of triple-error-correcting
BCH code of length N = 2n − 1 is given by

K0 = 1, K1 =
(
N

1

)
, K2 =

(
N

2

)
, K3 =

(
N

3

)
,

K4 = N (5N 2 + 10N − 3)

6
, K5 = 4N (N + 2)

3
,
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where Ki is the number of coset leaders with weight i . Moreno and Castro in [39] showed that
binary cyclic codes with primary defining set {1, 2k +1, 22k +1}, where gcd(k, n) = 1, have
covering radius 5. This implies that the cyclic code C2 has covering radius 5. Experimental
results show that form ≥ 3, the cyclic code C2 has the same coset distribution as above. In our
view, this is an interesting connection. Nevertheless, we are not able to provide a theoretical
proof for this fact.

Below we discuss the decoding of this triple-error-correcting code. Suppose a received
vector y contains an error e of weight 2. Since C2 has defining set {1, 3, 2m+1 + 1}, the error
e can be corrected with a BCH decoder. On the other hand, since the code length is 2n − 1,
finding the roots of the error-locator polynomial directly would be costly when n increases.
Instead, the following process works more efficiently. Let (s1, s2, s3) = yH⊥. We obtain the
following system of equations as in (24):

⎧
⎨

⎩

x1 + x2 = s1,
x31 + x32 = s2,

x2
m+1+1

1 + x2
m+1+1

2 = s3,

where xt = β it for t = 1, 2 and β is a primitive element in F2n . The first two equations
immediately leads to the quadratic equation s1x2 + s21 x = s31 + s2, where x = x1 or x2. This
quadratic equation can be further transformed to y2 + y = 1 + s2

s31
by letting y = x

s3
. As

discussed earlier, this equation can be solved in O(n) operations in F2.
Now we consider the decoding of triple errors in a vector y = c + e. Similarly, we need

to solve the following system of equations
⎧
⎨

⎩

x1 + x2 + x3 = s1,
x31 + x32 + x33 = s2,

x2
m+1+1

1 + x2
m+1+1

2 + x2
m+1+1

3 = s3,
(25)

where xt = β it for t = 1, 2, 3. We first transform the above equations into simplified ones
in two variables.

Assume s1 = 0. Substituting x3 = x1 + x2 in the second and third equations in (25) gives
{
x1x22 + x21 x2 = s2,

x1x2
k

2 + x2
k

1 x2 = s3,

where k = m + 1. Assume s1 �= 0. Letting xt = s1(yt + 1) for t = 1, 2, 3. Then (25)
becomes

{
(y1 + 1)3 + (y2 + 1)3 + (y1 + y2 + 1)3 = s2/s31 ,

(y1 + 1)2
k+1 + (y2 + 1)2

k+1 + (y1 + y2 + 1)2
k+1 = s3/s

2k+1
1 ,

implying
{
y1y22 + y21 y2 = 1 + s2/s31 ,

y1y2
k

2 + y2
k

1 y2 = 1 + s3/s
2k+1
1 .

Therefore, for any s1 ∈ F2n , it suffices to focus on only the following equations in y1, y2:
⎧
⎨

⎩

y1y22 + y21 y2 = δ,

y1y2
m+1

2 + y2
m+1

1 y2 = τ,

y1y2
m

2 + y2
m

1 y2 = τ 2
m
,

(26)
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where (δ, τ ) = (s2, s3) for s1 = 0, and (δ, τ ) = (1 + s2/s31 , 1 + s3/s
2d+1
1 ) for s1 �= 0. Note

that if δτ = 0, the equation implies that y1 = y2, which is invalid here.
Furthermore, taking z = y1/y2, we derive the following equations from the above system

⎧
⎪⎪⎨

⎪⎪⎩

y32 = δ
z2+z

,

y2
m+1+1

2 = τ

z2m+1+z
,

y2
m+1

2 = τ 2
m

z2m +z
,

�⇒
⎧
⎨

⎩

y2
m+1−2

2 = τ

z2m+1+z
· z2+z

δ
,

y2
m

2 = τ

z2m+1+z
· z2

m +z
τ 2

m .

Assume w = z2
m+1 + z. It is readily seen that z2 + z = w2m+1 + w and z2

m + z = w2m .
Then we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y2
m+1−2

2 = τ
δ

· w2m+1+w
w

,

y2
m+1

2 = (y2
m

2 )2 =
(

τ

τ 2
m · w2m

w

)2
,

y22 = (y2
m

2 )2
m+2 =

(
τ

τ 2
m · w2m

w

)2m+2

.

(27)

From the above equations, the fact y2
m+1−2

2 y22 = y2
m+1

gives

τ

δ
· w2m+1 + w

w

(
τ

τ 2
m · w2m

w

)2m+2

=
(

τ

τ 2
m · w2m

w

)2

,

i.e.,

τ 1+2m+2

δτ 2

(w2m+1 + w)w2

w2m+2+1
= τ 2

τ 2
m+1 · w2m+1

w2 .

Rearranging this above equation yields

w3·(2m+1) = γ (w2m+1+3 + w4),

where γ = τ 3(2
m+1−1)

δ
. Following Dobbertin’s method in [29], we denote w = w2m+1

and

γ = γ 2m+1
. Then we have w2m+1 = w2. The above equation and its 2m+1-th power give two

equations
{

w3 + γ (ww3 + w4) = 0,

w6 + γ (w2w3 + w4) = 0.
(28)

Substituting the first equation to the second one in (28) gives γ γ (w+w)(w+w2)+w3 = 0.
By the first equation and the new equation, we denote

{
h1 = w3 + γw3 · w + γw4 = 0,

h2 = w2 + (w + w2)w + γ1w
3 = 0.

(29)

where γ1 = 1 + (γ γ )−1.
Below we will eliminate w from h1, h2. For reader’s convenience, we include the process

despite its simplicity. Viewing h1, h2 as polynomials in variablew, by the Euclidean method,
we have

h1 = (
w + (w + w2)

) · h2 + h3,
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where h3 = w2(w2 + (γ + γ1)w + 1)w + w4(γ1w + (γ + γ1)). Furthermore, rewrite h2
and h3 as h2 = w2 + φ1w + φ2 and h3 = φ3w + φ4 for simplicity. The equation system
(29) is equivalent to the following system

{
h2 = w2 + φ1w + φ2 = 0,

h3 = φ3w + φ4 = 0.
(30)

From (30), we can eliminate w by calculating

h4(w) = φ2
3h2 + (φ3w + φ1φ3 + φ4)h3

= φ2
3(w

2 + φ1w + φ2) + (φ3w + φ1φ3 + φ4)(φ3w + φ4)

= φ2φ
2
3 + φ1φ3φ4 + φ2

4 .

More explicitly,

h4(w) = γ1w
3w4(w2 + (γ + γ1)w + 1)2

+(w + w2)w2(w2 + (γ + γ1)w + 1)w4((γ1)w + (γ + γ1)

+w8(γ1w + (γ + γ1)
2

= w7
(
γ (1 + γ1)w

3 + (γ (γ + 1)(γ1 + 1) + γ 3
1 )w2 + γw + γ

)

= γ (1 + γ1)w
7
(
w3 + σ1w

2 + σ2γw + σ3
)

= γ (1 + γ1)w
7 · h(w),

(31)

whereσ1, σ2, σ3 are coefficients derived from the cubic polynomial in the last second equation
and h(w) = w3 + σ1w

2 + σ2w + σ3. Therefore, the system (28) is reduced to the cubic
equation h(w) = 0.

For correctable syndromes s = (s1, s2, s3) derived from an error e of weight 3, it can be
verified, according to the criteria in [43], that h(w) has three roots. In order to obtain the
roots of h(w), we follow the method by Berlekamp and Solomon [3]. Multiplying h(w) by
w + σ1, we obtain a linearized polynomial

L(w) = (w + σ1)h(w) = w4 + (σ2 + σ 2
1 )w2 + (σ3 + σ1σ2) + σ1σ3.

With a basis β1, . . . , βn of F2n over F2, we can express L(w) = 0 as a system of m linear
equations in n variables w1, . . . , wn ∈ F2. From the possible 4, 2, 1 solutions to L(w) =
(w+σ1)h(w), we can get 3, 1 roots of the cubic polynomial h(w) in general. However, since
σ1, σ2, σ3 were derived from γ , the cubic polynomial h(w) actually has 3 roots. This process
has complexity in the order of O(n3) operations in F2. Given a root w of h(w), from the
equation z2

m+1 + z = w, one can obtain the equation z2 + z = w2m+1 + w and can find the
roots z in O(n) operations in F2. By (27) we can get the unique root y2 from δ, τ, w; and by
z = y1/y2, one can get solutions (y1, y2) from {(y2z, y2), (y2z+ y2, y2)} for the system (26)
of equations. Furthermore, for either s1 = 0 or s1 �= 0, we can get two solutions (x1, x2, x3)
from (y1, y2) ∈ {(y2z, y2), (y2z + y2, y2)}. Here it is to be noted that three roots w of h(w)

leads to six solutions (x1, x2, x3) for the syndrome equations. These six solutions correspond
to the 6 permutations of one error e with support {i1, i2, i3}.

To summarize, the decoding of the cyclic code C2 for three errors can proceed as follows:
• given a syndrome (s1, s2, s3) = yHT , calculate the corresponding δ, τ from (s1, s2, s3)

and γ = τ 3(2
m+1−1)

δ
;

• calculate the polynomial h(w) as in (31);
• construct the linearized polynomial L(w) from h(w) and find its solutions in F2n ;
• for the solution w, calculate the intermediate parameters y1, y2, and then use them to

calculate xt = β it for t = 1, 2, 3
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• recover the codeword c = y + e with the support of e being {i1, i2, i3}.
Denote by N = 2n −1 the length of the code C2. In the above decoding procedure, the calcu-
lation of syndrome takes O(N log N ) operations in F2; the calculation of h4 = gcd(h1, h2)
is independent of the code length N and solving L(w) = 0 takes O((log N )3) operations in
F2. This decoder significantly outperforms the syndrome decoder with complexity O(N 3)

and recent decoders for cyclic codes in [1, 16], which have complexity at least O(N 2) for
triple-error-correcting cyclic codes.

4.2 Binary linear codes related to theWelch permutation

In this section we will discuss two families of binary linear codes that are relevant to the
Welch permutation.

For the Welch permutation g(x), the first family of binary linear code C3 is given by a
parity-check matrix similar to (23), where βdi is replaced by g(β i ). It is well known [13, 14]
that C3 defined in this way has minimum distance at most 5, and dimension 2n − 1 − 2n.
According to the proof of Theorem 2, there exist (x, y, z) ∈ (

F
∗
3n
)3 such that

{
x + y + z = 0,

g(x) + g(y) + g(z) = 0.

Thus, the code C3 has minimum distance 3. In addition, for its dual code,

C⊥
3 =

{(
Trn1(ag(x) + bx)

)
x∈F∗

2n
: a, b ∈ F2n

}
.

According to (6), the weight of nonzero codewords in C⊥
3 can be expressed in terms of the

extended Walsh transform of g(x). From the Walsh spectrum obtained in Sect. 3, we see that
the weight distribution of C⊥

3 is obtained accordingly, which is a 5-weight spectrum

{2n−1, 2n−1 ± 2m+1, 2n−1 ± 2m}.
Now let’s consider another binary linear code related to the Welch permutation. Ding

et al. in [24, 26] introduced a generic construction of binary linear codes from a subset
D = {d1, d2, . . . , d�} of F2n and the absolute trace function Trn1(·) from F2n to F2 as

CD = {
ca = (

Trn1(ad1),Tr
n
1(ad2), . . . ,Tr

n
1(ad�)

) : a ∈ F2n
}
.

When the defining set D is properly chosen, the code CD can have a few nonzero weights.
Particularly, when the defining set is given as D(F) = {F(x) : x ∈ F

n
2} with a two-to-one

function F on F2n , the Hamming weight of a codeword ca in CD(F) is given by

wt(ca) = ∣∣{1 ≤ i ≤ 2n−1 : Trn1(adi ) = 1}∣∣

= 1

2

⎛

⎝2n−1 −
∑

d∈D(F)

(−1)Tr
n
1(ad)

⎞

⎠

= 1

2

⎛

⎝2n−1 − 1

2

∑

x∈F2n
(−1)Tr

n
1(aF(x))

⎞

⎠

= 2n−2 − 1

4

∑

x∈F2n
(−1)Tr

n
1(aF(x)).

(32)
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That is to say, for studying the Hamming weight properties of the code CD(F), it is critical to
study the possible values of the exponential sum WF (a, 0).

In [24], Ding investigated the properties of binary linear codes from the images of certain
functions on F2n and proposed several conjectures on properties of the constructed codes,
including the following one from Welch APN power function.

Conjecture 1 ([24, Conjecture 33]) Let n = 2m + 1 and F(x) = x2
m+3. Let f (x) =

F(x) + F(x + 1) + 1 and D( f ) = {d1, d2, . . . , d�} = { f (x) | x ∈ F2n }. Define the binary
code CD( f ) as

CD( f ) = {
ca = (

Trn1(ad1),Tr
n
1(ad2), . . . ,Tr

n
1(ad�)

) : a ∈ F2n
}
.

If n ∈ {5, 7}, then CD( f ) is a three-weight code with length 2n−1 and dimension n. If n ≥ 9,
then CD( f ) is a five-weight code with length 2n−1 and dimension n.

For the Welch APN power function F(x) = x2
m+3 and f (x) = F(x + 1) + F(x) + 1, it

is easy to verify that

f (x) = F(x + 1) + F(x) + 1 = (x + x2
m
)(x2 + x + 1) = g(x + x2

m
),

where g(x) is the Welch permutation of F2n . With the properties of g(x) discussed in Sect. 3,
we present the following result on the code CD( f ).

Theorem 5 Let n = 2m + 1 for a positive integer m ≥ 2. The binary linear code CD( f )

defined in Conjecture 1 has length 2n−1, dimension n and its nonzero weights are contained
in the following set:

{
2n−2, 2n−2 ± 2

n−3
2 , 22m−1 ± 2

n−1
2

}
.

Proof It is clear that the length of CD( f ) is 2n−1 since f (x) = g(x + x2
m
) is a two-to-

one function. As for the dimension, since CD( f ) is linear, we need to consider the number of
a ∈ F2n such that Trn1(a f (x)) = 0 for any x ∈ F2n , equivalently,

∑
x∈F2n (−1)Tr

n
1(a f (x)) = 2n .

Define T0 = {x + x2
m | x ∈ F2n } and T1 = {x + 1 | x ∈ T0}. Note that x + x2

m
is a

two-to-one function over F2n . Thus T0 ∪ T1 = F2n . Moreover, we have Trn1(1) = 1 since n is
odd, Trn1(x) = 0 for any x ∈ T0 and Trn1(x) = 1 for any x ∈ T1. Since g(x) is a permutation
of F2n , one has

∑

z∈T0
(−1)Tr

n
1(bg(z)) +

∑

z∈T1
(−1)Tr

n
1(bg(z)) =

∑

z∈F2n
(−1)Tr

n
1(bg(z)) = 0,

which implies that

∑

z∈T0
(−1)Tr

n
1(bg(z)) =

∑

z∈T1
(−1)Tr

n
1(bg(z)+1)

=
∑

z∈T0
(−1)Tr

n
1(bg(z+1)+1).
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Table 2 Some numerical results

Values of Weight enumerator of CD( f )

5 1 + 6x10 + 15x8 + 10x6

7 1 + 63x32 + 36x28 + 28x36

9 1 + x144 + 108x120 + 285x128 + 108x136 + 9x112

11 1 + 440x496 + 408x528 + 22x480 + 1155x512 + 22x544

Therefore, for any a ∈ F
∗
2n , we have

∑

x∈F2n
(−1)Tr

n
1(a f (x)) = 2

∑

z∈T0
(−1)Tr

n
1(ag(z))

=
∑

z∈T0
(−1)Tr

n
1(ag(z)) +

∑

z∈T0
(−1)Tr

n
1(ag(z+1)+1)

=
∑

z∈T0
(−1)Tr

n
1(ag(z)+z) +

∑

z∈T0
(−1)Tr

n
1(ag(z+1)+z+1)

=
∑

z∈T0
(−1)Tr

n
1(ag(z)+z) +

∑

z∈T1
(−1)Tr

n
1(ag(z)+z)

=
∑

x∈F2n
(−1)Tr

n
1(ag(x)+x).

By the extended Walsh spectrum of g(x) in Theorem 3, it is clear that W f (a, 0) =∑

x∈F2n
(−1)Tr

n
1(a f (x)) = Wg(a, 1) �= 2n for any nonzero a ∈ F2n . This means that for dif-

ferent a ∈ F
∗
2n , the codewords ca are different. Thus, CD( f ) has dimension n.

Furthermore, it follows from (32) that

wt(ca) = 2n−2 − 1

4

∑

x∈F2n
(−1)Tr

n
1(ag(x)+x).

From the extended Walsh spectrum of g(x) in Table 1, the possible nonzero weights of the
code CD( f ) can be directly determined. �

Theorem 5 provides a partial resolution to the conjecture by Ding [24]. It appears that new
technique is required to completely settle the conjecture and determine theweight distribution
of the code CD( f ). With the help of Magma, we list some numerical results in Table 2, which
are in accordance with Theorem 5.

5 Conclusion

The contributions in this paper are twofold. First, we completely determined the differential
spectrum and the Walsh spectrum of the permutation polynomial g(x) from the Welch APN
power function x2

m+3 over F22m+1 . Second, we explore two families of cyclic codes and two
families of linear codes derived from the Welch APN power function. For the two cyclic
codes, their properties have been well studied, and we present efficient algebraic decoders
for them; for the two linear codes, the weight distribution of the first family can be easily
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obtained from the Walsh spectrum of g(x), and the weight spectrum of the second one was
investigated, which partially solved a conjecture by Ding in [24]. The Welch permutation
g(x) appears to have good cryptographic properties and some other cryptographic criteria
may deserve further investigation.
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