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Abstract
In this paper, we construct the first provably-secure isogeny-based (partially) blind signa-
ture scheme. While at a high level the scheme resembles the Schnorr blind signature, our
work does not directly follow from that construction, since isogenies do not offer as rich an
algebraic structure. Specifically, our protocol does not fit into the linear identification proto-
col abstraction introduced by Hauck, Kiltz, and Loss (EUROCYRPT’19), which was used
to generically construct Schnorr-like blind signatures based on modules such as classical
groups and lattices. Consequently, our scheme is provably secure in the random oracle model
(ROM) against poly-logarithmically-many concurrent sessions assuming the subexponential
hardness of the group action inverse problem. In more detail, our blind signature exploits
the quadratic twist of an elliptic curve in an essential way to endow isogenies with a strictly
richer structure than abstract group actions (but still more restrictive thanmodules). The basic
scheme has public key size 128 B and signature size 8 KB under the CSIDH-512 parameter
sets—these are the smallest among all provably secure post-quantum secure blind signatures.
Relying on a new ring variant of the group action inverse problem (rGAIP), we can halve the
signature size to 4 KB while increasing the public key size to 512 B. We provide preliminary
cryptanalysis of rGAIP and show that for certain parameter settings, it is essentially as secure
as the standard GAIP. Finally, we show a novel way to turn our blind signature into a partially
blind signature, where we deviate from prior methods since they require hashing into the set
of public keys while hiding the corresponding secret key—constructing such a hash function
in the isogeny setting remains an open problem.
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1 About

An extended abstract of this work was published in CRYPTO 2023 [56]. This is a full version
of that paper. In particular, in this work we present additional explanation of the framework
of Kastner et al. [55] in the context of our work; provide complete security proofs for the
blind signature scheme of Sect. 5; present proofs of correctness and blindness for the partially
blind signature scheme of Sect. 6; provide proofs of correctness and the honest verifier zero-
knowledge property of the sigma protocol of Sect. 7, and; provide a proof of blindness of
the blind and partially blind signatures of Sect. 7 with special attention to the setting of
adversarially-generated public keys, which may be malformed. In Sect. 5.1 we also provide
additional discussion of the sigma protocol which underlies the blind and partially blind
signatures of Sects. 5 and 6, while in Sects. 8.2 and 8.3 we provide additional analysis the
problem of sampling appropriate primitive roots of unity in Z

×
N , which is required for our

optimizations in Sect. 7.

2 Introduction

Blind signatures, introduced by Chaum [27], allow a user to obtain a signature on a message
from a signer, while the signer is blind to the message it signed. One can think of the physical
analogy where a user puts a letter—acting as the message—to be signed into a special
carbon paper envelope. The signer can sign the envelope without opening it; his signature
is transferred to the letter by the carbon paper, and the letter is never visible to the signer.
In practice, it is sometimes necessary to consider the extension of partially blind signatures,
introduced by Abe and Fujisaki [3], that further allow embedding a message agreed on by
both the signer and the user into the signature. The messages can now be divided into public
and private parts, where the public part can include, for instance, the expiration date of
the signature. While (partially) blind signatures1 were originally used to construct e-cash
[27, 30, 66], anonymous credentials [20, 22], and e-voting [28, 44], the notion has recently
seen renewed interest due to applications in blockchains [21, 85] and privacy-preserving
authentication tokens [51, 84].

Currently, the most promising class of efficient blind signatures known to withstand quan-
tum attacks is those based on lattices. We have recently encountered significant progress in
lattice-based blind signatures, such as [5, 37, 50, 64], where the signature size currently sits
around 50KB to 10MB.However, this is still an order of magnitude larger than their classical
counterparts, with a signature size ranging from a few hundred bytes to 1 KB. As we see
a continuous surge of interest in post-quantum security and better user privacy, we aim to
investigate a post-quantum blind signature with a smaller signature size.

One potentially promising path to a post-quantum blind signature with a short signature
is to rely on isogeny-based constructions. This is because while their signing and verification
times are less efficient, standard isogeny-based signature schemes [12, 35, 36] are known
to produce comparable or even smaller signatures compared to lattices. In fact, for a more
advanced form of signature schemes such as ring signatures and group signatures, isogenies
can produce much shorter signatures compared to their lattice counterparts [13, 14].

Unfortunately, at first glance this path seems difficult to follow. Very roughly, there are
two approaches to constructing a blind signature. The first approach is based on the Schnorr

1 For readability, we focus on blind signatures below when the distinction between the partial and non-partial
is insignificant.
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blind signature [29]. This approach builds on a sigma (or an identification) protocol with a
“nice” algebraic property and boosts it into a blind signature by appropriately randomizing the
interaction. This nice algebraic property has recently been stated informally to be modules
[49, 50], where isogenies are not known to be endowed with: isogenies are only group
actions that are strictly less structured than modules (see Sect. 2.2 for more details). The
second approach is based on the generic construction proposed by Fischlin [41] that requires
proving, at the minimum, possession of a valid signature of a standard signature scheme
using a non-interactive zero-knowledge proof (NIZK). While del Pino and Katsumata [37]
and Agrawal et al. [5] recently used this approach to construct more efficient lattice-based
blind signatures thanwere previously known, this seems impractical to translate to the isogeny
setting due to the lack of efficient NIZKs for such complex languages.

In summary, while isogenies have the potential to produce the shortest post-quantum blind
signatures, it is unclear how we can leverage known approaches to build them. This brings
us to the main question of this work:

Can we construct an efficient post-quantum (partially) blind signature scheme from
isogenies?

2.1 Our contribution

In this work, we answer the above question in the affirmative through four contributions. Our
first contribution is to construct the first post-quantum blind signature based on isogenies (or
CSIDH group actions to be more specific) called CSI-Otter, short for CSI-fish with Or-proof
Twisted ThreE-Round protocol. The construction is akin to the Schnorr blind signature [29]
but follows a slightly different approach. Unlike previous constructions that required the
underlying mathematical tool to be a module [49, 50], we bypass this requirement. The crux
of our construction is to effectively use the quadratic twist of an elliptic curve, or in layman’s
terms, we use the fact that isogenies are slightly more expressive than a group action. We
build a basic blind signature with public key size 128 B and signature size 8 KB based on
the standard group action inverse problem (GAIP) over the CSIDH-512 parameter sets. We
formally prove that our basic blind signature is secure in the (classical) random oracle model
with poly-logarithmically many concurrent signing sessions following the recent work by
Kastner et al. [55], assuming the subexponential hardness of the group action inverse problem
(or a constant number of concurrent sessions assuming only polynomial hardness). That is,
the security proof permits a poly-logarithmic number of signatures to be issued per public key
in a concurrent manner. We note that extension to polynomially-many concurrent sessions is
impossible, as demonstrated in work of Katasumata et al. [57].

Our second contribution is to provide an optimization of our basic blind signature using a
new hardness assumption called the ζd -ring group action inverse problem (ζd -rGAIP), where
ζd denotes a d-th primitive root of unity over ZN . Informally, ζd -rGAIP asserts that given

([gs·ζ j
d ]∗E0) j∈[d] for a random exponent s

$← ZN and base elliptic curve E0 : y2 = x3+x , it
is difficult to solve for s. Note that when d = 2, we have ζ2 = −1 andwe recover the standard
GAIP, where [g−s] ∗ E0 is the (efficiently computable) quadratic twist of [gs] ∗ E0. At a high
level, ζd -rGAIP allows us to use a larger challenge space for the underlying sigma protocol by
increasing the public key. This in turn implies that the number of parallel repetitions can be
lowered compared to our basic blind signature, and effectively, we obtain a public key size of
(128 ·d)B and signature size of roughly (8/ log2 d)KB based on ζd -rGAIP. Our construction
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is generic and works for any group actions for which the ζd -rGAIP is hard, however, we must
show that such group actions exist for it to be useful.

Our third contribution complements our second contribution: we provide a preliminary
cryptanalysis on the hardness of ζd -rGAIP for the CSIDH-512 parameter sets. We first show
that the set of values {gcd(ζ id − 1, N )}i∈[d] relates to the hardness of ζd -rGAIP. Informally,
we create new GAIP instances over a series of subgroups of the class group, where the size
of these subgroups relate to each gcd(ζ id − 1, N ). Using known attacks against GAIP in a
Pohlig-Hellman manner, we can break this newly generatedGAIP instances that has a smaller
order compared to the GAIPwith CSIDH-512. For instance with CSIDH-512, when d = 7 or
8, this attack shows that ζd -rGAIP only has half the security of GAIP over CSIDH-512. On the
other hand, for other values of d such as d = 2, 3, 4, 5, 9, . . . , this attack is no more effective
than trying to break GAIP over CSIDH-512. In fact, when gcd(ζ id − 1, N ) = N/poly(n) for
n the security parameter, we show a reduction from the ζd -rGAIP to GAIP, thus establishing
the optimality of our attack for certain parameters such as d = 3, 5, 9, . . .. In the end, due
to other correctness constraints, we are only able to instantiate the above optimized blind
signature with d = 4, which leads to a public key of size 512 B and signature size of 4 KB.
While our preliminary cryptanalysis shows that ζ4-rGAIP is presumably as hard as GAIP
over CSIDH-512, we leave further cryptanalysis for future work as it is not covered by our
reduction to GAIP.

Our final contribution is extending our basic blind signature into a partially blind signature.
While it is straightforward to construct a partially blind signature from a Schnorr-style blind
signature in the classical group or the lattice settings, this approach fails in the isogeny
setting.2 For example, Abe and Okamoto [4] constructed the first partially blind signature,
where the main idea was to hash the public message (also known as a tag) info to a group
element hinfo ∈ G and let the signer prove that it knows either the exponent of its public key
h = ga or the hashed tag hinfo. In particular, the underlying sigma protocol proves a 1-out-

of-2 (or an OR) relation. In the security proof, the reduction samples ainfo
$← Zp , programs

the random oracle so that hinfo = gainfo , and uses ainfo to simulate the signing algorithm.
Unfortunately, this approach is inapplicable in the isogeny setting since we do not know how
to map into the set of elliptic curves while simultaneously hiding the exponent. Note that if
the exponent is known, any real-world adversary can use the reduction algorithm to forge a
signature, thus rendering the scheme insecure.

To this end, we provide a new general approach to constructing partially blind signatures
thatmaybe of an independent interest.At the core of our approach is devising a sigmaprotocol
for a 2-out-of-3 relation and embedding the tag info into the signature differently. Since the
sigma protocolmust also be compatiblewith the blind signature, we are not able to rely on any
2-out-of-3 sigma protocols for threshold relations such as Cramer-Damgård-Schnoemakers’
sigma protocol [33] using Shamir’s secret-sharing scheme [81]. One downside of our partially
blind signature is that compared to our blind signature, it requires a signature size roughly
three times as large. However, we note that even then, we still achieve a smaller signature
size than the lattice-based counterparts.

2 We note that proving the security of a partially blind signature is more subtle and difficult. Indeed, it was
only recently that Kastner et al. [55] provided a corrected proof of the Abe-Okamoto (partially) blind signature
[4].
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2.2 Technical overview

We now explain our contributions in detail. We first review the Schnorr blind signature and
see where it fails when translating the construction to the isogeny setting. We then explain
our basic blind signature CSI-Otter that uses the quadratic twist and further show how to
extend it to the partially blind setting. Finally, we explain the optimization using the newly
introduced rGAIP assumption.

2.2.1 Reviewing the Schnorr blind signature

We first recall the Schnorr sigma/identification protocol between a prover with (pk, sk) =
(h = ga, a) ∈ G×Zp and a verifier with pk. The prover samples y

$← Zp and sends Y = gy

to the verifier. The verifier sends a random challenge c
$← Zp to the prover, where the prover

replies with r = y − a · c. The verifier is convinced that it was communicating with a prover
in possession of sk = a if gr · hc = Y . Here, if the verifier sets the challenge as c = H(Y‖M)

for a message M and a hash function H modeled as a random oracle, then σ = (c, r) serves
as a signature based on the Fiat–Shamir transform [40], where the prover is the signer and
the verifier is the user with M.

Clearly, this interactive signing protocol does not satisfy blindness, which roughly stipu-
lates that a signature cannot be traced back to a specific signing session. In particular, when
the user outputs the pair (M, σ ), the signer will know in which session it signed σ—or equiv-
alently, the signature σ can be traced back to the user—by simply checking when the hash
value c included in σ was used.

Themain idea of the Schnorr blind signature [29] is to let the user randomize the interaction
so the session transcript becomes independent of the final signature. More explicitly, the user
randomizes the interaction so that the final signature becomesσ ′ = (c+d, r+z), where (d, z)
is uniform overZ2

p from the view of the signer. The Schnorr blind signature accomplishes this

as follows:When the user receives Y as the first-sender message, it samples (d, z)
$← Z

2
p and

setsY ′ := gz ·Y ·hd . It then computes c′ = H(Y ′‖M) and sends c := c′−d to the signer, where
the signer replies with r = y−a ·c as before. Since we have gr ·hc = Y , the user canmultiply
gz and hd on each side to obtain gr+z · hc+d = Y ′. Thus, σ ′ = (c′, r ′) := (c + d, r + z) is
a valid signature for the message M. Moreover, it can be checked that this satisfies (perfect)
blindness since any signature σ ′ = (c′, r ′) has an equal chance of being generated from a
transcript (Y , c, r), where the probability is taken over the randomness sampled by the user.

2.2.2 Difficulty with group actions

In the above, the user is implicitly using a specific structure of the underlying Schnorr sigma
protocol to randomize the interaction. Specifically, it is using the fact thatG is a Zp-module.
This allows the user to randomize the first-signer message Y ∈ G by multiplying it with the
generator g ∈ G raised to the power of z ∈ Zp and the public key h = ga ∈ G lifted to the
power of d ∈ Zp . This property has been more formally abstracted as a linear identification
protocol [49, 50], which covers schemes based on classical groups and lattices.

Unfortunately, this does not extend to the isogeny setting since isogenies are only a group
action. Concretely, the CSIDH group action is defined as ∗ : G × E�� → E��, where G is an
ideal class group and E�� is a set of elliptic curves, and we further assume the structure of G
is known and can be expressed as G = 〈[g]〉 ∼= ZN for some N ∈ N, where g is the generator
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[12]. Let us make an attempt to construct an isogeny-based Schnorr-style blind signature

where the public key is pk = A = [ga] ∗ E0 ∈ E�� for a random a
$← ZN and a fixed curve

E0. While the analogy of setting the first-signer message as Y = [gy] ∗ E0 for y
$← ZN

works, it seems this is as far as we can get. Unlike the Schnorr blind signature, the user can
only randomize Y once from the left side. That is, while computing [gz] ∗ Y for a random
z ∈ G is possible, combining Y with [gd ] ∗ A is not possible since they are both set elements.
We note that in the Schnorr blind signature setting, the former and latter correspond to gz ·Y
and Y · hd , respectively. Since the blindness of the Schnorr blind signature hinged on the
fact that the first-sender message Y can be randomized twice; one randomness d to hide the
challenge c and another randomness z to hide the second-signer message r , it is unclear how
to use isogenies to construct a blind signature while having only one way to randomize Y .

2.2.3 Using the quadratic twist

Our main observation to overcome this problem is to rely on the property that isogenies
are slightly more expressive than a group action due to the quadratic twist. Given any A =
[ga] ∗ E0 for an unknown a ∈ ZN , we can efficiently compute its quadratic twist [g−a] ∗ E0,
which we denote3 by A−1.

We first explain the underlying isogeny-based sigma protocol, where we assume for now
that the challenge space is C = {−1, 1}. As above, the prover sends Y = [gy] ∗ E0 for

y
$← ZN . The verifier then sends a random challenge c

$← {−1, 1}, and the prover replies
with r = y − a · c. The verifier then verifies the “signature” σ = (c, r) by checking
whether [gr ] ∗ Ac = Y , where note that Ac is well-defined for c ∈ {−1, 1} even though
A comes from the set of elliptic curves. For an honest execution of the protocol, we have
[gr ] ∗ Ac = [gr ] ∗ ([ga·c] ∗ E0) = [gr+a·c] ∗ E0 = Y as desired.4

Our idea is to randomize this sigma protocol so that the signature σ = (c, r) becomes
σ ′ = (c · d, r · d + z), where (d, z) is uniform over {−1, 1} × ZN from the view of the
signer. Concretely, given the first-sender message Y , the user randomizes Y by sampling

random (d, z)
$← {−1, 1} × ZN and sets Y ′ := [gz] ∗ Yd . It then computes c′ = H(Y ′‖M)

and sends c := c′ · d . The signer replies with r = y − a · c as before. Since we have
[gr ] ∗ Ac = Y , the user can first compute [gr ·d ] ∗ Ac·d = Yd . Namely, it performs nothing if
d = 1, and computes the quadratic twist of both sides if d = −1. It then acts by [gz] to obtain
[gr ·d+z] ∗ Ac·d = [gz] ∗ Yd . Since the right-hand side is Y ′, σ ′ = (c′, r ′) := (c · d, r · d + z)
is a valid signature for the message M as desired. Moreover, it can be checked that we
have perfect blindness since c and r are both randomized; the (multiplicative) randomness
d ∈ {−1, 1} hides the challenge c and the (additive) randomness z ∈ ZN hides the response
r . Put differently, any signature σ ′ = (c′, r ′) has an equal chance of being generated from a
transcript (Y , c, r), where the probability is taken over the randomness sampled by the user.

Finally, to turn this basic idea into a secure blind signature, we enlarge the challenge space
to be exponentially large, i.e., C = {−1, 1}n where n is the security parameter. All the above

3 The notation for the quadratic twist is not totally uniform in the literature. When E/k : y2 = x3 + Ax2 + x
and c ∈ k×\k×2 one sometimes denotes Ec/k : cy2 = x3 + Ax2 + x . In this work we will always have
−1 ∈ k×\k×2 (since k = Fp and p ≡ 3 (mod 4)), and we will have E−1 ∼= E ′ : y2 = x3 − Ax2 + x by the
change of variables (x, y) �→ (−x, y). So this notation—while not usually used in the CSIDH literature—is
reasonable, and will be convenient for our protocol description.
4 Note that this is a standard (optimized variant of an) isogeny-based sigma protocol where 0 is removed
from the challenge space (see for instance [12]).

123



CSI-Otter: isogeny-based (partially) blind signatures

arguments naturally extend to this enlarged challenge space by running the protocol n times
in parallel.

2.2.4 Formal security proof

A knowledgeable reader may recall that the Schnorr blind signature is not known to be
secure in the random oracle model [11]. This is also the case for our described isogeny-based
blind signature. The Schnorr blind signature has been generalized by Pointcheval and Stern
[71, 72] and Abe and Okamoto [4] in similar but different ways to have a security proof in
the random oracle model. The latter Abe-Okamoto blind signature is compatible with our
isogeny-based construction, where the public key is modified to a tuple pk = (A0, A1) =
([ga0] ∗ E0, [ga1] ∗ E0) ∈ E��2 for a random (a0, a1)

$← Z
2
N , and the secret key to sk = (δ, aδ)

for a random δ
$← {0, 1}. The construction uses the OR composition of the underlying sigma

protocol and works well with our idea using the quadratic twist. While the original proof
of Abe and Okamoto [4] contained a subtle but non-trivially fixable bug, Kastner et al. [55]
recently provided a somewhat generic proof for Abe-Okamoto style blind signatures. The
security proof of our blind signature is established by adapting their result to our setting.

2.2.5 Turning it partially blind

As explained in Sect. 2.1, there is no analog of the Abe-Okamoto partially blind signature in
the isogeny setting. The only reason why we could replicate the Abe-Okamoto (non-partial)
blind signature in the isogeny setting was that both (A0, A1) in pk were set up in a way that
the user did not know the secret exponents. Generating A1 ∈ E�� as a hash of the tag info,
i.e., A1 = H(info), would have failed in the isogeny setting since we cannot do so without
letting the computation of H(·) reveal the secret exponent a1. If a1 is public, then the scheme
becomes trivially forgeable.

Ourmain approach in constructing a partially blind signature is to keep the same public key
pk = (A0, A1) as before but to generate another curve A2 = H(info)with the secret exponent
a2. We then modify the signer to prove that it knows at least two of the three exponents of
(A0, A1, A2). The reduction will be able to extract either a secret key pair (a0, a2), (a1, a2),
or (a0, a1) from the forgery: we can rely on the proof for the standard blind signature that
the first two pairs occur with an almost equal probability independent of the secret key used
by the reduction, and the third case always allows the reduction to win.

The question is then how to construct a base sigma protocol for this 2-out-of-3 relation
that is compatible with the above randomization technique using the quadratic twist. For
instance, we cannot use the well-known Cramer-Damgård-Schnoemakers’ sigma protocol
[33] using Shamir’s secret-sharing scheme [81] since the challenge space C = {−1, 1} is
used as a multiplicative group in our construction, rather than a field as required by Shamir’s
secret-sharing scheme. 5 To this end,we use a 2-out-of-3multiplicative secret-sharing scheme
as follows: Given a secret c ∈ {−1, 1}, sample (c0, c1, c2) ∈ {−1, 1}3 uniformly random
conditioned on c0 · c1 · c2 = c. We then view (c0, c1), (c1, c2), and (c2, c0) as the three
shares. One can check that any two of the three shares allow reconstructing c, while c is
information-theoretically hidden when only one share is known.

We now construct a sigma protocol for a 2-out-of-3 relation using this secret-sharing
scheme as follows: the high-level idea is to assign the secret shares (c0, c1), (c1, c2), and

5 Since parallel repetition is not required to show blindness, we only focus on the small challenge space for
simplicity.
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(c2, c0) to the exponents a0, a1, and a2, respectively. In more detail, assume the prover knows

the exponents a0 and a2. It first samples two shares (c1, c2)
$← {−1, 1}2 and runs the honest-

verifier zero-knowledge simulator to simulate the knowledge of the unknown exponent a1.

Specifically, it samples (r1,0, r1,1)
$← Z

2
N and sets (Y1,0, Y1,1) = ([gr1,0 ]∗ Ac1

1 , [gr1,1 ]∗ Ac2
1 ).

It then sets (Yb,0, Yb,1) = ([gyb,0 ] ∗ Ab, [gyb,1 ] ∗ Ab) for b ∈ {0, 2} by sampling the y’s as
before. Upon receiving (Yb,0, Yb,1)b∈{0,1,2}, the verifier returns a random c ∈ {−1, 1}. The
prover sets the final share c0 = c·c1·c2 and computes (r0,0, r0,1) = (y0,0−a0·c0, y0,1−a0·c1)
and (r2,0, r2,1) = (y2,0−a2 ·c2, y2,1−a2 ·c0), where recall a2 is the publicly known exponent
associated with the tag info. Finally, the prover replies with (rb,0, rb,1)b∈{0,1,2}. The verifier
can check the validity of the proof by a similar check as before and will be convinced that
the prover knows at least two secret exponents of pk = (A0, A1, A2).

Building on a similar argument using the quadratic twist, we turn this 2-out-of-3 sigma
protocol into a partially blind signature by allowing the user to appropriately randomize the
first-signer message Y ’s. The user samples three randomness from {−1, 1} to randomize the
challenge (c0, c1, c2) and six randomness from ZN to randomize the second-signer message
(rb,0, rb,1)b∈{0,1,2}. We show that the proof of Kastner et al. [55] can be slightly modified to
work for this partially blind signature.

2.2.6 Optimization using higher degree roots of unity

Finally, we show how to optimize our blind signature. One of the implicit reasons why the
randomization of the sigma protocol worked was because the challenge space C = {−1, 1}
was a multiplicative subgroup of the ring ZN . We generalize this observation and consider a
larger challenge space Cd = {ζ j

d } j∈[d], where ζd is the d-th primitive root of unity over ZN ,6

i.e., ζ d
d = 1 and ζ

j
d = 1 for any j ∈ [d−1].Cd is indeed a largermultiplicative subgroup of the

ringZN , where setting d = 2 recovers the challenge space C2 = C. The goal of the optimized
scheme remains the same: we want to randomize the signature σ = (c, r) ∈ Cd × ZN by

σ ′ = (c · d, r · d + z) for a random (d, z)
$← Cd × ZN . However, unfortunately, when we

use a larger challenge space Cd for d > 2, the underlying sigma protocol no longer satisfies
correctness. Recall in the most simple sigma protocol, the verifier receives Y = [gy] ∗ E0,
outputs a challenge c ∈ {−1, 1}, receives r = y − a · c and checks if [gr ] ∗ Ac = Y . The
final check by the verifier was computable since computing the quadratic twist (i.e., A−1)
was efficient. This is no longer the case for a more general c ∈ Cd since we do not know how

to compute A j := [ga·ζ j
d ] ∗ E0 given only the curve A = [ga] ∗ E0 ∈ E��, j ∈ [d − 1], and

ζd with d ≥ 3. To this end, we extend the public key to pk = (A j ) j∈[d] to aid the verifier’s
computation and modify the sigma protocol to address this extension. This is where we rely
on the new ζd -ring group action inverse problem (ζd -rGAIP) which states that given pk, it is
difficult to recover the exponent a ∈ ZN . Before getting into the hardness of ζd -rGAIP, we
finish the overview of our optimized blind signature below.

Although we are now able to construct a sigma protocol with a larger challenge space, it
does not yet naturally extend to blind signatures due to the extra structure. In particular, the
main issue is that when the signer sends Y = [gy] ∗ E0 as the first message, our idea was to

let the user randomize this by [gz] ∗ Yw , where Yw := [gy·ζw
d ] ∗ E0 for (z, w)

$← ZN × Cd .
However, due to the same reason as above, this cannot be efficiently computed from only Y .
To this end, we further extend the sigma protocol so that the prover includes all (Y j ) j∈[d]
in the first message. While this structure cannot be efficiently checked by the verifier/user,

6 For the overview, we will ignore when such ζd exists and how to find them (see Sect. 8.1 for more details).
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we modify the sigma protocol so that it performs some consistency checks on these Y j ’s.
We show that this check is sufficient to argue blindness of the resulting blind signature even
when the malicious signer is using a malformed public key, i.e., (A j ) j∈[d] does not have the
correct ring structure.

2.2.7 Cryptanalysis of �d -rGAIP

We have explained how to construct an optimized blind signature assuming the hardness of
ζd -rGAIP. We complement our result by providing a preliminary cryptanalysis of ζd -rGAIP
for the CSIDH-512 parameter set. We provide an attack that exploits the additional structure
of ζd -rGAIP for specific choices of d . The insight is the difference of each curves in the
public key always has a factor of (ζ id − ζ

j
d ) for distinct i, j ∈ [d] which constitutes a non-

injective endomorphism over the secret key space ZN . By investigating these differences,
we can reduce an ζd -rGAIP instance to a GAIP instance with a possibly smaller group than
ZN and recover partial information. Then, we can integrate these partial information in a
Pohlig-Hellman sense. As a consequence, we can evaluate the upper bound security strength
of ζd -rGAIP using known attacks againstGAIP. For some choices of ζd , ζd -rGAIP only has half
the security of GAIP for the CSIDH-512 parameters. On the other hand, for some instances
of ζd , we show that ζd -rGAIP is as hard as GAIP, which demonstrates that the upper bounds
obtained via our cryptanalysis are also the lower bounds. There are some instances of ζd -
rGAIP for which our attack does not apply while also having no reduction to GAIP. We leave
analysis of such instances of ζd -rGAIP for the CSIDH-512 parameter set as an interesting
future work.

2.2.8 Isogeny-based cryptography

The roots of isogeny-based cryptography canbe tracedback to a 1997 talk ofCouveignes, later
published online in 2006 [32] and independently rediscovered by Rostovstev and Stolbunov
[76]. These works propose a post-quantum key establishment protocol—the CRS protocol—
whose security is based on the difficulty of the “parallelization” problem for the class group
action on the set of ordinary elliptic curves; that is, finding [a][b]∗E given E, [a]∗E, [b]∗E ,
where E is an ordinary elliptic curve with endomorphism ring O and [a], [b] ∈ C�(O).
This paralellization problem is the “Diffie-Hellman analogue” of the perhaps more natural
“group action inversion” problem: given two ordinary curves E and E ′ = [a] ∗ E , find
[a]. The CRS scheme suffered primarily from two flaws: first, it was impractically slow—
requiring approximately 458s to establish a key at the 128-bit security level [82]—and second,
Childs, Jao, and Soukharev [31] demonstrated that the CRS protocol is vulnerable to a
subexponential-time attack using Kuperberg’s algorithm [58], with later works [16, 19, 53]
improving the attack to require only polynomial quantum space due to Regev’s improved
version of Kuperberg’s algorithm [74].

These problems with ordinary isogeny-based protocols led researchers to instead con-
sider protocols based on supersingular elliptic curves. The first such protocol was the hash
function due to Charles et al. [26]. Later, De Feo, Jao, and Plût introduced the Supersin-
gular Isogeny Diffie–Hellman (SIDH) key establishment protocol, which was later used to
construct Supersingular Isogeny Key Establishment (SIKE) [52], which was a fourth round
candidate in the NIST Post-Quantum Cryptography competition. Despite passive attacks on
“unbalanced” variants [69, 73] and active attacks on static/ephemeral implementations [38,
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45, 48], SIDH resisted cryptanalysis until 2022, when a series of papers [23, 65, 75] estab-
lished that SIDH and SIKE could be broken in polynomial time. While there are proposals
for countermeasures to these devastating attacks [42], the efficacy of these countermeasures
has not yet been thoroughly studied.

Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) was introduced in 2017
by Castryck et al. [24] as an alternative to SIDH. Unlike SIDH—which bears very little
resemblance to CRS—CSIDH is very much a supersingular analogue of CRS. In CSIDH,
the supersingularity of the curves involved is exploited to ensure that a torsion subgroup of
very large smooth order is defined over Fp2 , which allows approximately uniform random
sampling and evaluation of complex multiplication to be performed very efficiently, making
CSIDH orders of magnitude faster than CRS. As well, CSIDH is not known to be susceptible
to any kind of adaptive attack, making it usable in the static/ephemeral setting.

The inability to uniformly sample elements of the ideal class group whose action can be
computed efficiently (without knowing the relation lattice of the class group)makes it difficult
to create CSIDH-based signatures. De Feo andGalbraithwere the first to solve this problem in
their protocol SeaSign [35], using rejection sampling to ensure that signing key information is
never leaked. Later, Beullens, Kleinjung, and Vercauteren were able to compute the relation
lattice of the class group used in the CSIDH-512 parameter set, and hence construct CSI-
FiSh [12]: a CSIDH-based signature scheme without rejection sampling. Unfortunately, the
best known classical algorithms to compute the relation lattice scale subexponentially in
the CSIDH security parameter, and so it is not currently possible to extend CSI-FiSh to
larger parameter sets. However, there are efficient quantum algorithms to compute these
relation lattices, making CSI-FiSh a candidate for post-post-quantum cryptography [34]:
cryptographic protocols which require a quantum computer to establish global parameters,
but which are otherwise classical. A very recent work [39] shows a feasible manner to obtain
the group structure using the oriented supersingular curves and imaginary quadratic orders
with a large prime conductor. Though the isogeny evaluation has subexponential complexity
in theory, they show a feasible result in practice by carefully choosing the parameters.

When the relation lattice of the class group is known, complexmultiplication is an instance
of what Couveignes [32] called a hard homogeneous space, and what is now often called a
cryptographic group action [6]. While many CSIDH/CSI-FiSh-based protocols have been
constructed using the group action abstractly, the CSIDH group action actually has slightly
more structure than an abstract cryptographic group action. In particular, if E/Fp : y2 =
x3 + Ax2 + x has endomorphism ring O and [b] ∈ C�(O)

([b] ∗ E)−1 = [b]−1 ∗ E−1

where E−1 has Montgomery form E−1 : y2 = x3 − Ax2 + x . In particular, if we take
E = E0 : y2 = x3 + x we have ([b] ∗ E0)

−1 = [b]−1 ∗ E0, and so given [b] ∗ E0, we
have an efficient way of constructing [b]−1 ∗ E0. This additional structure turns out to be
a powerful tool, which has led to the construction of a UC-secure isogeny-based oblivious
transfer [60], provably-secure isogeny-based password authenticated key establishment [1]
(which had been elusive for years [10, 83]) and new techniques for fault attack-resistance
of static/ephemeral CSIDH [63]. It is also a useful tool used in [12, 61] to compress the
signature or the proof size.

2.2.9 Post-quantum blind signatures

The most active area of post-quantum blind signatures is those based on lattices. The first
lattice-based blind signature was proposed by Rükert [77], who followed a design paradigm
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similar to the classical Schnorr or Okamoto–Schnorr blind signatures [72, 79]. This approach
has been optimized in subsequent works [7–9, 62, 67], where BLAZE+ by Alkadri et al. [8]
currently stands as the most efficient proposal. However, recently, Hauck et al. [50] showed
that all constructions following the blueprint of Rükert’s blind signature contain the same bug
in their security proof, and provided the first provably secure lattice-based blind signature
following a similar template with a signature size of roughly 7.9 MB.

Recently, Lyubashevsky et al. [64] constructed a novel blind signature based on a new
approach using one-time signatures and OR proofs. While they can support only a bounded
polynomially many signatures per public key, the signature size is small as 150 KB. In a
concurrent and independent work, del Pino andKatsumata [37] andAgrawal et al. [5] showed
two different methods loosely following the generic blind signature construction by Fischlin
[41]. The former has a signature size of roughly 100 KB under the SIS assumption and is the
first scheme to have provable security in the quantum random oracle model. The latter has
a signature size of roughly 50 KB under a newly introduced one-more SIS assumption. In
an independent and concurrent work to ours, Beullens et al. [15] recently took this approach
one step further and constructed a lattice-based blind signature with signature size of 22 KB.
The construction relies on an NIZK for proving relations of concrete hash functions.

Finally, there are a few blind signatures based on other post-quantum assumptions. Blazy
et al. [17] constructs a code-based blind signature following the generic blind signature
construction by Fischlin. The other is by Petzoldt et al. [70] that constructs a multivariate-
based blind signature under a non-standard unforgeability notion.

3 Background

3.1 Notation

We denote the set of natural numbers and integers by N and Z, respectively. We define the
ring of integers modulo N , i.e., ZN , with representatives in [−N/2, N/2)∩Z. For a positive

integer k, we let [k] denote the set {1, 2, . . . , k}. For a vector
−→
h , hi denotes its i-th entry

and
−→
h [i] denotes the vector of its first i-entries. For a distribution D, we write x

$← D

to denote x is sampled according to D. For a finite set S, we denote x
$← S to sample

x uniformly at random over S. We use � to denote the component-wise multiplication of
vectors inR. We use ‖ to denote the concatenation of two strings. For an element g and vector
a = (a1, . . . , an), we use ga as a shorthand for (ga1 , . . . , gan ). Moreover, for any operation
∗ defined between two elements g and h and vectors a = (a1, . . . , an) and b = (b1, . . . , bn),
we use ga ∗ hb as a shorthand for (ga1 ∗ hb1 , . . . , gan ∗ hb1).

3.2 (Partially) Blind signatures

We define partially blind signatures consisting of three moves, which is sufficient to capture
many known protocols, e.g., [4, 54, 55]. Below, we retrieve the standard definition of (three-
move) blind signatures by ignoring the tag info or alternatively setting info to a predefined
value.

Definition 1 (Partially blind signature scheme)A three-movepartially blind signaturePBS =
(PBS.KGen, PBS.S, PBS.U, PBS.Verify) with an efficiently decidable public key space PK
consists of the following PPT algorithms:
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PBS.KGen(1n) → (pk, sk) : On input the security parameter 1n , the key generation algo-
rithm outputs a pair of public and secret keys (pk, sk).

PBS.S = (PBS.S1, PBS.S2) : The interactive signer algorithm consists of two phases:

PBS.S1(sk, info) → (stateS, ρS,1) : On input a secret key sk and a tag info, it outputs an
internal signer state stateS and a first-sender message ρS,1.7

PBS.S2(stateS, ρU)) → ρS,2 : On input a signer state stateS and a user message ρU, it
outputs a second-sender message ρS,2.

PBS.U = (PBS.U1, PBS.U2) : The interactive user algorithm consists of two phases:

PBS.U1(pk, info,M, ρS,1) → (stateU, ρU) : On input a public key pk ∈ PK, a tag info,
a messageM, and a first-sender message ρS,1, it outputs an internal user state stateU
and a user message ρU.

PBS.U2(stateU, ρS,2)) → σ : On input a user state stateU and a second-signer message
ρS,2, it outputs a signature σ .

PBS.Verify(pk, info,M, σ ) → 1 or 0 : In input a public key pk, a tag info, a messageM, and
a signature σ , the verification algorithm outputs 1 to indicate the signature is valid, and
0 otherwise.

If the partially blind signature only accepts a unique tag info, we drop the “partially” and
simply call it a blind signature (BS) and omit info from the syntax.

We require a partially blind signature to be complete, blind against malicious signer, and
one-more unforgeable. We first define correctness.

Definition 2 (Perfect correctness) A three-move partially blind signature scheme PBS is per-
fectly correct if for all public and secret key pairs (pk, sk) ∈ PBS.KGen(1n) and every tag
and message pair (info,M), we have

Pr

⎡
⎢⎢⎢⎢⎣
PBS.Verify(pk, info,M, σ ) = 1

∣∣
(stateS, ρS,1)

$← PBS.S1(sk, info)

(stateU, ρU)
$← PBS.U1(pk, info,M, ρS,1)

ρS,2
$← PBS.S2(stateS, ρU)

σ
$← PBS.U2(stateU, ρS,2)

⎤
⎥⎥⎥⎥⎦

= 1

The following definitions are taken from [54, 55]. Partial blindness roughly requires the
transcript to be independent of the signature even if the signer choses the keys maliciously.

Definition 3 (Partial blindness under chosen keys) We define partial blindness of a three-
move partially blind signature scheme PBS via the following game between a challenger and
an adversary A:

Setup. The challenger samples coin ∈ {0, 1} and runs A on input 1n .
Online Phase. WhenA outputs a tag info, messages M̃0 and M̃1, and a public key pk ∈ PK,

it assigns (M0,M1) := (M̃coin, M̃1−coin).A is then given access to oracles U1, U2, which
behave as follows.

Oracle U1. On input b ∈ {0, 1}, and a first-signer message ρS,1,b, if the session b is

not yet open, the oracle marks session b as opened and runs
(
stateU,b, ρU,b

) $←
PBS.U1

(
pk, info,Mb, ρS,1,b

)
. It returns ρU,b to A.

7 We assume without loss of generality that sk includes pk and stateS includes (pk, sk) and omit it when the
context is clear. Below, we also assume that stateU includes M.
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Oracle U2. On input b ∈ {0, 1} and a second-signer message ρS,2,b, if the session b is

opened, the oracle creates a signature σb
$← PBS.U2

(
stateU,b, ρS,2,b

)
. It marks

session b as closed. Oracle U2 does not output anything.

Output Determination. When both sessions are closed and PBS.Verify(pk, info,Mb, σb) = 1
for b ∈ {0, 1}, the oracle returns the two signatures (σcoin, σ1−coin) toA, where note that
σcoin (resp. σ1−coin) is a valid signature for M̃0 (resp. M̃1) regardless of the choice of
coin. A outputs a guess coin∗ for coin. We say A wins if coin∗ = coin.

We say PBS is partially blind under chosen keys if the advantage ofA defined as Pr[A wins]
is negligible.

One-more unforgeability roughly ensures that at most one valid signature is generated
after each execution of PBS.Sign. Formally, we have the following.

Definition 4 (One-more-unforgeability) We define �-one-more unforgeability (�-OMUF) for
any � ∈ N of a three-move partially blind signature scheme PBS via the following game
between a challenger and an adversary A:

Setup. The challenger samples (pk, sk)
$← PBS.KGen(1n) and runsA on input pk. It further

initializes �closed = 0 and openedsid = false for all sid ∈ N.
Online Phase. A is given access to oracles S1 and S2, which behave as follows.

Oracle S1: On input a tag info, the oracle samples a fresh session identifier sid. It sets

openedsid ← true and generates (stateS,sid, ρS,1)
$← PBS.S1(sk, info). Then it

returns sid and the first-sender message ρS,1 to A.
Oracle S2: On input a user message ρU and a session identifier sid, if �closed ≥ �

or openedsid = false, then it returns ⊥. Otherwise, it sets �closed + + and

openedsid = false. It then computes the second-signer message ρS,2
$←

PBS.S2(stateS,sid, ρU) and returns ρS,2 to A.

Output Determination. WhenA outputs distinct tuples (M1, σ1, info1), . . . , (Mk, σk, infok),
we say A wins if k ≥ �closed + 1 and for all i ∈ [k], PBS.Verify(pk, infoi ,Mi , σi ) = 1.

We say PBS is �-one-more unforgeable if the advantage of A defined as Pr[A wins] is negli-
gible.

3.3 Sigma protocols

Definition 5 (Sigma protocol) A sigma protocol � for an NP relation R is a three-move
public-coin interactive protocol with two pairs of PPT algorithms P = (P1, P2),V with the
following flow:

• The prover on input a statement and witness pair (X,W) ∈ R, runs (com, state)
$←

P1(X,W) and sends a commitment com to the verifier.

• The verifier samples a random challenge ch
$← C from a specified challenge set, and

sends ch to the prover.

• The prover runs rsp
$← P2(state, ch) and returns a response rsp to the verifier.

• The verifier runs V(X, com, ch, rsp) and outputs 1 to indicate the prover is valid and 0
otherwise.
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To be useful as an (implicit) building block for blind signatures, a sigma protocol must
satisfy correctness, honest verifier zero-knowledge (HVZK), witness indistinguishability, and
special soundness, defined below.

Definition 6 (Perfect completeness) A sigma protocol is perfectly correct if whenever the
protocol is executed by an honest prover and verifier (that is, a prover and verifier who follow
the specification of the protocol), the verifier will return “Accept” with probability 1.

Definition 7 (Special soundness) A sigma protocol has special soundness if there is an
efficient (i.e., polynomial-time) extractor Ext which, given two accepting transcripts τ1 =
(com, ch1, rsp1) and τ2 = (com, ch2, rsp2) for the same public key X, with ch1 = ch2,
produces a witness W to the statement X.

Definition 8 (Honest verifier zero-knowledge) A sigma protocol is honest verifier zero-
knowledge (HVZK) if there is an efficient algorithm Sim—the simulator—which, given
a statement X outputs a transcript τ = (com, ch, rsp) such that the distribution of outputs of
Sim is identical to the distribution of transcripts of honest executions of the protocol.

Witness indistinguishability is a weaker notion compared with HVZK, where we require
the interactions between a prover using a witnessW1 orW2 satisfying (X,W1), (X,W2) ∈ R
are indistinguishable. Namely, the interaction does not leak which witness is being used.

We also define a hard instance generator for the NP relation R as follows.

Definition 9 (Hard instance generator) An NP relation R is associated with an instance
generator (IG) if IG, given as input the security parameter 1n , outputs a statement-witness
pair (X,W) ∈ R. Moreover, we say the instance generator is hard if the following holds for
any PPT adversary A:

Pr[(X,W) ← IG(1n),W′ ← A(X) : (X,W′) ∈ R] = negl.

3.4 Elliptic curves and isogenies

Let E denote an elliptic curve over a finite fieldFp with p a large prime, and let 0E be the point
at infinity on E . The curve E is called supersingular if and only if #E

(
Fp
) = p+1. Therefore,

by using point counting or Schoof’s algorithm [80], one can verify the supersingularity of
a given curve efficiently. Otherwise, the curve is called ordinary curve. Given two elliptic
curves E and E ′, an isogeny φ is a morphism φ : E → E ′, namely, isogeny is a map
given by rational functions and it is a group homomorphism such that φ (0E ) = 0E ′ . An
isomorphism is an isogeny whose inverse over the algebraic closure is also an isogeny and
two elliptic curves are isomorphic if and only if they have the same j-invariant. There is a one-
to-one correspondence from finite subgroups of an elliptic curve to separable isogenies from
said curve, up to post-composition with isomorphisms. To be more specific, any subgroup
S ⊂ E

(
Fpk
)
determines a (separable) isogeny φ : E → E ′ with ker φ = S, i.e. E ′ = E/S.

Given subgroup S, the equation for E ′ and the isogeny φ can be computed using Vélu’s
formulae using O

(
#S(k log p)2

)
bit-operations. As a result, only those isogenieswho kernels

are small subgroups S defined over extensions Fpk of small degree k can be computed
efficiently.

The ring of endomorphismsEnd(E) consists of all isogenies from E to itself, andEndp(E)

denotes the ring of endomorphisms defined over Fp .
When E/Fp is supersingular, the endomorphism ring Endp(E) is isomorphic to an order

O of the quadratic field Q(
√−p) [24]. We recall that an order is a subring of Q(

√−p),
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which is also a finitely-generated Z-module containing a basis of Q(
√−p) as a Q-vector

space. A fractional ideal a of O is a finitely generated O-submodule of Q(
√−p). We say

that a is invertible if there exists another fractional ideal b of O such that ab = O, and that
it is principal if a = αO for some α ∈ Q(

√−p). The invertible fractional ideals of O form
an Abelian group whose quotient by the subgroup of principal fractional ideals is finite. This
quotient group is called the ideal class group of O, and denoted by C�(O).

The ideal class group C�(O) acts freely and transitively on the set E��p(O, π), which
contains all supersingular elliptic curves E over Fp-modulo isomorphisms defined over
Fp—such that there exists an isomorphism between O and Endp(E) mapping

√−p ∈ O to
the Frobenius endomorphism π : (x, y) �→ (x p, y p). When no confusion will arise, we will
abbreviate E��p(O, π) as E��.

The quadratic twist of a given elliptic curve E : y2 = f (x) is E−1 : dy2 = f (x)
where d ∈ F

×
p \F×2

p . When p = 3 mod 4 and E0 is of j-invariant 1728, then E0 and E−1
0

are Fp-isomorphic. The quadratic twist can be efficiently computed in this setting. When
p = 3 mod 4, the quadratic twist E ′ : −y2 = x3 + Ax2 + x of EA : y2 = x3 + Ax2 + x is
Fp-isomorphic to E−A by considering (x, y) �→ (−x, y). Further, ([a] ∗ E0)

−1 = [a]−1∗E0

for any [a] ∈ C�(O). Therefore, for any curve E ∈ E��p(O, π), we have, by the transitivity
of the action,

([a] ∗ E)−1 = [a]−1 ∗ E−1.

Remark 1 Throughout the rest of the paper, we consider the underlying prime p = 3 mod 4.
We assume the structure of the ideal class group G = 〈[g]〉 ∼= ZN , justified by the Cohen-
Lenstra heuristic, is known for some N ∈ N and for each i ∈ [N ] the action [gi ] ∗ E can be
efficiently evaluated. The setup is justified by [12].

Let E0 ∈ E�� be the supersingular curve of j-invariant 1728. Our cryptosystems rely on
the following assumptions.

Definition 10 (Group action inverse problem (GAIP)) Given (E0, E ′) ∈ E��2 where E ′ =
[gs] ∗ E0 and s

$← [N ], the group action inverse problem is to find [g′] ∈ G such that
[g′] ∗ E0 = E ′.

The problem is equivalent to finding the exponent s mod N by considering f (m, n) =
[gmg′n]�E0 and applying the quantum period finding algorithm.

Recall that G ∼= ZN and ZN is a ring. We introduce a generalized version of the group
action inverse problem by considering a d-th primitive root of unity, denoted by ζd , over ZN

such that ζ d
d = 1 and ζ

j
d = 1 for any j ∈ [d − 1]. We define the ring group action inverse

problem with respect to ζd as follows.

Definition 11 (ζd -Ring group action inverse problem (rGAIP)) Given (E0, S) ∈ E��d+1

where S = ([gsζ j
d ] ∗ E0) j∈[d], s

$← [N ] and d|λ(N ) (here λ is the Carmichael function), the
ζd -ring group action inversion problem (ζd -rGAIP) is to recover s.

When the context is clear, we may remove d from the subscript or remove ζd entirely and
call it rGAIP for simplicity. This problem is a generalized version ofGAIP, which is a ζ2-rGAIP
with ζ2 = −1. To see this, by taking the quadratic twist of a GAIP instance E ′ = [gs] ∗ E0,
we have (E ′, E ′−1) = ([gs] ∗ E0, [g−s] ∗ E0). Such a ζd exists if d is a divisor of the
Carmichael function λ(N ). Concretely, if N = �peii where pi are distinct primes, we have
λ(N ) = lcmi (λ(peii )) where

λ(peii ) =
{ 1

2ϕ(peii ) if pi = 2 ∧ ei ≥ 3
ϕ(peii ) otherwise
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where ϕ is the Euler phi-function. Similar to GAIP [18, 25, 43] having polynomial-time
HSP algorithms for insecure group structures, the hardness of an ζd -rGAIP also relies on
the underlying algebraic structure and the specific choice of ζd . In Sect. 8.2, we provide a
structural analysis on the ζd -rGAIP for CSIDH-512 and display a fewweak and hard instances
depending on ζd . We show that for some carefully-chosen d (depending on N ), ζd -rGAIP is
essentially as hard as the original GAIP.

Finally, when constructing our optimized blind signatures in Sect. 7, we require d to
satisfy a bit more requirement other than ζd -rGAIP being hard. Informally, we require ηd =
lcmi∈[d−1](gcd(ζ id − 1, N )) to be small for the extractor of the underlying sigma protocol to
be efficient. More details can be found in Sect. 7.

4 Generic proofs for blind Schnorr-type signatures

In this section, we review the recent work of Kastner et al. [55] that provided a proof of the
Abe-Okamoto (partially) blind signature [4]. The original security proof of the one-more
unforgeability in [4] contained a leap of logic in the security proof (i.e., the scheme was
correct but the security proof was not), and Kastner, Loss, and Xu provided a somewhat
generic proof that works for many of the blind Schnorr-type signatures [29].8 While their
focus was on the scheme by Abe and Okamoto, the proof is generic enough to capture other
similar schemes (see for instance [55, Appendix F] that provides a proof sketch of [2]).
Indeed, the constructions we propose fall under their generic proofs as well. To this end,
we extract the minimal definitions and lemmas from [55] required to argue the security of
our (partially) blind signatures. Here, we note that it is likely that one can rewrite [55] in
a more generic fashion by borrowing the tools from [49]. However, we chose not to for
better readability and since isogenies do not naturally endow a linear identification scheme
as required by [49]. Finally, we emphasize that while this section is not contained in Sect. 3
(i.e., Background), we do not claim any technical novelty of it.

Below, we provide a brief overview of the proof by Kastner, Loss, and Xu and then
introduce the key lemmas that need to be proven in this paper to apply their proof.

4.1 Proof overview

Loosely speaking, a blind Schnorr-type signature is a type of blind signature that builds on
top of a Schnorr-type sigma protocol [78]. The signer of the blind signature is identical to
the prover in a sigma protocol, while the user of the blind signature modifies the verifier
in the sigma protocol by appropriately adding blindness factors. In the proof of one-more
unforgeability, the adversary (i.e., a malicious user) does not care if its forgeries are blind,
and thus, how the blindness is achieved can be ignored for now.

At a high level, to argue one-more unforgeability, we would like the reduction to embed
a hard problem into the public key of the blind signature and appeal to the special soundness
of the underlying sigma protocol to extract a solution from the forgeries. However, unlike
standard Fiat–Shamir-based signatures, the reduction cannot rely on HVZK to simulate the
signatures since the challenge is under the adversary’s control. To simulate the interaction
between the adversary, we thus allow the public key to have two valid secret keys, e.g.,

8 Note that the proof in [55] relies on the fact that there are two possible signing keys per public key. Therefore,
their proof does not work for the original Schnorr blind signature [29], which is known to be secure if we
further rely on the algebraic group model [54].

123



CSI-Otter: isogeny-based (partially) blind signatures

(vk = (E0, [ga0 ] ∗ E0, [ga1 ] ∗ E0), sk = (δ, aδ)) with δ ∈ {0, 1}. The reduction embeds a
hard problem into one of the secret keys while simulating with the other secret key.

What makes the security proof of blind Schnorr-type signatures tricky is that even if the
adversary’s view is independent of the secret key being used, this alone does not complete
the proof. This is because to argue that the secret key extracted via the special soundness
of the underlying sigma protocol is unbiased, we need to argue that the algorithm (i.e.,
reduction) executing the extractor of the special soundness is unbiased. While this holds for
standard Fiat–Shamir based signature schemes since the reduction can invoke HVZK, this is
not the case for blind signatures. As we discussed above, since the adversary chooses the
challenge, the reduction can only try to invoke witness indistinguishability. However, witness
indistinguishability breaks when the reduction rewinds the adversary since the reduction
needs to simulate two transcripts using the same first commitment of the sigma protocol.
Thus, the reduction is not compatible with the definition of witness indistinguishability.

That being said since the view of the adversary (in each run) is independent of the secret
key being used, intuition tells us that the extraction works: the only thing that’s not working
is the security proof. To overcome this issue, Kastner et al. [55] provides a detailed analysis
of the probability of the reduction succeeding while implicitly relying on witness indistin-
guishability. We note that Abe and Okamoto [4] also rely on the same proof approach but
included a subtle but non-trivially fixable flaw to compute the probability.

4.2 Key definitions, lemmas, and theorems

We extract the minimal definitions and lemmas from [55] in a self-contained manner so that
the security of our (partially) blind signatures is established through several easy-to-state
lemmas. For a more full exposition, we refer the readers to [55].

4.2.1 Preparation

We first assume the adversary against the one-more unforgeability game is restricted to
make only � + 1 distinct hash queries to the random oracle, where � + 1 is the number
of forgeries the adversary outputs. Moreover, as with any blind Schnorr-type signature, we
assume each signature in the forgery is associated with a distinct hash query.9 We also assume
the public key of the (partially) blind signature has exactly two corresponding secret keys.
More specifically, we assume the underlying sigma protocol is for the NP OR-relation R
defined with respect to another NP relation R′. That is, (X := (X′

0,X
′
1),W := (δ,W′

δ)) ∈ R,
where (X′

0,W
′
0), (X

′
1,W

′
1) ∈ R′, X is the public key and W is the secret key. Finally, we

assume the adversary’s user-message ρU queried to the signing algorithm PBS.S2 satisfies
ρU ∈ C, where C is the challenge space of the underlying sigma protocol for relation R (and
R′).

We first define the notion of instances. Roughly, an instance defines the signer’s key and
randomness. We present a variant of the definition of instances in [55, Definition 4] that is
agnostic to the underlying sigma protocol. We provide an explicit description of instances,
analogous to [55, Definition 4], when we detail our construction of (partial) blind signatures.

Definition 12 (Instances) Assume the public key of a blind Schnorr-type signature has
exactly two corresponding secret keys sk0 = (0,W′

0) and sk1 = (1,W′
1). We define two

9 For those unfamiliar with Schnorr-type signatures, we encourage to look at our concrete construction, where
the meaning would be clear from context.
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types of instances I: A 0-side (resp. 1-side) instance consists of sk0 (resp. sk1) and the
randomness used by the honest signer algorithm when the secret key is fixed to sk0 (resp.
sk1), i.e., randomness excluding those used by the key generation algorithm.

The main argument of Kastner, Loss, and Xu boils down to arguing that the output of the
extraction algorithm (i.e., forking algorithm) explained above is independent of the instances.

Let
−→
h be the vector of responses returned by the random oracle, where |−→h | = � + 1,

and let rand be the randomness used by the one-more unforgeability adversary. We define a
deterministic wrapper algorithmW that simulates the interaction between the signer and the

adversary given input (I, rand,
−→
h ). W invokes the signer and the adversary on inputs I and

rand, respectively, and uses
−→
h to answer the random oracle queries made by the adversary.

We defineW(I, rand,
−→
h ) to output ⊥ if the adversary aborts prematurely or fails to win the

one-more unforgeability game, and otherwise, output what the adversary outputs. We then
define the notion of successful tuples as follows.

Definition 13 (Successful tuples) We define the set of successful tuples as follows:

Succ := {(I, rand,
−→
h ) | W(I, rand,

−→
h ) = ⊥}.

We next define a sufficient condition to invoke the extraction algorithm of the underlying
sigma protocol. This is a standard definition (often implicitly) used even for Fiat-Shamir
based signatures.

Definition 14 (Successful Forking [55, Definition 7]) We say two successful input tuples

(I, rand,
−→
h ), (I, rand,

−→
h ′) ∈ Succ fork from each other at index i ∈ [� + 1] if−→

h [i−1] = −→
h ′[i−1] but hi = h′

i . We denote the set of hash vector pairs (hi , h′
i ) such that

(I, rand,
−→
h ), (I, rand,

−→
h ′) ∈ Succ fork at index i as Fi (I, rand).

We next define the notion of transcripts. A query transcript denotes the user messages
queried to the signer. A full transcript denotes the entire transcript produced by the signer
and the adversary, including the final forgery.

Definition 15 (Query transcript [55,Definition 5]) Consider thewrapperW running on input

(I, rand,
−→
h ). The query transcript, denoted −→e (I, rand,

−→
h ), is the vector of user message

(ρU ) queries made to the signing algorithm PBS.S2 (simulated by W) by the adversary,
ordered by sid.

Definition 16 (Full transcript [55, Definition 6]) Consider the wrapperW running on input

(I, rand,
−→
h ). The full transcript, denoted trans(I, rand,

−→
h ), is the transcript produced

between the signer and the adversary, i.e., all messages sent between the signer and user
played by the adversary, including the forgeries.

We now define partners, which plays a key role in the analysis of [4, 55]. Informally, two

tuples (I, rand,
−→
h ), (I, rand,

−→
h ′) ∈ Succ are partners at i if they fork at this index i and

produce the same query transcript. Note that this does not nencessarily imply that each tuple
results in the same full transcript.

Definition 17 (Partners [55, Definition 8]) We say two successful tuples (I, rand,
−→
h ), (I,

rand,
−→
h ′) are partners at index i ∈ [� + 1] if the followings hold:
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• (I, rand,
−→
h ) and (I, rand,

−→
h ′) fork at index i .

• −→e (I, rand,
−→
h ) = −→e (I, rand,

−→
h ′)

We denote the set of (
−→
h ,

−→
h ′) such that (I, rand,

−→
h ) and (I, rand,

−→
h ′) are partners at index

i by prti (I, rand).

A triangle is another key tool introduced in [4, 55] in order to enhance the standard forking

tuples with the nice properties of partners. A triangle consists of three vectors
−→
h ,

−→
h ′,−→h ′′

such that each two vectors fork at the same index, and additionally, (
−→
h ,

−→
h ′) are partners.

Definition 18 (Triangles [55, Definition 9]) A triangle at index i ∈ [� + 1] with respect to
I, rand is a tuple of three successful tuples in the following set:

�i (I, rand) =

⎧⎪⎨
⎪⎩

((I, rand,
−→
h ), (

−→
h ,

−→
h ′) ∈ prti (I, rand)

(I, rand
−→
h ′), (

−→
h ,

−→
h ′′) ∈ Fi (I, rand)

(I, rand
−→
h ′′)) (

−→
h ′,−→h ′′) ∈ Fi (I, rand)

⎫⎪⎬
⎪⎭

For a triangle ((I, rand,
−→
h ), (I, rand,

−→
h ′), (I, rand,

−→
h ′′)) ∈ �i (I, rand), we call the pair

of tuples ((I, rand,
−→
h ), (I, rand,

−→
h ′)) the base, and ((I, rand,

−→
h ), (I, rand,

−→
h ′′)) and

((I, rand,
−→
h ′), (I, rand,

−→
h ′′)) the sides.

We next define a map that transforms a b-side instance into a (1 − b)-side instance for
b ∈ {0, 1}. Roughly, the map allows us to relate the number of triangles with a 0-side
instance to those with a 1-side instance. We present a variant of the definition of instances in
[55, Definition 12] that is agnostic to the underlying sigma protocol. We provide an explicit
description of the map, analogous to [55, Definition 12], when we detail our construction of
(partial) blind signatures.

Definition 19 (Mapping instances via transcript) For (I, rand,
−→
h ) ∈ Succ, we define

�
rand,

−→
h

(I) as a function that maps a 0-side instance I (resp. 1-side instance I) to a 1-side
instance I′ (resp. 0-side instance I′).

Finally, we formally define the witness extractor used by the reduction. We present a variant
of the definition of witness extractor in [55, Definition 13] that is agnostic to the underlying
sigma protocol. This is because the witness extractor’s concrete description is defined using
the special soundness extractor of the underlying sigma protocol, which we will do when we
detail our construction of (partial) blind signatures.

Definition 20 (Witness extraction) Fix I, rand and let
−→
h ,

−→
h ′ ∈ Fi (I, rand) for some i ∈

[�+1]. Moreover, denote σi , σ
′
i the signatures that correspond to hi , h

′
i , respectively. We say

deterministic algorithms (Ext0, Ext1) are witness extractors if (Ext0(σi , σ ′
i ), Ext1(σi , σ

′
i )) ∈

{(sk0,⊥), (⊥, sk1), (sk0, sk1)}.10 For b ∈ {0, 1}, we say that the b-side witness can be

extracted from (I, rand,
−→
h ) and (I, rand,

−→
h ′) at index i if Extb(σi , σ ′

i ) outputs skb.

10 [55] defined the witness extractors in such a way that it outputs only (sk0,⊥) or (⊥, sk1). However,
this restriction is not required as long as Lemma 1 (i.e., [55, Corollary 3]) holds. We note that we need this
extra relaxation for it to be useful in our partially blind signature. Moreover, note that the extractors are only
required to outputW′

b included in skb = (b,W′
b). We use W′

b and skb interchangeably for readability.
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4.2.2 Sufficient condition for one-more unforgeability

We are now prepared to formally present the main result of Kastner et al. [55]. First of all, if

the map �
rand,

−→
h
is a bijection that preserves transcripts for any rand and

−→
h , then a partner

tuple with a b-side instance maps to another partner tuple with a (1 − b)-side instance for

the same rand and
−→
h (see [55, Corollary 1 and Lemma 3]). This implies that the extracted

witness from a partner tuple is independent of the reduction’s secret key. However, it is not
clear if the reduction is able to obtain a partner tuple by rewinding. To this end, we use the
sides of the triangle rather than the base (i.e., partner tuple) to extract a witness, where the
main observation is that if a b-side witness can be extracted from the base of a triangle, then
a b-side witness can be extracted from at least one of the sides. Then, we argue that the
reduction having a b-side witness hits one corner of the base of a triangle in the first run, and
then hits the top of the triangle such that it creates side with a (1 − b)-side witness with a
probability of roughly 1/2.

The main contribution of Kastner et al. [55] was to make the above high-level argument
precise. Their result is mostly purely statistical and it suffices to only prove that our (partial)
blind signature satisfies the following two lemmas to invoke their main theorem concerning
one-more unforgeability. The first lemma shows that the blind signature is perfectly witness
indistinguishable. This is used to establish the extracted witness from a partner tuple is
independent of the reduction’s secret key.

Lemma 1 ([55, Lemma 2]) Fix rand,
−→
h . For all tuples (I, rand,

−→
h ) ∈ Succ, �

rand,
−→
h
is a

self-inverse bijection and trans(I, rand,
−→
h ) = trans(�

rand,
−→
h

(I), rand,
−→
h ).

The second lemma states that if a witness can be extracted from a base of a triangle, then
the same witness can be extracted from at least one of its sides.

Lemma 2 ([55, Corollary 3]) Fix I, rand and let (
−→
h ,

−→
h ′,−→h ′′) ∈ �i (I, rand), for

some i ∈ [� + 1]. If the 0-side (1-side) witness can be extracted from the base

(I, rand,
−→
h ), (I, rand,

−→
h ′) of the triangle at index i , then one can also extract the

0-side (1-side) witness from at least one of the sides (I, rand,
−→
h ), (I, rand,

−→
h ′′) or

(I, rand,
−→
h ), (I, rand,

−→
h ′′) at index i .

The following is the main theorem of Kastner et al. [55, Theorem 1] casted slightly
generally to be agnostic to the underlying hardness assumption.

Theorem 3 Let the (partially) blind Schnorr-type signature (P)BS be as defined in the prepa-
ration of Sect. 4.2. In particular, assume the public key consists of two instances of the NP
relation R′ generated by a corresponding hard instance generator IG and the underlying
sigma protocol has challenge space C.

If Lemmas 1 and 2 hold, then for all � ∈ N, if there exists an adversary A that makes Q
hash queries to the random oracle and breaks the �-one more unforgeability of (P)BS with
advantage εA ≥ C1|C| · ( Q

�+1

)
, then there exists an algorithm B that breaks the hard instance

generator with advantage εB ≥ C2 · ε2A
( Q
�+1)

2·(�+1)3
for some universal positive constants C1

and C2.

We note that Kastner, Loss, and Xu only show the above theorem for blind signatures. They
then show that it can be extended to a proof for their particular partially blind signature with a
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Fig. 1 The basic Sigma protocol underlying our blind signature scheme and partially-blind signature scheme

loss of 1/T , where T is the number of the distinct tag info queries by the adversary (see [55,
Theorem 2]). However, as explained in the introduction, we cannot follow their approach
since our partially blind signature must deviate from prior constructions. To this end, we
notice that the same proofs and theorem above can be applied to the partially blind setting if
the instances in Definition 12 can be defined independently from the tags info used by the
adversary. See Sect. 6 for more details.

5 Constructing isogeny-based blind signatures

In this section, we provide our isogeny-based blind signature. We first explain the sigma
protocol that underlies our isogeny-based blind signature and then show how to compile it
into a blind signature.

5.1 Our basic sigma protocol for isogeny knowledge

First, we introduce the basic sigma protocol that we use to construct the OR-proofs which
form the basis for our blind signature in Sect. 5 and our partially blind signature in Sect. 6.
Though the protocol is essentially standard, we include this discussion because this Sigma
protocol is not simply the protocol used in CRS [32, 76] adapted to the supersingular setting
(as in CSI-FiSh [12])—rather, our proof uses the quadratic twist in a fundamental way, which
is necessary when constructing our signature schemes.

To begin, our protocol is depicted in Fig. 1.
Weprove that the schemedepicted inFig. 1 is a secure sigmaprotocol; that is, that it satisfies

perfect completeness, special soundess, and honest verifier zero-knowledge (HVZK).

Lemma 4 (Perfect completeness) The protocol depicted in Fig.1 is perfectly complete.

Proof Suppose that the protocol is executed according to the specification. Then

[gr ] ∗ Ac = [gy−a·c] ∗ [ga·c] ∗ E0 = [gy] ∗ E0 = Y

so that V accepts, as required. ��
Lemma 5 (Special soundess) The protocol depicted in Fig.1 satisfies special soundness.
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Proof Using the notation of Fig. 1, without loss of generality we may assume that c = 1 and
c′ = −1. Then

r ′ − r = (y + a) − (y − a) = 2a.

Recall the parameter p ≡ 3 (mod 4) implies |C�(O)| is odd. Therefore, we can solve for the
unique value of a ∈ ZN as

a ≡ 2−1(r ′ − r) (mod N ).

��
Lemma 6 (Honest verifier zero-knowledge) The protocol depicted in Fig.1 satisfies the hon-
est verifier zero-knowledge property.

Proof For a fixed statement X = [ga] ∗ E0, the distribution of honest transcripts is uniform
on the set

T = {(Y = [gy] ∗ E0, c, r = y − a · c) : y ∈ ZN , c ∈ {−1, 1}}
= {(Y = [gr+ac] ∗ E0, c, r) : r ∈ ZN , c ∈ {−1, 1}}
= {(Y = [gr ] ∗ Ac, c, r) : r ∈ Zn, c ∈ {−1, 1}}. (1)

Considering Eq.1, we see that the following procedure will perfectly simulate the honest
distribution of transcripts:

1. Choose r ∈ ZN uniformly at random.
2. Choose c ∈ {−1, 1} uniformly at random.
3. Set Y = [gr ] ∗ Ac.

Thus we have defined the required Sim, and so the protocol satisfies the honest verifier
zero-knowledge property. ��

5.2 Base sigma protocol for an OR relation

Building on the protocol of Sect. 5.1 we consider a sigma protocol to prove that the prover
knows at least one of the two secrets corresponding to the public statement X = (A0, A1) =
([ga0 ] ∗ E0, [ga1 ] ∗ E0). The sigma protocol is depicted in Fig. 2. Note that this is a standard
isogeny-based sigma protocol where 0 is removed from the challenge space (see for instance
[12]). As explained in Sect. 2.2, the main reason for this slight modification is to make the
(non-soundness amplified) challenge space {−1, 1} to be a (multiplicative) subgroup of Z×

N .
While these properties are implicit in the blind signature, we sketch the properties of our

sigma protocol for completeness. Correctness can be verified through a routine check.

5.2.1 HVZK

Given a challenge c, a zero-knowledge simulator Sim samples random (c0, c1)
$←

({−1, 1}n)2 and (r0, r1)
$← Z

2
N conditioned on c0 � c1 = c. It then setsYb = [grb ] ∗ Acb

b for
b ∈ {0, 1}, and outputs the simulated transcript

(
(Y0,Y1), c, (r0, r1, c0, c1)

)
. Since there is a

bijection between rb andYb once cb is fixed, this produces a transcript identically distributed
as a real transcript.
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Fig. 2 The base OR sigma protocol underlying our blind signature scheme

5.2.2 Witness indistinguishability

This is a direct consequence of the above since perfect HVZK implies perfect witness indis-
tinguishability.

5.2.3 Special soundness

Let
(
(Y0,Y1), c, (r0, r1, c0, c1)

)
and
(
(Y0,Y1), c′, (r′

0, r
′
1, c

′
0, c

′
1)
)
be two valid transcripts

such that c = c′. Since c = c′, either c0 = c′
0 or c1 = c′

1. Without loss of generality, assume
c0,1 = c′

0,1, where c0,1 and c
′
0,1 ∈ {−1, 1} are the first elements of c0 and c′

0, respectively. The

extractor Ext then given such two valid transcripts outputs awitness (0, a0 = r0,1−r ′
0,1

c0,1−c′
0,1

), where

r0,1, r ′
0,1 ∈ ZN are the first elements of r0 and r′

0. Note that, since p ≡ 3 (mod 4), we have
that N is odd, so that c0,1 − c′

0,1 ∈ {−2, 2} is invertible mod N . Let us verify the correctness

of such an Ext. Since the two transcripts are valid, we have [gr0,1 ] ∗ A
c0,1
0 = [gr ′

0,1 ] ∗ A
c′
0,1
0 .

Plugging in A0 = [ga0 ] ∗ E0, we have [gr0,1+c0,1·a0 ] ∗ E0 = [gr ′
0,1+c′

0,1·a0 ] ∗ E0, where we use
the fact c0,1, c′

0,1 ∈ {−1, 1}. Cleaning up the exponents, we obtain the desired a0.

5.3 Description of our blind signature

We present our isogeny-based blind signature building on top of the base sigma protocol
in Sect. 5.2. Let (p, N , E0) be the public parameter specified as the underlying prime, the
order of the group and the distinguished element, resp. Let g be a generator of the ideal class
group C�(O). We assume these parameters are provided to all algorithms. Let H : {0, 1}∗ →
{−1, 1}n be a hash function modeled as a random oracle in the security proof.

The following algorithms are summarized in Fig. 3.

BS.KGen (1n): On input the security parameter 1n , it samples a bit δ
$← {0, 1}, (a0, a1) $←

Z
2
N and outputs a public key pk = (A0, A1) = ([ga0 ] ∗ E0, [ga1 ] ∗ E0) and secret key

sk = (δ, aδ).
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Fig. 3 Our blind signature scheme. We assume the algorithms return ⊥ and terminate if parse is not in the
correct format

BS.S1(sk) : The signer first samples y∗
δ

$← Z
n
N and sets Y∗

δ = [gy∗
δ ] ∗ E0. It then samples

(c∗
1−δ, r

∗
1−δ)

$← {−1, 1}n × Z
n
N and sets Y∗

1−δ = [gr∗
1−δ ] ∗ A

c∗
1−δ

1−δ . It then outputs the
signer state stateS = (y∗

δ , c
∗
1−δ, r

∗
1−δ) and the first-sender message ρS,1 = (Y∗

0,Y
∗
1).

BS.U1(pk,M, ρS,1) : The user parses (Y∗
0,Y

∗
1) ← ρS,1, samples (db, zb)

$← {−1, 1}n ×Z
n
N ,

and computes Zb = [gzb ] ∗ (Y∗
b)

db for b ∈ {0, 1}. It then computes c = H(Z0‖Z1‖M) ∈
{−1, 1}n and outputs the user state stateU = (db, zb)b∈{0,1} and user message ρU = c∗ =
c � d0 � d1.

BS.S2(stateS, ρU) : The signer parses (y∗
δ , c

∗
1−δ, r

∗
1−δ) ← stateS, c∗ ← ρU, sets c∗

δ =
c∗ � c∗

1−δ ∈ {−1, 1}n , and computes r∗
δ = y∗

δ − aδ · c∗
δ ∈ Z

n
N .

11 It then outputs the
second-signer message ρS,2 = (c∗

b, r
∗
b)b∈{0,1}.

BS.U2(stateU, ρS,2) : The user parses (db, zb)b∈{0,1} ← stateU, (c∗
b, r

∗
b)b∈{0,1} ← ρS,2 and

sets (cb, rb) = (c∗
b � db, zb + r∗

b � db) for b ∈ {0, 1}. It then checks if

c0 � c1 = H
(
[gr0 ] ∗ Ac0

0 ‖[gr1 ] ∗ Ac1
1 ‖M
)
. (2)

11 Recall that we assume stateS includes sk (cf. Footnote 7).
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If it holds, it outputs a signature σ = (cb, rb)b∈{0,1} ∈ ({−1, 1}n ×Z
n
N

)2, and otherwise
a ⊥.

BS.Verify(pk,M, σ ): The verifier outputs 1 if Eq.2 holds, and otherwise 0.

The correctness, blindness, and one-more unforgeability of our blind signature are pro-
vided in the subsequent sections.

5.4 Proof of correctness and blindness

Correctness can be checked by a routine calculation. For completeness, we provide the proof
below.

Theorem 7 (Correctness) The blind signature scheme in Fig.3 is (perfectly) correct.

Proof To show correctness, it suffices to show that Eq.2 holds when both the signer and user

follow the protocol. First, it can be checked that we have Y∗
b = [gr∗

b ] ∗ A
c∗
b
b for b ∈ {0, 1}.

The case b = 1− δ holds by definition and the other case holds due to the correctness of the
base OR sigma protocol (see Sect. 5.2). Then, substituting (cb, rb) = (c∗

b �db, zb +r∗
b �db)

for b ∈ {0, 1}, we have
[grb ] ∗ Acb

b = [gzb+r∗
b�db ] ∗ A

c∗
b�db
b

= [gzb ] ∗
(
[gr∗

b�db ] ∗ A
c∗
b�db
b

)
= [gzb ] ∗ (Y∗

b)
db = Zb. (3)

Finally, since c = c∗ � d0 � d1 = c∗
0 � c∗

1 � d0 � d1 = c0 � c1, where c = H(Z0‖Z1‖M),
we obtain Eq.2 as desired. Note that we use the fact that x � x = 1 for any x ∈ {−1, 1} in
the first equality. ��

The proof of blindness is also standard. Since checking A is a valid elliptic curve can be
done efficiently and for such valid A, there exists a unique a ∈ ZN such that [ga] ∗ E0 = A,
our blind signature is secure even against a malicious server outputting an arbitrary public
key.

Theorem 8 (Blindness) The blind signature scheme in Fig.3 is (perfectly) blind under chosen
keys.

Proof It suffices to show that for any valid public key pk, any first and second-signer mes-
sages ρS,1 = (Y∗

0,Y
∗
1) and ρS,2 = (c∗

b, r
∗
b)b∈{0,1} ∈ ({−1, 1}n × Z

n
N )2, and valid signature

σ = (cb, rb)b∈{0,1} ∈ ({−1, 1}n × Z
n
N )2, there exists a unique and pair-wise distinct user

state stateU = (db, zb)b∈{0,1} ∈ ({−1, 1}n × Z
n
N

)2 that could have generated σ . In other
words, it suffices to show that fixing an arbitrary (pk, ρS,1, ρS,2), there exists a bijection
between a valid σ and stateU. Here, note that any public key pk = (A0, A1) output by the
adversary (i.e., malicious signer)A can be efficiently checked to be valid elliptic curves (i.e.,
supersingularity). Below, we let (a0, a1) ∈ Z

2
N be the unique secret key sk = (a0, a1) such

that (A0, A1) = ([ga0 ] ∗ E0, [ga1 ] ∗ E0).
Let us fix sk = (a0, a1) (hence pk), ρS,1 = (Y∗

0,Y
∗
1), ρS,2 = (c∗

b, r
∗
b)b∈{0,1}, and a valid

signature σ = (cb, rb)b∈{0,1}. Let us further define the user state stateU = (db, zb)b∈{0,1} as
db = cb � c∗

b and zb = rb − r∗
b � db for b ∈ {0, 1}. Following Eq.3 from right to left, we

have Zb = [grb ] ∗ Acb
b for b ∈ {0, 1}. Combining this with σ being a valid signature, we have

c0 � c1 = H
(
[gr0 ] ∗ Ac0

0 ‖[gr1 ] ∗ Ac1
1 ‖M
)

= H(Z0‖Z1‖M). Therefore, stateU is indeed a user
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state that results in the valid signature σ . Moreover, for any choice of ρS,2 and any σ = σ ′,
it can be checked that the corresponding user states stateU and state′

U defined as above are
distinct. Hence, there is a bijection between a valid signature and a user state. This concludes
the proof. ��

5.5 Proof of one-more unforgeability

Our proof of OMUF consists of preparing the necessary tools to invoke Theorem 3. Specif-
ically, we define instances (see Definition 12), the map �

rand,
−→
h

(see Definition 19), the
witness extractors (Ext0, Ext1) (see Definition 20) and prove that Lemmas 1 and 2 hold.

Below, we denote
−→
X as a shorthand for a vector (X (1), . . . , X (�)) and endow

−→
X with

the same operations defined for X (k) by operating them component wise. Moreover, recall

rand denotes the adversary’s randomness, and
−→
h = (c(1), . . . , c(�)) is the random oracle’s

response vector conditioned on the adversary making only � random oracle queries. Finally,

once the instance, adversary’s randomness and hash output tuple (I, rand,
−→
h ) is fixed, the

query transcript−→e (I, rand,
−→
h )—the vector of user message ρU queries made to the signing

algorithm BS.S2—is defined. We denote this as
−→
c∗ below to be consistent with the notations

used in our construction.

5.5.1 Preparation: instances

Let us first define the 0-side instance I0 and the 1-side instance I1. Below, we assume the
adversary against the one-more unforgeability game makes �-signing queries in total.

A 0-side instance I0 = (0, a0, A1,
−→
y∗
0 ,

−→
c∗
1 ,

−→
r∗
1 ) is defined as follows:

• (0, a0) : The secret key sk when δ = 0.
• A1 : The part of the public key pk = (A0, A1) whose secret key is unknown.
• y∗(k)

0 : The exponent of the commitment Y∗(k)
0 in the k-th (k ∈ [�]) first-sender message

when δ = 0 such that Y∗(k)
0 = [gy∗(k)

0 ] ∗ E0.

• c∗(k)
1 : The simulated challenge in the k-th (k ∈ [�]) first-sender message when δ = 0.

• r∗(k)
1 : The exponent of the commitment Y∗(k)

1 in the k-th (k ∈ [�]) first-sender message

when δ = 0 such that Y∗(k)
1 = [gr∗(k)

1 ] ∗ A
c∗(k)
1
1 .

A 1-side instance I1 = (1, a1, A0,
−→
y∗
1 ,

−→
c∗
0 ,

−→
r∗
0 ) is defined as follows:

• (1, a1) : The secret key sk when δ = 1.
• A0 : The part of the public key pk = (A0, A1) whose secret key is unknown.
• y∗(k)

1 : The exponent of the commitment Y∗(k)
1 in the k-th (k ∈ [�]) first-sender message

when δ = 0 such that Y∗(k)
1 = [gy∗(k)

1 ] ∗ E0.

• c∗(k)
0 : The simulated challenge in the k-th (k ∈ [�]) first-sender message when δ = 1.

• r∗(k)
0 : The exponent of the commitment Y∗(k)

0 in the k-th (k ∈ [�]) first-sender message

when δ = 0 such that Y∗(k)
0 = [gr∗(k)

0 ] ∗ A
c∗(k)
0
1 .
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Fig. 4 Witness extractors for our blind signature. In the above, σ = (ck , rk )k∈{0,1} and σ ′ = (c′k , r′k )k∈{0,1},
where ck , c′k live in {−1, 1}n and rk , r′k live in Z

n
N . Non-bold font indicates the entries of a vector

5.5.2 Preparation: map 8
rand,

−→
h

We next define the map �
rand,

−→
h

that maps a 0-side instance I0 into a 1-side instance I1

and vice versa. Concretely, a 0-side instance I0 = (0, a0, A1,
−→
y∗
0 ,

−→
c∗
1 ,

−→
r∗
1 ) maps to a 1-side

instance I1 such that

I1 =
(
1, a1, A0 = [ga0 ] ∗ E0,

−→
y∗
1 = −→

r∗
1 + a1 · −→

c∗
1 ,

−→
c∗
0 = −→

c∗ � −→
c∗
1 ,

−→
r∗
0 = −→

y∗
0 − a0 · −→

c∗
0

)
,

where a1 is such that [ga1 ] ∗ E0 = A1 and recall that
−→
c∗ = −→e (I0, rand,

−→
h ). On the other

hand, a 1-side instance I1 = (1, a1, A0,
−→
y∗
1 ,

−→
c∗
0 ,

−→
r∗
0 ) maps to a 0-side instance I0 such that

I0 =
(
0, a0, A1 = [ga1 ] ∗ E0,

−→
y∗
0 = −→

r∗
0 + a0 · −→

c∗
0 ,

−→
c∗
1 = −→

c∗ � −→
c∗
0 ,

−→
r∗
1 = −→

y∗
1 − a1 · −→

c∗
1

)
,

where a0 is such that [ga0 ] ∗ E0 = A0 and recall that
−→
c∗ = −→e (I1, rand,

−→
h ).

5.5.3 Preparation: witness extractors (Ext0, Ext1)

Fix I, rand and let (
−→
h ,

−→
h ′) ∈ Fi (I, rand) for some i ∈ [� + 1]. Let us denote σ =

(cb, rb)b∈{0,1} and σ ′ = (c′
b, r

′
b)b∈{0,1} the signatures that correspond to c(i) and c′(i), respec-

tively, where recall c(i) (resp. c′(i)) is the i-th entry of
−→
h (resp.

−→
h ′). In particular, we have

c0 � c1 = c(i) and c′
0 � c′

1 = c′(i). We define the witness extractors (Ext0, Ext1) as in Fig. 4.
The following lemma establishes the correctness of the witness extractors.

Lemma 9 (Ext0, Ext1) in Fig.4 satisfy the definition of witness extractors in Definition 20.

Proof By thedefinitionofFi (I, rand) (seeDefinition14),wehave (I, rand,
−→
h ), (I, rand,

−→
h ′)

∈ Succ and c(i) = c′(i). The former implies that the two signatures σ and σ ′ are valid. Con-
cretely, we have

c(i) = c0 � c1 = H
(
[gr0 ] ∗ Ac0

0 ‖[gr1 ] ∗ Ac1
1 ‖M
)

c′(i) = c′
0 � c′

1 = H
(
[gr′

0 ] ∗ A
c′
0
0 ‖[gr′

1 ] ∗ A
c′
1
1 ‖M
)
.

Moreover, since
−→
h and

−→
h ′ agree up to the i-th entry and the challenger and adversary’s

randomness are fixed, the input to the hash functions agree. Namely, we have

[grb ] ∗ Acb
b = [gr′

b ] ∗ A
c′
b
b for b ∈ {0, 1} ∧ M = M′.
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Since c(i) = c′(i), we must have c0 = c′
0 or c1 = c′

1. Based on the special-soundness
of the underlying sigma protocol (see Sect. 5.2), one of Ext0 or Ext1 always outputs a valid
secret key. This completes the proof.

��

5.5.4 Proof of one-more unforgeability

We prove the following two lemmas required to invoke the main theorem Theorem 3.

Lemma 10 Lemma 1 holds for our definition of the map �
rand,

−→
h
.

Proof Since the proof for the 0-side and 1-side instances I0 and I1 are analogous, we

only consider the 0-side instance. For any rand,
−→
h , let us consider the query transcript

−→e (I0, rand,
−→
h ) = −→

c∗ , i.e., the vector of user message ρU queries made by the adversary
to the signing algorithm BS.S2. Since the underlying sigma protocol is perfectly witness
indistinguishable (see Sect. 5.2), for each i ∈ [�] and c∗(i), there is a set of random-
ness that the signer with a secret key (1, a1) (i.e., a 1-side witness) could have used to
produce the same view (i.e., first and second-signer messages) to the adversary. Con-
cretely, this set of randomness is exactly those defined by �

rand,
−→
h

(I0). Hence, we have

trans(I0, rand,
−→
h ) = trans(�

rand,
−→
h

(I0), rand,
−→
h ) as desired.Moreover, it is easy to check

that�
rand,

−→
h

(�
rand,

−→
h

(I0)) from the definition of�
rand,

−→
h
. Hence, it is a bijection as desired.

This completes the proof. ��

Lemma 11 Lemma 2 holds for our definition of the witness extractors (Ext0, Ext1).

Proof Since the proof of 0-side and 1-side is analogous, we only consider the 0-side case.
We prove the lemma by contradiction. Suppose the 0-side witness can be extracted from the

base (I, rand,
−→
h ), (I, rand,

−→
h ′) at index i , but cannot be extracted from either of the sides

(I, rand,
−→
h ′), (I, rand,

−→
h ′′) or (I, rand,

−→
h ), (I, rand,

−→
h ′′). By Lemma 9, the assumption

holds if and only if c0 = c′′
0 and c′

0 = c′′
0 . As a result, c0 = c′

0. By Lemma 9, the 0-side

witness cannot be extracted from (I, rand,
−→
h ), (I, rand,

−→
h ′). However, this contradicts our

assumption. ��

Combining everything together, we obtain the following.

Theorem 12 (One-more unforgeability) The blind signature scheme in Fig.3 is one-more
unforgeable. To be more specific, for all � ∈ N, if there exists an adversary A that makes
Q hash queries to the random oracle and breaks the �-one more unforgeability of BS with
advantage εA ≥ C1

2n · ( Q
�+1

)
, then there exists an algorithm B that breaks the GAIP problem

with advantage εB ≥ C2 · ε2A
( Q
�+1)

2·(�+1)3
for some universal positive constants C1 and C2.

Remark 2 Assuming that GAIP is subexponentially hard—more precisely, assuming that no
polynomial-time adversary can solve GAIP with probability better than 2− logω(1) n , where n
is the security parameter—this implies that the blind signature scheme of Fig. 3 is secure in
the regime of poly-logarithmically-many concurrent sessions. This is because a polynomial-
time adversary makes Q = nO(1) = 2O(log n) hash queries, and poly-logarithmically-many
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Fig. 5 The base 2-out-of-3 sigma protocol underlying our partially blind signature scheme. Recall [0 : 2]
denotes the set {0, 1, 2} and [x]3 is a shorthand for x mod 3

concurrent sessions means � = logO(1) n. The theorem guarantees that the advantage εA of
a polynomial-time adversary in the one-more unforgeability game satisfies

εA ≤
(

Q

� + 1

)√
(� + 1)3

C22log
ω(1) n

= 2log
O(1) n−logω(1) n = negl(n).

If we assume only that no polynomial-time adversary can solve GAIP with non-negligible
probability—that is, such an adversary’s success probability is 2−ω(log n)—then we still have
security against a constant number of concurrent sessions, since with � = O(1) we have

εA ≤
(

Q

� + 1

)√
(� + 1)3

C22ω(log n)
= 2O(log n)−ω(log n) = negl(n).

Proof We define the hard instance generator IG to output a GAIP problem instance. Then,
the proof follows from the above Lemmas 10 and by Theorem 3, i.e., the main theorem of
Kastner et al. [55]. ��

6 Extension to partially blind signatures

In this section, we provide our isogeny-based partially blind signature. We first explain the
sigma protocol that underlies our isogeny-based partially blind signature and then show how
to compile it into a partially blind signature.

6.1 Base sigma protocol for a 2-out-of-3 relation

Weconsider a sigmaprotocol to prove that the prover knows at least two out of the three secrets
corresponding to the public statementX = (A0, A1, A2) = ([ga0 ]∗E0, [ga1 ]∗E0, [ga2 ]∗E0).
The sigma protocol is depicted in Fig. 5. Since the secret a2 for A2 will be known by the
signer and user in our partially blind signature, we assume the prover always knows the
secret a2 and proves knowledge of one other secret a0 or a1 in our sigma protocol.

While these properties are implicit in the partially blind signature, we sketch the properties
of our sigma protocol for completeness.
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6.1.1 Correctness

Observe that the prover creates six first-flow commitments (Yk, j )(k, j)∈[0:2]×{0,1}, where
(Yk, j ) j∈{0,1} is used for the k-th statement Ak , and the challenges associated with Yk, j

are defined as c[k+ j]3 . Specifically, we have the correspondence (Y0,0,Y0,1) �→ (c0, c1),
(Y1,0,Y1,1) �→ (c1, c2), and (Y2,0,Y2,1) �→ (c2, c0). Correctness then follows from a
routine check.

6.1.2 HVZK

Given a challenge c, a zero-knowledge simulator Sim samples random (c0, c1, c2)
$←

({−1, 1}n)3 and (rk, j )(k, j)∈[0:2]×{0,1}
$← Z

6
N conditioned on c0 � c1 � c2 = c. It then

setsYk, j = [grk, j ] ∗ A
c[k+ j]3
k for (k, j) ∈ [0 : 2]×{0, 1}, and outputs the simulated transcript(

(Yk, j )(k, j)∈[0:2], c, ((rk, j , ck)k∈[0:2]) j∈{0,1}
)
. Since there is a bijection between rk, j andYk, j

once c[k+ j]3 is fixed, this produces a transcript identically distributed as a real transcript.

6.1.3 Witness indistinguishability

This is a direct consequence of the above since perfect HVZK implies perfect witness indis-
tinguishability.

6.1.4 Special soundness

Let
(
(Yk, j )(k, j)∈[0:2], c, ((rk, j , ck)k∈[0:2]) j∈{0,1}

)
and

(
(Yk, j )(k, j)∈[0:2], c′, ((r′

k, j ,

c′
k)k∈[0:2]) j∈{0,1}

)
be two valid transcripts such that c = c′. Since c = c′, there exists

k ∈ [0 : 2] such that ck = c′
k . Without loss of generality, assume c0,1 = c′

0,1, where c0,1
and c′

0,1 ∈ {−1, 1} are the first elements of c0 and c′
0, respectively. The extractor Ext then

given such two valid transcripts outputs a witness (0, a0 = r0,0,1−r ′
0,0,1

c0,1−c′
0,1

, a2 = r2,1,1−r ′
2,1,1

c0,1−c′
0,1

),

where (r0,0,1, r ′
0,0,1, r2,1,1, r

′
2,1,1) ∈ Z

4
N are the first elements of (r0,0, r′

0,0, r2,1, r
′
2,1). Let

us verify the correctness of such an Ext. Since the two transcripts are valid, we have

[gr0,0,1 ] ∗ A
c0,1
0 = [gr ′

0,0,1 ] ∗ A
c′
0,1
0 and [gr2,1,1 ] ∗ A

c0,1
0 = [gr ′

2,1,1 ] ∗ A
c′
0,1
0 . Plugging in

A0 = [ga0 ] ∗ E0 and A2 = [ga2 ] ∗ E0 and following the same argument as in Sect. 5.2,
we obtain the desired (a0, a2).

6.2 Description of our partially blind signature

We are now able to present our isogeny-based partially blind signature. Let (p, N , E0) be
the public parameters, [g] be a generator in C�(O), and H : {0, 1}∗ → {−1, 1}n as defined in
Sect. 5. We also require another hash function G : {0, 1}∗ → ZN that is modeled as a random
oracle. Note that H and G can be implemented by a single random oracle by using domain
separation. The following algorithms are summarized in Fig. 6.

PBS.KGen (1n): On input the security parameter 1n , it samples a bit δ
$← {0, 1}, (a0, a1) $←

Z
2
N and outputs a public key pk = (A0, A1) = ([ga0 ] ∗ E0, [ga1 ] ∗ E0) and secret key

sk = (δ, aδ).
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Fig. 6 Our partially blind signature scheme. We assume the algorithms return ⊥ and terminate if parse is not
in the correct format. Recall [0 : 2] denotes the set {0, 1, 2} and [x]3 is a shorthand for x mod 3

PBS.S1(sk, info) : The signer performs the following for j ∈ {0, 1}: It samples (y∗
δ, j , y

∗
2, j )

$←
(Zn

N )2 and sets (Y∗
δ, j ,Y

∗
2, j ) = ([gy∗

δ, j ]∗E0, [gy
∗
2, j ]∗E0). It then samples (c∗[1−δ+ j]3 , r

∗
1−δ, j )

$← {−1, 1}n × Z
n
N and sets Y∗

1−δ, j = [gr∗
1−δ, j ] ∗ A

c∗[1−δ+ j]3
1−δ . Finally, it outputs the

signer state stateS = (y∗
δ, j , y

∗
2, j , c

∗
1−δ, j , r

∗
1−δ, j ) j∈{0,1} and the first-sender message

ρS,1 = (Y∗
k, j )(k, j)∈[0:2]×{0,1}.

PBS.U1(pk, info,M, ρS,1) : The user parses (Y∗
k, j )(k, j)∈[0:2]×{0,1} ← ρS,1. It then samples

dk
$← {−1, 1}n , zk, j $← Z

n
N , and computes Zk, j = [gzk, j ] ∗ (Y∗

k, j )
d[k+ j]3 for (k, j) ∈

[0 : 2] × {0, 1}. It then computes c = H
(
(Zk, j )(k, j)∈[0:2]×{0,1}‖info‖M

)
∈ {−1, 1}n and

outputs the user state stateU = (dk, (zk, j ) j∈{0,1})k∈[0:2] and user message ρU = c∗ =
c � d0 � d1 � d2.

PBS.S2(stateS, ρU) : The signer computes a2 = G(info) ∈ ZN , parses (y∗
δ, j , y

∗
2, j , c

∗
1−δ, j ,

r∗
1−δ, j ) j∈{0,1} ← stateS, c∗ ← ρU and sets c∗[3−δ]3 = c∗ � c∗[1−δ]3 � c∗[2−δ]3 ∈ {−1, 1}n .
It then computes r∗

δ, j = y∗
δ, j − aδ · c∗[δ+ j]3 ∈ Z

n
N and r∗

2, j = y∗
2, j − a2 · c∗[2+ j]3 ∈ Z

n
N for

j ∈ {0, 1}. Finally, it outputs the second-signer message ρS,2 = (c∗
k , (r

∗
k, j ) j∈{0,1})k∈[0:2].
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PBS.U2(stateU, ρS,2) : The user first computes a2 = G(info) ∈ ZN and sets A3 = [ga2 ]∗E0.
It then parses (dk, (zk, j ) j∈{0,1})k∈[0:2] ← stateU, (c∗

k , (r
∗
k, j ) j∈{0,1})k∈[0:2] ← ρS,2 and

sets ck = c∗
k � dk and rk, j = zk, j + r∗

k, j � d[k+ j]3 for (k, j) ∈ [0 : 2] × {0, 1}. It then
checks if

c0 � c1 � c2 = H
(
([grk, j ] ∗ A

c[k+ j]3
k )(k, j)∈[0:2]×{0,1}‖info‖M

)
. (4)

If it holds, it outputs a signature σ = (ck, (rk, j ) j∈{0,1})k∈[0:2] ∈ ({−1, 1}n × (Zn
N

)2)3,
and otherwise a ⊥.

PBS.Verify(pk,M, σ ): The verifier outputs 1 if Eq.4 holds, and otherwise 0.

The correctness, blindness, and one-more unforgeability of our blind signature are pro-
vided in the subsequent sections.

6.3 Proof of correctness and blindness

Correctness can be checked by a routine calculation. For completeness, we provide the proof
below.

Theorem 13 The partially blind signature scheme in Fig.6 is (perfectly) correct.

Proof To show correctness, it suffices to show that Eq.4 holds when both the signer and

user follow the protocol. First, it can be checked that we have Y∗
k, j = [gr∗

k, j ] ∗ A
c∗[k+ j]3
k for

(k, j) ∈ [0 : 2] × {0, 1}. The case k = 1 − δ holds by definition and the other cases hold
due to the correctness of the base 2-out-of-3 sigma protocol (see Sect. 6.1). Then, plugging
in ck = c∗

k � dk and rk, j = zk, j + r∗
k, j � d[k+ j]3 for (k, j) ∈ [0 : 2] × {0, 1}, we have

[grk, j ] ∗ A
c[k+ j]3
k = [gzk, j+r∗

k, j�d[k+ j]3 ] ∗ A
c∗[k+ j]3�d[k+ j]3
k

= [gzk, j ] ∗
(
[gr∗

k, j�d[k+ j]3 ] ∗ A
c∗[k+ j]3�d[k+ j]3
k

)

= [gzk, j ] ∗ (Y∗
k, j )

d[k+ j]3 = Zk, j . (5)

Finally, since c = c∗ � d0 � d1 � d2 = c∗
0 � c∗

1 � c∗
2 � d0 � d1 � d2 = c0 � c1 � c2, where

c = H((Zk, j )(k, j)∈[0:2]×{0,1}‖info‖M), we obtain Eq.4 as desired. Note that we use the fact
that x � x = 1 for any x ∈ {−1, 1} in the first equality. ��

The proof of blindness is also standard. Since checking A is a valid elliptic curve can be
done efficiently and for such valid A, there exists a unique a ∈ ZN such that [ga] ∗ E0 = A,
our partially blind signature is secure even against a malicious server outputting an arbitrary
public key.

Theorem 14 The partially blind signature scheme in Fig.6 is (perfectly) blind under chosen
keys.

Proof It suffices to show that for any valid public key pk, tag info, any first and second-signer
messages ρS,1 = (Y∗

k, j )(k, j)∈[0:2]×{0,1} and ρS,2 = (c∗
k , (r

∗
k, j ) j∈{0,1})k∈[0:2] ∈ ({−1, 1}n ×

(Zn
N )2)3, and valid signature (ck, (rk, j ) j∈{0,1})k∈[0:2] ∈ ({−1, 1}n × (Zn

N )2)3, there exists
a unique and pair-wise distinct user state stateU = (dk, (zk, j ) j∈{0,1})k∈[0:2] ∈ ({−1, 1}n ×
(Zn

N )2)3 that could have generated σ . In otherwords, it suffices to show that fixing an arbitrary
(pk, info, ρS,1, ρS,2), there exists a bijection between a valid σ and stateU. Here, note that any
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public key pk = (A0, A1) output by the adversary (i.e., malicious signer)A can be efficiently
checked to be valid elliptic curves (i.e., supersingularity). Below, we let (a0, a1) ∈ Z

2
N be

the unique secret key sk = (a0, a1) such that (A0, A1) = ([ga0 ] ∗ E0, [ga1 ] ∗ E0) and set
a2 = G(info) and A2 = [ga2 ] ∗ E0.

Let us fix sk = (a0, a1) (hence pk), (a2, A2) (hence info), ρS,1 = (Y∗
k, j )(k, j)∈[0:2]×{0,1}

and ρS,2 = (c∗
k , (r

∗
k, j ) j∈{0,1})k∈[0:2], and a valid signature σ = (ck, (rk, j ) j∈{0,1})k∈[0:2]. Let

us further define the user state stateU = (dk, (zk, j ) j∈{0,1})k∈[0:2] as dk = ck � c∗
k and

zk, j = rk, j − r∗
k, j � d[k+ j]3 for (k, j) ∈ [0 : 2] × {0, 1}. Following Eq.5 from right to left,

we have Zk, j = [grk, j ] ∗ A
c[k+ j]3
k for (k, j) ∈ [0 : 2] × {0, 1}. Combining this with σ being

a valid signature, we have c0 � c1 � c2 = H
(
([grk, j ] ∗ A

c[k+ j]3
k )(k, j)∈[0:2]×{0,1}‖info‖M

)
=

H
(
(Zk, j )(k, j)∈[0:2]×{0,1}‖info‖M

)
. Therefore, stateU is indeed a user state that results in the

valid signature σ . Moreover, for any choice of ρS,2 and any σ = σ ′, it can be checked that
the corresponding user states stateU and state′

U defined as above are distinct. Hence, there
is a bijection between a valid signature and a user state. This concludes the proof. ��

6.4 Proof of one-more unforgeability

Our proof of OMUF consists of preparing the necessary tools to invoke Theorem 3. Specif-
ically, we define instances (see Definition 12), the map �

rand,
−→
h

(see Definition 19), the
witness extractors (Ext0, Ext1) (see Definition 20) and prove that Lemmas 1 and 2 hold. We
refer the readers to Sect. 5.5 for some of the notations used below.

6.4.1 Preparation: instances

Let us first define the 0-side instance I0 and the 1-side instance I1. Below, we assume the
adversary against the one-more unforgeability game makes � signing queries in total.

A 0-side instance I0 = (0, a0, A1,
−→
y∗
0,0,

−→
y∗
0,1,

−→
c∗
1 ,

−→
c∗
2 ,

−→
r∗
1,0,

−→
r∗
1,1,

−→
y∗
2,0,

−→
y∗
2,1) is defined as

follows:

• (0, a0): The secret key sk when δ = 0.
• A1: The part of the public key pk = (A0, A1) whose secret key is unknown.
• (y∗(k)

0,0 , y∗(k)
0,1 ): The exponent of the commitment (Y∗(k)

0,0 ,Y∗(k)
0,1 ) in the k-th (k ∈ [�]) first-

sender message when δ = 0 such that (Y∗(k)
0,0 ,Y∗(k)

0,1 ) = ([gy∗(k)
0,0 ] ∗ E0, [gy

∗(k)
0,1 ] ∗ E0).

• (c∗(k)
1 , c∗(k)

2 ): The simulated challenge in the k-th (k ∈ [�]) first-sender message when
δ = 0.

• (r∗(k)
1,0 , r∗(k)

1,1 ): The exponent of the commitment (Y∗(k)
1,0 ,Y∗(k)

1,1 ) in the k-th (k ∈ [�]) first-
sender message when δ = 0 such that (Y∗(k)

1,0 ,Y∗(k)
1,1 ) = ([gr∗(k)

1,0 ] ∗ A
c∗(k)
1
1 , [gr∗(k)

1,1 ] ∗ A
c∗(k)
2
1 ).

• (y∗(k)
2,0 , y∗(k)

2,1 ): The exponent of the commitment (Y∗(k)
2,0 ,Y∗(k)

2,1 ) in the k-th (k ∈ [�]) first-
sender message when δ = 0 such that (Y∗(k)

2,0 ,Y∗(k)
2,1 ) = ([gy∗(k)

2,0 ] ∗ E0, [gy
∗(k)
2,1 ] ∗ E0)..

A 1-side instance I1 = (1, a1, A0,
−→
y∗
1,0,

−→
y∗
1,1,

−→
c∗
0 ,

−→
c∗
1 ,

−→
r∗
0,0,

−→
r∗
0,1,

−→
y∗
2,0,

−→
y∗
2,1) is defined as

follows:

• (1, a1): The secret key sk when δ = 1.
• A0: The part of the public key pk = (A0, A1) whose secret key is unknown.
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• (y∗(k)
1,0 , y∗(k)

1,1 ): The exponent of the commitment (Y∗(k)
1,0 ,Y∗(k)

1,1 ) in the k-th (k ∈ [�]) first-
sender message when δ = 1 such that (Y∗(k)

1,0 ,Y∗(k)
1,1 ) = ([gy∗(k)

1,0 ] ∗ E0, [gy
∗(k)
1,1 ] ∗ E0).

• (c∗(k)
0 , c∗(k)

1 ): The simulated challenge in the k-th (k ∈ [�]) first-sender message when
δ = 1.

• (r∗(k)
0,0 , r∗(k)

0,1 ): The exponent of the commitment (Y∗(k)
0,0 ,Y∗(k)

0,1 ) in the k-th (k ∈ [�]) first-
sender message when δ = 1 such that (Y∗(k)

0,0 ,Y∗(k)
0,1 ) = ([gr∗(k)

0,0 ] ∗ A
c∗(k)
0
0 , [gr∗(k)

0,1 ] ∗ A
c∗(k)
1
1 ).

• (y∗(k)
2,0 , y∗(k)

2,1 ): The exponent of the commitment (Y∗(k)
2,0 ,Y∗(k)

2,1 ) in the k-th (k ∈ [�]) first-
sender message when δ = 1 such that (Y∗(k)

2,0 ,Y∗(k)
2,1 ) = ([gy∗(k)

2,0 ] ∗ E0, [gy
∗(k)
2,1 ] ∗ E0).

In the above, note that the randomness (−→y2,0,−→y2,1) associatedwith the tags−→
info are identical

for both instances, and moreover, chosen independently of the tags queried by the adversary.
This will be a crucial observation when applying Theorem 3, which focuses on the one-more
unforgeability of blind signatures, to the partially blind signature setting.

6.4.2 Preparation: map 8
rand,

−→
h

We next define the map �
rand,

−→
h
that maps a 0-side instance I0 into a 1-side instance I1 and

vice versa. Concretely, a 0-side instance I0 = (0, a0, A1,
−→
y∗
0,0,

−→
y∗
0,1,

−→
c∗
1 ,

−→
c∗
2 ,

−→
r∗
1,0,

−→
r∗
1,1,

−→
y∗
2,0,−→

y∗
2,1), �rand,

−→
h

(I0) maps to a 1-side instance I1 given by

I1 =

⎛
⎜⎜⎜⎝

a1 such that [ga1 ] ∗ E0 = A1, A0 = [ga0 ] ∗ E0,

1,
−→
y∗
1,0 = −→

r∗
1,0 + a1 · −→

c∗
1 ,

−→
y∗
1,1 = −→

r∗
1,1 + a1 · −→

c∗
2 ,

−→
y∗
2,0,

−→
y∗
2,1−→

c∗
0 = −→

c∗ � −→
c∗
1 � −→

c∗
2 ,

−→
c∗
1 ,−→

r∗
0,0 = −→

y∗
0,0 − a0 · −→

c∗
0 ,

−→
r∗
0,1 = −→

y∗
0,1 − a0 · −→

c∗
1 ,

⎞
⎟⎟⎟⎠ ,

where recall that
−→
c∗ = −→e (I0, rand,

−→
h ).

On the other hand, a 1-side instance I1 = (1, a1, A0,
−→
y∗
1,0,

−→
y∗
1,1,

−→
c∗
0 ,

−→
c∗
1 ,

−→
r∗
0,0,

−→
r∗
0,1,

−→
y∗
2,0,−→

y∗
2,1), �rand,

−→
h

(I1) maps to a 0-side instance I0 such that

I0 =

⎛
⎜⎜⎜⎝

a0 such that [ga0 ] ∗ E0 = A0, A1 = [ga1 ] ∗ E0,

0,
−→
y∗
0,0 = −→

r∗
0,0 + a0 · −→

c∗
0 ,

−→
y∗
0,1 = −→

r∗
0,1 + a0 · −→

c∗
1 ,

−→
y∗
2,0,

−→
y∗
2,1−→

c∗
1 ,

−→
c∗
2 = −→

c∗ � −→
c∗
0 � −→

c∗
1 ,−→

r∗
1,0 = −→

y∗
1,0 − a1 · −→

c∗
1 ,

−→
r∗
1,1 = −→

y∗
1,1 − a1 · −→

c∗
2 ,

⎞
⎟⎟⎟⎠ ,

where recall that
−→
c∗ = −→e (I1, rand,

−→
h ).

6.4.3 Preparation: witness extractors (Ext0, Ext1)

Fix I, rand and let (
−→
h ,

−→
h ′) ∈ Fi (I, rand) for some i ∈ [� + 1]. Let σ =

(ck, (rk, j ) j∈{0,1})k∈[0:2] and σ ′ = (c′
k, (r

′
k, j ) j∈{0,1})k∈[0:2] be the signatures that correspond

to c(i) and c′(i), respectively, where c(i) (resp. c′(i)) is the i-th entry of
−→
h (resp.

−→
h ′). In

particular, we have c0 � c1 � c2 = c(i) and c′
0 � c′

1 � c′
2 = c′(i). We define the witness

extractors (Ext0, Ext1) as in Fig. 7.
The following lemma establishes the correctness of the witness extractors.

123



CSI-Otter: isogeny-based (partially) blind signatures

Fig. 7 Witness extractors for our partially blind signature. In the above, σ = (ck , (rk, j ) j∈{0,1})k∈[0:2] and
σ ′ = (c′k , (r′k, j ) j∈{0,1})k∈[0:2], where ck , c′k live in {−1, 1}n and rk, j , r′k, j live inZn

N . Non-bold font indicates
the entries of a vector

Lemma 15 (Ext0, Ext1) in Fig.7 satisfy Definition 20.

Proof By thedefinitionofFi (I, rand) (seeDefinition14),wehave (I, rand,
−→
h ), (I, rand,

−→
h ′)

∈ Succ and c(i) = c′(i). The former implies that the two signatures σ and σ ′ are valid. Con-
cretely, we have

c(i) = c0 � c1 � c2 = H
(
([grk, j ] ∗ A

c[k+ j]3
k )(k, j)∈[0:2]×{0,1}‖info‖M

)

c′(i) = c′
0 � c′

1 � c′
2 = H
(
([gr′

k, j ] ∗ A
c′[k+ j]3
k )(k, j)∈[0:2]×{0,1}‖info′‖M′).

Moreover, since
−→
h and

−→
h ′ agree up to the i-th entry and the challenger and adversary’s

randomness are fixed, the input to the hash functions agree. Namely, we have

[grk, j ] ∗ A
c[k+ j]3
k = [gr′

k, j ] ∗ A
c′[k+ j]3
k for (k, j) ∈ [0 : 2] × {0, 1} ∧ (info,M) = (info′,M′).

Due to the special soundness of the underlying sigma protocol (see Sect. 6.1), the witness
extractors Ext0 and Ext1 each outputs a valid secret key from the 0-side and 1-side instances,
respectively. Moreover, since c(i) = c′(i), we must have ck = c′

k for some k ∈ [0 : 2]. Thus,
at least one of Ext0 or Ext1 always outputs a valid secret key; if c1 = c′

1, then they both output
a valid secret key. This completes the proof. ��

6.4.4 Proof of one-more unforgeability

We prove the following two lemmas required to invoke the main theorem Theorem 3.

Lemma 16 Lemma 1 holds for the map �
rand,

−→
h
.

Proof Since the proof for the 0-side and 1-side instances I0 and I1 are analogous, we

only consider the 0-side instance. For any rand,
−→
h , let us consider the query transcript

−→e (I0, rand,
−→
h ) = −→

c∗ , i.e., the vector of user message ρU queries made by the adver-
sary to the signing algorithm PBS.S2. Since the underlying sigma protocol is perfectly
witness indistinguishable (see Sect. 6.1), for each i ∈ [�] and c∗(i), there is a set of ran-
domness that the signer with a secret key (1, a1) (i.e., a 1-side witness) could have used
to produce the same view (i.e., first and second-signer messages) to the adversary. Con-
cretely, this set of randomness is exactly those defined by �

rand,
−→
h

(I0). Hence, we have
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trans(I0, rand,
−→
h ) = trans(�

rand,
−→
h

(I0), rand,
−→
h ) as desired.Moreover, it is easy to check

that�
rand,

−→
h

(�
rand,

−→
h

(I0)) from the definition of�
rand,

−→
h
. Hence, it is a bijection as desired.

This completes the proof. ��

Lemma 17 Lemma 2 holds for the witness extractors (Ext0, Ext1).

Proof Since the proof of 0-side and 1-side witnesses are analogous, we only consider the

0-sidewitness. Suppose the 0-sidewitness can be extracted from base (I, rand,
−→
h ), (I, rand,−→

h ′) at index i , but cannot be extracted from either of the sides (I, rand,
−→
h ′), (I, rand,

−→
h ′′)

or (I, rand,H), (I, rand,
−→
h ′′). Due to the description of our witness extractors (Ext0, Ext1)

in Fig. 7, we have (c′
0, c

′
1) = (c′′

0, c
′′
1) and (c0, c1) = (c′′

0, c
′′
1) if the 0-side witness cannot be

extracted from either of the sides. This implies that (c0, c1) = (c′
0, c

′
1). However, this means

that Ext0 fails to extract a 0-side witness, thus contradicting our assumption. This completes
the proof. ��

Combining everything together, we obtain the following.

Theorem 18 (One-more unforgeability) The partially blind signature scheme in Fig.6 is one-
more unforgeable. More precisely, for all � ∈ N, if there exists an adversaryA that makes Q
hash queries to the random oracle and breaks the �-one more unforgeability of our PBS with
advantage εA ≥ C1

2n · ( Q
�+1

)
, then there exists an algorithm B that breaks the GAIP problem

with advantage εB ≥ C2 · ε2A
( Q
�+1)

2·(�+1)3
for some universal positive constants C1 and C2.

Proof We define the hard instance generator IG to output a GAIP instance. Then, the proof
follows from the above Lemmas 1 and 2 and by invoking Theorem 3, i.e., the main theorem
of Kastner, Loss, and Xu [55]. To be precise, [55, Theorem 1] is for blind signatures and
not the partially blind variant—however, it can be checked that the same proof applies to
our partially blind signature by observing that our definition of 0-side and 1-side instances

are defined independently of the tags
−→
info used by the adversary, where note that

−→
info is

implicitly defined by (I, rand,
−→
h ). In particular, the probability that the reduction extracts

the correct witness (i.e., the witness not used by the reduction), can be bounded following
the same argument as [55, Theorem 1]. ��

Remark 3 (Comparing to the Abe-Okamoto partially blind signature)We note that the reason
why the same argument does not hold for the Abe-Okamoto partially blind signature [4] is
that the tag info is explicitly required to define the instances. Inmore detail, theAbe-Okamoto
partially blind signature only has one secret key a0 ∈ Zp attached to the verification key
h0 = ga0 ∈ G. To sign with respect to a tag info, the signer hashes info to a group element
hinfo and then performs an OR proof that it knows a secret key to either h0 or hinfo. In the
security proof, the reduction hashes info to a group element hinfo = gainfo while knowing
the exponent ainfo. In case the adversary is restricted to use only one tag info, the proof can
define the 0-side and 1-side instances by using a0 and ainfo, respectively, and in particular
independently of the adversary’s randomness. However, when there is more than one tag, we
can no longer define a well-defined 1-side instance. This is why Kastner, Loss and Xu and
Abe and Okamoto first prove the single-tag setting and then prove the multi-tag setting by
guessing which tag info the adversary forges on.
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7 Optimization using higher degree roots of unity

We investigate the possibility of reducing the signature size by exploiting the Z-module
structure of the ideal class group. In this section, we present a generalized construction of
the blind signature presented in Sect. 5 based on a new assumption, the ring group action
inverse problem (rGAIP), which is a generalized version of the group action inverse problem
(GAIP).

In Sects. 7.4 to 7.6, we provide the proofs of the correctness, blindness, and OMUF of
the construction under the assumption that rGAIP is hard and discuss the applicability of the
partialness technique given in Sect. 6. In Sect. 8, we provide analysis on the hardness of the
rGAIP for the CSIDH-512 parameter set and show that not all rGAIP instances are equally
difficult.

7.1 Overview and preparation

7.1.1 Notations

We summarize some notations unique to this section.We useZd to denote the set {0, . . . , d−
1}. Moreover, any vector is indexed from 0, e.g., a ∈ Z

κ
d is expressed as (a0, . . . , aκ−1).

With an overload of notations, for any integer j , we define the bold font j as the length-κ
vector ( j, . . . , j). For any positive integer d and a ∈ Z or Zd , we use [a]d to denote (a
mod d) ∈ Zd . For the simplicity of the notations, we use the exponent of 〈ζ 〉 to represent the
challenge space of a sigma protocol with an understanding that 〈ζ 〉 is the d-th primitive root
of unity. That is, we will draw a challenge c from Zd . The operation between the challenges
is thereby the addition c0 + c1, corresponding to the multiplication of ζ c0+c1 = ζ c0ζ c1 .

7.1.2 Overview

It is a natural attempt to reduce the signature size by considering a larger public key space.
Indeed, as shown in [12, Sect. 5.1], such an optimization is possible for standard signature
schemes by relaxing GAIP to the multi-target GAIP. As a result, the soundness error of the
underlying sigma protocol in a single round decreases to 1

2S−1 from 1
3 for a public key size

S. Since the number of repetitions is decreased to n
log2(2S−1) , this technique makes it possible

to decrease the signature size, signing, or verification time at the cost of increased public key
size. For isogeny-based protocols—which are generally slow but offer small key sizes—this
is a very favorable tradeoff.

Unfortunately, a natural adaptation of the same relaxation will not apply to our case
because the multi-target GAIP does not offer the particular structure that our blind signature
requires. Roughly speaking, a main component of our blind signature requires a user/verifier
to compute [gz+y∗d ] ∗ E0 while only given [gy∗ ] ∗ E0 ∈ E��, z ∈ ZN and d . This is only
feasible by using the quadratic twist which is when d ∈ {−1, 1}. An unstructured random
public key not only fails to benefit the user but also breaches the group structure of the
challenge space since d is no longer restricted in {−1, 1}.

To this end, we present a novel technique that allows us to trade off between efficiency
and the signature size using a structured public key. The high-level idea is fairly simple: to
generalize the concept of the quadratic twist in the sense of the group action relation. In the
previous section, both parties compute the action of [gr ] on a curve E0 or E

−1
0 with respect

to the challenge c ∈ Z
×
3 = {−1, 1}. Recall that ([gr ] ∗ E0)

−1 = [g−r ] ∗ E0. In other words,
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the challenge c ∈ Z
×
3 = {−1, 1} is encoded into gc. Since −1 is a second primitive root of

unity over ZN , the challenge space, as a (multiplicative) group, induces an action on E�� by
computing the twist.

Wegeneralize the concept by expanding the challenge space to 〈ζ 〉 = {1, ζ, ζ 2, . . . , ζ d−1},
where d ∈ N and ζ , a d-th primitive root of unity over Z×

N ; that is, ζ satisfies ζ d = 1 and
ζ j = 1 for any j ∈ [d−1]. Note that 〈ζ 〉 is naturally amultiplicative (sub)group, which offers
the operation over the challenge space. The action (r , c) ∈ ZN × Zd on a curve E0 ∈ E�� is
defined to be [grζ c ] ∗ E0. When k = 2 and ζ can be taken to be −1, this is identical to the
scheme in the previous section. However, unlike the case d = 2 where we have the formula
derived from the quadratic twist, when d ≥ 3 the signer is required to compute [gy∗

b, j ζ ] ∗ E0

for each (b, j) ∈ [2] × [κ] in BS.S1 to aid the user’s computation.

7.1.3 Preparation

Our construction requires one more property from the d-th primitive root of unity ζ to be
useful.

Looking ahead, when we construct a sigma protocol for the rGAIP relation, the special
soundness extractor must solve for the secret exponent a ∈ ZN , given c1, c2 ∈ Z

2
N and

r1 = y + aζ c1 , r2 = y + aζ c2 (mod N ) for an unknown a and y. If ZN is a finite field,
then this is trivial. However, in general when ZN is a ring, such a may not be efficiently
computable. One sufficient condition would be to only use a d ∈ ZN such that (ζ c1 − ζ c2)

is invertible over ZN for all distinct (c1, c2) ∈ Z
2
N . However, this is an overly restrictive

requirement and we thus make the following relaxed requirement.

Requirement 1 We require ηd = lcmi∈[d−1](gcd(ζ i − 1, N )) = poly.

The requirement is equivalent to finding a d which divides the totient of many maximal
prime power divisors of the class number (see Sect. 8.1 about the existence of, and a method
for finding, such a root). Informally, when ηd is polynomial in the security parameter n, then
we can brute force all a ∈ ZN such that a · (ζ c1 − ζ c2) = z for a given (c1, c2, z) ∈ Z

3
N .

Formally, we have the following.

Lemma 19 Let (N , d, ζ ) be a public parameter where the factorization of N is known and
let ηd = lcmi∈[d−1](gcd(ζ i − 1, N )). Then, there exists an extractor Ext′ that takes as input
the public parameter and (r1, r2, c1, c2) ∈ Z

2
N × Z

2
d where c1, c2 are distinct with relations

r1 = y + aζ
c1
d , r2 = y + aζ

c2
d (mod N ), and outputs a list containing a ∈ ZN of size not

greater than ηd in time poly(ηd).

Proof By calculating (r1 − r2)ζ
−c2
d = a(ζ

c1−c2
d − 1), the extractor solves for a by solving

the linear equation lifted to the prime power factor of N , then using the Chinese remainder
theorem to obtain a list of candidates of a. The size of the list is the number of solutions for
the linear equation, which is at most ηd . ��

7.2 Base sigma protocol with a large challenge space

We first introduce the base sigma protocol with a larger challenge space assuming Require-
ment 1. This is depicted in Fig. 8 with the boxed components omitted.

We will show the correctness, HVZK, and, importantly, special soundness of this sigma
protocol.
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Fig. 8 The base sigma protocol with a large challenge space, where the box is to be ignored. Recall Zd =
{0, 1, . . . , d − 1}. A j

b denotes [gabζ j ] ∗ E0 for j ∈ Zd and the vector A
[c]d
b denotes (A

[c0]d
b , . . . , A

[cκ−1]d
b )

where c = (c0, . . . , cκ−1) ∈ Z
κ . If c ∈ Z

κ
d , then A

[c]d
b is simply Acb . Other notations are explained in the

paragraph above Sect. 7.2. The base sigma protocol can be made compatible with blind signatures by running
the boxed lines instead of the preceding non-boxed lines

7.2.1 Correctness

It suffices to show the equation.

[grb ] ∗ Acb
b = Yb (6)

for b ∈ {0, 1}. For the case b = 1 − δ, the equation holds naturally. For the case b = δ, we
have

[grδ ] ∗ Acδ
δ = [gyδ−aδζ

cδ ] ∗ Acδ
δ

= [gyδ−aδζ
cδ ] ∗ ([gaδζ

cδ ] ∗ E0
)

= Yδ,

where we use the fact that Ac
δ = [gaδζ

c ] ∗ E0 for any c ∈ Zd .

7.2.2 HVZK

Given a challenge c ∈ Z
κ
d , a zero-knowledge simulator Sim samples random (c0, c1)

$← Z
κ
d

conditioned on c0 + c1 = c. Then, for each b ∈ {0, 1}, the simulator generates rb
$← Z

κ
N

and Yb = [grb ] ∗ Acb
b , and outputs ((Y0,Y1), c, (r0, r1, c0, c1)).

Since there is a bijection between rb and Yb once cb is fixed, this produces a transcript
identically distributed as a real transcript.

7.2.3 Witness indistinguishability

This is a direct consequence of the above since perfect HVZK implies perfect witness indis-
tinguishability.
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7.2.4 Special soundness

It suffices to show that special soundness holds in the case that κ = 1. Let ((Y0, Y1), c, (r0, r1,
c0, c1)), and ((Y0, Y1), c′, (r ′

0, r
′
1, c

′
0, c

′
1)) be two valid transcripts. Since c = c0 + c1, c =

c′
0 + c′

1 and c = c′, we assume c0 = c′
0 without loss of generality. We have r0, r ′

0 ∈ ZN , and

distinct c0, c′
0 ∈ Zd which satisfy r0 = y + a0ζ

c0
d , r ′

0 = y + a0ζ
c′
0

d (mod N ) where y, a0 are
unknown. Since we assume Requirement 1 holds, we can use the extractor Ext′(r0, r ′

0, c0, c
′
0)

in Lemma 19 to obtain a list of size η = lcmi∈[d−1](gcd(ζ i − 1, N )) = poly containing
a0 ∈ ZN in polynomial time. We can find a0 from the list by running through each element
in the list and checking if it maps to the statement (A j

0) j∈Zd or (A
j
1) j∈Zd . Here, we implicitly

assume the statement is honestly generated and that this check always terminates.
Before explaining our blind signature, we make a subtle but important modification to

our base sigma protocol depicted in Fig. 8 with the boxes. As explained in the introduction,
this modification is required since the user of the blind signature is required to randomize

Yb = [gyb ] ∗ E0 for b ∈ {0, 1} to [gzb ] ∗ ([gybζdb ] ∗ E0
)
, where (zb,db)

$← Z
κ
N × Z

κ
d ,

which is no longer possible when d ≥ 3. We will give the details of this construction in the
following subsection. This extra components also play a key role when proving blindness
with malicious keys.

7.3 Enhancing the base sigma protocol for blind signatures

Before explaining our blind signature, we make a subtle but important modification to our
base sigma protocol. To understand this modification, notice that if we tried to use a similar
idea as in the prior sections to blind Yb = [gyb ] ∗ E0 for b ∈ {0, 1}, the user must randomize

it to a value [gzb ] ∗ ([gybζdb ] ∗ E0
)
, where (zb,db)

$← Z
κ
N × Z

κ
d . This was doable when

d = 2, since ζ = −1 and [gybζdb ] ∗ E0 is simply the quadratic twist of Yb. However, in
general, such a computation cannot be performed. To this end, we let the prover include
components that will later help the user in the blind signature. This extension to our basic
sigma protocol is illustrated in Fig. 8, where the box represents the modification. The prover
sends [gybζ j ] ∗ E0 for all j ∈ Zd so that the user in the blind signature can choose whichever
one based on the dd it samples. We also modify the verifier of the base sigma protocol to
check that [gybζdb ] ∗ E0 were generated correctly. Below, we show that the extended sigma
protocol satisfies correctness and HVZK. Since the extended sigma protocol includes the
transcript of the base sigma protocol, special soundness is inherited.

7.3.1 Correctness

It suffices to show that

[grbζ j ] ∗ A[cb+j]d
b = Y j

b

for any (b, j) ∈ {0, 1} × Zd . For the case b = 1 − δ, the equation holds by definition. For
the case b = δ, we have

[grδζ j ] ∗ A[cδ+j]d
δ = [gyδζ

j−aδζ
cδ+j ] ∗ A[cδ+j]d

δ

= [gyδζ
j−aδζ

cδ+j ] ∗ ([gaδζ
cδ+j ] ∗ E0

)

= Y j
δ ,
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where we use the fact that A[c]d
δ = [gaδζ

c ] ∗ E0 for any c ∈ Z.

7.3.2 HVZK

Given a challenge c ∈ Z
κ
d , a zero-knowledge simulator Sim samples random (c0, c1)

$← Z
κ
d

conditioned on c0 + c1 = c. Then, for each (b, j) ∈ {0, 1} × Zd , the simulator generates

rb
$← Z

κ
N and Y j

b = [grbζ j ] ∗ A[cb+j]d
b , and outputs ((Y j

0,Y
j
1) j∈Zd , c, (r0, r1, c0, c1)) Since

for every j ∈ Zd , there is a bijection between rb and Y j
b once cb is fixed, this produces a

transcript identically distributed as a real transcript.

7.4 Description of our optimized blind signature

We present our optimized isogeny-based blind signature building upon of the enhanced base
sigma protocol in Sect. 7.2. Let (p, N , E0) be the public parameter and g be a generator of
the ideal class group C�(O) as in Sect. 5. Let ζ to be a d-th root of unity. We assume these
parameters are provided to all algorithms. The parameter κ ∈ N indicates the number of
repetition of the underlying sigma protocol such that dκ ≥ 2n . Let H : {0, 1}∗ → Z

κ
d be

a hash function modeled as a random oracle. The following algorithms are summarized in
Fig. 9.

BS.KGen (1n): On input the security parameter 1n , it samples a bit δ
$← {0, 1}, (a0, a1) $←

Z
2
N , and outputs a public key pk = ((A j

0) j∈Zd , (A
j
1) j∈Zd ) where A j

b = [gabζ j ] ∗ E0 for
(b, j) ∈ {0, 1} × Zd , and secret key sk = (δ, aδ).

BS.S1(sk) : The signer first samples y∗
δ

$← Z
κ
N and sets Y j∗

δ = [gy∗
δ ζ j ] ∗ E0 for j ∈ Zd . It

then samples (c∗
1−δ, r

∗
1−δ)

$← Z
κ
d ×Z

κ
N and sets Y j∗

1−δ = [gr∗
1−δζ

j ] ∗ A
c∗
1−δ+j
1−δ for j ∈ Zd .

It then outputs the signer state stateS = (y∗
δ , c

∗
1−δ, r

∗
1−δ) and the first-sender message

ρS,1 = (Y j∗
0 ,Y j∗

1 ) j∈Zd .

BS.U1(pk,M, ρS,1) : The user parses (Y j∗
0 ,Y j∗

1 ) j∈Zd ← ρS,1, samples (db, zb)
$← Z

κ
d×Z

κ
N ,

and computes Zb = [gzb ] ∗ (Ydb,0∗
b,0 , . . . , Y

db,κ−1∗
b,κ−1

)
for b ∈ {0, 1}. Here, note that Ydb, j∗

b, j

denotes the j-th ( j ∈ Zd ) element of Y
db, j∗
b ∈ E��κ and db, j is the j-th element of

db ∈ Z
κ
d . It then computes c = H(Z0‖Z1‖M) ∈ Z

κ
d and outputs the user state stateU =

(d0,d1, z0, z1) and user message ρU = c∗ = c − d0 − d1.
BS.S2(stateS, ρU) : The signer parses (y∗

δ , c
∗
1−δ, r

∗
1−δ) ← stateS, c∗ ← ρU, sets c∗

δ =
c∗ + c∗

1−δ ∈ Z
κ
d , and computes r∗

δ = y∗
δ − aδζ

c∗
δ ∈ Z

κ
N . It then outputs the second-signer

message ρS,2 = (c∗
0, c

∗
1, r

∗
0, r

∗
1).

BS.U2(stateU, ρS,2) : The user parses (d0,d1, z0, z1) ← stateU, (c∗
0, c

∗
1, r

∗
0, r

∗
1) ← ρS,2 and

checks if [gr∗
bζ

j ] ∗ A
[c∗
b+j]d

b = Y j∗
b holds for all (b, j) ∈ {0, 1} × Zd . If not, it outputs

⊥. Otherwise, it sets (cb, rb) = (c∗
b + db, zb + r∗

bζ
db ) ∈ Z

κ
d ×Z

κ
N for b ∈ {0, 1}. It then

checks if

c0 + c1 = H
(
[gr0 ] ∗ Ac0

0 ‖[gr1 ] ∗ Ac1
1 ‖M
)
. (7)

If it holds, it outputs a signature σ = (c0, c1, r0, r1) ∈ (Zκ
d)

2 × (Zκ
N )2, and otherwise ⊥.

BS.Verify(pk,M, σ ): The verifier outputs 1 if Eq.7 holds, and otherwise 0.
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Fig. 9 The optimized version of the blind signature where H is a hash function and ζ is a d-th primitive
root of unity. Recall Zd = {0, 1, . . . , d − 1} and that we use the notations d = (d0, . . . , dκ−1) ∈ Z

κ
d and

Y j = (Y j
0 , . . . , Y j

κ−1) ∈ E��κ . Moreover, if c ∈ Z
κ
d , then A

[c]d
b is simply Acb for b ∈ {0, 1}. See the caption

of Fig. 8 for further explanation on the notations

Remark 4 One can observe that the only source of overhead in the communication bandwidth
compared to the blind signature in Sect. 5 is in BS.S1. The bandwidth is increased by a factor
of dκ

2n .

Remark 5 We remark that it is possible to fuse our partial blindness technique and
the generalized construction in this section and obtain an optimized PBS variant. By
doing so, we can obtain a PBS with a smaller signature size based on the rGAIP.
Roughly, there are three sequences of the curves in the public statement (A0, A1, A2) =(
([ga0ζ j ] ∗ E0) j∈Zd , ([ga1ζ j ] ∗ E0) j∈Zd , ([ga2ζ j ] ∗ E0) j∈Zd

)
where the secret key of the third

public key is derived from the public information. The underlying sigma protocol is to prove
for a two-out-of-three secret corresponding to this statement.

However, given the proofs in Sect. 6 and in this section, we expect the proof to be highly
involved. We leave this as a future work.
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7.5 Proof of correctness and blindness

The subsection shows that our blind signature presented in Sect. 7.4 has (perfect) correctness
and blindness.

Theorem 20 The blind signature scheme in Fig.9 is (perfectly) correct.

Proof To show correctness, it suffices to show the equation

c0 + c1 = H
([gr0 ] ∗ Ac0

0 ‖ [gr1 ] ∗ Ac1
1 ‖ M

)

holds when both the signer and user follow the protocol.
From the description of BS.U1, BS.S2 and BS.U2, we have c = c∗ +d0 +d1, c∗ = c∗

1 +c∗
2,

and cb = c∗
b + db for b ∈ {0, 1}. Therefore, we have c = c0 + c1, which shows the l.h.r.

equation. It remains to show Zb = [grb ] ∗ Acb
b for each b ∈ {0, 1}. Following the definition

of Zb computed by BS.U1, we have

Zb = [gzb ] ∗ (Ydb,0∗
b,0 , . . . , Y

db,κ−1∗
b,κ−1

)

= [gzb ] ∗ ([gr∗
b,0ζ

db,0 ] ∗ A
[c∗
b,0+db,0]d

b , . . . , [gr∗
b,κ−1ζ

db,κ−1 ] ∗ A
[c∗
b,κ−1+db,κ−1]d

b

)
(8)

= ([gzb,0+r∗
b,0ζ

db,0 ] ∗ A
[c∗
b,0+db,0]d

b , . . . , [gzb,κ−1+r∗
b,κ−1ζ

db,κ−1 ] ∗ A
[c∗
b,κ−1+db,κ−1]d

b

)

= [grb ] ∗ Acb
b , (9)

where Eq.8 follows from the check performed by BS.U2 and Eq.9 follows from the definition
of (cb, rb). ��

Next, we will show the generalized blind signature has perfect blindness. Notably, blind-
ness holds even under adversarially chosen keys. This is a strong property since if a malicious
signer uses malformed supersingular curves in E�� without the ring structure as the public
key, the user cannot detect this. The main reason why we can argue perfect blindness is that
if the public key is malformed, then the pair of curves in the first message (Y j∗

0 ,Y j∗
1 ) j∈Zd is

also malformed in a controlled manner. If there exists one user state that leads to a valid sig-
nature, then we can argue that the first message must be in a specific (but possibly incorrect)
form regardless of the user state. Using this, we are able to establish a bijection between an
arbitrary user state and a valid signature conditioning on a fixed first and second signature
messages and a user message. Namely, any valid signature could have been produced with
an equal probability.

Theorem 21 The blind signature scheme in Fig.9 is (perfectly) blind under chosen keys.

Proof Let (ρS,1,0, ρS,2,0) and (ρS,1,1, ρS,2,1)be the two sets of first and second-signermessage
pairs the adversary A queries to oracles U1 and U2. Moreover, let ρU,b be the user message
returned by oracle U1 when A queries with ρS,1,b for b ∈ {0, 1}, and let (σcoin, σ1−coin) be
the two signatures A sees at the end, where note that these two corresponds to M̃0 and M̃1,
respectively, regardless of the choice of coin ∈ {0, 1}. We call (ρS,1,b, ρU,b, ρS,2,b)b∈{0,1} the
view ofA. Toproveperfect blindness, it suffices to prove that the view is independent of coin ∈
{0, 1}. In other words, since the randomness used by oracle U1 is defined by (stateU,b)b∈{0,1}
and oracleU2 is deterministic, we prove that there exist two sets of states (state(0)

U,b)b∈{0,1} and
(state(1)

U,b)b∈{0,1} that can be sampled by oracle U1 with an equal probability such that they
generate the same view to A but produce a different pair of signatures (σ0, σ1) and (σ1, σ0),
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respectively. Considering that the set of valid signature space and user randomness/state
space is identical, we prove a stronger statement that for any non-aborting (partial) view
(ρS,1,0, ρU,0, ρS,2,0) of A, there is a bijection between a valid signature σ0 on message M0

and a state stateU,0 of the oracle U1. Below, we drop the subscript 0 for readability.
Let us denote the first and second-signer message as ρS,1 = (Y j∗

0 ,Y j∗
1 ) j∈Zd , ρS,2 =

(c∗
0, c

∗
1, r

∗
0, r

∗
1), a user message as ρU = c∗, and a valid signature for message M as σ =

(c0, c1, r0, r1) ∈ (Zκ
d)

2 × (Zκ
N )2. Here, note that any public key pk = ((A j

0) j∈Zd , (A
j
1) j∈Zd )

output by the adversary (i.e., malicious signer)A can be efficiently checked to be valid elliptic
curves (i.e., supersingularity) but cannot be checked if it has the correct cyclic structure.

We define a map between the signature σ = (c0, c1, r0, r1) and user state stateU =
(d0,d1, z0, z1) by db = cb − c∗

b and zb = rb − r∗
b · ζ db for b ∈ {0, 1}. It is easy to check that

once the view (or ρS,2 = (c∗
0, c

∗
1, r

∗
0, r

∗
1)) is fixed, then this mapping is indeed a bijection. It

remains to prove that this stateU is a state that produces σ .
Observe that if BS.U1(pk,M, ρS,1) samples stateU, then it computes Zb = [gzb ] ∗(

Y
d∗
b,0

b,0 , . . . , Y
d∗
b,κ−1

b,κ−1

)
for b ∈ {0, 1} using ρS,1. It then sets c′ = H(Z0||Z1||M) and defines

ρ′
U = c′∗ = c′ − d0 − d1. Moreover, due to restrictions on the blindness game, the view is

non-aborting for at least one state stateU. Combining this with the fact that the first check
performed by BS.U2(stateU, ρS,2) only depends on ρS,2, and in particular independent of

stateU, we have [gr∗
bζ

j ] ∗ A
[c∗
b+j]d

b = Y j∗
b for j ∈ Zd and any state stateU. Therefore, BS.U2

always outputs σ as desired since the signature σ is assumed to be valid.
It remains to check that ρ′

U = c′∗ generated by BS.U1 is the desired ρU = c∗ to complete
the proof. Since σ is valid and due to the definition of stateU, we have c∗

0 + c∗
1 + d0 +

d1 = H
([gr0 ] ∗ Ac0

0 ‖ [gr1 ] ∗ Ac1
1 ‖ M

)
. Moreover, since the view is non-aborting, we are

guaranteed that c∗ = c∗
0 + c∗

1. Therefore, if Zb = [grb ] ∗ Acb
b for b ∈ {0, 1}, then we can

conclude that c∗ = c′∗ as desired. This can be checked as follows, where we use the fact that
[gr∗

bζ
j ] ∗ A

[c∗
b+j]d

b = Y j∗
b for j ∈ Zd in the second equality:

Zb = [gzb ] ∗ (Ydb,0∗
b,0 , . . . , Y

db,κ−1∗
b,κ−1

)

= [gzb ] ∗ ([gr∗
b,0ζ

db,0 ] ∗ A
[c∗
b,0+db,0]d

b , . . . , [gr∗
b,κ−1ζ

db,κ−1 ] ∗ A
[c∗
b,κ−1+db,κ−1]d

b

)

= ([gzb,0+r∗
b,0ζ

db,0 ] ∗ A
[c∗
b,0+db,0]d

b , . . . , [gzb,κ−1+r∗
b,κ−1ζ

db,κ−1 ] ∗ A
[c∗
b,κ−1+db,κ−1]d

b

)

= [grb ] ∗ Acb
b .

This completes the proof. ��

7.6 Proof of one-more unforgeability

Our proof of OMUF consists of preparing the necessary tools present in Sect. 4 to invoke The-
orem 3. Specifically, we define instances I0, I1 (see Definition 12), the map �

rand,
−→
h

(see
Definition 19), the witness extractors (Ext0, Ext1) (see Definition 20) and prove that Lemmas
1 and 2 hold. We refer the readers to Sect. 5.5 for some of the notations used below.

Preparation: instances
Let us first define the 0-side instance I0 and the 1-side instance I1. Below, we assume the

adversary against the one-more unforgeability game makes �-signing queries in total.

A 0-side instance I0 = (0, a0,A1,
−→
y∗
0 ,

−→
r∗
1 ,

−→
c∗
1 ) is defined as follows:

• (0, a0) : The secret key sk when δ = 0.
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• A1 : The part of the public key pk = (A0 = (A j
0) j∈Zd ,A1 = (A j

1) j∈Zd ) whose secret
key is unknown.

• y∗(k)
0 : The exponent of the commitment (Y j∗(k)

0 ) j∈Zd in the k-th (k ∈ [�]) first-sender
message when δ = 0 such that Y j∗(k)

0 = [gy∗(k)
0 ζ j ] ∗ E0 for each j ∈ Zd .

• c∗(k)
1 : The simulated challenge in the k-th (k ∈ [�]) first-sender message when δ = 0.

• r∗(k)
1 : The exponent of the commitment Y j∗(k)

1 in the k-th (k ∈ [�]) first-sender message

when δ = 0 such that Y j∗(k)
1 = [gr∗(k)

1 ζ j ] ∗ A
[c∗(k)
1 +j]d

1 for each j ∈ Zd .

A 1-side instance I1 = (1, a1,A0,
−→
y∗
1 ,

−→
r∗
0 ,

−→
c∗
0 ) is defined as follows:

• (1, a1) : The secret key sk when δ = 1.
• A0 : The part of the public key pk = (A0 = (A j

0) j∈Zd ,A1 = (A j
1) j∈Zd ) whose secret

key is unknown.
• y∗(k)

1 : The exponent of the commitment (Y j∗(k)
1 ) j∈Zd in the k-th (k ∈ [�]) first-sender

message when δ = 1 such that (Y j∗(k)
1 ) j∈Zd = [gy∗(k)

1 ζ j ] ∗ E0 for each j ∈ Zd .

• c∗(k)
0 : The simulated challenge in the k-th (k ∈ [�]) first-sender message when δ = 1.

• r∗(k)
0 : The exponent of the commitment Y j∗(k)

0 in the k-th (k ∈ [�]) first-sender message

when δ = 1 such that Y j∗(k)
0 = [gr∗(k)

0 ζ j ] ∗ A
[c∗(k)
0 +j]d

0 for each j ∈ Zd .

7.6.1 Preparation: Map8
rand,

−→
h

We next define the map �
rand,

−→
h

that maps a 0-side instance I0 into a 1-side instance I1

and vice versa. Concretely, a 0-side instance I0 = (0, a0,A1,
−→
y∗
0 ,

−→
r∗
1 ,

−→
c∗
1 ) maps to a 1-side

instance I1 such that

I1 = (1, a1, A0 = (A j
0) j∈Zd = ([ga0ζ j ] ∗ E0) j∈Zd ,

−→
y∗
1 = −→

r∗
1 + a1ζ

−→
c∗
1 ,

−→
c∗
0 = −→

c∗ − −→
c∗
1 ,

−→
r∗
0

= −→
y∗
0 − a0ζ

−→
c∗
0 ),

where a1 ∈ ZN such that A0
1 = [ga1 ] ∗ E0 and recall that

−→
c∗ = −→e (I0, rand,

−→
h ). On the

other hand, a 1-side instance I1 = (1, a1,A0,
−→
y∗
1 ,

−→
r∗
0 ,

−→
c∗
0 ) maps to a 0-side instance I0 such

that

I0 = (0, a0, A1 = (A j
1) j∈Zd = ([ga1ζ j ] ∗ E0) j∈Zd ,

−→
y∗
0 = −→

r∗
0 + a0ζ

−→
c∗
0 ,

−→
c∗
1 = −→

c∗ − −→
c∗
0 ,

−→
r∗
1

= −→
y∗
1 − a1ζ

−→
c∗
1 )

where a0 ∈ ZN such that A0
0 = [ga0 ] ∗ E0 and recall that

−→
c∗ = −→e (I1, rand,

−→
h ).

7.6.2 Preparation: witness extractors (Ext0, Ext1)

Fix I, rand and let (
−→
h ,

−→
h ′) ∈ Fi (I, rand) for some i ∈ [� + 1]. Moreover, denote the

two signatures σ = (c0, c1, r0, r1), σ ′ = (c′
0, c

′
1, r

′
0, r

′
1) be the signatures that correspond

to c(i) and c′(i), respectively, where recall c(i) (resp. c′(i)) is the i-th entry of
−→
h (resp.

−→
h ′).

In particular, we have c0 + c1 = c(i) and c′
0 + c′

1 = c′(i). We define the witness extractors
(Ext0, Ext1) as in Fig. 10.

The following lemma establishes the correctness of the witness extractors.
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Fig. 10 Witness extractors for our generalized blind signature for σ, σ ′. In the above, σ = (c0, c1, r0, r1)
and σ ′ = (c′0, c′1, r′0, r′1), where c0, c1, c′0, c′1 live in Zκ

d and r0, r1, r′0, r′1 live in Zκ
N . Ext

′ is the extractor in
Lemma 19. Non-bold font indicates the entries of a vector

Lemma 22 (Ext0, Ext1) in Fig.10 satisfy the definition of witness extractors in Definition 20.

Proof By thedefinitionofFi (I, rand) (seeDefinition14),wehave (I, rand,
−→
h ), (I, rand,

−→
h ′)

∈ Succ and c(i) = c′(i). The former implies that the two signatures σ and σ ′ are valid. Con-
cretely, we have

c(i) = c0 + c1 = H
(
[gr0 ] ∗ Ac0

0 ‖ [gr1 ] ∗ Ac1
1 ‖ M

)

c′(i) = c′
0 + c′

1 = H
(
[gr′

0 ] ∗ A
c′
0
0 ‖ [gr′

1 ] ∗ A
c′
1
1 ‖ M′).

Moreover, since
−→
h and

−→
h ′ agree up to the i-th entry and the challenger and adversary’s

randomness are fixed, the input to the hash functions agree. Namely, we have

[gr0 ] ∗ Ac0
0 = [gr′

0 ] ∗ A
c′
0
0 ∧ [gr1 ] ∗ Ac1

1 = [gr′
1 ] ∗ A

c′
1
1 ∧ M = M′

Since c(i) = c′(i), we must have c0 = c′
0 or c1 = c′

1. Thus, due to the special soundness
of the underlying sigma protocol (see Sect. 7.2) one of Ext0 or Ext1 always outputs a valid
secret key. This completes the proof. ��

7.6.3 Proof of one-more unforgeability

We have the following two lemmas required to invoke the main theorem Theorem 25. Since
the proof is almost identical to our earlier proofs in Sect. 5.5, we omit the proof of the lemmas.

Lemma 23 Lemma 1 holds for our definition of the map �
rand,

−→
h
above.

Lemma 24 Lemma 2 holds for our definition of the witness extractors (Ext0, Ext1) Fig.10.

Combining everything together, we obtain the following.

Theorem 25 (One-more unforgeability) The partially blind signature scheme in Fig.9 is one-
more unforgeable. More precisely, for all � ∈ N, if there exists an adversaryA that makes Q
hash queries to the random oracle and breaks the �-one more unforgeability of our scheme
with advantage εA ≥ C1

dκ · ( Q
�+1

)
, then there exists an algorithm B that breaks the ζ -rGAIP

problem with advantage εB ≥ C2 · ε2A
( Q
�+1)

2·(�+1)3
for some universal positive constants C1

and C2. Note we use a d-th primitive root of unity ζ and κ denotes the number of parallel
repetitions of the underlying sigma protocol.
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Proof Upon receiving an rGAIP instance, the wrapper proceeds as described in Sect. 4.2. The
proof follows from the above Lemmas 23 and 24 and Theorem 3 (i.e., [55, Theorem 1]) and
the result follows. ��

8 Analysis of ring GAIP

This section analyzes the ζd -ring group action inverse problem (ζd -rGAIP) over CSIDH-512.
Section8.1 discusses the existence of primitive d-th roots in Z

×
N , and a method to find one

which satisfies Requirement 1. Section8.2 recalls the most efficient classical and quantum
algorithms againstGAIP andpresents a structural attack on ζd -rGAIPwhich effectively reduces
ζd -rGAIP for a few choices of d to a GAIP instance with a smaller group size compared to
the original group considered by ζd -rGAIP. In Sect. 8.3, we complement our cryptanalysis by
proving that ζd -rGAIP for a few choices of d is as hard as GAIP defined over the same group.
This shows optimality of our structural attack for ζd -rGAIP for some choices of d . We note
that the concrete value of d’s that admit an attack or a reduction depends on the concrete
CSIDH-512 parameter set.

8.1 Finding a root of unity and satisfying requirement 1

We briefly discuss the existence of and a process for finding a primitive d-th root of unity
ζd ∈ Z

×
N which satisfies Requirement 1. Firstly, it is a straightforward consequence of the

fundamental theorem of finitely-generated abelian groups and the definition of λ(N ) that
Z

×
N

∼= Zn1 × Zn2 × · · · × Znr where n1 | n2 | · · · | nr and nr = λ(N ), so that a d-th root of
unity exists if and only if d is a divisor of λ(N )—here, λ(·) is the Carmichael function.

To find such a root for a given valid d , the most intuitive method, perhaps, is to start with

a primitive λ(N )-th root of unity ζλ(N ), and compute ζ
λ(N )
d

λ(N ) , which will have order exactly d .
Unfortunately, this may result in a d-th root of unity that does not meet Requirement 1 (even
when one exists which satisfies Requirement 1). In particular, we have to ensure that ζ is a
generator modulo all but a small collection of small prime power divisors of N to conclude
ηd = lcmi∈[d−1](gcd(ζ i − 1, N )) = poly(n). First, let N = 2 f pe11 pe22 · · · pett be the prime
decomposition of N—note that we treat the prime 2 separately for later convenience.12 By
the Chinese remainder theorem we have

Z
×
N

∼= Z
×
2 f × Z

×
p
e1
1

× Z
×
p
e2
2

· · · × Z
×
pett

.

Now, for each j such that d | p j − 1, we may find an element γ j of Z
×
p
e j
j

of order precisely

d , since Z
p
e j
j
is cyclic of order p

e j−1
j (p j − 1).13 Let Id = { j : 1 ≤ j ≤ t and d | p j }.

Applying the Chinese remainder theorem again, there exists a solution ζd (mod N ) to the

12 In CSIDH this is not necessary, since the choice of p ≡ 3 (mod 4) guarantees that N = #C�(O) is odd.
But this result extends to other groups, and so we treat it in full generality.
13 Since p j is odd, we have λ(p

e j
j ) = ϕ(p

e j
j ) = pe j−1

(p j − 1) so that Z×
p
e j
j

is cyclic of order divisible by

d.
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system

ζd ≡

⎧⎪⎨
⎪⎩

γ j (mod p j ) if j ∈ Id
1 (mod p

e j
j ) if j ∈ [t] \ Id

1 (mod 2 f )

.

Note that this ζd is coprime to N , and moreover for i = 1, 2, . . . d − 1 we have

ζ id ≡ 1 (mod p j ) for j ∈ Id

ζ id ≡ 1 (mod p
e j
j ) for j ∈ [t] \ Id

ζ id ≡ 1 (mod 2 f )

so that ηd = lcmi∈[d−1](gcd(ζ id − 1, N )) = 2 f ∏
j∈[t]\Id p

e j
j . In particular, if d is chosen so

that 2 f ∏
j∈[t]\Id p j = poly(n), our ζd satisfies Requirement 1, as required.

Concretely, for the CSIDH-512 parameter sets we have

N = 3 × 37 × 1407181 × 51593604295295867744293584889

× 31599414504681995853008278745587832204909,

λ(N ) = 23 × 32 × 5 × 72 × 47 × 71 × 499 × 43872112495999887537664613

× 111265544030570407933127742061928986637,

and we can construct the following primitive d-th roots of unity with respect to CSIDH-512
following this method for 2 ≤ d ≤ 9, 47 and 499:

ζ2 = −1
ζ3 = 247769943790849565037110451253594899400495635540473277008987864733013892490349
ζ4 = 8472499114678701993773553438173395921228936189139636336209864846564687757945
ζ5 = 72453024324688395187181869396509941269039951262689579224914692627674819998175
ζ7 = 72860468942899689738460495171518121784504211848373863183929808636917555788857
ζ8 = 17968081027951002862127994231802972521244754950515032766640065054960810210290
ζ9 = 144532467211328912938314429897930357983622454065276078255242921094258103952704

ζ47 = 6284781180379609583005371256408016347485447032979579744856129688235933726820
ζ499 = 27716990710015300853542735667675665633828171067931279717294182935872148507972.

Remark 6 In the list above, we only display d that is a prime power. For other composite
divisors of λ(N ), one can obtain the corresponding root by multiplication. For instance, we
can obtain ζ23453 = ζ47ζ499.

For the CSIDH-512 parameter set, the totients of the small prime divisors of N have the
following (maximal) small prime power divisors:

ϕ(3) : 2
ϕ(37) : 22, 32

ϕ(1407181) : 22, 3, 5, 47, 499
ϕ(51593604295295867744293584889) : 23, 3, 72

ϕ(31599414504681995853008278745587832204909) : 22, 71.
This implies that for the CSIDH-512 parameter we can find only a 4th root of unitymeeting

Requirement 1 (with η4 = 3) since onlyZ×
3 has no cyclic subgroups of order 4. For example,

for any 3rd root of unity ζ3, we always have a 134-bit divisor of gcd(ζ3, N ). Therefore,
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ζ4-rGAIP over CSIDH-512 is the candidate hardness assumption that can be used for our
optimized blind signature construction.

In the next subsection, we show that the hardness of ζd -rGAIP varies with the choice of ζd .
Since we believe ζd -rGAIP may be of independent interest, we waive Requirement 1 when
considering the cryptanalysis.

8.2 Cryptanalysis and structural attack on rGAIP

In the previous section, we showed how to choose a root ζd according to the decomposition of
the multiplication group ofZ×

N . In this section, we show that the underlying structure of ζd in
each component is related to the security of ζd -rGAIP by presenting a concrete cryptanalysis
on the overstretched ζd -rGAIP with respect to the CSIDH-512 parameters.

Generic attacks on GAIP
The best known classical algorithm against GAIP is the meet-in-the-middle attack [46, 47]

with time complexity O(
√|C�(O)|) = O( 4

√
p) against GAIP.

The best-known quantum algorithm against GAIP is Kuperburg’s algorithm [19, 58, 59,
68, 74]. Typically, given a challenge E to find a ∈ ZN such that E = [ga] ∗ E0, we have a
hidden shift problem by defining f (x) = [gx ] ∗ E0 and g(x) = [gx ] ∗ E , the permutations
f , g over E�� are hidden shifted by a. By applying Kuperburg’s algorithm, one can solve

GAIP in time complexity 2O(
√

log(|C�(O)|)). It is not clear whether the additional structure
can give an advantage to the adversary by reducing the group size in general. The subset
{1, ζd , . . . , ζ d−1

d } forms a group with multiplication instead of addition.Modifying the group
action by restricting to the multiplication subgroup of Z×

N does not give a feasible g with a
hidden shift a. Also, ζ generates the additive group ZN , so that the quotient group does not
help in this case.

8.2.1 Structural attack on rGAIP

Let ζd be a d-th primitive root of unity and N be the class number.
We show that the underlying structure of the root in each component of Z×

N is related
to security by displaying a structural attack against ζd -rGAIP and the efficacy of the attack
is related to each gcd(ζ id − 1, N ). We remark that the structural attack requires the order
N to be squarefree. The requirement complies with the Cohen–Lenstra conjecture and our
instantiation satisfies the requirement.

The high-level strategy of our structural attack is to break down a ζd -rGAIP instance into
several GAIP instances over smaller subgroups or quotient groups. The idea is to exploit the
differential information of any two curves in the instance and launch a Pohlig-Hellman-type
attack. Recall that the instance is of the form (X0 = [ga]∗E0, X1 = [gaζd ]∗E0, . . . , Xd−1 =
[gaζ d−1

d ]∗E0). For any two curves Xi , X j in the instance, there exists a unique group element

[gi j ] = [gaζ
j
d −aζ id ] ∈ C�(O) such that [gi j ] ∗ Xi = X j . Therefore, recovering the differential

element [gi j ] gives information about a. Typically, it is difficult to recover such [gi j ] due
to the size of the group and considering the GAIP of (Xi , X j ). However, depending on the
knowledge of ηd derived from the public ζd , the hardness of the GAIP of the structural
(Xi , X j ) can be reduced.

The following two lemmata show the decomposition into two GAIP instances with smaller
groups.
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Lemma 26 Let (C�(O), E��, E0, ∗) be known-order EGA (KOEGA) where C�(O) is cyclic,
and the other parameters are as described above. Let m = gcd(ζ

j
d −ζ id , N ), and let m′ = N

m .

Define Gi j = 〈[gζ
j
d −ζ id ]〉 and note that it is a subgroup of C�(O) with [gi j ] ∈ Gi j . Hence,

one can recover [gi j ] and a′ = a · (ζ j
d − ζ id) mod m′ by solving GAIP problem of (Xi , X j )

over the subgroup Gi j .

Proof Gi j is a cyclic subgroup generated by [gζ
j
d −ζ id ] and [gi j ] ∈ Gi j by definition. ��

Observe that the quotient group C�(O)/Gi j has order m, and in fact the map
φ : C�(O)/Gi j → 〈gm′ 〉 defined by φ([a]) = [am′ ] is an isomorphism. Solving the instance
(Xi , X j ) yields a ≡ a′ (mod m). Observe that [g(a−a′)] ∗ ([ga′ ] ∗ E0) = [ga] ∗ E0 = X0,
and moreover that m′ | (a − a′). Thus, to find a, it suffices to solve the GAIP instance
([ga′ ] ∗ E0, X0) over Zm ∼= 〈gm′ 〉 ∼= C�(O)/Gi j to find a − a′. If a′ has been recovered by
solving the GAIP instance (Xi , X j ) over Gi j , we can then easily recover a. Thus we have
established Lemma 27.

Lemma 27 Let (C�(O), E��, E0, ∗) be KOEGAwhere C�(O) is cyclic and the order is square-
free, and let the other parameters be as described above. If [gi j ] ∈ Gi j , then we can recover
[ga] by solving the GAIP instance ([ga′ ] ∗ E0, X0) over C�(O)/Gi j .

We see that the main strength against our structural attack depends on the GAIP hardness
with the group size of max(|Gi j |, |G/Gi j |). Choosing an appropriate sequence of (i�, j�)k�=1,
the root ζd gives the following ascending chain: {1} = G1 < G2 < · · · < Gk = C�(O),

where for each � ∈ [k − 1], G� = Gi j for some distinct i, j ∈ [d].
We can conclude as follows.

Theorem 28 Let (C�(O), E��, E0, ∗) be KOEGA where C�(O) is cyclic and the order is
squarefree. Let ζ be a d-th root of unity for G. Let

{1} = G1 < G2 < · · · < Gk = C�(O)

be a chain for G where G� = {[gn(ζ j�−ζ i� )] | n ∈ ZN } for some i�, j� ∈ {0, . . . , d − 1} for
� ∈ [k − 1]. Given a GAIP adversary A over the KOEGA model, there exists an ζ -rGAIP
adversary B running in polynomial time with O(k) queries to A such that 14

Advζ-rGAIP
(C�(O),E��,E0,∗)(B) ≥

k−1∏
�=1

AdvGAIP
(G�+1/G�,E��,X ′

�,∗)
(A).

where X ′
� is some element of E�� chosen in the reduction.

Proof We proceed by induction on k. When k = 2 it is trivial, since G2/G1 ∼= C�(O),
so the algorithm B simply calls A on (X0, X1) and returns its output. For larger k, we
apply Lemmas 26 and 27 to find that, to solve a ζ -rGAIP instance, it suffices to solve GAIP
instances in Gk−1 and Gk/Gk−1. By the inductive hypothesis, there exists a polynomial-
time adversary B′ making O(k) calls to A which solves GAIP in Gk−1 with advantage
Advζ-rGAIP

(C�(O),E��,E0,∗)(B′) ≥ ∏k−1
�=1 Adv

GAIP
(G�+1/G�,E��,X ′

�,∗)
(A), and A solves the GAIP instance

in Gk/Gk−1 with advantage AdvGAIP
(Gk/Gk−1,E��,X ′

k ,∗)
(A) by definition. Our algorithm B is as

14 Over KOEGA (C�(O),E��, E0, ∗), the group G can be represented by ⊕d
i=1Zmi . Therefore, it induces the

KOEGA (G�+1/G�,E��, X ′
�
, ∗) for any � in a canonical way by using the operation from (C�(O),E��, E0, ∗).
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Table 1 The upper row denotes ζd -rGAIP over CSIDH-512

ζd -rGAIP ζ2 ζ3 ζ4 ζ5 ζ7 ζ8 ζ9 ζ47 ζ499

GAIP with Group Size in log2 257 251 255 236 161 134 251 236 236

Using our cryptanalysis in Sect. 8.2, we reduce each ζd -rGAIP instance into a GAIP instance with a group size
summarized in the lower row. Note that GAIP over CSIDH-512 is equivalent to ζ2-rGAIP over CSIDH-512

follows: call B′ to solve the GAIP instance in Gk−1, and then call A to solve the GAIP
instance in Gk/Gk−1. This algorithm is clearly polynomial-time and makes O(k) calls toA;
moreover, it succeeds with probability

Advζ-rGAIP
(C�(O),E��,E0,∗)(B) ≥ AdvGAIP

(Gk/Gk−1,E��,X ′
k ,∗)

(A) ·
k−2∏
�=1

AdvGAIP
(G�+1/G�,E��,X ′

�,∗)
(A)

=
k−1∏
�=1

AdvGAIP
(G�+1/G�,E��,X ′

�,∗)
(A)

as required. ��
Using the aforementioned structural attack, the hardness of ζd -rGAIP is determined by the

size of the largest quotient group G�+1/G� for some � ∈ [k − 1].
Remark 7 We note that gcd(ζ id − 1, N ) is divisible by a prime divisor p of N if and only if

ζ
d

gcd(i,d)

d ≡ 1 (mod p). Thus we only need to calculate gcd(ζ d ′
d − 1, N ) for every divisor d ′

of d to find ηd . In particular, when d is prime, we need only compute gcd(ζd − 1, N ) to find
ηd . Therefore, we only need to consider gcd(ζd − 1, N ) for d = 3, 5, 7, 11, 47, 499 for the
CSIDH-512 parameter set.

As a consequence, we reduce each ζd -rGAIP instance to a GAIP instance with a group
size determined by ζd . This is summarized in Table 1. For ζ8, we have a chain {1} = G1 <

G2 < G3 < G4 < G5 = C�(O) where G2,G3,G4 is of size gcd(ζ8 − 1, N ),gcd(ζ 2
8 −

1, N ),gcd(ζ 4
8 − 1, N ), respectively, and the largest quotient group is |G2/G1| ≈ 2134,

which demonstrates the invulnerability of ζ8-rGAIP. For instance, for ζ3 we have a chain
{1} = G1 < G2 < G3 = C�(O) where G2 is of size 37 and the largest quotient group is
|G3/G2| ≈ 2251. For ζ4, ζ47 and ζ499 we have a chain {1} = G1 < G2 < G3 = C�(O)where
G2 is of size 1407181 with the largest quotient group |G3/G2| ≈ 2236. Our cryptanalysis
gives an upper bound of ζd -rGAIP from the perspective of GAIP. Importantly, ζ4-rGAIPwhich
we use for our optimized blind signature only seems to lose 2 bits of security compared with
ζ2-rGAIP, or equivalently, GAIP over CSIDH-512.

8.3 Equivalence between GAIP and rGAIP

We complement our cryptanalysis by showing that our attack is optimal for some parameters.
Although a few instances of ζd -rGAIPwere shown to be significantly weaker than the original
GAIP over CSIDH-512, we present a surprising condition that allows to reduce ζd -rGAIP to
the original GAIP. This shows that the attack in Table 1 is optimal for those specific choices
of ζd . We note that though the condition does not cover all cases (including ζ4 which meets
Requirement 1), the result gives us some guidance of the hardness of ζd -rGAIP.
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8.3.1 Large gcd(�d − 1,N) ≈ N

Note first that in this case we do not know how to have an efficient extractor in our optimized
sigma protocol due to the large value of ηd (see Lemma 19). Requirement 1 is not satisfied.

It is clear that GAIP is never easier than ζd -rGAIP. The key insight of the reverse reduction
is that when gcd(ζd −1, N ) ≈ N (or gcd(ζd −1, N ) = N/poly to be precise), given a GAIP
instance we can generate a ζd -rGAIP instance by trial and error. Additionally, the success rate
can also be amplified by repeatedly invoking the ζd -rGAIP oracle and testing the correctness.

Concretely, given X0 = [ga] ∗ E0 and access to an ζd -rGAIP adversary A for a d-th
root of unity ζd , we can construct a GAIP adversary B which invokes A on input (X0, [a′] ∗
X0, [a′ζd ]∗X0, . . . , [a′ζ d−1

d ]∗X0)wherea′ is sampled uniformly at random from the subgroup
{r ζd−1|r ∈ C�(O)}. Then, B outputs whatever A outputs. Since the subgroup is of size
N/gcd(ζd − 1, N ) = ploy(n), the adversary B invokes A on a well-formed instance with
probabilitygcd(ζd−1, N )/N ,which is non-negligible.We thus obtain the following theorem.

Theorem 29 Given any ζd -rGAIP adversary A for a known-order effective group action of
the group size N, there exists a GAIP adversary B in time d over the same action such that
Advζd -rGAIP(A) ≤ N

gcd(ζd−1,N )
· AdvGAIP(B).

As a consequence, we know that for CSIDH-512 we have ζ3, ζ9, ζ5, ζ47, ζ499-rGAIPs are as
hard as the originalGAIPwith a reduction loss of factors 37, 37, 1407181, 1407181, 1407181
respectively. Similarly, ζ117265 = ζ5ζ47ζ499 also has a reduction loss of a factor 1407181.

9 Performance

Wepresent an overall performance in Table 2 for our protocols instantiated usingCSIDH-512.
As explained in Sect. 8, we instantiate the ζd -rGAIP assumption with the 4-th root of unity
ζ4 as it is the only parameter that satisfies Requirement 1 while being presumably as hard
as GAIP over CSIDH-512. We also analyze the trade-off between our basic blind signature
in Sect. 5 and the optimized blind signature using a d-th primitive root of unity in Sect. 7.
This helps us illustrate the effect of the value d on our optimized scheme and may be useful
in the future when new group actions where ζd -rGAIP is hard are discovered.

The public key is d times larger compared to the basic scheme in general, which can be

halved when d is even and ζ
d
2 = −1. Let w = log2(N )/8 denote the byte size of a class

group element inZN and approximately 2w for one elliptic curve in E��; for examplew ≈ 32
for a CSIDH-512 group. In Sect. 5, the sender and user bandwidths and the signature size of
the basic blind signature are 4wn B, n/8 B (i.e., one hash), and 2n(w + n/8) B, respectively.
On the other hand, in Sect. 7 the sender and user bandwidths and the signature size of the
optimized blind signature are 2κ(wd + w + log2 d) B, (κ log2 d)/8 B, and 2κ(w + log2 d)

B, respectively. Now, given the security parameter n, the number of repetitions κ with a
d-th primitive root of unity is required to satisfy dκ = 2n , i.e., n = κ log2 d . Therefore,
the communication cost of the signer is increased by roughly dκ

2n , while the signature is
decreased by roughly n

κ
. The computation cost is increased by a factor of dκ

2n in group action
evaluations for both the signer and the user. Concretely, when d = 4, we have n = 2κ and
thus the signature size is reduced by approximately 50%.

It takes roughly 40 ms to perform an action on a 2.70 GHz processor [12, 24], and we can
estimate the running time in terms of the number of the isogeny action. Since the signing
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Table 2 The overall performance of our blind signature family regarding the bandwidth, the secret key size,
the public size, and the signature size using CSIDH-512

Bandwidth.S Bandwidth.U |sk| |pk| |σ | Assumption

Basic. (Fig. 3) 16 KB 16 B 16 B 128 B 8 KB GAIP

Fig. 9 with ζ4 64 KB 16 B 16 B 512 B 4 KB ζ4-rGAIP

PBS. (Fig. 6) 48 KB 16 B 16 B 128 B 24 KB GAIP

We take n = 128 and sk is generated by a seed of n bits. The first two rows are our blind signatures and the
final row is our (unoptimized) partially blind signature

(respectively, verifying) process requires 6 × 128 (respectively, 2 × 128) actions in Sect. 5,
it takes 30s (respectively, 10 s) for the procedure.
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