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Abstract
Modern data centers use erasure codes to provide high storage efficiency and fault tolerance.
Reed–Solomon code is commonly deployed in large-scale distributed storage systems due to
its ease of implementation, but it consumes massive bandwidth during node repair. Minimum
storage regenerating (MSR) codes is a class of maximum distance separable (MDS) codes
that achieve the lower bound on repair bandwidth. However, an exponential sub-packetization
level is inevitable for MSR codes, resulting in massive disk I/O consumption during node
repair. Disk I/O is becoming the bottleneck of the performance in data centers where the
storage system needs to frequently provide high-speed data access to clients. In this paper, we
consider disk I/O as an important metric to evaluate the performance of a code and construct
MDS array codes with efficient repair under small sub-packetization level. Specifically, two
explicit families of MDS codes with efficient repair are proposed at the sub-packetization
level ofO(r), where r denotes the number of parities. The first family of codes are constructed
over a finite field Fqm where q ≥ n is a prime power, m > r(l − 1) + 1, n and l denote the
code length and sub-packetization level, respectively. The second family of codes are built
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upon a special binary polynomial ring where the computation operations during node repair
and file reconstruction are only XORs and cyclic shifts, avoiding complex multiplications
and divisions over large finite fields.

Keywords Distributed storage system · MDS array code · Sub-packetization level · Repair
bandwidth

Mathematics Subject Classification 94A24

1 Introduction

Distributed storage systems (DSS), such as the Google File System [5], Hadoop Distributed
File System [20], and Microsoft Azure [3], are built upon a large number of individually
unreliable nodes to store and analyze massive data, where node failures may occur as daily
events. To provide data availability and reliability in the face of node failures, data redundancy
is usually introduced into the storage system. The traditional scheme for introducing redun-
dancy is triple replication. In order to save storage costs, erasure codes (ECs) are introduced
as an alternative to replication since they achieve the higher reliability for fixed redundancy.
Maximum distance separable (MDS) codes, such as Reed–Solomon code [15], are a class
of EC that achieve the optimal trade-off between storage efficiency and fault tolerance. For
a file of size M, the storage system using an (n, k) MDS code first divides the file into k
packets, each of size M

k , and then encodes them into n packets which are distributed over
n distinct storage nodes. The MDS property guarantees reconstruction of the original file as
long as any k out of these n packets are accessible.

In real-world data centers, single-node failure is the most frequent failure pattern and it
is of great significance to repair the failed node in a timely manner. During node repair, the
amount of data communicated from helper nodes to the replacement node is defined as repair
bandwidth in the literature. For systems using an (n, k) scalar MDS code, such as RS code,
the failed node can be repaired by accessing and communicating the data stored on any k out
of n surviving nodes, i.e., the repair bandwidth is k times of the data stored on the failed node.
The repair problem was first formulated in the seminal work [4], wherein a trade-off between
storage and repair bandwidth was derived. The two extremal points on the optimal trade-off
curve, corresponding to the best storage efficiency and the minimum repair bandwidth, are
called minimum storage regenerating (MSR) codes and minimum bandwidth regenerating
(MBR) codes, respectively. MSR codes have drawn much attraction due to their optimal
storage efficiency, and in our previous work [8] we have proposed binary MSR codes over
the same binary polynomial ring, i.e., R = F2[x]/(1 + x + x2 + · · · + x p−1) where p is a
prime, as used in the second family of codes in the present paper. For more details about the
constructions of MSR codes, one can refer to [1, 2, 10–13, 17, 18, 21–27, 29–31].

Although various constructions ofMSR codes have been proposed in the last decade,MSR
code is rarely deployed in real-world data centers because of its large sub-packetization level.
The large sub-packetization level is not friendly to metadata management and will restrict
the minimum size of files that can be handled by the code. An additional and more severe
problem of MSR codes is the large amount of disk I/Os (random data access) consumed
during node repair [19]. For disk I/O intensive applications such as cloud computing, frequent
requests for data read and write need to be granted in a timely manner. Consequently, the
disk I/O performance is becoming the bottleneck that restricts the performance of DSS.
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MDS array codes that provide small repair bandwidth as well as small sub-packetization
level are of great significance for real-world data centers. In [14], the authors proposed
a class of MDS array codes of sub-packetization level l = r , where r is the number of
parity nodes. The same structure as in [14] was used in [6] over the binary polynomial ring
R = F2[x]/(1 + x + x2 + · · · + x p−1) to produce binary MDS array codes with small
sub-packetization level and efficient repair, where the ability to repair with busy-node of
the structure was also presented. In [28], the authors obtained the lower bound on repair
bandwidth for MDS array codes with l = r = 2 and presented explicit constructions of
codes with degraded read friendly. In our previous work [9], we constructed MDS array
codes with efficient repair for systematic nodes where the sub-packetization level l = 2
and the redundancy r ≥ 2. In the present paper, we propose two families of MDS array
codes with small sub-packetization level l = O(r) and efficient repair for all nodes. The
first family of codes can be viewed as the generalization of the codes with sub-packetization
level l = r in [14]. The second family of codes is constructed over the binary polynomial
ring R = F2[x]/(1 + x + x2 + · · · + x p−1) and is the generalization of the codes in [6].
In addition, for the second family of codes, we propose an algorithm to obtain the minimum
prime p that guarantees the MDS property of the code.

The rest of this paper is organized as follows. Section2 provides some preliminaries that
are used in the paper. In Sect. 3, we present two general constructions of MDS array codes
over finite field and binary polynomial ringR = F2[x]/(1+ x + x2 +· · ·+ x p−1), following
two toy examples respectively. Evaluations of the proposed codes are given in Sect. 4 and
Sect. 5 concludes the paper.

2 Preliminaries

Given two integers i and j with i < j , define [i] := {1, 2, · · · , i} and [i, j] := {i, i +
1, · · · , j}. We use i | j and i � j to denote that i divides j and i does not divide j ,
respectively. Following the literature of codes for distributed storage, we use the two words
“coordinate” and “node” interchangeably. In this paper, we denote by r := n− k the number
of parity nodes of an (n, k) code.

2.1 MDS array code

Let Fq be a finite field of size q , where q is a prime power. For a distributed storage system
using an (n, k) MDS array code of sub-packetization level l, the codeword can be written
as (C1,C2, . . . ,Cn). Each coordinate of the codeword Ci = (ci,1, ci,2, . . . , ci,l)T ∈ F

l
q is a

column vector of length l over the field Fq . In this paper, we define an (n, k, l) MDS array
code C by its parity-check equations

C = {(C1,C2, . . . ,Cn) :
n∑

i=1

Ht,iCi = 0, t ∈ [r ]}, (1)

where Ht,i , t ∈ [r ], i ∈ [n] are l × l matrices over some field F and 0 in boldface is a column
vector of length rl over F. The parity-check matrix of the code C can be written as

H =

⎡

⎢⎢⎢⎣

H1,1 H1,2 . . . H1,n

H2,1 H2,2 . . . H2,n
...

...
. . .

...

Hr ,1 Hr ,2 . . . Hr ,n

⎤

⎥⎥⎥⎦ . (2)
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Obviously, H is an rl×nl matrix overF and each row corresponds to a parity-check equation.
In this paper, we say that every l rows in H form a parity-check group, i.e., H consists of r
parity-check groups, each of which can be written as {Ht,i : i ∈ [n]} for some t ∈ [r ]. The
code C defined by (1) and (2) is MDS if any r × r sub-block matrix of H is invertible.

2.2 A binary polynomial ring

For the binary field F2 and an odd prime p, let R be the ring of polynomials of degree
less than p − 1 over F2 where the multiplication is modulo 1 + x + x2 + · · · + x p−1,
i.e., R = F2[x]/(1 + x + x2 + · · · + x p−1). Let R∗ denote the multiplicative group of
polynomials in R, which are relatively prime to 1 + x + x2 + · · · + x p−1. Clearly, the
multiplication operation in R is commutative.

In Sect. 3.3 of the present paper, we use special elements in R∗ to construct the codes
with desired properties. It is beneficial to introduce some of the elements in R∗ before
giving the code constructions. As gcd(x, 1 + x + x2 + · · · + x p−1) = 1, where gcd() is the
greatest common divisor of the input arguments, we conclude that x ∈ R∗. Obviously, for
any i ∈ [p − 2], we have xi ∈ R∗. Note that x p − 1 = (x − 1)(1 + x + x2 + · · · + x p−1)

and for 1 ≤ i ∈ [p − 2],
gcd(xi − 1, x p − 1) = xgcd(i,p) − 1 = x − 1.

Since p is not the characteristic ofF2,we have that 1 is not a root of 1+x+x2+· · ·+x p−1 = 0,
i.e., gcd(x − 1, 1+ x + x2 +· · ·+ x p−1) = 1. As a result, we have gcd(xi −1, 1+ x + x2 +
· · · + x p−1) = 1, meaning xi − 1 ∈ R∗ and xi − x j is also in R∗ with i �= j ∈ [p − 2].

3 Code construction

In this section, we present the constructions of two families ofMDS array codes with efficient
repair over finite field and the binary polynomial ring, respectively. The codes share the same
structure, and both of themhave smaller sub-packetization level comparedwith relatedworks.

3.1 A toy example

Before giving the general construction of the code, we first present an example code to
highlight the core structure of the code.

Example 1 For n = 8, k = 5, l = 2, the parity-check matrix of the code is

H(8,5,2) =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
λ1 ψ1 λ2 ψ2 λ3 0 λ4 0 λ5 0 λ6 0 λ7 0 λ8 0
0 λ1 0 λ2 ψ3 λ3 ψ4 λ4 0 λ5 0 λ6 0 λ7 0 λ8

λ21 0 λ22 0 λ23 0 λ24 0 λ25 ψ5 λ26 ψ6 λ27 0 λ28 0
0 λ21 0 λ22 0 λ23 0 λ24 0 λ25 0 λ26 ψ7 λ27 ψ8 λ28

⎤

⎥⎥⎥⎥⎥⎥⎦
, (3)

where the 16 nonzero entries λ1 = 197, λ2 = 43, λ3 = 219, λ4 = 250, λ5 = 130,
λ6 = 222, λ7 = 147, λ8 = 39, ψ1 = 50, ψ2 = 101, ψ3 = 184, ψ4 = 202, ψ5 = 192,
ψ6 = 78, ψ7 = 129, ψ8 = 22 are drawn from the field F28 with primitive polynomial equal
to x8 + x4 + x3 + x2 + 1. Note that these “integers” 197, 43, . . . , 22 are not really integers
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drawn from [0, 255], they are the decimal representation of binary numbers formed by the
coefficients of polynomials corresponding to the elements. With these assignments and the
help of a computer problem, one can verify that any 3 × 3 sub-block matrix of H(8,5,2) is
nonsingular, i.e., the code in this example is MDS code. The parity-check matrix can be
viewed as the sum of a block Vandermonde matrix V and a perturbation matrix P with

V =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
λ1 0 λ2 0 λ3 0 λ4 0 λ5 0 λ6 0 λ7 0 λ8 0
0 λ1 0 λ2 0 λ3 0 λ4 0 λ5 0 λ6 0 λ7 0 λ8

λ21 0 λ22 0 λ23 0 λ24 0 λ25 0 λ26 0 λ27 0 λ28 0
0 λ21 0 λ22 0 λ23 0 λ24 0 λ25 0 λ26 0 λ27 0 λ28

⎤

⎥⎥⎥⎥⎥⎥⎦

and

P =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ψ1 0 ψ2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ψ3 0 ψ4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ψ5 0 ψ6 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 ψ7 0 ψ8 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

In this example, the n = 8 nodes are divided into 4 groups of equal size. There are rl = 6
parity-check equations in total and each row of H(8,5,2) defines one parity-check equation of
the code. For the repair of node in the first group, i.e., node 1 or node 2, we use the first and
the third rows of H(8,5,2) which form the following linear system

c1,1 + c2,1 +
8∑

j=3

c j,1 = 0

λ1c1,1 + ψ1c1,2 + λ2c2,1 + ψ2c2,2 +
8∑

j=3

λi c j,1 = 0

. (4)

Rewrite (4) in the matrix form, we have

H (1,3)CT = 0, (5)

where

H (1,3) =
[
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
λ1 ψ1 λ2 ψ2 λ3 0 λ4 0 λ5 0 λ6 0 λ7 0 λ8 0

]

and C = [c1,1, c1,2, c2,1, c2,2, · · · , c8,1, c8,2]T .
The blocks

[
1 0
λ1 ψ1

]
and

[
1 0
λ2 ψ2

]
in H (1,3), corresponding to [c1,1, c1,2]T and [c2,1,

c2,2]T , respectively, are invertible and thus, node 1 and node 2 are repairable with H (1,3).
We take the repair of node 1 for example. By accessing and communicating the symbols
{c j,1 : j ∈ [2, 8]}, the lost symbol c1,1 can be computed through the first equation in (4). By
accessing and communicating c2,2 further, the lost symbol c1,2 can be obtained through the
second equation in (4). There are eight symbols accessed and communicated in the repair
procedure, achieving a 20% reduction compared with the trivial repair of MDS code. Here,
we say that H (1,3) is a repair pattern, which is obtained by selecting the first and third rows
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of H(8,5,2). Similarly, the repair pattern for node 3 and node 4 is H (2,4), which is obtained by
selecting the second and the fourth rows of H(8,5,2). For node 5 and node 6, the repair pattern
is H (1,5). For node 7 and node 8, the repair pattern is H (2,6). There are four repair patterns
in total and thus, the n = 8 nodes are divided into four groups, each of which contains
two nodes. We say that the repair pattern H (1,3) and H (2,4) form a repair pattern cluster
(abbreviated as RPC). The other RPC consists of H (1,5) and H (2,6).

Note that the MDS property of the example code is not naturally obtained when the 16
distinct nonzero entries {λi : i ∈ [8]} and {ψi : i ∈ [8]} in H(8,5,2) are randomly chosen
from the field F28 . Actually, the values of the nonzero entries in H(8,5,2) are obtained with
the help of a computer program to attain the MDS property. We use this example only to
show the basic structure of the code and the explicit construction with MDS property will be
presented in the next subsection.

3.2 General construction of MDS array code with small sub-packetization level

In this subsection, we construct MDS array code with small sub-packetization level of l with
(l − 1) | (r − 1), i.e., l − 1 divides r − 1, which is a generalization of the code with l = r in
[14].

Construction 1 Given integers n, r and l such that (l − 1) | (r − 1), let g = l(r − 1)/(l − 1).
Assume that g | n and n = gs. The parity-check matrix H of the code with parameters
(n, k, l) is constructed based on a block Vandermonde matrix V which can be written as

V =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 1 0 · · · 0 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 0 1 · · · 0
... · · · . . .

...
... · · · . . .

... · · · ... · · · . . .
...

0 · · · 0 1 0 · · · 0 1 0 · · · 0 1
λ1 0 · · · 0 λ2 0 · · · 0 λn 0 · · · 0
0 λ1 · · · 0 0 λ2 · · · 0 0 λn · · · 0
... · · · . . .

...
... · · · . . .

... · · · ... · · · . . .
...

0 · · · 0 λ1 0 · · · 0 λ2 0 · · · 0 λn
...

...
...

...

λr−1
1 0 · · · 0 λr−1

2 0 · · · 0 λr−1
n 0 · · · 0

0 λr−1
1 · · · 0 0 λr−1

2 · · · 0 0 λr−1
n · · · 0

... · · · . . .
...

... · · · . . .
... · · · ... · · · . . .

...

0 · · · 0 λr−1
1 0 · · · 0 λr−1

2 0 · · · 0 λr−1
n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix V consists of r × n blocks, each of which is an l × l diagonal matrix where the
diagonal entries are λt−1

i , i ∈ [n], t ∈ [r ]. λ1, . . . , λn are n distinct elements drawn from
field F. Let E be an extension field of F where E is generated by an element ψ ∈ E, i.e.,
E = F(ψ), and the degree of extension [E : F] ≥ r(l − 1) + 1. The parity-check matrix
H is obtained by substituting 0 of specific positions in V with ψ . The n storage nodes are
divided into g groups of equal size s. The last r −1 parity-check groups in V are divided into
r−1
l−1 parity-check clusters (abbreviated as PCCs), each of which contains l − 1 parity-check
groups. Each PCC and the first parity-check group in V form a RPC. Each RPC contains l
repair patterns and each repair pattern repair a group (s) of nodes. Obviously, there are r−1

l−1

RPCs, consisting of l(r−1)
l−1 repair patterns. The positions of ψ in H are as follows.
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For the first parity-check group of the first PCC, blocks [s] contain ψ at the position of
(1, 2), i.e.,

H2,i =

⎡

⎢⎢⎢⎣

λi ψ · · · 0
0 λi · · · 0
... · · · . . .

...

0 · · · 0 λi

⎤

⎥⎥⎥⎦ (6)

for i ∈ [s]. Blocks [s + 1, 2s] contain ψ at the position of (2, 3), i.e.,

H2,i =

⎡

⎢⎢⎢⎣

λi 0 · · · 0
0 λi ψ 0
... · · · . . .

...

0 · · · 0 λi

⎤

⎥⎥⎥⎦ (7)

for i ∈ [s + 1, 2s]. And so on, blocks [(l − 2)s + 1, (l − 1)s] contain ψ at the position of
(l − 1, l) and blocks [(l − 1)s + 1, ls] contain ψ at the position of (l, l + 1) where for some

positive integer m, m =
{
m, m ≤ l

m − l, m > l
. The rest blocks are diagonal matrices which are

the same as that in V .
For the second parity-check group of the first PCC, blocks [s] contain ψ at the position of

(1, 3). Blocks [s + 1, 2s] contain ψ at the position of (2, 4). And so on, blocks [(l − 2)s +
1, (l − 1)s] contain ψ at the position of (l − 1), l + 1 and blocks [(l − 1)s + 1, ls] contain
ψ at the position of [(l, l + 2)]. The rest blocks are diagonal matrices which are the same as
that in V .

For the (l − 1)-th (last) parity-check group of the first PCC, blocks [s] contain ψ at the
position of (1, l). Blocks [s+1, 2s] containψ at the position of (2, l + 1). And so on, blocks
[(l − 2)s + 1, (l − 1)s] contain ψ at position (l − 1), 2l − 2 and blocks [(l − 1)s + 1, ls]
contain ψ at position (l, 2l − 1). The rest blocks are diagonal matrices which are the same
as that in V .

We now provide a more rigorous description of the structure of the code by presenting the
blocks Ht,i of its parity check matrix with a general formula. For any t ∈ [2, r ], we write

t = (τ, η) = (τ − 1)(l − 1) + η + 1,

where τ ∈ [ r−1
l−1 ] and η ∈ [l − 1]. And, for i ∈ [n], we write

i = (a, b, c) = (a − 1)ls + (b − 1)s + c,

where a ∈ [ r−1
l−1 ], and b ∈ [l], c ∈ [s]. In other words, we use τ , η to denote the index of

the PCC and the index of the parity check group within each PCC, respectively. Similarly,
we use a, b, c to denote the index of cluster, the index of node group within each cluster
and the index of node within each node group, respectively. Then, the entry of parity check
sub-matrices Ht,i at the x th row and the yth column is

Ht,i (x, y) =

⎧
⎪⎨

⎪⎩

λt−1
i if x = y

ψ if τ = a, x = b, y = b + η

0 otherwise.

Thus, for the first PCC, the first ls blocks containψ and the other blocks remain unchanged.
Generally, for the τ -th PCCwhere τ ∈ [ r−1

l−1 ], the blocks that containψ are [(τ−1)ls+1, τ ls].
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Thepositions ofψ in these ls blocks in the τ -thPCCfollow the samepattern as in thefirst PCC.
As shown in parity-check matrix H(8,5,2) of the example (3), the positions of ψ5, ψ6, ψ7, ψ8

are (1, 2), (1, 2), (2, 1), (2, 1), which are same to the positions of ψ1, ψ2, ψ3, ψ4. Note that
multiple distinct perturbation elementsψ1, ψ2, . . . , ψ8 are used in Example 1 while only one
perturbation element ψ is used in Construction 1. The example shows the basic structure of
the code, i.e., the Vandermonde structure and the positions of the perturbation elements. It is
easier to obtain the example code with MDS property over F256 through a computer program
when there are multiple perturbation elements.

The parity-check matrix of an (n, k, l) array code with (l − 1) | (r − 1) is explicitly given
inConstruction 1.We now present theMDS property of the code in the following Theorem 1.

Theorem 1 The code constructed in Construction 1 is MDS code.

Proof To prove the MDS property of the code is equivalent to prove that every r block
columns of the parity-check matrix H is invertible over E. According to Construction 1, it is
not hard to find that there are l − 1 blocks containing ψ in each block column. For I ⊂ [n]
with |I| = r , the determinant of the r × r block matrix fI(ψ) = det(HI) can be seen as a
polynomial of ψ over F. Clearly, the degree of fI(ψ) is at most r(l − 1). Let m(ψ) be the
minimal polynomial of ψ over F. We have that the degree of m(ψ) is at least r(l − 1) + 1
as E = F(ψ) and [E : F] ≥ r(l − 1) + 1. Note that fI(0) = det(VI) �= 0 because V is the
parity-check matrix of an (n, k, l)MDS array code, meaning fI(ψ) is a nonzero polynomial.
As a result, fI(ψ) �= 0, meaning that HI is invertible over E for any I ⊂ [n] with |I| = r .
This completes the proof. �	

In the following Theorem 2, we present the repair bandwidth for single-node failure of
the code constructed in Construction 1.

Theorem 2 For n, k, l with (l − 1) | (r − 1) and l(r−1)
l−1 | n where r = n − k, the repair

bandwidth of the code constructed in Construction 1 is γ =
(
n(l−1)
l(r−1) − 1

)
l + n − s.

Proof Note that the n storage nodes are divided into g = l(r−1)
l−1 groups, each of size s = n/g.

Also, there are r−1
l−1 RPCs, each of which contributes l repair patterns and each repair pattern

is responsible for the repair of a group of nodes. Without loss of generality, we take the
repair of node 1 as an example. The first rows of the l parity-check groups in the first RPC is
selected and we obtain the repair pattern H (1,l+1,2 l+1,··· ,(l−1)l+1). In this repair pattern, the
blocks Ai corresponding to node i ∈ [s] and A j corresponding to node j ∈ [s + 1, n] are

Ai =

⎡

⎢⎢⎢⎢⎢⎣

1 0 · · · 0
λi ψ · · · 0
λ2i 0 ψ · · · 0
... · · · . . .

...

λl−1
i 0 · · · ψ

⎤

⎥⎥⎥⎥⎥⎦
, A j =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
λ j 0 · · · 0
λ2j 0 0 · · · 0
... · · · . . .

...

λl−1
j 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Thus, by accessing and communicating all the symbols ci,1, ci,2, . . . , ci,l in nodes i ∈ [2, s]
and the first symbol c j,1 in nodes j ∈ [s + 1, n], the lost symbols c1,1, c1,2, . . . , c2,l can be
computed through the linear system defined by H (1,l+1,2l+1,··· ,(l−1)l+1). During the repair
procedure, the amount of symbols accessed and communicated is (s − 1)l + n − s. One can
verify that the repair bandwidth of the code constructed in Construction 1 is

γ = (s − 1)l + n − s =
(
n(l − 1)

l(r − 1)
− 1

)
l + n − s (8)
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for every node i ∈ [n]. This completes the proof. �	
Remark 1 For g � n, where g = l(r−1)/(l−1), the n storage nodes are divided into g groups
where n(mod g) groups are of size 
n/g� and the remaining groups are of size �n/g, i.e.,
the codes with g � n can be directly obtained by applying shortening technique on codes
constructed through Construction 1. According to the repair procedure presented above, one
can easily find that the amount of data access is equal to the amount of data communicated
during node repair, which is good because this means the disk I/O consumption is also small.

3.3 ConstructingMDS array code over binary field

In the previous subsection, explicit construction of (n, k, l) MDS array code is presented
where the size of the field is at least n(n−k)(l−1)+1. In this subsection, we construct MDS
array code over the binary field. The construction relies on the binary polynomial ring R =
F2[x]/(1 + x + x2 + · · · + x p−1) where p > n is a prime. For the code constructed in this
subsection, each coordinate of a codeword can be viewed as either a column vector of length
pl over F2 or a column vector of length l over the ring R. The parity check matrix of the
code is an r × n block matrix over the ring R where each block is of size l × l.

The codes in this subsection and previous subsection share the same structure and the
main difference between them is the alphabet. We now give an example of binary array code
which is obtained by substituting the entries of the parity check matrix in Example 1 with
polynomials in a binary polynomial ring.

Example 2 For n = 8, k = 5 and l = 2 (sub-packetization level over the ring), the parity
check matrix is

H =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
x 1 x2 1 x3 0 x4 0 x5 0 x6 0 x7 0 x8 0
0 x 0 x2 1 x3 1 x4 0 x5 0 x6 0 x7 0 x8

x2 0 x4 0 x6 0 x8 0 x10 1 x12 1 x14 0 x16 0
0 x2 0 x4 0 x6 0 x8 0 x10 0 x12 1 x14 1 x16

⎤

⎥⎥⎥⎥⎥⎥⎦
, (9)

where the entries in H are drawn from the ring F2[x]/(1+ x + x2 +· · ·+ x10). Similar to the
parity check matrix in Example 1, H in (9) can be viewed as the sum of a block Vandermonde
matrix V and a perturbation matrix P over the ring, where

V =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
x 0 x2 0 x3 0 x4 0 x5 0 x6 0 x7 0 x8 0
0 x 0 x2 0 x3 0 x4 0 x5 0 x6 0 x7 0 x8

x2 0 x4 0 x6 0 x8 0 x10 0 x12 0 x14 0 x16 0
0 x2 0 x4 0 x6 0 x8 0 x10 0 x12 0 x14 0 x16

⎤

⎥⎥⎥⎥⎥⎥⎦

and

P =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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The repair patterns in this example are the same to that in Example 1 and we only present
the repair of node 1 for simplicity. To repair node 1, the first and the third rows of H in (9)
are selected to form the repair pattern H (1,3) which can be written as

H (1,3) =
[
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
x 1 x2 1 x3 0 x4 0 x5 0 x6 0 x7 0 x8 0

]
.

Obviously, the block

[
1 0
x 1

]
is invertible in the ring F2[x]/(1 + x + x2 + · · · + x10). Two

polynomials stored on node 2 and the first polynomials stored on nodes [3, 8] are accessed
and communicated to recover the data stored on node 1. Note that the MDS property of the
code in this example is not verified and we will give the conditions under which the MDS
property is guaranteed in the sequel.

Construction 2 Given integers n, r and l such that (l − 1) | (r − 1) and l(r−1)
l−1 | n, the parity

check matrix H of the (n, k = n − r , (p − 1)l) binary array code is obtained by substituting
the entries in the parity check matrix of the code constructed in Construction 1 with special
elements in the binary polynomial ringR = F2[x]/(1+ x + x2 + · · · + x p−1). Specifically,
define x0 = 1 ∈ R, and λi ∈ F is replaced by xi−1 ∈ R and ψ is replaced by 1 ∈ R.

The code constructed inConstruction 2 hasMDS property if any k out of the n coordinates
can recover the whole codeword. It is equivalent to show that any r block columns of the
parity check matrix is invertible over the ring R = F2[x]/(1 + x + x2 + · · · x p−1). In the
following Theorem 3,we describe the conditions underwhich theMDSproperty of the binary
array code is guaranteed.

Theorem 3 Assume 1+ x + x2 + · · · + x p−1 can be factorized as a product of t irreducible
polynomials f1(x), f2(x), . . . , ft (x) over F2, i.e.,

1 + x + x2 + · · · + x p−1 = f1(x) · f2(x) · · · ft (x),
where deg( f1(x)) ≤ deg( f2(x)) ≤ · · · ≤ deg( ft (x)). If the degree of f1(x) satisfies

deg( f1(x)) > rl(r − 1)

(
n − r

2
+ 2r − 1

6

)
,

then the (n, k, (p − 1)l) binary array code constructed in Construction 2 is an MDS code.

Proof To prove theMDS property of the binary array code constructed inConstruction 2, we
should show that for any I ∈ [n] with |I| = r , the determinant of the r block columns HI is
invertible over the ring R = F2[x]/(1 + x + x2 + · · · + x p−1). Obviously, the determinant
can be viewed as a polynomial over F2[x] and it is not difficult to verify that the polynomial
is a non-zero polynomial. According to the Chinese remainder theorem [7], the ring R is
isomorphic to the direct sumof the t ringsF2[x]/ f1(x), F2[x]/ f2(x), . . . , F2[x]/ ft (x). If the
degree of the determinant |HI | is smaller that deg( f1(x)), then the determinant is invertible
over each of the t rings F2[x]/ f1(x), F2[x]/ f2(x), . . . , F2[x]/ ft (x) and is also invertible
over the ring R = F2[x]/(1 + x + x2 + · · · + x p−1).

As a result, we only need to find out the maximum degree of the determinants of HI with
I ⊂ [n] and |I| = r . According to the structure of H , it easy to find that the maximum
degree of the determinant is achieved when I = [n − r + 1, n], i.e., the last r block columns
are selected to calculate the maximum degree. The degree of the determinant of the last r
block columns is
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(n − r + 1)l + (n − r + 2)2l + · · · + (n − 1)(r − 1)l

= l ((n − r + 1) + 2(n − r + 2) + · · · + (r − 1)(n − r + r − 1))

= l

(
(n − r)

r−1∑

i=1

i +
r−1∑

i=1

i2
)

= l

(
(n − r)

r(r − 1)

2
+ r(r − 1)(2r − 1)

6

)

= rl(r − 1)

(
n − r

2
+ 2r − 1

6

)

.

This completes the proof. �	
The repair procedure of the code constructed in Construction 2 is similar to the code

constructed inConstruction 1 as the two codes share the same core structure. In the following
Theorem 4, we present the repair bandwidth for single-node failure of the code constructed
in Construction 2.

Theorem 4 Given integers n, k and l with (l − 1) | (r − 1) and l(r−1)
l−1 | n where r = n − k,

the repair bandwidth of the (n, k, pl) binary MDS array code constructed in Construction

2 is γ =
(
n(l−1)
l(r−1) − 1

)
l + n − s over the ring R = F2[x]/(1 + x + x2 + · · · + x p−1) or

equally γ (p − 1) bits (over F2).

Proof Theproof follows similar arguments to that ofTheorem2.For the sakeof completeness,
we present the repair procedure of the binaryMDS array code to obtain the repair bandwidth.
Note that the n block columns of the parity check matrix is divided into g = l(r−1)

(l−1) groups,

each of size s = n/g. Similar to the code in Construction 1, there are r−1
l−1 RPCs in the parity

check matrix, each of which contributes l repair pattern and each repair pattern is responsible
for the repair of a group of nodes. Without loss of generality, we take the repair of node 1 for
example. The first rows of the l parity check groups in the first RPC is selected to form the
repair pattern H (1,l+1,2l+1,...,(l−1)l+1). In this repair pattern, the blocks Ai corresponding to
node i ∈ [s] and A j corresponding to node j ∈ [s + 1, n] are

Ai =

⎡

⎢⎢⎢⎢⎢⎣

1 0 · · · 0
xi 1 · · · 0
x2i 0 1 · · · 0
... · · · . . .

...

xi(l−1) 0 · · · 1

⎤

⎥⎥⎥⎥⎥⎦
, A j =

⎡

⎢⎢⎢⎢⎢⎣

1 0 · · · 0
x j 0 · · · 0
x2 j 0 0 · · · 0
... · · · . . .

...

x j(l−1) 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎦
.

Clearly, by accessing and communicating all the polynomials ci,1, ci,2, . . . , ci,l in nodes
i ∈ [2, s] and the first polynomial c j,1 in nodes j ∈ [s + 1, n], the lost polynomials
c1,1, c1,2, . . . , c1,l can be computed since A1 is invertible over the ringR = F2[x]/(1+ x +
x2 + · · · x p−1). The amount of polynomials accessed and communicated is (s − 1)l + n − s
during the repair of node 1 and one can verify that the repair bandwidth (overR) of the code
constructed in Construction 2 is

γ = (s − 1)l + n − s =
(
n(l − 1)

l(r − 1)
− 1

)
l + n − s

for every node i ∈ [n]. As each polynomialR is represented by a vector of length p over F2,
the repair bandwidth of the code in terms of bit is γ (p − 1). This completes the proof. �	
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Remark 2 For (n, k = n−r , pl) binaryMDS array code with (l−1) | (r −1) and l(r−1)
l−1 � n,

the n storage node are divided into g = l(r−1)
(l−1) groups where n(mod g) groups are of size


n/g� and the remaining groups are of size �n/g, i.e, the code with g � n can be obtained
by applying shortening technique on the code constructed through Construction 2. Also, the
amount of data access is equal to the amount of data communicated during node repair.

In the following, we propose a scheme for finding the minimum value of p which guar-
antees the MDS property of the code constructed in Construction 2. Specifically, given an
input prime p, the following Algorithm 1 outputs the minimum degree of the irreducible
polynomials of f1(x), f2(x), . . . , ft (x) without factoring 1 + x + x2 + · · · + x p−1, where
1 + x + x2 + · · · + x p−1 = f1(x) f2(x) · · · ft (x). By repeatedly using the algorithm and
increasing the value of p every time, we can obtain the minimum value of p which satisfies
the corresponding MDS condition in Theorem 3.

Algorithm 1 Find the degree of f1(x) for a prime p
Input: a prime p
Output: the degree of f1(x)
S ← {1, 2, . . . , p − 1}
D ← ∅
while S �= ∅ do

i ← min(S) � i is the minimum value in S
d ← 1
C ← ∅
while i2d �= i (mod p) do

C ← C ∪ {i × 2d−1(mod p)}
d ← d + 1

end while
D ← D ∪ {|C|}
S ← S\C

end while
return min(D) � The minimum value in D is the degree of f1(x)

We now give an explanation of the algorithm. As x p − 1 = (x − 1)(1 + x + x2 + · · · +
x p−1) = (x − 1) f1(x) f2(x) . . . ft (x), the problem of finding the minimum degree of the
irreducible polynomial factor of 1 + x + x2 + · · · + x p−1 translates into the problem of
finding the minimum degree of the irreducible polynomial factor of x p − 1 except x − 1.
According to [16], the degree of f1(x) can be written as

deg( f1(x)) = min(|C1| , |C2| , . . . , |Ct |) (10)

where Ci , i ∈ [t] is the i-th cyclotomic coset and |Ci | denotes the cardinality of Ci . Let F2s

be the splitting field of x p − 1 over F2, where s is the smallest positive integer for which
p | (2s − 1). Let β be a primitive element of F2s , from which we can determine a primitive
p-th root of unity:

ω = β
2s−1
p . (11)

Thus, the roots of x p − 1 = 0 over F2s can be written as 1, ω, ω2, · · · , ωp−1. For some
i ∈ [p − 1], the conjugates whose exponents constitute a cyclotomic coset are

ωi , ω2i , ω4i , · · · , ω2d−1i (12)
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where d is the smallest positive integer for which ω2d i = ωi . From the fact that

ω2d i = ωi ⇐⇒ p | (
i2d − i

) ⇐⇒ i2d = i (mod p), (13)

we can write the irreducible polynomial for the conjugates (12) as

mi (x) = (
x − ωi )(x − ω2i ) · · · (x − ωi2d−1)

(14)

and the i-th cyclotomic coset as

Ci = {
i, 2i, 22i, · · · , i2d−1} (15)

where d is the smallest positive integer for which i2d = i (mod p). Obviously, Ci can be
determined without the primitive p-th root of unity β, implying that we need not really factor
the polynomial x p − 1(or 1 + x + x2 + · · · + x p−1) to obtain the degree of f1(x).

4 Evaluation

The most related works to the present paper in the literature are [6, 9, 14, 28]. Comparisons
between these related codes and the codes in the present paper are presented in the sequel.

In [14], the authors constructedMDS array codes of sub-packetization level l = n−k = r
(Construction 13) where the size of field satisfies that F ≥ n(r−1)l+1. In the present paper,
the codes constructed in Subsect. 3.2 (Construction 1) can be viewed as a generalization of
the codes in [14] (Construction 13), where the sub-packetization level l satisfies that (l−1) |
(r−1). Thus, wemake an improvement by providing a more flexible sub-packetization level.

Based on the same structure, the authors of [6] constructed binaryMDS array code over the
ringR = F2[x]/(1+ x + x2 +· · ·+ x p−1) and showed the code’s ability of repairing single-
node failure with one or more busy nodes. For repairing single-node failure with fewer helper
nodes, one can refer to [6] for details. When p is a prime number such that 2 is primitive in
Fp , the authors provided a method of obtaining the minimum value of p through a computer
search program that could check whether each determinant was a multiple of 1 + x p or
not. In Subsect. 3.3 (Construction 2), we generalize the codes in [6] by constructing binary
MDS codes with more flexible sub-packetization level over the same ring R. The ability of
repairing single-node failure with one or more busy nodes, although not presented in the
paper, is straightforwardly obtained by our codes. Besides, we propose an algorithm to find
the minimum value of p that guarantees the MDS property of the code, no matter whether
2 is primitive of Fp or not. Note that with the algorithm, one can easily find the minimum
value of p without really factoring the polynomial 1 + x + x2 + · · · + x p−1.

In our previous work [9], we constructed MDS array code of sub-packetization level
l = 2 where only the information nodes can be repaired with reduced bandwidth. In [28],
the authors derived the lower bound of repair bandwidth for MDS array code with l = r = 2
and presented an explicit construction of the so called “DRF code” which achieved the lower
bound. For fixed l > 2, the lower bound on repair bandwidth is still an open problem. In the
present paper, we make a significate contribution by giving explicit constructions of MDS
array codes with more flexible l (and r ), where both the information and parity nodes can be
repaired with reduced bandwidth.

123



L. Li et al.

5 Conclusion

In this paper, we propose two families of MDS array codes with small sub-packetization
level of O(r). The first family of codes with (n, k = n − r , l) are constructed over the
finite field whose size is at least nr(l−1)+1 and the sub-packetization level l satisfies that
(l − 1) | (r − 1). The second family of codes are binary MDS array codes constructed
over a special polynomial ring R = F2[x]/(1 + x + x2 + · · · + x p−1) where p is a prime.
Efficient repair procedure is explicitly presented for both of the codes. For the second family
of codes, we give a sufficient condition for p under which the MDS property of the codes
can be guaranteed. Moreover, we develop an explicit algorithm to find the minimum value
of p where one need not really factor the polynomial 1 + x + x2 + · · · + x p−1.
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