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Abstract
Plaintext-checkable encryption (PCE) can support searches over ciphertext by directly using
plaintext. The functionality of a search is modeled by a specific check algorithm that takes a
pair of target plaintext and ciphertext as input and returns 1 if the correct decryption result
of the ciphertext is identical to the target plaintext. A trivial solution is to use an existing
scheme (e.g., deterministic RSA) to achieve this, but there is no security guarantee with this
method. Previous rigorous works have either relied on some mathematical structures to build
PCE that can proven in the standard model or can be generic, as in the random oracle model.
Hence, in this work, we aim to construct PCE that can be proven in the standard model by
using standard primitives in a modular way in two steps. The first step is to present a warm-up
construction of PCE from hash garbling and hash functions whose security is only proven in
the random oracle model. The second step is to provide a full-fledged construction based on
the warm-up, with slight modifications for achieving security in the standard model. Finally,
we show the feasibility of the proposed construction through experiments.

Keywords Cloud storage · Hash garbling · Plaintext checkable encryption · Provable
security · Public key encryption

Mathematics Subject Classification 11T71 · 94A60 · 68P25

1 Introduction

Recently, big data analysis techniques have been introduced with cloud aid, as such an over-
whelming cost cannot be absorbed by personal computers. Many information technologies
and cloud service providers have developed cloud computing applications and platforms.
Indeed, the analytics offered by cloud computing from users’ data may help predict their

Communicated by K. Matsuura.

B Yu-Chi Chen
wycchen@ntut.edu.tw; wycchen@ieee.org

1 Department of Computer Science and Information Engineering, National Taipei University of
Technology, Taipei 10608, Taiwan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-024-01363-4&domain=pdf
http://orcid.org/0000-0002-5577-0016


1730 Y.-C. Chen

potential activities. However, it is expected to protect some sensitive data with privacy and
security concerns, which implies two kinds of issues: privacy and confidentiality. Differential
privacy (DP) [8] is a method for quantifying the individual’s privacy for queries on a dataset.
However, unlike DP, cryptographic solutions aim for confidentiality (e.g., encryption) and
usually handle computing over ciphertext.

Plaintext checkable encryption (PCE) can provide simple functionality between ciphertext
and plaintext. The concept of PCE was first introduced by [3] and provides a special check
algorithm (denoted by Check). This algorithm takes target plaintext, ciphertext, and a public
key as input, and then outputs correct if the ciphertext is an encryption of the target plaintext
with the same public key. In real-life applications, the following scenario can be reached by
using PCE. Let us take semi-honest1 cloud storage into account. A user can upload encrypted
data associated with some ciphertexts of tags Enc(t) to a server. A search request is a plain
tag t ′. Once the server receives t ′, it can run Check whether the underlying tag of Enc(t) is
identical to the request t ′. Returns the corresponding encrypted data whose encrypted tag is
Enc(t) if Check(Enc(t), t ′) returns 1 such that t = t ′.

PCE was rooted by Canard et al. [3]. Its basic security model is called unlinkable CPA
security. In a sense, PCE makes it impossible to meet general CPA security, as the adversary
can always access the check algorithm. In unlinkable CPA security, two unlinked adversaries
are decoupled to perform the typical CPA game. The follow-up work of Ma et al. [17]
formalized the other security notion, s-priv1-cca security, independent of unlinkable CPA
security. In addition, they also presented a generic construction of PCE, and applied smooth
projective hash as the underlying assumptions. The follow-up works [15, 16] provides a
generic construction based on pairing-friendly smooth projective hash functions. They also
provide instantiations from k-MDDH and SXDH assumptions, respectively. In particular,
[16] is the first scheme offering verifiably.

Das et al. [5] modified the framework of PCE for partially to achieve CPA security. Their
framework only allows the designated checker (who has been delegated check power) to run
Check. However, if the adversary is the designed checker, the security is at most unlinkable
CPA. Recently, Chen [4] revisited the security notion of PCE and presented a few possible
security models and improvements. However, Chen did not aim to construct a pure PCE
scheme.

1.1 Contributions

Our motivation comes from underlying assumptions [17] that rely on some mathematical
structures (smooth projective hash), while [3] only gave generic constructions in the random
oracle model. In this paper, we use standard cryptographic primitives to build a PCE scheme
that can be proven in the standard model. To achieve this, we use two phases: the first
is building an intermediate notion called the hash garbling (HG) scheme, and the other is
building generic constructions of PCE from HG and conventional public key encryption
(PKE). The details of our design principles, challenges, and techniques are elaborated as
follows.

1 Semi-honesty means that the cloud server will follow the procedure of the system protocols and algorithms
and does not have any malicious behavior, such as tampering.
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Table 1 Comparisons

Scheme Generic Security Primitives

CFGL12 [3] scheme 1 Achieve RO model Hash function

CFGL12 [3] scheme 2 – Standard model (claimed) Bilinear map

MMS18 [17] – Standard model (claimed) Smooth projective hash
function

MH19 [15] Achieve Standard model Smooth projective hash
function
(pairing-friendly)

MHLX19 [16] Achieve Standard model Smooth projective hash
functionl-firendly)

Our warm-up Achieve RO model HG

Our construction Achieve Standard model Blind HG

1.1.1 Initial idea for constructing PCE

We want to provide a conceptually simple and generic manner to construct a PCE scheme.
Our first attempt keeps the decryption correctness by applying the traditional PKE and then
developing an extra, special component (in a ciphertext) that can be used to provide plaintext
checkability. Suppose we have a program obfuscation O [1, 10, 11, 13] that can convert
program P into ˜P . ˜P preserves the functionality of P such that for an input x, ˜P(x) = P(x)
but does not reveal additional information about the code of P . We can prepare a program P
that takes a test plaintext M as input and outputs 1 if M is identical to the underlying plaintext
of the ciphertext. Our ciphertext is composed of (Enc(M), ˜P), where ˜P is as above and Enc
is the encryption algorithm of PKE. Unfortunately, obfuscation has been referred to as a non-
standard primitive until now, as there is no secure construction based on standard assumptions.
This fact forces us to choose the other candidate to realize the special component.

1.1.2 Candidate building block: hash garbling

Recently, hash garbling (HG) [12] has been proposed to provide some properties similar
to those of obfuscation. HG is somewhat similar to garbled circuits (GCs). In general, HG
consists of a few main algorithms Hash,HObf,HInp. Hash is similar to the usual hash
function, taking a long input x to return a short output y. HObf is identical to GC, aiming
to produce some state information and the GC ˜P from P . In particular, HInp takes the state
and y to output ỹ. However, we need an evaluation that given x, ỹ, ˜P returns P(x). Note
that HInp does not have any knowledge of the pre-image x , and the evaluation must know
x . We present a construction of HG from hash encryption (HE) and GCs, and then prove its
simulation security (a.k.a 〈x, ˜P, ỹ〉 ≈ 〈Sim(x, P(x))〉 informally).

1.1.3 Overview of our warm-up construction: techniques and challenges

Our final goal is to use HG (with PKE) to build the PCE construction. We follow our
initial idea to replace obfuscation with HG. For a clear presentation, let us focus on
producing the special component in the ciphertext. At first, it is necessary to prepare a
program P that hardwires the plaintext m and returns 1 if its input is identical m. The
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PCE encryption will generate Enc(m), ˜P , and ỹ, whose condition on y = Hash(m).
The PCE decryption directly runs Dec of PKE, and Check of PCE relies on evaluation
with m′, ˜P , and ỹ for some test plaintext m′. The above-mentioned construction provides
checkability but faces a challenge in proving its security. By simulating the security of
HG, we can obtain that 〈Enc(mβ), ˜Pmβ , ỹmβ 〉 is computationally indistinguishable from
〈Enc(mβ), ˜PSim,mβ

, ỹSim,mβ
〉, where ˜PSim,mβ

, ỹSim,mβ
are simulated. However, we cannot

directly use the CPA-security of PKE to switch Enc(m0) to Enc(m1), as ˜PSim,mβ
, ỹSim,mβ

depend on mβ . To overcome this dependency, the encryption algorithm of PCE randomly
chooses a number r and returns (ỹ′, r) instead of ỹ, where ỹ′ = H(m||r) ⊕ ỹ with the other
hash function H . Let us go back the proof. According to the slight modification, it suffices to
obtain 〈Enc(mβ), ˜PSim,mβ

, H(m||r) ⊕ ỹSim,mβ
, r〉 ≈ 〈Enc(mβ),U|˜P|+|̃y|+|r |〉 in the random

oracle model, where the uniform is denoted byU . The security proof can go through by PKE
security to switch 〈Enc(m0),U|˜P+ỹ|〉 to 〈Enc(m1),U|˜P+ỹ|〉.

1.1.4 Construction in the standard model

The above solution is generic and modular but still in the random oracle model. In other
words, it achieves the same security as the schemes of [3]. However, this suffices to slightly
modify the warm-up construction to a full-fledged one that can be proven in the standard
model. Before we show the modification, let us introduce another property of HG: so-called
blindness [12]. In an HG scheme, blindness means 〈˜PSim, ỹSim〉 ≈ 〈U|˜P+ỹ|〉 when P(x) is
uniform. This property inspires us to modify the circuit P in the warm-up, and then we avoid
using the random oracle to remedy our proof. Our full-fledged construction includes two
slight modifications. One is to set P as a pseudorandom generator [2] that can make P(x)
close to uniform, and the other is to verify the evaluation of (x, ˜P, ỹ) in Check. Recall the
security proof where 〈Enc(mβ), ˜PSim,mβ

, ỹSim,mβ
〉 ≈ 〈Enc(mβ),U|˜P|+|̃y|〉 can be directly

achieved without the random oracle model. Finally, we need to emphasize that this solution
involves the non-black-box use of one-way functions, as the HG must know the codes of
pseudorandom generators. Questions of how to use the primitives on the black box will be
the subject of our future work on PCE proven in the standard model.

To summarize the results, we briefly compare our schemes with the existing ones in
Table 1. All of the schemes satisfy the syntax of PCE, which implies that they can be used to
reach the same above-mentioned applications.We do not show any comparison on efficiency,
as our schemes may be slower than previous ones (depending on the underlying primitives).
The value of our proposal is related to the module construction and its security in the standard
model. In practical implementations, the underlying HGmay require more space and compu-
tation cost (proportional to the program complexity) than the use of a bilinear map. However,
our construction is generic and offers flexibility for using the primitive; for example, it can
be made up of post-quantum cryptographic building blocks against quantum computers.

1.2 Organization

The rest of this paper is organized as follows. In Sect. 2, we introduce cryptography tools
and their definitions of security, which will be used throughout this paper. In Sect. 3, we first
build a hash garbling scheme and then prove its security based on HE and the GC. In Sect. 4,
a warm-up and a non-black-box PCE construction are presented with their security analysis.
In Sect. 5, we provide the experiments for implementing our constructions. Finally, Sect. 6
provides the conclusion of this paper.
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A generic construction of plaintext checkable encryption 1733

2 Preliminaries

Prior to presenting the preliminaries, we must state a few notations used in this paper. Let
n be the security parameter. We say that for a negligible function negl for any polyno-
mial function P(n) that satisfies an n that is sufficiently large, negl(n) ≤ 1

P(n)
holds.

For a probabilistic polynomial time algorithm D with security parameter n, we define
|Pr [D(X) = 1] − Pr

[D(X ′) = 1
] ≤ negl(n) such that X is indistinguishable from X ′.

This is also denoted by 〈X〉 c≈ 〈X ′〉 as indistinguishability on distribution.

2.1 Public key encryption (PKE)

A PKE scheme consists of three polynomial time algorithms: PKE = (Gen, Enc,Dec).

– Gen(1n): It takes as input the security parameter n and outputs a pair of keys (pk, sk).
– Enc(pk,m): It takes as input a public key pk and a message m, and outputs a ciphertext

c.
– Dec(sk, c): It takes as input a secret key sk and a ciphertext c, and outputs a message or

⊥.

Definition 1 (Security of PKE) If a PKE scheme is a chosen plaintext attack (CPA) that
is secure against any probabilistic polynomial-time (PPT) algorithm A, then we use
ExpCPA

A,PKE(n) security to quantify that for every PPT algorithm A, for all n and any equal
length of plaintext input, we have

Pr
[

ExpCPA
A,PKE(n)

]

= ∣

∣Pr
[A(pk,m0,m1,Cm0) = 1

] − Pr
[A(pk,m0,m1,Cm1) = 1

]∣

∣

≤ negl(n),

where {m0,m1} $← M, pk ← Gen(1n),Cmb ← Enc(pk,mb). We define the advantage
of any algorithm A as the difference of probabilities above. The above formulation is also

identical to 〈pk,m0,m1,Cm0〉
c≈ 〈pk,m0,m1,Cm1〉.

2.2 Plaintext checkable encryption (PCE)

A plaintext checkable encryption (PCE) [3, 4] scheme, PCE, is composed of four polynomial
time algorithms. Formally, let PCE = (Gen, Enc,Dec,Check).

– Gen(1n): Given the security parameter n, it returns a pair of keys (pk, sk).
– Enc(pk,m): Given a public key pk and a message m, it returns a ciphertext c.
– Dec(sk, c): Given a secret key sk and a ciphertext c, it returns a message or ⊥.
– Check(pk,m, c): Given the public key pk, a message m, and a ciphertext c, it returns 1

if c is an encryption of m, or returns 0 if not.

Definition 2 (Security of PCE) A PCE scheme is unlinkable CPA secure against any
probabilistic polynomial time adversaries A, which was described by [3]. Here, we use
ExpunlinkA,PCE(n) security to quantify that for every PPT algorithm A for all n and any equal
length of plaintext input:

Pr
[

ExpunlinkA,PCE(n)
]

= ∣

∣Pr
[A(pk,Cm0) = 1

] − Pr
[A(pk,Cm1) = 1

]∣

∣

≤ negl(n),
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1734 Y.-C. Chen

where {m0,m1} $← M, pk ← Gen(1n),Cmb ← Enc(pk,mb). Note that there is no input
m in unlinkable CPA security. We define the advantage of any algorithm A as the difference
of the probabilities above.

2.3 Garble circuit

A projective circuit garbling (GC) [14, 19] scheme consists of three polynomial time algo-
rithms, where GC = (Garble,GarbleInp, Eval).

– Garble(1n,C): This takes as input a security n and a circuit C , and then outputs a GC ˜C
and labels eC = {Xl,0, Xl,1}l∈[k], where k is the number of input wires of C .

– GarbleInp(eC , x): This encodes an x ∈ {0, 1}k with the input labels eC = {Xl,0, Xl,1}l∈[k]
and outputs x̃ ← {Xl,Xl }l∈[k].

– Eval(˜C, x̃): This takes as input a GC ˜C, and as a garbled input x̃ , and outputs δ.

Definition 3 (Correctness of GC) For any circuit C and input x ∈ {0, 1}k , the correctness is
implied by

Pr
[

Eval(˜C, x̃) = C(x)
] = 1,

where (˜C, ec = {Xl,0, Xl,1}) $← Garble(1n,C) and x̃ ← GarbleInp(eC , x).

Definition 4 (Security of GC) There exists a PPT simulator Sim such that for any circuit C
and any input x , we have

〈˜C, x̃〉 c≈ 〈Sim(1n,C(x))〉, (1)

where (˜C, ec = {Xl,0, Xl,1}) $← Garble(1n,C) and x̃ ← GarbleInp(eC , x).
More generally, we use ExpI ND

A,GC(n) security to quantify that for every PPT algorithmA,
the Eq. (1) is computationally indistinguishable, so we have

Pr
[

ExpI ND
A,GC(n)

]

= ∣

∣Pr
[A(˜C, x̃) = 1

] − Pr
[A(Sim(1n,C(x))) = 1

]∣

∣

≤ negl(n).

Definition 5 (Blindness) The blindness is

〈Sim(1n,C(x))〉 c≈ 〈U|C(x)|〉.
The output of the simulator on a completely uniform output is indistinguishable from a
uniform bit string.

2.4 Hash encryption (HE)

An HE [7] scheme consists of four polynomial time algorithms: HE = (Gen,Hash, Enc, and
Dec).

– Gen(1n,m): This takes as input the security parameter n and an input length m, and
outputs a key k.

– Hash(k, x): This takes as input a key k and an input x ∈ {0, 1}m , and outputs a hash
value h of n bits.
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A generic construction of plaintext checkable encryption 1735

– Enc(k, (h, i, c),m): This takes as input a key k, a hash value h, an index i ∈ [m] , c ∈
{0, 1} and a message m,∈ {0, 1}∗ and outputs a ciphertext ct . We generally assume that
the index i and the bit c are included alongside.

– Dec(k, x, ct): This takes as inputs a key k, an input x , and a ciphertext ct , and outputs a
value m ∈ {0, 1}∗ or ⊥.

Definition 6 (Correctness of HE) For any input x ∈ {0, 1}m, index i ∈ [m], the correctness
is implied by

Pr
[

Dec(k, x, Enc(k, (Hash(k, x), i, xi ),m))
] ≥ 1 − negl(n),

where xi denotes the i th bit of x , and the randomness is taken over k ← Gen(1n,m).

Definition 7 (Security of HE) If an HE is selectively indistinguishable secure against any
probabilistic polynomial time algorithm A, then we use ExpI ND

A,HE(n) security to quantify
that for every PPT algorithm A, for all n, the length of m and any equal length of plaintext
input, we have

Pr
[

ExpI ND
A,HE(n)

]

= ∣

∣Pr
[A(k, x, ctm0) = 1

] − Pr
[A(k, x, ctm1) = 1

]∣

∣

≤ negl(n),

where {m0,m1} $← M, k ← Gen(1n,m) and ctmb ← Enc(k, (Hash(k, x), i, 1 − xi ),mb).
We define the advantage of any algorithm A as the difference of the probabilities above.

Definition 8 (Blindness) The blindness is

〈k, x, Enc(k, (h, i, c)),m)〉 c≈ 〈k, x,U|ct |〉,
where m is a uniform bit string.

2.5 Hash garbling

An HG [12] scheme consists of five polynomial time algorithms, HG = (Gen,Hash,HObf,
HInp, and Eval).2

– Gen(1n, k): This takes as input the security parameter n and an input length parameter k
for k ≤ poly(n), and outputs a hash key hk. (Gen runs in poly(n) time.)

– Hash(hk, x): This takes as input hk and x ∈ {0, 1}k, and outputs a value y ∈ {0, 1}n .
– HObf(hk,C): This takes as input hk and a circuitC, and outputs a secret state st ∈ {0, 1}n

and a circuit ˜C .
– HInp(hk, y, st): This takes as input hk, y, st and outputs ỹ.
– Eval(˜C, ỹ, x): This takes as input a GC ˜C and the value ỹ and x , and outputs δ.

Definition 9 (Correctness of HG) For all n, k, hk ← Gen(1n, k), circuit C , input x ∈
{0, 1}k, st ∈ {0, 1}n, ˜C ← HObf(hk,C, st) and ỹ ← HInp(hk,Hash(hk, x), st), we have

Pr
[

Eval(˜C, ỹ, x) = C(x)
] = 1.

2 Here, we slightly modify the definition of HG proposed by [12] and change the original HObf(hk,C, st)
to HObf(hk,C). This change does not affect the implementation or correctness of HG, but facilitates the
subsequent presentation.
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Table 2 Labels eC c i
1 2 ... k

0 X1,0 X2,0 Xl,0 Xk,0

1 X1,1 X2,1 Xl,1 Xk,1

Definition 10 (Security of HG) There exists a PPT simulator Sim such that for all n, k and
PPT (in n) A we have

〈hk, x, ˜C, ỹ〉 c≈ 〈hk, x, Sim(hk, x, 1|C |,C(x))〉, (2)

where hk ← Gen(1n, k), (C, x) ← A(hk), (˜C, st) ← HObf(hk,C), st ← {0, 1}n and
ỹ ← HInp(hk,Hash(hk, x), st).

More generally, we use ExpI ND
A,HG(n) security to quantify that for every PPT algorithmA,

(2) is computationally indistinguishable, so we have

Pr
[

ExpI ND
A,HG(n)

]

= |Pr [A(hk, x, ˜C, ỹ) = 1
] − Pr

[

A(hk, x, Sim(hk, x, 1|C |,C(x)) = 1
]

|
≤ negl(n).

Definition 11 (Weak security of HG) There exists a PPT simulator Sim such that for all n, k
and PPT (in n) A, we have the following weak notion

〈hk, ˜C, ỹ〉 c≈ 〈hk, Sim(hk, x, 1|C |,C(x))〉.
Note that there is no input x in the weak security. If a scheme meets the security of HG, then
it absolutely meets the weak security.

Definition 12 (Blindness) The blindness is

〈hk, x, Sim(hk, x, 1|C |,C(x))〉 c≈ 〈hk, x,U|˜C |+|̃y|〉, (3)

where the output distribution of C(x) is uniform.

Definition 13 (Weak blindness) To undertake Definition 12, we have the following weak
notion:

〈hk, Sim(hk, x, 1|C |,C(x))〉 c≈ 〈hk,U|˜C |+|̃y|〉.
Note that there is no input x in the weak blindness of HG.

3 The HG scheme

3.1 Construction

Let GC = (Garble,GarbleInp, Eval′) and HE = (Gen′′,Hash′′, Enc,Dec) be the secure GC
and HE. We present the construction of HG, which consists of the following algorithms
(Gen,Hash,HObf,HInp, Eval).

– Gen(1n, k): This takes as input the security parameter n and the number of input wires
k of a circuit C and computes hk ← Gen′′(1n, k). It outputs a hash key hk.
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A generic construction of plaintext checkable encryption 1737

– Hash(hk, x): This takes as input hk and x ∈ {0, 1}k and computes as follows:

y ← Hash′′(hk, x).

It outputs a value y ∈ {0, 1}n .
– HObf(hk,C): This takes as input hk and a circuit C and computes as follows:

(˜C, eC ) ← Garble(hk,C).

This outputs a GC ˜C and labels eC = {Xl,0, Xl,1}l∈[k], where Xl,∗ ∈ {0, 1}n .
– HInp(hk, y, eC ): This takes as input hk, y, eC and computes the following:

ỹ ← Enc(hk, (y, i, c), eC ),

where i represents the serial number of x, c ∈ {0, 1}. Hence, it outputs the value of
ỹ = (c1,∗, . . . , cl,∗ . . . , ck,∗).
According to Table 2, each cl,∗ is calculated as follows:

cl,0 ← Enc(hk, (y, l, 0), Xl,0).

cl,1 ← Enc(hk, (y, l, 1), Xl,1).

– Eval(˜C, ỹ, x): This takes as input ˜C, ỹ, x and computes as follows:

eC
′ ← Dec(hk, x, ỹ).

x̃ ← GarbleInp(eC
′, x).

δ ← Eval′(˜C, x̃).

From Definition 3, it is equivalent to output C(x).

Correctness: From Definition 6 and Table 2, we know that for

ct ← Enc(hk, (Hash′′(hk, x), i, 1 − c), Xi,c),

the adversary A cannot distinguish Xi,c. In other words, for the HInp of x ∈ {0, 1}k’s i-bit
c,Dec can only get the corresponding label Xi,c. For example, if the value of x = 1011,A is
only able to get the labels X1,1, X2,0, X3,1, X4,1, but it has no information about other labels.

3.2 Security analysis

Theorem 1 The HG construction meets simulation security (Definition 10), assuming the
underlying hash encryption and garbled circuit are secure.

Proof To show that the HG construct meets the security of Eq. (2), we need to prove that the
output of a PPT simulator (SimHG), which represents the right side of (2), is indistinguishable
from that of HG. Moreover, ViewHG represents the left side of the (2). To do this, we have
to define a sequence of hybrids (Hyb0,Hyb1,Hyb2) and demonstrate that SimHG is compu-
tationally indistinguishable from the output of ViewHG by proving the relationship between
the following views:

ViewHG ≡ Hyb0 ≈ Hyb1 ≈ Hyb2 ≡ SimHG.

Similar to our presentation of Construction 3.1, here, all views use the same security param-
eters 1n and k, and the value of x ∈ {0, 1}k is fixed.

123



1738 Y.-C. Chen

– Hyb0 (encrypt in real game): We make the output of Hyb0 the same as ViewHG, and
obviously, ViewHG ≡ Hyb0.

– Hyb1: Based on Hyb0, we modify the value of ỹ for the bit corresponding to the x value
at the l-th value, assuming that 1, (1 = c ← xl), and the generated ciphertext is cl,1. We
keep the following unchanged:

cl,1 ← Enc(hk, (y, l, 1), Xl,1).

In contrast, for another label Xl,0, we set it to 0, namely:

cl,0 ← Enc(hk, (y, l, 0), 0).

We do the same encryption process according to the x in {0, 1}k string corresponding to
the label Xl,∗ in eC Table 2. If we assume that the value of x is 1011, the corresponding
ỹ′ value should be as follows:

ỹ′ =
(

c′
1,0 c2,0 c′

3,0 c′
4,0

c1,1 c′
2,1 c3,1 c4,1

)

.

– Hyb2: Based on Hyb1, we modify the value of x̃ and ˜C , and for each l ∈ [0, k], in the
x path, we use the form of a simulator to generate ˜CSim and x̃Sim for the corresponding
label eC , namely:

(˜CSim, x̃Sim) ← Sim(1n,C(x)).

Note that for the composition of x̃Sim, for the bit corresponding to the x value at the l-th
value, assuming that 1. We use the label Xl,1Sim to indicate. For example, if the value of
x is 1011 (consistent with Hyb1), the composition of eC should be as follows:

ec =
(

X1,0 X2,0Sim X3,0 X4,0

X1,1Sim X2,1 X3,1Sim X4,1Sim

)

.

The label Xl,∗Sim is generated by the simulator Sim, and the rest is generated by the
GarbleInp algorithm (which is consistent with Hyb1). Therefore, x̃Sim is composed as
follows:

x̃Sim =
(

x̃1,0 x̃2,0Sim x̃3,0 x̃4,0
x̃1,1Sim x̃2,1 x̃3,1Sim x̃4,1Sim

)

.

Hence, the value of the corresponding ỹSim is expressed as follows:

ỹSim =
(

c′
1,0 c2,0Sim c′

3,0 c′
4,0

c1,1Sim c′
2,1 c3,1Sim c4,1Sim

)

.

Clearly, Hyb2 ≡ SimHG.

Lemma 1 Assuming that HE is selectively indistinguishable secure (Definition 7), hybrid
views Hyb0 and Hyb1 are computationally indistinguishable.

Proof To prove Hyb0
c≈ Hyb1, we use the output of Hyb0 and Hyb1 as follows:

〈hk, x, ˜C, ỹ〉 c≈ 〈hk, x, ˜C, ỹ′〉. (4)

The difference between the two sides of the (4) is ỹ and ỹ′. More specifically, the difference
between the two sides of (4) should be information that is not encrypted in the x path (1−xl,∗),
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such as c′
1,0 and c1,0, to determine whether the encrypted information is labeled Xl,0 or 0. In

other words, a PPT algorithm A needs to distinguish the following equation:

ct ← Enc(hk, (y, i, 1 − xl,∗),mb). (5)

Equation (5) translates to prove ExpI ND
A,HE security. From Definition 7, we know that the

advantage of A is negl(n), and the proof is completed. ��
Lemma 2 Assuming that GCmeets simulation security (Definition 4), hybrid views Hyb1 and
Hyb2 are computationally indistinguishable.

Proof To prove Hyb1
c≈ Hyb2, we use the output of Hyb1 and Hyb2 as follows:

〈hk, x, ˜C, ỹ′〉 c≈ 〈hk, x, ˜CSim, ỹSim〉. (6)

The difference between the two sides of (6) is (˜C, ỹ′) and (˜CSim, ỹSim). More specifically,
the difference between the two sides of (6) is the difference in the way x̃ is generated, that
is, whether x̃ is generated by GarbleInp or generated by the simulator on the x path (xl,∗).
In other words, a PPT algorithm A needs to distinguish the following equation:

〈˜C, x̃〉 c≈ 〈˜CSim, x̃Sim〉. (7)

Equation (7) translates to prove ExpI ND
A,GC security. From Definition 4, we know that the

advantage of A is negl(n), and the proof is completed. ��
This proof is done by proving Lemmas 1 and 2. ��

Theorem 2 The HG construction meets blind security (Definition 12), assuming that the
underlying HE and GC are blind security.

Proof To show that the HG construction meets the security of (3), we use ViewBHG to
represent the right side of the (3) and SimBHG to represent the left side of (3). For the simulator
Sim described above, consider the distribution of Sim(hk, x, 1|C |,C(x)) for a uniformly
generated output. By the security of a blind GC (Definition 5), we know the GC simulator

〈Sim(1n,C(x))〉 c≈ 〈U|C(x)|〉. Hence, for each l ∈ [k], Xl,∗
c≈ U . Thus, by the security of

blind HE (Definition 8), ỹ = Enc(hk, (h, i, c), Xl,∗), we have 〈hk, x, ỹ〉 c≈ 〈hk, x,U|̃y|〉.
Hence, it follows that SimBHG

c≈ ViewBHG . ��

4 The proposed PCE scheme

4.1 Warm-up construction

Let PKE = (Gen′, Enc′,Dec′) and HG = (Gen′′,HObf,Hash,HInp, Eval) be the secure pub-
lic key encryption and HG. The proposed construction of PCE is composed of the following
algorithms.

– Gen(1λ): It takes as input the security parameter λ, which contains two parameters,
(1n, k), and computes the following:

(pk′, sk′) ← Gen′(1n).
hk ← Gen′′(1n, k).

Finally, it outputs the public/private key pair (pk, sk), where pk = (pk′, hk), sk = sk′.
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– Enc(pk,m): This takes as input pk and a message m ∈ {0, 1}∗, and computes the fol-
lowing:

C ← Enc′(pk′,m)

(˜P, eC ) ← HObf(hk, P)

y ← Hash(hk,m).

ỹm ← HInp(hk, y, eC )

t = ỹm ⊕ H(m||r)
ỹ = (t, r),

where r is a random number, H(·) is a cryptographic hash function that supports input
of any length, P is explained below, and the generation of a secret state eC ∈ {0, 1}n can
be seen in Construction 3.1.

The program P is defined below:

– Hardwired: m
– Input: x

1. if x = m, output 1.
2. if x �= m, output ⊥.

Finally, it outputs ciphertext C = (C, ˜P, ỹ).
– Dec(sk,C): It takes as input the secret key sk and C, and computes the following:

m = Dec′(sk′, C).

– Check(pk,C,m): In order to check the correctness of m, this is calculated as follows:

ỹm ← t ⊕ H(m||r)
b ← Eval(˜P, ỹm,m),

where b ∈ {⊥, 1} (b = 1 if C is an encryption of m, or b = ⊥ if not).

4.1.1 Correctness

In Dec, it is held by m = Dec′(sk′, Enc′(pk′,m)), the correctness of the underlying decryp-
tion of PKE.

In Check, taking (t, r) from C and the message m∗ and computing H(m∗||r),
it is held ˜y∗

m = t ⊕ H(m∗||r). With the hash input encoding ˜y∗
m , we can obtain

˜y∗
m ← HInp(hk,Hash(hk,m∗), eC ). If ˜P with hardcoded m and eC are generated by

HObf(hk, P), Eval(˜P, ˜y∗
m,m∗) will output 1 if and only if m∗ is the same with the hard-

coded m in P .

4.1.2 Security proof

The security of the warm-up is stated with the following theorem.

Theorem 3 The above generic construction of PCE satisfies unlinkable CPA security in the
random oracle model if the underlying public key encryption is CPA secure and the security
of HG meets Definition 11.

123



A generic construction of plaintext checkable encryption 1741

Proof At a high level, we assume that there is a PPT adversary A, which breaks the
ExpunlinkA,PCE(n) security, and then we can create the PPT algorithm A, which also breaks

ExpCPA
A,PKE(n) or ExpI ND

A,HG(n) security. However, for completing the proof, we start by defin-
ing an event HIT where the adversary A2 exactly accesses m0 or m1 to Check. This suffices
to obtain the following result:

Pr
[

ExpunlinkA,PCE(n) = 1
]

= Pr
[

ExpunlinkA,PCE(n) = 1 ∧ HIT
]

+Pr
[

ExpunlinkA,PCE(n) = 1 ∧ HIT
]

≤ Pr [HIT] + Pr
[

ExpunlinkA,PCE(n) = 1 ∧ HIT
]

.

We claim Pr [HIT] = 2
2�(n) ≤ negl(n), as m0,m1 are �(n)-bit, where � is some polynomial.

The rest of the proof focuses on ExpunlinkA,PCE(n) = 1 ∧ HIT. We abuse the notation ỹ(mβ )

as ỹ with t = ỹmβ ⊕ H(mβ ||r). Our goal is to show that 〈pk′, Enc′(m0), hk, ˜Pm0 , ỹ(m0)〉
is indistinguishable to 〈pk′, Enc′(m1), hk, ˜Pm1 , ỹ(m1)〉, where ˜Pmβ , ỹmβ denotes the under-
lying garbled encoding for plaintext mβ . For short, denote by 〈Enc′(m0), ˜Pm0 , ỹ(m0)〉 ≈
〈Enc′(m1), ˜Pm1 , ỹ(m1)〉 with public pair of (pk′, hk). We apply the standard hybrid argu-
ments to complete the proof. At the beginning, start by defining two top-level hybrids, Hyb0
and Hyb1,

3.

– Hybβ : This experiment is identical to ExpunlinkA,PCE(n), except the challenge ciphertext is

〈Enc′(mβ), ˜Pmβ , ỹmβ 〉.
Note that Hybβ is identical to 〈pk′, Enc′(mβ), hk, ˜Pmβ , ỹmβ 〉. In addition, we further define
a few hybrids Hybβ,0,Hybβ,1 as follows (with β ∈ {0, 1}):
– Hybβ,1: This is similar to Hybβ , except ˜Pmβ , ỹmβ is replaced with Sim(hk,mβ, 1|Pmβ

|
,

Pmβ (mβ)).
– Hybβ,2: This is similar to Hybβ,1, except the simulated part is replaced with U|˜P|+|̃y|.

To achieve 〈pk′, Enc′(m0), hk, ˜Pm0 , ỹm0〉
c≈ 〈pk′, Enc′(m1), hk, ˜Pm1 , ỹm1〉, a sequence of

hybrids is denoted by

Hyb0 ≈ Hyb0,1 ≈ Hyb0,2 ≈ Hyb1,2 ≈ Hyb1,1 ≈ Hyb1.

For each neighboring hybrid, we can use an assumption of security to complete the reduction.
We directly state the following lemmas, and refer to the missing proofs of Lemmas 3 and 5
in Appendix.

Lemma 3 If the underlying hash garbling scheme meets weak security (Definition 11), then
no poly-time adversary can distinguish with non-negligible probability between Hyb0 and
Hyb0,1.

Lemma 4 No poly-time adversary can distinguish with non-negligible probability between
Hyb0,1 and Hyb0,2 in the random oracle model.

The distributions of Hyb0,1 and Hyb0,2 in the random oracle model are identical. Details
are shown below. Trivially, we have 〈˜P, r , ỹm ⊕ H(m||r) ≡ 〈˜P, r ,U|ỹm |〉 in the random

3 Hybβ is 〈Enc′(mβ), ˜Pmβ ỹ(mβ )〉
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oracle. It is easy to obtain 〈˜P, r ,U|ym |〉 ≡ 〈˜P,U|̃y|〉 with identical distribution. Finally, after
cutting the correlation from ˜P to ỹm , we conclude that ˜P is not evaluable, and further obtain
〈˜P,U|̃y|〉 ≡ 〈U|˜P+ỹ|〉.
Lemma 5 If our public key encryption scheme is CPA-secure (Definition 1), then no poly-time
adversary can distinguish with non-negligible probability between Hyb0,2 and Hyb1,2.

These lemmas can be used to show Hyb1,2 ≈ Hyb1,1 ≈ Hyb1 with the same man-
ner. Finally, we conclude that Pr [ExpunlinkA,PCE(n) = 1 ∧ HIT] ≤ negl(n), which implies

Pr [ExpunlinkA,PCE(n) = 1] ≤ negl(n), completing the proof.
Here, we sketch the idea of using the random oracle for Lemma 4. Let us focus on

〈˜PSim,mβ
, H(mβ ||r) ⊕ ỹSim,mβ

, r〉; it cannot be flipped to uniform, as ỹSim,mβ
depends on

˜PSim,mβ
and H(mβ ||r) on r . The main technique is to model H as a random oracle for cutting

such a relationship. In the randomoraclemodel, we directly have 〈˜PSim,mβ
,U|̃y|⊕ ỹSim,mβ

, r〉,
as for each inputm||r , the randomoracle H uniformly determines a randomnumber. It is clear
to obtain 〈˜PSim,mβ

,U|̃y|, r〉. Finally,without existing ỹ, we can claim ˜PSim,mβ
as uniformU|˜P|.

The proof sketch is done with |r | ≥ |̃y|, which guarantees uniform r can span all possible
values on ỹ. ��

4.2 Non-black-box PCE construction in the standardmodel

Let PKE= (Gen′, Enc′, Dec′) and HG= (Gen′′, HObf, Hash, HInp, Eval) be the secure PKE
and HG. The final construction of PCE is almost identical to the warm-up. In the following,
only the modifications are shown.

– Enc(pk,m): It takes as input pk and a messagem ∈ {0, 1}∗, and computes the following:

C ← Enc′(pk′,m)

(˜P, eC ) ← HObf(hk, P)

y ← Hash(hk,m)

ỹ ← HInp(hk, y, eC ).

The P is explained below, and the generation of a secret state eC ∈ {0, 1}n can be seen
in Construction 3.1.
The program P is defined below:

– Hardwired: m, r
– Input: x

1. if x = m, output PRG(x).
2. if x �= m, output PRG(x ⊕ r),

where r is a random number, and PRG is a pseudorandom generator [2]. Finally, it outputs
ciphertext C = (C, ˜P, ỹ).

– Check(pk,C,m): In order to check the correctness of m, it is calculated as follows:

PRG(m)
?= Eval(˜P, ỹ,m). (8)

If C is encrypted by m, (8) holds, and vice versa.

We say that the above modifications can lift the construction to be secure in the standard
model. However, the algorithm HObf must know the code of PRG precisely, which implies
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Fig. 1 Implementation result of performance of PCE algorithms

the construction is of non-black-box use for one-way functions. In the following proof, we
omit to repeat the steps of the proof of Theorem 3. Here, we briefly describe the security
argument by stating a lemma that is different from Lemma 4.

Lemma 6 Assuming that HG meets week blindness (Definition 13), then no poly-time adver-
sary can distinguish with non-negligible probability between Hyb0,1 and Hyb0,2.

Proof In a nutshell, we need to prove 〈pk′, Enc′(m0), hk, Sim(hk, m0, 1|Pm0 |, Pm0(m0))〉
c≈ 〈pk′, Enc′(m0), hk, U| p̃|+|̃y|〉, from the proposed construction. Recall that the result of

Pm0(x) is close to uniform, as the output of PRG is close to uniform. Thus, Hyb0,1
c≈ Hyb0,2

can be easily achieved as long as the HG meets weak blindness security without any random
oracle. ��

5 Experiments

In this section, we present the experimental evaluation of our PCE construction, whichmainly
consists of two cryptographic primitives. The first one is PKE, so we use the ElGamal
algorithm [9] based on the decision Diffie–Hellman assumption [18]. The second is HG,
which consists of cryptographic tools such as HE and GC.We choose Chameleon Encryption
[6] based on the computation Diffie-Hellman assumption as the HE, and use AES or SHA to
implement the GC.

We implement experiments by using C++ programming under an Intel(R) Core(TM) i5-
3427U CPU of 1.80 GHz and 4 GB of memory, running in Ubuntu−18.04.1. In addition, we
rely on the OpenSSL library for the hash function, the PBC library for group operations, and
point exponentiation calculations. Group elements forG are set with 1024-bit. As mentioned
in Construction 4.1, it is clear that the main influencing factor of the performance of the PCE
instance is the plaintext length. The fixed plaintext length is 4, 32, 64, 128, 256, 512, and

123



1744 Y.-C. Chen

Fig. 2 Implementation result of performance of HG algorithms

1024 bits. The main metrics of performance include the PCE and HG algorithms (see Figs. 1
and 2).

For the performance, in Fig. 1, with the exception of the Dec algorithm, the remaining
algorithms experience a climbing trend with the increase of the length of plaintext. Moreover,
from Fig. 2, it can be seen that the HG algorithm occupies the main performance of PCE.
In fact, for the length of the plaintext, the time of execution of the PKE algorithm is also
constant, as can be seen by comparing Figs. 1 and 2.

6 Conclusions

In this paper, we have shown a construction of HG based on hash encryption and garbled
circuits. Then, we have built a warm-up solution to realize the construction of plaintext
checkable encryption from HG, but its security has been proven in the random oracle. With
slight modifications from our warm-up, the full-fledged construction of PCE has proved to be
secure in the standard model. Finally, the experiments for implementing our warm-up PCE
have shown effectiveness for real-life applications.
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sentation of this paper. This work was supported by National Science and Technology Council of Taiwan (Nos.
112-2218-E-A49-023, 112-2634-F-027-001-MBK, and 112-2221-E-027-069).

Appendix A: Missing proofs

Proof of Lemma 3 Suppose A is the adversary with non-negligible probability to distinguish
Hyb0 and Hyb0,1, then we can create another algorithm B which runs A as a subroutine to
break the weak security of HG.
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Following the hybrid, A receives a challenge as (Enc′(pk′,m0),˜P, ỹ). ỹ can be parsed as
(t, r) such that ỹm0

= t⊕H(m0||r). The pair of (˜P, ỹm0
) is (˜Pm0 , ỹm0) or (˜PSim, ỹSim)where

˜PSim, ỹSim is generated by Sim(hk,m0, 1|Pm0 |,⊥). Note that ⊥ by the previous argument for
HIT. Accordingly,A can transform parts of the challenge intoB’s input.A directly sets˜P, ỹm0
as the input ofB, andwaits for the output ofB. Finally,A’s output (one bit) is set to be identical
to B’s, and thus it implies that Pr[A(Enc′(pk′,m0),˜P, ỹ) = 1] = Pr[B(˜P, ỹm0

)] = 1. Weak
security of HG offers |Pr[B(˜Pm0 , ỹm0) = 1] − Pr[B(˜PSim, ỹSim) = 1]| ≤ negl(n), so we
obtain

|Pr[A(Enc′(pk′,m0), ˜Pm0 , (ỹm0 ⊕ H(m0||r), r)) = 1]
−Pr[A(Enc′(pk′,m0), ˜PSim, (ỹSim ⊕ H(m0||r), r)) = 1]| ≤ negl(n)

as well as Hyb0 and Hyb0,1 are computationally indistinguishable. The proof of this lemma
is done. ��
Proof of Lemma 5 Before we prove the lemma, we quickly remark the proof intuition of
the main theorem. Our final goal is from Hyb0 to Hyb1 to replace Enc(pk′,m0) with
Enc(pk′,m1). However, it cannot be directly replaced, since (˜P, ỹ) in Hyb0 includes the
information ofm0. However, Lemma 3 is used to eliminate the underlyingm0 for (˜Pm0 , ỹm0)

by the power of the random oracle.
Let go back to this proof. Suppose A is the adversary with non-negligible probabil-

ity to distinguish Hyb0,2 and Hyb1,2, then we can create another algorithm B that runs A
as a subroutine to break the CPA security of public key encryption. Following Hybβ,2,A
receives a challenge as (Enc′(pk′,mβ),˜P, ỹ) where ˜P, ỹ ← U|˜P|+|̃y|. Consequently, A
can transform parts of the challenge into B’s input. A directly sets Enc′(pk′,mβ) as the
input of B, and waits for the output of B. Similarly to the proof of the above lemma, it
implies that Pr[A(Enc′(pk′,mβ),˜P, ỹ)] = Pr[B(Enc′(pk′,mβ))]. The CPA security says
|Pr[B(Enc′(pk′,m0)) = 1] − Pr[B(Enc′(pk′,m1)) = 1]| ≤ negl(n). We finally obtain

|Pr[A(Enc′(pk′,m0),˜P, ỹ) = 1] − Pr[A(Enc′(pk′,m1),˜P, ỹ) = 1]| ≤ negl(n)

as well as Hyb0,2 and Hyb1,2 are computationally indistinguishable. The proof of this lemma
is done. ��
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