
Designs, Codes and Cryptography (2024) 92:833–862
https://doi.org/10.1007/s10623-023-01338-x

Hardness estimates of the code equivalence problem
in the rank metric

Krijn Reijnders1 · Simona Samardjiska1 ·Monika Trimoska1

Received: 14 August 2022 / Revised: 11 August 2023 / Accepted: 31 October 2023 /
Published online: 8 January 2024
© The Author(s) 2023

Abstract
In this paper, we analyze the hardness of the Matrix Code Equivalence (MCE) problem for
matrix codes endowedwith the rankmetric, and provide the first algorithms for solving it.We
do this bymaking a connection to anotherwell-known equivalence problem frommultivariate
cryptography—the Isomorphism of Polynomials (IP). Under mild assumptions, we give tight
reductions from MCE to the homogenous version of the Quadratic Maps Linear Equivalence
(QMLE) problem, and vice versa. Furthermore, we present reductions to and from similar
problems in the sum-rank metric, showing that MCE is at the core of code equivalence
problems. On the practical side, using birthday techniques known for IP, we present two

algorithms: a probabilistic algorithm for MCE running in time q
2
3 (n+m) up to a polynomial

factor, and a deterministic algorithm for MCE with roots, running in time qmin{m,n,k} up to a
polynomial factor. Lastly, to confirm these findings, we solve randomly-generated instances
of MCE using these two algorithms.

Keywords Code equivalence · Post-quantum cryptography · Rank-based

Mathematics Subject Classification 94A60

1 Introduction

Given two mathematical objects of the same type, an equivalence problem asks the question
whether there exists an equivalence map between these objects—and how to find it—that

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue:
Coding and Cryptography 2022”.

B Krijn Reijnders
krijn@cs.ru.nl

Simona Samardjiska
simonas@cs.ru.nl

Monika Trimoska
mtrimoska@cs.ru.nl

1 Digital Security, Radboud University, Nijmegen, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-023-01338-x&domain=pdf

834 K. Reijnders et al.

preserves some important property of the objects. These kind of problems come in different
flavors depending on the objects—groups, graphs, curves, codes, quadratic forms, etc.—and
quite often the interesting maps are isomorphisms or isometries. Interestingly, equivalence
problems are one of the core hard problems underlying the security of many public-key
cryptosystems, especially post-quantum ones. Many multivariate and code-based systems
employ an equivalence transformation as a hiding technique, and thus intrinsically rely on
the assumption that a particular equivalence problem is intractable, for example [10, 16, 20,
21, 36, 40, 43]. In addition, quite remarkably, a hard equivalence problem gives rise to a
Sigma protocol and, through the Fiat–Shamir transform, a provably secure digital signature
scheme [27]. This idea has been revisited many times, being the basis of several signature
schemes [4, 11, 18, 19, 30, 43]. Two such schemes actually appeared during the writing of
this manuscript [23, 48] as a result of NIST’s announcement for an additional fourth round
on signatures in the post quantum standardization process [38]. Understanding the hardness
of these equivalence problems is an essential task in choosing appropriate parameters that
attain a certain security level of these cryptographic schemes.

One of these problems is the Code Equivalence problem, which given two codes (with the
Hammingmetric), asks for an isometry (equivalence transformation that preserves themetric)
that maps one code to the other. It was first studied by Leon [35] who proposed an algorithm
that takes advantage of the Hamming weight being invariant under monomial permutations.
It was improved very recently by Beullens [9] using collision-based techniques. Sendrier
[46] proposed another type of algorithm, the Support Splitting Algorithm (SSA), that is
exponential in the dimension of the hull (the intersection of a code and its dual). Interestingly,
in low characteristic, random codes have very small hull, rendering the problem easy.

In this work, we focus on the code equivalence problem, but for matrix codes (anFq -linear
subspace of the space of m × n matrices over Fq) endowed with the rank metric—Matrix
Code Equivalence (MCE). Evaluating the hardness of this problem is only natural—rank-
based cryptography has become serious competition for its Hamming-based counterpart,
showing superiority in key sizes for the same security level [2, 3, 7, 37].MCE, and variations
of it, has been introduced by Berger in [8], but it was only recently that the first concrete
statements about its hardness were shown in two concurrent independent works publicly
available as preprints [17, 32].1 Couvreur et al. [17] showed that MCE is at least as hard
as the (Monomial) Code Equivalence problem in the Hamming metric, while for only right
equivalence, or when the codes are Fqm -linear, the problem becomes easy. Grochow and
Qiao [32] show the same reduction from (Monomial) Code Equivalence to MCE but using a
completely different technique of linear algebra coloring gadgets which makes the reduction
looser than the one in [17].

1.1 Our contributions

In this paper, we investigate the theoretical and practical hardness of the Matrix Code Equiv-
alence (MCE) problem. Our contributions can be summarized as follows:

First, we link in a straightforwardmanner theMCE problem to hard problems on systems of
polynomials by showing thatMCE is polynomial-time equivalent to the Bilinear Maps Linear
Equivalence (BMLE) problem. We then extend this result by proving thatMCE is polynomial-
time equivalent to the Quadratic Maps Linear Equivalence (QMLE) problem, under a mild

1 The two works use different techniques and terminology, and seem to be mutually unaware of the line of
work preceding the other. In [32] the MCE problem is referred to as Matrix Space Equivalence problem and
3-Tensor Isomorphism problem.

123

Hardness estimates of the code equivalence problem in the rank metric 835

Matrix Code
Equivalence

Hamming

Code Equiv.
Permutation
Code Equiv.

Graph

Isomorphism

Hom. Quad.
Maps Linear
Equivalence

Matrix
Sum-Rank
Code Equiv.

Vector
Sum-Rank
Code Equiv.

Matrix Code
Right Equiv.

Vector Rank
Code Equiv.

[31]

If q = nO(1)

[25]

Thm. 24* & 25 Thm. 15* & 16*

Th
m.

23
*

[25
]

Fig. 1 Reductions around Matrix Code Equivalence. Dashed arrows are contributions from this work, dotted
arrows are trivial reductions. “A −→ B” means that “Problem A reduces to Problem B in polynomial time”.
Results with * assume trivial automorphism groups

assumption of trivial automorphism groups of the codes in question. While our technique
fails to give a proof without this assumption, we consider it to be reasonable for randomly
generated codes and for cryptographic purposes. As the QMLE problem is considered to be
the hardest equivalence problem for systems of multivariate polynomials, it is essential to
understand under which conditionsMCE and QMLE reduce to one another. Note that previous
work2 requiresmuch stronger assumptions for related results [6, 29, 32], such as algebraically
closed fields or existence of square or third roots. Our reduction to QMLE is tight and gives a
tight upper bound on the hardness of MCE. Furthermore, it is very simple, thus establishing
connection between code equivalence problems and polynomial equivalence problems that
is usable in practice. This is the basis of our contributions on the practical hardness of MCE.

Second, using similar techniques, and under the same assumptions, we show that MCE is
polynomial-time equivalent to other code equivalence problems, such as Matrix Sum-Rank
Code Equivalence Problem, and at least as hard as the Vector Sum-Rank Code Equivalence
Problem. All these connections and our results are visualized in Fig. 1.

On the practical side, we provide the first two non-trivial algorithms for solvingMCE using
the connection to QMLE. The first algorithm is a generalization of a known birthday-based
algorithm for QMLE [14, 15] for systems of polynomials with the same number of variables

2 We were made aware of this line of work by one of the authors after our results were first presented at WCC
2022.

123

836 K. Reijnders et al.

as equations. We show that this algorithm extends to different invariance properties and code

dimensions, which helps us prove complexity of q
2
3 (n+m) up to a polynomial factor for MCE

for m × n matrix codes. The algorithm is probabilistic with success probability that can
be made arbitrarily close to 1, and can be used for code dimensions up to 2(m + n). For
larger dimensions, the complexity becomes q(n+m) up to a polynomial factor, but the algo-
rithm is deterministic. The birthday-based algorithm for QMLE [14] assumed existence of a
polynomial-time solver for the inhomogeneous variant of QMLE to achieve these complex-
ities. Interestingly, due to the specific instances of the inhomogeneous QMLE arising from
the collision search, the problem seems to be much harder than for random instances—a fact
previously overlooked in [14]. In contrast, [15] uses a non-polynomial estimate for this solver.
We analyse the most recent results regarding such solvers, and show that for parameter sets
of cryptographical interest the above complexities hold, even if such solvers do not achieve
polynomial time.

Our second algorithm uses the bilinear structure of the polynomials arising from MCE.
Because matrix codes show symmetry between the parameters, as given in Lemma 26, the
complexity of solving MCE using this result and Algorithm 2 becomes qmin{m,n,k} up to a
polynomial factor. The algorithm is deterministic and does not require a polynomial-time
solver for the inhomogeneous QMLE instance, but the weaker assumption that the solver has
a complexity of O(qmin{m,n,k}) at most. This general result, valid for any m,n, and k, is
summarized in our main result Theorem 41.

Lastly, to verify the results and performance of these algorithms in practice, we have
implemented both and solved randomly generated instances of MCE for different parameter
sets. The results of these experiments show that our assumptions are reasonable and the above
complexities hold. Our implementations are open source and available at: https://github.com/
mtrimoska/matrix-code-equivalence

2 Preliminaries

Let Fq be the finite field of q elements. GLn(q) and AGLn(q) denote respectively the general
linear group and the general affine group of degree n over Fq .

We use bold letters to denote vectors a, c, x, . . . , and matrices A,B, The entries of a
vector a are denoted by ai , and we write a = (a1, . . . , an) for a (row) vector of dimension
n over some field and a� = (a1, . . . , an)� for the respective column vector. Similarly, the
entries of a matrix A are denoted by Ai j . A matrix A is called symmetric if A� = A and
skew-symmetric if A� = −A. The space of matrices over Fq of size m × n is denoted

Mm,n(q). The set of k-subsets of Mm,n(q) is denoted by M[k]
m,n(q).

Random sampling from a set S is denoted by a
$←− S. We use the notation Õ(f (n)) to

denoteO(f (n) log(f (n)))wheneverwewant to omit polynomial factors from the complexity
expression. We use the notation f = �(g) whenever f is bounded from below and above
by g asymptotically.

For a computational problem P, if we want to emphasize a list of parameters p defining
the size of the inputs and the input set S, we will use the notation P(p, S). If these are not
relevant, clear from context, or the set S is the entire universe U , we will use only P(p) or P.

Our results in Sect. 3 use the following standard notion of Turing reduction.

Definition 1 Given two computational problems P(p, S) and P′(p′, S′), with inputs coming
from sets S and S′ respectively, we say that P(p, S) reduces to P′(p′, S′) if there exists a

123

https://github.com/mtrimoska/matrix-code-equivalence
https://github.com/mtrimoska/matrix-code-equivalence

Hardness estimates of the code equivalence problem in the rank metric 837

probabilistic polynomial-time oracle machine B such that for every oracle A that solves
P′(p′, S′) on all inputs from S′, BA (B given access to A) solves P(p, S) on all inputs from
S.

Note that our reductions are meaningful only as worst-case to worst-case, and therefore
in the definition we include the statement that the oracles solve the problems on all inputs.
On the other hand, we do not always require the oracle A to be able to solve P′ on the entire
universe U ′ of inputs in order for BA to be able to solve P on the entire universe U of inputs.
When this is the case, it will be emphasized through the definition of the input sets S and S′.
These restrictions, however, can not be used to show a stronger statement such as worst-case
to average-case reduction.

2.1 TheMatrix Code Equivalence problem

This section introduces basic notions onmatrix codes and their equivalences.Amore thorough
introduction on matrix codes can be found in [31]. The usual choice for measuring distance
between matrices over a finite field is the so called rank metric, defined as follows.

Definition 2 Let Rank(M) denote the rank of a matrix M ∈ Mm,n(q). The rank distance
between two m × n matrices A and B over Fq is defined as

d(A,B) = Rank(A − B).

An isometry is a mapμ : Mm,n(q) → Mm,n(q) that preserves the rank, i.e. Rank(μ(M)) =
Rank(M) for all M ∈ Mm,n(q).

By symmetry, without loss of generality, in the rest of the text we assume n ≥ m.

Definition 3 A matrix code is a subspace C of m ×n matrices over Fq endowed with the rank
metric. Let k denote the dimension of C as a subspace of Fm×n

q and its basis by 〈C1, . . . ,Ck〉,
with Ci ∈ F

m×n
q linearly independent. Two matrix codes C,D ⊂ Mm,n(q) are said to be

equivalent if there exists an isometry μ with μ(C) = D.

An isometry from C to D is always of the formM �→ AMB,M �→ M� or a composition
of these two, where A ∈ GLm(q) and B ∈ GLn(q) [33, 52]. We restrict our attention to
the isometries of the first form and we will say that two matrix codes are equivalent if there
exists a map C �→ ACB from C to D where A ∈ GLm(q) and B ∈ GLn(q). We will denote
this map as a pair (A,B). When n = m, If there exists a map (A,A�) : C �→ ACA� from
C to D, where A ∈ GLm(q), we will say that the codes C and D are congruent. This is a
direct generalization of the notion of congruent matrices. An automorphism of a code is a
map (A,B) : C → C, i.e. for each C ∈ C, we get ACB ∈ C. The automorphism group of
C contains all the automorphisms of C. If the automorphism group contains only the maps
(λI, νI) for scalars λ, ν ∈ F

∗
q , we say the automorphism group is trivial.

The main focus of this article will be the Matrix Code Equivalence(MCE) problem which
is formally defined as follows:

Problem 4 MCE(n, m, k,M[k]
m,n(q)):

Input: Two k-dimensional matrix codes C,D ⊂ Mm,n(q)

Question: Find—if any—a map (A,B), where A ∈ GLm(q),B ∈ GLn(q) such that for all
C ∈ C, it holds that ACB ∈ D.

123

838 K. Reijnders et al.

This is the computational version of MCE which, similarly to its counterpart in the Ham-
ming metric [4, 5, 11], seems to be more interesting for cryptographic applications than its
decisional variant. We will thus be interested in evaluating the practical hardness only of
MCE, and present algorithms only forMCE and not its decisional variant. It is also interesting
to consider the following variant of MCE:

Problem 5 MCEbase(n, m, k,M[k]
m,n(q)):

Input: The bases (C(1), . . . ,C(k)) and (D(1), . . . ,D(k)) of two k-dimensional matrix codes
C,D ⊂ Mm,n(q)

Question: Find—if any—a map (A,B), where A ∈ GLm(q),B ∈ GLn(q) such that for all
C(i), it holds that AC(i)B = D(i).

Intuitively, MCEbase seems easier than MCE, and as a matter of fact, we will show later
that most random instances are solvable in polynomial time. Another variant of the MCE
problem is the Matrix Codes Right Equivalence problem (MCRE) (left equivalence could be
defined similarly):

Problem 6 MCRE(n, m, k,M[k]
m,n(q)):

Input: Two k-dimensional matrix codes C,D ⊂ Mm,n(q)

Question: Find—if any—B ∈ GLn(q) such that for all C ∈ C, it holds that CB ∈ D.

It has been shown in [17] thatMCE is at least as hard as code equivalence in the Hamming
metric, Hamming Code Equivalence (HCE), also known as Linear or Monomial Equivalence.
Interestingly, the same paper shows that MCRE is actually easy and can always be solved in
probabilistic-polynomial time.

For vector rank codes C ⊂ F
n
qm , isometries are similar to the case of matrix codes. We get

the Vector Rank Code Equivalence (VRCE) problem.

Problem 7 VRCE(n, m, k,M[k]
m,n(q)):

Input: Two k-dimensional vector rank codes C,D ⊂ F
n
qm

Question: Find—if any—a matrix B ∈ GLn(q) such that for all c ∈ C, it holds that cB ∈ D.

Given a vector rank code C ⊂ F
n
qm and a basis � for Fqm over Fq , each vector c ∈ C

can be expanded to a matrix �(c) ∈ Mm,n(q), giving rise to a matrix code �(C). For
any two bases � and �′, an equivalence between two vector rank codes C and D implies an
equivalence between thematrix codes�(C) and�′(D) [31], so VRCE is trivially a subproblem
of MCE. However, using the Fqm -linearity of vector rank codes, VRCE reduces non-trivially
to MCRE[17].

2.2 Systems of quadratic polynomials

Let P = (p1, p2, . . . , pk) : FN
q → F

k
q be a vectorial function of k quadratic polynomials in

N variables x1, . . . , xN , where

ps(x1, . . . , xN) =
∑

1≤i≤ j≤N

γ
(s)
i j xi x j +

N∑

i=1

β
(s)
i xi + α(s),

with γ
(s)
i j , β

(s)
i , α(s) ∈ Fq for 1 ≤ s ≤ k.

It is common to represent the quadratic homogeneous part of the components of P using
symmetric matrices, but unfortunately, a natural correspondence only exists for finite fields of

123

Hardness estimates of the code equivalence problem in the rank metric 839

odd characteristic. For the case of even characteristic, wewill adopt a technical representation
that is a common workaround in the literature of multivariate cryptography and will still be
good for our purposes.

Let p(x1, . . . , xN) = ∑
1≤i≤ j≤N

γi j xi x j be a quadratic form over Fq . Then, for fields of

odd characteristic, we can associate to p a symmetric matrix P = P + P
�
, where P is an

upper triangular matrix with coefficients Pi j = γi j/2 for i ≤ j . Clearly, there is a one-to-one
correspondence betweenquadratic forms and symmetricmatrices, since forx = (x1, . . . , xN)

it holds that
p(x1, . . . , xN) = xPx�. (1)

Now, all operations on quadratic forms naturally transform into operations on matrices since
the one-to-one correspondence between quadratic forms and symmetric matrices is in fact
an isomorphism. Note that, in matrix form, a change of variables (basis) works as:

p(xS) = xSPS�x�. (2)

In what follows, we will interchangeably work with both the quadratic form p and its matrix
representation P.

Over fields Fq of even characteristic, the relation (1) does not hold, since for a symmetric
matrix P we have (Pi j + P j i)xi x j = 2Pi j xi x j = 0. The nice correspondence between
quadratic forms and symmetric matrices is broken, but we would still like to be able to
use some sort of matrix representation for quadratic forms. Thus, in even characteristic we

associate to p a symmetric matrix P = P + P
�
, where P is an upper triangular matrix with

coefficients Pi j = γi j for i ≤ j .
This representation can also be used in odd characteristicwhen it comes to linear operations

and changes of basis, as the correspondence p �→ P is a homomorphism. However, it is not a
bijection, since all the quadratic forms in the set { ∑

1≤i< j≤N
γi j xi x j + ∑

1≤i≤N
γi i x2i | γi i ∈ Fq}

map to the same symmetric matrix (note that it has zeros on the diagonal). In practical,
cryptographic applications, this typically does not pose a problem, and can be overcome.
The same holds for our purpose of solving equivalence problems for systems of quadratic
polynomials.

2.2.1 Differential of quadratic functions

Given a non-zero a ∈ F
N
q , an object directly related to the symmetric matrix representation

of quadratic forms is the differential of P at a (see [22, 28]):

DaP : FN
q → F

k
q , x �→ P(x + a) − P(x) − P(a).

Note that the differential of a quadratic function is closely related to the bilinear form
β(x, y) = q(x + y) − q(x) − q(y) associated to a quadratic form q . In this work we are
especially interested in the kernel of DaP , as DaP(x) = 0 implies P(x+a) = P(x)+P(a),
that is, P acts linearly on the kernel of DaP .

2.3 Isomorphism of polynomials

The Isomorphism of Polynomials (IP) problem (or Polynomial Equivalence (PE) [24]) was
first defined by Patarin in [43] for the purpose of designing a “graph isomorphism”-like

123

840 K. Reijnders et al.

identification scheme and a digital signature scheme using the Fiat–Shamir transform [27].
It is defined as follows.

Problem 8 IP(N , k,Fq [x1, . . . , xN]k × Fq [x1, . . . , xN]k):
Input: Two k-tuples of multivariate polynomials F = (f1, f2, . . . , fk), P = (p1, p2, . . . ,
pk) ∈ Fq [x1, . . . , xN]k .
Question: Find—if any—(S, s) ∈ AGLN (q), (T, t) ∈ AGLk(q) such that

P(x) = F(xS + s)T + t. (3)

The variant of the problem where (T, t) is trivial is known as the Isomorphism of Poly-
nomials with one secret (IP1S), whereas if P and F are quadratic and both s and t are the
null vector, the problem is known as Quadratic Maps Linear Equivalence (QMLE) problem.

The decisional version of IP is not NP-complete [42], but it is known that even IP1S
is at least as difficult as the Graph Isomorphism problem [42]. The IP problem has been
investigated by several authors, initially for the security of the C∗ scheme [42]. In [44] it
was shown that the IP1S is polynomially solvable for most of the instances with k ≥ N , and
Bouillaguet et al. [13] gave an algorithm with running time of O(N 6) for random instances
of the IP1S problem, thus fully breaking Patarin’s identification scheme [43]. The authors of
[42] gave an algorithm for solving the general IP, called To-and-Fro, that runs in timeO(q2N)

for q > 2 and O(q3N) for q = 2. It was noted in [14] that the algorithm is only suited for
bijective mappingsF andP . Getting rid of the bijectivity constraint has been explored in [15]
with the conclusion that the proposed workarounds either have a non-negligible probability
of failure or it is unclear how greatly they affect the complexity of the algorithm.

Regarding QMLE, the linear variant of IP, an empirical argument was given in [24] that
random inhomogeneous instances are solvable in O(N 9) time, but a rigorous proof for this
case still remains an open problem. Under this assumption, the same paper provides an
algorithmof complexityO(N 9q N) for the homogeneous casewhich is considered the hardest,
that was subsequently improved to O(N 9q2N/3) in [14]. Both works reduce a homogenous
instance to an inhomogenous instance and assume the obtained inhomogeneous instance
behaves as a random instance. This, however, is a wrong assumption which questions the
claimed complexity of the algorithm.

In this work, we will be interested in the homogeneous variant of QMLE, that we denote
hQMLE, as the hardest andmost interesting instance of QMLE. Formally, the hQMLE problem
is defined as follows.

Problem 9 hQMLE(N , k,Fq [x1, . . . , xN]k × Fq [x1, . . . , xN]k):
Input: Two k-tuples of homogeneous multivariate polynomials of degree 2

F = (f1, f2, . . . , fk), P = (p1, p2, . . . , pk) ∈ Fq [x1, . . . , xN]k .

Question: Find—if any—a map (S,T) where S ∈ GLN (q),T ∈ GLk(q) such that

P(x) = (F(xS))T. (4)

Interestingly, the case of k = 1, which we will call Quadratic Form Equivalence (QFE) has
been completely solved for more than 80 years already in the works ofWitt [49] and Arf [50].
It is known that every quadratic form is equivalent to a unique canonical diagonal (for odd
characteristic) or block diagonal (for even characteristic) form which can be obtained in time
O(N 3). Thus, QFE can also be solved in timeO(N 3) by first calculating the transformations
to the canonical forms of the two quadratic forms. If the canonical forms are the same, by

123

Hardness estimates of the code equivalence problem in the rank metric 841

composition, one can find the equivalence. If the canonical forms are not the same, the two
quadratic forms are not equivalent.

In this work, we also consider a variant of QMLE where F and P are bilinear forms.
We call this problem Bilinear Maps Linear Equivalence (BMLE). In this variant, F and P
are k-tuples of homogeneous polynomials of degree 2 in two sets of variables [x1, . . . , xn]
and [y1, . . . , ym], where each monomial is of the form xi y j . Formally, the BMLE problem is
defined as follows.

Problem 10 BMLE(n, m, k,Fq [x1, . . . , xn, y1, . . . , ym]k × Fq [x1, . . . , xn, y1, . . . , ym]k):
Input: Two k-tuples of bilinear forms

F = (f1, f2, . . . , fk), P = (p1, p2, . . . , pk) ∈ Fq [x1, . . . , xn, y1, . . . , ym]k

Question: Find—if any—a triplet (S1,S2,T) where S1 ∈ GLn(q),S2 ∈ GLm(q), T ∈
GLk(q) such that

P(x, y) = (F(xS1, yS2))T. (5)

The inhomogenous versions of QMLE and BMLEwill be referred to as inhQMLE and inhBMLE
respectively.Wewrite inh(Q/B)MLEwhen it does notmatter ifwe are referring to the quadratic
or the bilinear version.

3 How hard is MCE?

In this section we investigate the relation of the MCE problem to other known problems that
we notably split in two groups—equivalence problems for systems of multivariate quadratic
polynomials and equivalence problems for codes.

3.1 Relations to equivalence problems for qaudratic polynomials

We start with establishing a straightforward link between MCE and polynomial equivalence
problems by proving that the MCE and BMLE problems are equivalent.

Theorem 11 The MCE problem is at least as hard as the BMLE problem.

Proof In order to prove our claim, we need to show that an oracle A solving any instance of
theMCE problem can be transformed in polynomial time to an oracle B solving any instance
of the BMLE problem.

Suppose B is given an instance IBMLE(F,P) of BMLE(n, m, k,Fq [x, y]k × Fq [x, y]k),
where F = (f1, f2, . . . , fk), P = (p1, p2, . . . , pk) ∈ Fq [x, y]k are k-tuples of bilinear
forms. Without loss of generality, we assume f1, f2, . . . , fk (respectively p1, p2, . . . , pk)
to be linearly independent. B can efficiently construct an instance of the MCE problem as
follows.

B represents the components fs and ps , s ∈ {1, . . . , k} of the mappings F and P as
m × n matrices F(s) and P(s), where F(s)

i, j equals the coefficient of xi y j in fs and P(s)
i, j

equals the coefficient of xi y j in ps . Taking (F(1), . . . ,F(k)) to be a basis of a matrix code
C and (P(1), . . . ,P(k)) a basis of a matrix code D, B obtains an instance IMCE(C,D) of
MCE(n, m, k,M[k]

m,n(q)).
B gives the instance IMCE(C,D) as an input toA.A outputs either a solution (A,B) to the

MCE instance (in the case it was a positive instance) or outputs that there is no solution (in

123

842 K. Reijnders et al.

the case it was a negative instance). In the latter case, B immediately outputs: no solution.
In the former case, B constructs the matrices R(s) = AF(s)B ∈ D and solves the following
system of equations in the variables ti, j :

k∑

j=1

t j,i · R(j) = P(i),∀i ∈ {1, . . . , k} (6)

The system has always a solution, since (R(1), . . . ,R(k)) is a basis of the code D.
B sets T = (

ti, j
)
, and outputs (A,B�,T) as the solution to IBMLE(F,P). B succeeds

whenever A succeeds and the reduction runs in time O(k6). ��
Theorem 12 BMLE is at least as hard as MCE.

Proof Weproceed similarly as in the other direction—Given an oracleA solving any instance
of BMLE, we can construct in polynomial time an oracle B with access to A that can solve
any instance of MCE.

Suppose B is given an instance IMCE(C,D) of MCE(n, m, k,M[k]
m,n(q)). B takes arbitrary

bases (C(1), . . . ,C(k)) and (D(1), . . . ,D(k)) of the codes C and D respectively. For each
of the matrices C(s), B constructs the bilinear forms cs(x, y) = ∑

1≤i≤m,1≤ j≤n
C(s)

i j xi y j and

for the matrices D(s) the bilinear forms ds(x, y) = ∑
1≤i≤m,1≤ j≤n

D(s)
i j xi y j ,∀s, 1 ≤ s ≤ k.

Taking F = (c1, c2, . . . , ck) and P = (d1, d2, . . . , dk) we obtain an instance IBMLE(F,P)

of BMLE(n, m, k,Fq [x, y]k × Fq [x, y]k).
B queries A with the instance IBMLE(F,P) and A outputs a solution (S1,S2,T) to the

BMLE instance, or no solution if there isn’t any. In the first case, this immediately gives a
solution (S1,S�

2) to the MCE instance. In the second case, there is no solution to the MCE
instance. ��

In order to prove the connection of MCE to the more general problem hQMLE we first
need to establish some properties of matrix codes.

Lemma 13 Let C and D be matrix codes generated by the bases = (C1, . . . ,Ck) and
(D1, . . . ,Dk) of (skew-)symmetric matrices, and assume that C and D have trivial auto-
morphism groups. Then C is equivalent to D if and only if C is congruent to D.

Proof Clearly, by definition if C is congruent to D, then C is equivalent to D.
For the opposite direction, let C be equivalent toD. Then there exist nonsingular matrices

A, B and T such that

k∑

i=1

t j,iDi = AC jB

Since Ci and Di are (skew-)symmetric the last rewrites as

k∑

i=1

t j,iDi = B�C jA�

Combining the two, and since A and B are non-singular, we obtain

C j = A−1B�C jA�B−1

The automorphism group being trivial implies A = λB� for some λ ∈ Fq which in turn
implies that C is congruent to D. ��

123

Hardness estimates of the code equivalence problem in the rank metric 843

Remark 14 The result of Lemma 13 has already been known for algebraically closed fields
of non-even characteristic [6, 47]. Since finite fields are not algebraically closed, this result
is not useful in our context. On the other hand, requiring a trivial automorphism group for the
codes is not a huge restriction, and we typically expect the automorphism group to be trivial
for randomly chosen matrix codes. Specifically for cryptographic purposes with regards to
MCE, one wants the orbit of C to be maximal under the action of suitable isometries, which
happens when the automorphism group of C is trivial. Similar requirements for trivial or
small automorphism groups occur in the Hamming metric, where it is known that without
this requirement there might exist weak keys [25, 26].

Theorem 15 Let T denote the subset of M[k]
m,n(q) of k-dimensional matrix codes of sym-

metric matrices with trivial automorphism groups. Further, let T ′ denote the subset of
Fq [x1, . . . , xN]k of k-tuples of polynomials with trivial automorphism groups.

The MCE(T) problem is at least as hard as the hQMLE(T ′) problem

Proof We perform the reduction in a similar manner as previously.
Suppose B is given an instance IhQMLE(F,P) of hQMLE(N , k, T ′), where F =

(f1, f2, . . . , fk), P = (p1, p2, . . . , pk) ∈ [x1, . . . , xN] are k-tuples of linearly independent
quadratic forms from T ′. B can efficiently construct an instance of the MCE(N , N , k, T)

problem as follows.
B forms the N × N symmetric matrices F(s) and P(s) associated to the components fs and

ps , s ∈ {1, . . . , k} of the mappingsF and P . Taking (P(1), . . . ,P(k)) to be a basis of a matrix
code D and (F(1), . . . ,F(k)) a basis of a matrix code C, B obtains an instance IMCE(C,D) of
MCE. Per assumption, the matrix codes C and D have trivial automorphism groups, hence
the instance is from MCE(N , N , k, T).

B queries A with the instance IMCE(C,D)., A answers with a solution (A,B) to the MCE
instance if it is positive, and no solution otherwise. In the former case, from Lemma 13, since
the matrices are symmetric, A = B�. Now, B applies the change of variables xA to F and
obtains R(x) = F(xA). It then solves the system

k∑

j=1

t j,s · r j = ps,∀s ∈ {1, . . . , k} (7)

The systemhas a solution if IhQMLE(F,P) is a positive instance. This is always the case in odd
characteristic, because there is a one-to-one correspondence between polynomials and their
symmetric matrix representation. Over characteristic 2, it may happen that the IhQMLE(F,P)

is not a positive instance while its symmetric matrix representation IMCE(C,D) is. In this
case, the system (7) does not have a solution and B outputs no solution.

If the system has a solution, B sets T = (
ti, j

)
, and outputs (A,T) as the solution to

IhQMLE(F,P). B succeeds whenever A succeeds and the reduction takes time O(k6). ��
For the following theorem, we define the symmetric matrix representation of a matrix

code C as the code {
[
0 C�
C 0

]
| C ∈ C}.

Theorem 16 Let Ts denote the subset of M[k]
m,n(q) of k-dimensional matrix codes whose

symmetric matrix representation has a trivial automorphism group. Similarly, let T ′
s denote

the subset of Fq [x1, . . . , xN]k of k-tuples of polynomials with trivial automorphism groups.
The hQMLE(T ′

s) problem is at least as hard as the MCE(Ts) problem.

123

844 K. Reijnders et al.

Proof We show that given any oracle A that solves the hQMLE(T ′
s) problem there exists an

oracle B running in polynomial time that solves the MCE(Ts).
SupposeB is given an instanceIMCE(C,D) ofMCE(n, m, k, Ts).B can efficiently construct

an instance of the hQMLE(n + m, k, T ′
s) problem as follows.

B fixes bases (D(1), . . . ,D(k)) of the codeD and (C(1), . . . ,C(k)) of the code C. For each of
the matrices C(s), B constructs the quadratic forms cs(x) = ∑

1≤i≤m,m+1≤ j≤m+n
C(s)

i j xi x j and

for thematricesD(s) the quadratic formsds(x) = ∑
1≤i≤m,m+1≤ j≤m+n

D(s)
i j xi x j ,∀s, 1 ≤ s ≤ k,

where x = (x1, . . . , xm+n). TakingF = (c1, c2, . . . , ck) andP = (d1, d2, . . . , dk)B obtains
an instance IhQMLE(F,P) of hQMLE(n + m, k, T ′

s).
B queriesAwith the instance IhQMLE(F,P)which outputs a solution (S,T) to the hQMLE

instance.
We argue that this solution can be transformed to a solution to the MCE instance, if it is a

positive instance. The symmetric matrix representation of the codes C and D is given by
[

0 (D(i))�
D(i) 0

]
and

[
0 (C(i))�

C(i) 0

]
, i ∈ {1, . . . , k}. (8)

The solution (S,T) means

∑
t̃i, j

[
0 (D(j))�

D(j) 0

]
= S

[
0 (C(i))�

C(i) 0

]
S�, i ∈ {1, . . . , k}. (9)

If the given MCE instance is positive, then there exist matrices A,B,L such that ACiB =∑
j li, jD j . This implies

∑
li, j

[
0 (D(j))�

D(j) 0

]
=

[
B� 0
0 A

] [
0 (C(i))�

C(i) 0

] [
B 0
0 A�

]
, i ∈ {1, . . . , k}. (10)

The last two imply

∑
λi, j

[
0 (D(j))�

D(j) 0

]
=

[
B� 0
0 A

]
S−1

[
0 (D(i))�

D(i) 0

]
S−�

[
B 0
0 A�

]
, i ∈ {1, . . . , k}.

(11)

By assumption, the automorphism group of the

[
0 (D(i))�

D(i) 0

]
matrices is trivial, which

means S necessarily equals

[
B� 0
0 A

]
up to scalar multiplication. For such an S, the MCE

solution can immediately be extracted. B then outputs the extracted solution.
If on the other hand, S is not of such block-diagonal form, B outputs no solution, as this

implies the instance is not positive. ��

Remark 17 Using the above reduction betweenMCE and hQMLE, we can reduce theMCEbase
problem to and from a special case of IP known as IP1S. Interestingly, Perret [44] shows
IP1S is polynomially solvable for most instances k ≥ N , and later work [13] gives an
algorithm with running time of O(N 6) for most random instances, although no rigorous
proof that bounds the complexity of the problem to polynomial was given. This nevertheless
implies that the MCEbase problem can practically be solved in polynomial time for most
cryptographically interesting parameters.

123

Hardness estimates of the code equivalence problem in the rank metric 845

3.2 Relations to equivalence problems for linear codes

In this section, we show that MCE is at the heart of various code equivalence problems.
Equivalence problems for different metrics, such as the Hamming metric or the sum-rank
metric, reduce to MCE, making the hardness analysis of MCE the more exciting.

3.2.1 Hamming code equivalence

Codes C ⊂ F
n
q equipped with the Hamming metric have isometries of the form

τ : (c1, . . . , cn) �→ (α1cπ−1(1), . . . , αncπ−1(n)), αi ∈ F
∗
q , π ∈ Sn . (12)

From this, we defineHamming code equivalence (HCE) as the problem of finding an isometry
between two Hamming codes C and D.

Problem 18 HCE(k, n):
Input: Two k-dimensional Hamming codes C,D ⊂ F

n
q

Question: Find—if any—α ∈ F
∗
q

n, π ∈ Sn such that απ(c) ∈ D holds for all c ∈ C.

The subproblem where α is trivial is called the monomial equivalence problem.
It is easy to turn an HCE instance into a MCE instance [17], given the description of

isometries in Eq. (12). First, define � : Fn
q → Mn(Fq) by

x = (x1, . . . , xn) �→
⎛

⎜⎝
x1

. . .

xn

⎞

⎟⎠ .

The map � is an isometry from the Hamming metric to the rank metric: codewords with
weigh t are mapped to matrices of rank t . From this, we quickly get the reduction: Writing π

as a matrix P ∈ GLn(q), � translates a Hamming isometry τ to a rank-metric isometry by

�(τ) : �(x) �→ P−1�(x)AP, where A =
⎛

⎜⎝
α1

. . .

αn

⎞

⎟⎠ ∈ GLn(q).

A second reduction from HCE to MCE is given later in [17], which concerns the search
variant of the problem, and is more explicit. Both reductions, however, do not help with
solving HCE in practice: both the permutational (A is trivial) and the linear variant of code
equivalence in the Hamming metric have algorithms [4, 45] that perform much better for an
HCE instance τ than the algorithms we propose for solving �(τ) as an MCE instance.

3.2.2 Sum-rank code equivalence

The sum-rank metric [41] is a metric that is gaining in popularity in coding theory. It is
commonly given as a generalization of the vector-rank metric, but one can also define a
variant that generalizes matrix-rank metric. We will reduce both vector and matrix sum-rank
equivalence problems to MCE. The idea is the same as for HCE, we find the right isometry
from sum-rank metric to rank metric to get the reduction.

123

846 K. Reijnders et al.

Definition 19 Let n be partitioned as n = n1 + . . . + n�. Let v(i) = (v
(i)
1 , . . . , v

(i)
ni) ∈ F

ni
qm

and v = (v(1), . . . , v(�)) ∈ F
n
qm . Let � be a basis for Fqm over Fq . Then the vector sum-rank

of v is defined as

SumRank(v) :=
�∑

i=1

Rank �(v(i)).

Let m be partitioned as m = m1 + . . . + m�. Let V(i) ∈ Mmi ×ni (Fq) and V =
(V(1), . . . ,V(�)). Then the matrix sum-rank of V is defined as

SumRank(V) =
�∑

i=1

RankV(i).

The sum-rank generalizes both the Hamming metric and the rank metric: taking � = n
gives the Hamming metric, whereas � = 1 gives the rank metric. We define isometries again
as maps that preserve the sum-rank. Sum-rank isometries are simple generalisations of rank
isometries (see Problem 7).

Proposition 20 [1, Thm. 3.7] Isometries with respect to the vector sum-rank metric are
given by vector rank isometries μ(i) : x(i) �→ α(i)x(i)B(i) per ‘block’ with α(i) ∈ F

∗
qm and

B(i) ∈ GLni (q), and suitable permutations π of such blocks if ni = n j for i �= j , so

μ : (x(1), . . . , x(�)) �→ (α(1)xπ−1(1)B(1), . . . , α(�)xπ−1(�)B(�))

is a general description of a vector sum-rank isometry.

Generalizing to matrix sum-rank codes is achieved by simply replacing α(i) ∈ F
∗
qm with

A(i) ∈ GLmi (q) [39, Prop. 4.25]. This gives us the Vector Sum-Rank Code Equivalence
(VSRCE) and Matrix Sum-Rank Code Equivalence (MSRCE) problems.

Problem 21 VSRCE(n, m, k):
Input: Two k-dimensional vector sum-rank codes C,D ⊂ F

n
qm

Question: Find—if any—α(i) ∈ F
∗
qm ,B(i) ∈ GLni (q) and a permuation π such that for all

c ∈ C, it holds that μ(c) ∈ D.

Problem 22 MSRCE(n, m, k):
Input: Two k-dimensional matrix sum-rank codes C,D ⊂ (

Mmi ×ni (Fq)
)

i
Question: Find—if any—A(i) ∈ GLmi (q),B(i) ∈ GLni (q) and a permuation π such that
for all C ∈ C, it holds that μ(C) ∈ D.

In order to give a reduction to MCE, we use the same idea as for HCE. First, we define a
‘nice’ map : Fn

q → M�·m×n(Fq) by

x = (x(1), . . . , x(�)) �→
⎛

⎜⎝
Mat(x(1))

. . .

Mat(x(�))

⎞

⎟⎠ .

It is clear that is an isometry from the vector sum-rank metric to the rank metric, as it
preserves the weight. We get the following reduction.

123

Hardness estimates of the code equivalence problem in the rank metric 847

Theorem 23 Let T denote the subset of M[k]
m,n(q) of k-dimensional matrix codes with trivial

automorphism groups. Let T ′ denote the subset of k-dimensional vector sum-rank codes that
are in the preimage −1(T). Then MCE(T) is at least as hard as VSRCE(T ′).

Proof SupposeB is given an instance IVSRCE(C,D) of VSRCE(n, m, k, T ′), where C andD are
k-dimensional vector sum-rank codes. B can efficiently construct an instance of theMCE(T)

problem as follows. By writing the permutation π of the ‘blocks’ by a matrix representation
P, B can translate a vector sum-rank isometry μ into a matrix code isometry (μ) by

(μ) : (x) �→ P−1A(x)BP where A =
⎛

⎜⎝
α(1)

. . .

α(�)

⎞

⎟⎠ ,B =
⎛

⎜⎝
B(1)

. . .

B(�)

⎞

⎟⎠

withA ∈ GL�(qm),B ∈ GLn(q).Hence,(μ) is an instance ofMCE(n, m, k, T),withwhich
B queries A. A outputs a solution (A′,B′) to this MCE(T) instance. As the automorphism
group is trivial, B computes λA′ = P−1A and λB′ = BP for λ ∈ Fq , and therefore solves
the IVSRCE instance. ��

From vector sum-rank code equivalence to matrix sum-rank code equivalence is only a
small step. Given a partition m = m1 + . . . + m�, the map we need is only slightly different
from , namely ̃ : (

Mmi ×ni (Fq)
)

i → Mm×n(Fq) by

X = (X(1), . . . ,X(�)) �→
⎛

⎜⎝
X(1)

. . .

X(�)

⎞

⎟⎠ .

Theorem 24 Let T denote the subset of M[k]
m,n(q) of k-dimensional matrix codes with trivial

automorphism groups. Let T ′ denote the subset of k-dimensional matrix sum-rank codes that
are in the preimage ̃−1(T). Then MCE(T) is at least as hard as MSRCE(T ′).

Proof This is a simple generalization of Theorem 23: Replace α(i) byA(i) ∈ GLmi (q) so that
A ∈ GLm(q). Then again, for a matrix sum-rank μ we get ̃(μ) by (x) �→ P−1A(x)BP
as an MCE(T) instance. ��

The link between such MCE instances (μ) coming from vector sum-rank and ̃(μ)

coming from matrix sum-rank is given by a representation ρ : F∗
qm → GLm(q). We map

a vector sum-rank instance to a matrix sum-rank instance by A(i) = ρ(α(i)), so that A ∈
GL�·m(q).

To show the equivalences between the rank and sum-rank instances, we need to show that
anMCE instance is also anMSRCE instance. But this is trivial: the sum-rankmetric generalizes
the rank metric, thus an MCE instance is an MSRCE instance with � = 1. Hence, we get the
following theorem for free.

Theorem 25 MSRCE is at least as hard as MCE.

4 SolvingMatrix Code Equivalence

In this section, we analyze the complexity of solving an instance of MCE(n, m, k). We start
by establishing a useful lemma.

123

848 K. Reijnders et al.

Lemma 26 An MCE(n, m, k) instance can in polynomial time be turned into an MCE(σ (n),

σ (m), σ (k)) instance for any permutation σ on the set {n, m, k}. Furthermore, they are either
both positive, or both negative instances.

Proof Let IMCE(C,D) be a givenMCE(n, m, k) instance. Let (C(1), . . . ,C(k)) and (D(1), . . . ,

D(k)) be bases of the codes C andD respectively. Without loss of generality, we will turn this

instance into anMCE(m, k, n) instance (the rest can be done analogously).We set C̄
(i)
j,t = C(t)

i, j ,

D̄
(i)
j,t = D(t)

i, j and we take (C̄
(1)

, . . . , C̄
(n)

) and (D̄
(1)

, . . . , D̄
(n)

) to be the bases of the codes C̄
and D̄ respectively. Clearly, C̄ and D̄ are equivalent if and only if C and D are equivalent. ��

Without loss of generality, and with Lemma 26 in mind, we assume m = min{m, n, k}.
As a baseline we have a straightforward algorithm that uses a result from [17] that MCRE

can be solved in polynomial time. By enumerating either A or B, we obtain an instance
of MCRE. This means the dominating complexity is the enumeration resulting in an overall
complexity of Õ(qm2

) for MCE.
The approach we outline in the section makes use of the reduction of MCE to hQMLE

(see Theorem 16). This means that we use techniques already applied for solving hQMLE,
but generalize and improve them by making use of the specific structure that MCE instances
show when viewed as hQMLE instances.

4.1 SolvingMCE asQMLE

At Eurocrypt 2013, Bouillaguet et al. [14] proposed an algorithm for solving hQMLE using
techniques from graph theory. Their main idea was to reduce the homogeneous case to
the inhomogeneous case, which they assume is efficiently solvable (e.g. using the heuris-
tic algebraic approach of [24]). Starting from an instance of hQMLE, they build two
exponentially-large graphs that correspond to the given maps F and P such that, finding
an isomorphism between the two graphs is equivalent to finding an isomorphism between
the two quadratic maps. Since the graphs are exponentially large, a technique is provided to
walk through the graphs without constructing them. Walking through the graphs consists of
finding adjacent vertices and computing the degree of a vertex, both in polynomial time. The
algorithm consists in finding pairs of vertices from the first and the second graph that have
the same degree and making queries to an inhomogenous QMLE solver. If the solver finds
an isomorphism by which two vertices are related, then the isomorphism between the two
graphs, and thus the isomorphism between the two quadratic maps, is found.

4.2 First algorithm for solvingMCE

The algorithm for solving hQMLE from [14] considers a graph arising from the differential
of a given polynomial map—a vertex a is connected to all the vertices that vanish at the
differential at a. It is, however, not entirely clear how the property we choose to construct
such graphs impacts the complexity of the algorithm. We revisit the algorithm, and show
how it can be generalized, i.e. abstracted from the property used in [14], under certain
conditions. In this section we present this generalization—a birthday-based algorithm for
finding an isomorphism between two objects when a specific solver exists. In this form, it
can be applied to a broader type of equivalence problems, using more general invariants, here
implemented as a predicate P.

123

Hardness estimates of the code equivalence problem in the rank metric 849

Let S1 and S2 be subsets of a universeU of equal size N . Algorithm 1 finds an equivalence
function φ : S1 → S2. We assume there exists a predicate P : U → {�,⊥} that can be
computed in polynomial time, and we denote the cost CP. We assume P is invariant under
the equivalence φ, i.e. P(x) = � ↔ P(φ(x)) = �. Let U� = {x ∈ U | P(x) = �}, and
d = |U�|/|U |. We will call d the density of the predicate P and we assume the density
on S1 and S2 is approximately equal to d . We further assume the existence of an algorithm
FindFunction, that given x ∈ S1, y ∈ S2 returns φ if y = φ(x) and⊥ otherwise. We denote
the cost of a query to FindFunction by CFF.

Algorithm 1 General Birthday-based Equivalence Finder

1: function SampleSet(S,P, �)
2: L ← ∅
3: repeat

4: a
$←− S

5: if P(a) then L ← L ∪ {a}
6: end if
7: until |L| = �

8: return L
9: end function

10: function CollisionFind(S1, S2)
11: L1 ← SampleSet(S1,P, �)
12: L2 ← SampleSet(S2,P, �)
13: for all (a, b) ∈ L1 × L2 do
14: φ ←FindFunction(a, b)
15: if φ �= ⊥ then
16: return solution φ

17: end if
18: end for
19: return ⊥
20: end function

Lemma 27 For a fixed success probability of 1 − 1/e, Algorithm 1 performs on average
O(

√
N/d) operations in SampleSet, queries FindFunction at most d · N times.

The optimal value for d, up to a polynomial factor, is d = N−1/3 · C−2/3
FF , for which

the total time complexity of the algorithm is O(N
2
3 · C

1
3
FF) and the memory complexity is

O(N
1
3 C

− 1
3

FF). If FindFunction runs in polynomial time, this reduces to time complexity of

Õ(N
2
3) and memory complexity of O(N

1
3).

Proof First note that the expected number of elements in S1 and S2 such that P(x) holds is
equal to d N by the definition of the density d . By the birthday paradox, it is enough to take
lists of size � = √

d · N , to be sure that with probability of 1 − 1
e FindFunction returns a

solution [51]. With this length of the lists, the number of queries to FindFunction is d N .
On the other hand, the number of samples needed to build the list L1 (resp. L2) of elements
a ∈ S1 (resp. b ∈ S2) such that P(a) (resp. P(b)) holds is �/d , which gives a complexity of
O(

√
N/d) to build these lists Li .

The total running time is optimal when these two quantities
√

N/d and d · N · CFF are

equal, which holds when d = N−1/3 ·C−2/3
FF . Such a density gives complexity ofO(N

2
3 ·C

1
3
FF)

for SampleSet and at most N
2
3 queries to FindFunction. If CFF is polynomial, this gives

a total time complexity of Õ(N
2
3). The memory requirements of the algorithm correspond

to the size of the lists Li . This results in a memory complexity of O(N
1
3 C

− 1
3

FF), or O(N
1
3) if

CFF is polynomial. ��
Remark 28 The success probability in Lemma 27 is chosen rather arbitrarily, mostly for
practical verification of the algorithm’s correctness. It can be increased to any value 1− 1/c
for a positive constant c by appropriately building lists that are larger only by a constant
factor compared to the case treated in Lemma 27. The overall complexity only differs by a
constant factor, i.e., does not change asymptotically.

123

850 K. Reijnders et al.

As said earlier, the algorithm presented in [14] is a special case of Algorithm 1. Their
algorithm can be seen as an instantiation of Algorithm 1 by defining GF (resp. GP) to
be the linearity graph of F (resp. P), where a vertex a is connected to all vertices x such
that DaF(x) = 0 (resp. DaP(x) = 0), taking the predicate Pκ (a) : dim ker DaF = κ on
the universe Mk,N (q), and taking for FindFunction the assumed polynomial-time solver
from [24] for inhQMLE. Finding a collision (α, β) such that β = αS makes the instance
P(x + α) = F(xS + β)T an inhomogeneous instance by defining P ′(x) = P(x + α) and
F ′(x) = F(x+ β). Running FindFunction on P ′ and F ′ then returns S and T. In this case,
Lemma 27 gives the precise result from [14, Thm. 1], which we present as a corollary to our
Lemma 27, for completeness.

Corollary 29 Assuming a polynomial-time solver for the inhomogenous case of QMLE, an
hQMLE(N , N) instance IhQMLE(F,P) over Fq can be solved with complexity and number of

queries equal to Õ(q
2
3 N) with a success probability of 1− 1/c for any c > 0 and a memory

complexity of O(q
1
3 N).

Proof LetGF (i.e.GP) be the linearity graph ofF (i.e.P), where a vertex a is connected to all
x such that DaF(x) = 0 (i.e. DxP(a) = 0). We use the predicate Pκ (a) : dim ker DaF = κ

we have that deg(a) = qκ . The density of the predicate dκ in the universe of N × N matrices
is independent of F and P , and is therefore the same as the density of linear maps with
kernel of dimension κ . Thus, dκ is approximately a monotonic decreasing function in κ ,
going from 1 to 0. Hence, by Lemma 27, there exists some optimal κ for which we get

that dκ ≈ |GP |−1/3 = q−N/3, which gives a total time complexity of q
2
3 N and a memory

complexity of q
1
3 N . ��

Remark 30 The assumption on a polynomial-time solver in [14] turns out to be too strong:
such a solver exists for random instances, however, for inhQMLE instances as obtained in
Corollary 29 the running time is probably not polynomial [15]. Nevertheless, the algorithm
and result are valid, but require a different rebalancing depending on CFF. Section5 analyzes
CFF in detail for different instances.

To apply this approach to MCE instances, we need to generalize to the case of N not
necessarily equal to k. For anMCE(n, m, k) instance IMCE(C,D), we get an hQMLE(n+m, k)

instance IhQMLE(F,P) by Theorem 16. We take again the predicate Pκ (a) : dim ker DaF =
κ , but this time on the universe Mk,n+m(q), where DaF lives. To get a similar result to
Corollary 29, we need to show two things. (a), that this predicate satisfies the assumptions
required for Algorithm 1. (b), that there is a κ such that the density dκ of Pκ is optimal as

described in Lemma 27. If both are satisfied, we get a complexity ofO(q
2
3 (n+m)C

1
3
FF), hence

Õ(q
2
3 (n+m)) when the solver is polynomial, with a success probability of 1 − 1/c for any

c > 0 for an MCE(n, m, k) instance IMCE(C,D). We start with a).

Lemma 31 The predicatePκ (DaF) : dim ker DaF = κ is a suitable predicate for Algorithm
1, as i) Pκ can be computed in polynomial time, ii) is invariant under equivalence, iii) and
dκ does not depend on F .

Proof

1. The cost CPκ
is the cost of computing dim ker DaF , i.e. computing the kernel of a k ×

(n + m) matrix over Fq . This can be done in polynomial time.

123

Hardness estimates of the code equivalence problem in the rank metric 851

2. LetP(x) = F(xS)T be the equivalence. If x ∈ ker DaP then xS ∈ kerFaS and vice versa,
as T does not affect the kernel. As S is invertible, we get a one-to-one correspondence
x �→ xS between the kernels, so Pκ (DaSF) = Pκ (DaP).

3. ForF coming fromanMCE instance,we always have−a ∈ ker DaF .Wewant to show that
the distribution of the rank of DaF follows the ranks of linear maps vanishing at−a. This
is given by [22, Thm. 2] for even characteristic and easily adapted to odd characteristic,
which shows dκ is independent of F .

��
We now continue with (b): we show that there is a κ such that dκ is optimal. For now,

existence of κ is enough to derive a complexity onMCE. We will explicitely compute κ later,
in Sect. 5, when we have a detailed view of CFF for specific parameter sets (k, n, m).

The general density dκ for the predicate Pκ is given by the following lemma, taking a = k
and b = n + m to avoid confusion with regards to n, m and n + m.

Lemma 32 Define the predicate Pκ : dim kerM = κ for M ∈ U = Ma,b(q) with a ≥ b.

Then the density of the predicate Pκ is dκ = 1/�(q(κ2+κ·(a−b))).

Proof There are |U | = qab matrices in Ma,b(q), out of which

r−1∏

i=0

(qa − qi)(qb − qi)

qr − qi
= �

(
q(a+b−r)r

)

have rank r [34]. We have κ = b − r and so d−1
κ = |U |

|U�| = �(
qab

q−(a+b−r)r) = �(qκ2+κ(a−b)).

Specifically when the matrix is square, d−1
κ = �(qκ2). ��

From Lemma 32 we can conclude that for some κ , the density dκ is optimal. This means
we satisfy both (a) and (b) and we can apply Lemma 27.

In conclusion, we get our first result on the hardness of MCE, which significantly improves
straightforward enumeration. This requires that such a κ exists, which happens when k ≤
2(n+m), byLemma32.Note that, in contrast to [14, Thm. 1],we do not assume a polynomial-
time solver for the inhomogeneous case of QMLE. Instead, we write this cost as CFF and
explore the precise cost in Sect. 5.

Theorem 33 An MCE(n, m, k) instance IMCE(C,D) over Fq with k ≤ 2(n +m) can be solved

using Algorithm 1 with time complexity equal to O(q
2
3 (n+m) · C

1
3
FF · (CPκ

+ 1)), memory

complexity equal to O(q
1
3 (m+n)C

− 1
3

FF) and with success probability of 1− 1/c for any c > 0,
where CFF denotes the cost of a single query to FindFunction.

We will show in Sect. 5 that, even though CFF is not polynomial-time, the complexity of

Algorithm 1 is still Õ(q
2
3 (n+m)) for some optimal κ .

When k > 2(n + m), we can no longer assume elements with dim ker DaF > 1 exist, as
practically all differentials DaF will have only the trivial kernel spanned by −a. In such a
scenario, we have two alternatives:

• Take a single element a and run FindFunction on (a,b) for all b ∈ F
n+m
q until we

find the isometry. This deterministic process has a time complexity of O(q(n+m) · CFF).
The memory requirements of this algorithm are negligible, since we do not build lists of
elements;

123

852 K. Reijnders et al.

• Alternatively, note that in this case n ≤ 2(k + m). Thus, we can also use the result
of Lemma 26, and instead of an MCE(n, m, k) instance, we can solve an MCE(k, m, n)

instance using Algorithm 1. In this case we end up with a complexity of Õ(q
2
3 (k+m)).

However, for the given regime of parameters, this is always larger than Õ(q(n+m)), so
the first deterministic approach is better.

4.3 Second algorithm

The algorithm thatwe presented in the previous section does not take advantage of the bilinear
structure of an instance of MCE when viewed as hQMLE. In such a case, the differential
D(a,b)F of a k-dimensional bilinear form admits a special structure.

Lemma 34 Let F(x, y) be a k-dimensional bilinear form with x ∈ F
m
q and y ∈ F

n
q . Let Fa

denote the k × n matrix of the linear map F(a,−) : Fn
q → F

k
q for a fixed a ∈ F

m
q . Similarly

let Fb denote the k × m matrix of the linear map F(−, b) : Fm
q → F

k
q for a fixed b ∈ F

n
q .

Then

D(a,b)F(x, y) = (Fb Fa)

(
x�
y�

)
.

Proof By bilinearity, D(a,b)F(x, y) := F(x+a, y+b)−F(x, y)−F(a,b) equalsF(a, y)+
F(x,b) = Fay� + Fbx�. ��

Similarly for P , we use the notation Pa and Pb. The equivalence in such a case becomes
P(x, y) = F(xA, yB�)T, with A,B precisely the matrices from the MCE instance. Then,
as F and P are bilinear, one can see SampleSet in Algorithm 1 as sampling both a ∈ F

n
q

and b ∈ F
m
q at the same time as one (a,b) ∈ F

n+m
q , until D(a,b)F has a kernel of dimension

κ . However in the bilinear case, a influences only the matrix Fa, and b influences only Fb.
Hence, we can sample a ∈ F

m
q and b ∈ F

n
q separately. This hints that we can apply ideas

from Algorithm 1 to the smaller universes Ua = Mk,n(q) and Ub = Mk,m(q), where Fa
and Fb live. By finding well-chosen predicates in these smaller universes, we hope to find
collisions faster.

We first analyse the properties of Fa and Fb a bit more. Let Fa be the set of elements a
for which dim ker Fa is non-trivial, and Fb similarly, i.e.

Fa = {a ∈ F
m
q | dim kerF(a,−) > 0}, Fb = {b ∈ F

n
q | dim kerF(−,b) > 0}.

For P , we define Pa and Pb similarly. For isomorphic bilinear forms F and P , these sets
have special properties.

Lemma 35 Let (A,B,T) : F → P be an isomorphism between two k-tuples of bilinear
homogenous quadratic polynomials F and P , such that P(x, y) = F(xA, yB�)T. We have
the following properties:

1. Given a ∈ Fa and any b ∈ kerFa, we get F(a, b) = 0.
2. Fb is completely determined by Fa, as Fb = ⋃

a∈Fa
kerFa.

3. For a ∈ F
n
q and y ∈ F

m
q , we have Pa(y) = FaA(yB�)T.

4. For a ∈ F
n
q , we get ker Pa = kerFaA · B�.

5. The isomorphism (A,B,T) induces the bijections

Pa → Fa : a �→ aA, Pb → Fb : b �→ bB�.

123

Hardness estimates of the code equivalence problem in the rank metric 853

Proof

1. b ∈ ker Fa is equivalent by definition to Fab� = F(a,b) = 0.
2. This follows directly from 1.: b ∈ Fb only if there exists an a ∈ Fa such thatF(a,b) = 0.

But then b ∈ ker Fa for this specific a.
3. Per definition Pa(y) = P(a, y) = F(aA, yB�)T = FaA(yB�)T.
4. This follows directly from 3.: asT is invertible, it does not affect the kernels, so y ∈ ker Pa

if and only if yB� ∈ ker FaA
5. This follows directly from 4.: Given a ∈ Pa we get aA ∈ Fa and vice versa as A ∈

GLm(q). A similar argument gives Fb → Pb.

��
Lemma 35 shows that a ∈ Fa and b ∈ Fb describe all non-trivial roots (a,b) of a given

F . For an instance (A,B,T) : F → P , Item 5 shows that non-trivial roots are mapped
bijectively by (A,B,T). Such non-trivial roots can be used to find collisions more easily
between F and P . However, this requires that instances F → P have non-trivial roots. We
can get an estimate on the sizes of Fa , Fb, Pa , and Pb for given parameters n, m, and k, in
the following way.

Lemma 36 When k ≥ n, |Fa | = |Pa | ≈ q2n−k−1 and |Fb| = |Pb| ≈ q2m−k−1.

Proof By Lemma 35, we get |Fa | = |Pa |. Then, using Lemma 32, we see that the size of
these sets is dominated by elements a with κ = dim ker Fa = 1 (a one-dimensional kernel).
From the same lemma, the density of κ = dim ker Fa = 1 elements is d1 = q−(1+1·(k−n)).
Hence we expect d1 ·qn = �(q2n−k−1) such elements. A similar argument gives |Fb| = |Pb|
as �(q2m−k−1). ��

Summarizing, this implies

Corollary 37 Assuming n = m as the hardest case, a random MCE(n, m, k) instance
IMCE(F,P) over Fq has an expected value En,m,k,q of non-trivial roots

• when k < 2n, with En,m,k,q = �(q2n−k−1),
• when k = 2n, with En,m,k,q = �(1q),

• when k > 2n, with En,m,k,q = �(1
qk−2n+1).

From these results, we can expect non-trivial roots for an MCE(n, m, k) instance
IMCE(F,P) over Fq with k ≤ n + m. These non-trivial roots can be seen as a suitable
predicate on the smaller universes Ua and Ub: we search for collisions (a,b) × (aA,bB�),
where (a,b) is a non-trivial root of P , and (aA,bB�) of F . Given such a collision, we
proceed as in Sect. 4.2.

The following result shows that we always find such a collision if F and P have non-zero
roots.

Lemma 38 Let m ≤ n and k ≤ n + m. Let Fa, Fb and Pa, Pb describe the non-trivial roots
of an MCE(n, m, k) instance IMCE(F,P) over Fq . Let x = (a, b) ∈ Fa × Fb, then looping
over y ∈ Pa × Pb gives a collision (x, y) with certainty.

Proof This followsquickly fromLemma35.Wehavex = (a,b) and twobijectionsFa → Pa

and Fb → Pb, so x is mapped to some y ∈ Pa × Pb. As this set is finite, we can loop over
it in a finite number of steps until we find the collision. ��

123

854 K. Reijnders et al.

Therefore, as soon as we have non-trivial roots, we can use a single one of them to find a
collision. This leads to the following pseudo-algorithm:

1. compute Fb by computing ker Fb for all b ∈ F
m
q ,

2. if Fb is non-empty, compute Fa using Lemma 35-2. Same for Pa and Pa .
3. sample a single x ∈ Fa × Fb

4. loop over y ∈ Pa × Pb with FindFunction(x, y) until the solver finds μ.

Corollary 39 Let m ≤ n and k ≤ n + m. The above algorithm terminates successfully and
has a total complexity of O(qm · CPκ

+ q2(n+m−k−1) · CFF), where CP denotes the cost of
computing kerFb and CFF denotes the cost of a single query to FindFunction.

Proof Building Fb and Pb has a complexity of O(qm · CPκ
), and these give us Fa and Pa

by Lemma 35. Then for every step in the loop we get a query to FindFunction. By Lemma
36, the size of Pa × Pb is at most O(q2(n+m−k−1)). ��

We will see later in Sect. 5 that the dominating complexity is qm · CPκ
as for specific

parameters (k, n, m) the number of queries z can be reduced so that z · CFF < qm . As CPκ

is polynomial, we get a complexity of Õ(qm) for such instances.
For efficiency, one can decrease further the number of queries to FindFunction by apply-

ing other, secondary predicates. For example, the sets Fa × Fb and Pa × Pb can be split
into zeros F0 = {x ∈ F

n+m
q |F(x) = 0} and non-zeros F = Fa × Fb\F0, which reduces the

collision search to each of these sets. Another secondary predicate is to only use elements a
with dim ker Fa = κ for some specific value κ > 0.

We summarize the MCE solver for instances with roots in Algorithm 2. Practically, since
the algorithm is deterministic, we do not need to build and store the list F. We only need
to find one element from it. However, for iterating through the list P, Sa and Sb need to be
stored. The estimated size of these lists is qn+m−k−1.

Algorithm 2 Bilinear MCE-Solver, assuming n ≥ m.

1: function SampleZeros(F)
2: S, Sa , Sb ← ∅
3: for all b ∈ F

m
q do

4: if dim ker Fb > 0 then
5: Sb ← Sb ∪ {b}
6: Sa ← Sa ∪ ker Fb \ {0}
7: end if
8: end for
9: S ← Sa × Sb
10: return S
11: end function

12: function CollisionFind(F ,P)
13: F ← SampleZeros(F)
14: P ← SampleZeros(P)

15: x
$←− F

16: for all y ∈ P do
17: μ ←FindFunction(x, y)
18: if μ �= ⊥ then
19: return solution μ

20: end if
21: end for
22: return ⊥
23: end function

The next theorem summarises the conditions and cost of Algorithm 2 for solving MCE.

Theorem 40 Assuming a solver for the inhomogenous case of QMLE with cost CFF, an
MCE(n, m, k) instance overFq with m ≤ n and k ≤ n+m (in which case roots exist forF and
P with overwhelming probability) can be solved using Algorithm 2 with O

(
qm · CPκ

)
oper-

ations in SampleZeros and z queries to the solver. This amounts to a total time complexity
of O

(
qm · CPκ

+ z · CFF
)
. The memory complexity of the algorithm is O(qn+m−k−1).

123

Hardness estimates of the code equivalence problem in the rank metric 855

We will show in Sect. 5 that, even though CFF is not polynomial-time, the dominating factor
in this complexity is still qm · CPκ

, where CPκ
is the cost to compute the kernel of an m × k

matrix.
The regime of operation of Theorem 40 seems to imply that we can use it only if k ≤ n+m.

However, note that if k > n +m then n ≤ k +m. Hence, by Lemma 26, we can turn the given
MCE(n, m, k) instance into anMCE(k, m, n) instance and solve this instance using Algorithm
2. This results in a complexity of Õ(qm). Recall that we assume m = min{m, n, k}, thus, we
obtain the following general theorem which is our main result about the practical complexity
of solving MCE.

Theorem 41 An MCE(n, m, k) instance over Fq can be solved using Algorithm 2 in time
Õ

(
qmin{m,n,k}).

5 Filling the gaps in the complexity analysis

The costCP is polynomial in all of the cases because it either requires computing the rank of a
linear map or sampling a random element from a set. The FindFunction in Algorithms 1 and
2 checks whether a given pair of vectors is a collision, and if so, it returns the solution to the
MCE instance. This is done by solving an instance of the inhBMLE that has the same solutions
as the input MCE instance. Thus, to estimate the value of CFF, we analyse the complexity
of inhBMLE on these instances, by relying on algorithms that have been developed for the
inhQMLE case with N = k.

5.1 Algorithms for inhQMLE

The twoalgorithmsdescribed in this sectionhavebeenused for tackling the inhQMLEproblem
within the birthday-based algorithm for hQMLE[14, 15]. Their analysis is thus important to
estimate CFF. In Sect. 5.2 we adapt this analysis for the inhBMLE case with arbitrary k and
N and we see how this affects Algorithms 1 and 2 for different parameter sets.

5.1.1 The Gröbner bases attack

The algebraic attack on the inhQMLE problem starts by reducing P(x)T−1 = F(xS), with
S and T unknown, to a system of polynomial equations. By rewriting the problem in matrix
form we obtain the following constraints

∑

1≤r≤k

T̃rsP(r) = SF(s)S�, ∀s, 1 ≤ s ≤ k,

P[1]T−1 = SF[1],
P[0]T−1 = F[0], (13)

where F[1] ∈ F
N×k
q and P[1] ∈ F

N×k
q describe the degree-1 homogeneous part of an

inh(Q/B)MLE instance and F[0] ∈ F
k
q and P[0] ∈ F

k
q describe the degree-0 part. We will

denote the subsystem of equations derived from the degree-d homogeneous part as Sd . The
resulting system can be solved using Gröbner basis algorithms and this is referred to as the
Gröbner attack [24]. The observation that S and T are common solutions to homogeneous
parts of separate degrees of an inhQMLE instance (also proven in [13, Lemma 1]) and the

123

856 K. Reijnders et al.

6 8 10 12
0

2,000

4,000

6,000

8,000

N = k

R
un

ti
m
e
(s
)

Random QMLE
Collision QMLE

8 10 12 14
0

50

100

(m+ n) = k

R
un

ti
m
e
(s
)

Random BMLE
Collision BMLE

Fig. 2 Comparison of runtime for solving random and collision-derived inh(Q/B)MLE instances using the
Gröbner attack. Results are averaged over 50 runs

idea that moving T to the other side of the equality results in a lower degree system where
we solve for T−1 originate from this work.

The complexity of Gröbner basis algorithms depends foremost on the degree of regularity,
which is usually hard to estimate, but it can sometimes be observed through experimental
work. Such experiments applied to inhQMLE instances imply that the system is solved at
degree three. A degree-three linearized system in n variables is represented by a matrix of
size roughly n3 and thus, Gaussian Elimination on such a system is performed in O(n3ω)

operations, where ω is the linear algebra constant. This reasoning leads to the assumption
that there exists a polynomial-time solver for the inhomogeneous case of QMLE. Another
empirical observationmade in [24] is that the time to construct the system exceeds the time of
theGröbner basis computation. Since the generation of the system is known to be polynomial,
this suggests that the Gröbner basis computation is performed in polynomial time as well.
However, these experiments are performed on random inhomogeneous instances of theQMLE
problem.

In the birthday-based approach for solving QMLE, F[1], P[1], F[0] and P[0] are obtained
from a collision [14]. Specifically, if we have a collision on x ∈ F

N
q and y ∈ F

N
q such that

y = xS, they are obtained as

F[1] = DyF, P[1] = DxP,

F[0] = F(y), P[0] = P(x).

Instances of inhQMLE derived from a collision are, on average, harder to solve than random
inhQMLE instances. Recall that in Algorithm 1 the instances of inhQMLE are chosen such
that dim ker DyF = dim ker DxP = κ . Hence, the number of linearly independent equations
in S1 is exactly k(N − κ), instead of the expected k N on average. The size of S0 can also
depend on the predicate that we choose for the birthday-based algorithm. For instance, when
we use the predicate of searching for a collision between the non-trivial roots of P and
F , we obtain no equations in S0. Additionally, since F[1] (i.e. P[1]) and F[0] (i.e. P[0]) are
obtained respectively from computing the differential of and evaluating F (i.e P) at a given
point, S1 and S0 are not as independent from S2 as they would be in the random case. It is
difficult to estimate the complexity of solving these instances compared to solving random
instances with the same structure. Figure2 shows experiments confirming our intuition that
the complexity of collision-derived instances is worse than that of random ones. This implies
that we can not rely on the experimental observations in [24] to estimate the complexity of
these specific instances. We conclude that, in contrast with the literature, we can not assume
that CFF is polynomial when the Gröbner attack is used.

123

Hardness estimates of the code equivalence problem in the rank metric 857

5.1.2 The matrix-pencil attack

The matrix-pencil attack was proposed in Bouillaguet’s thesis [15] and used for the imple-
mentation of the birthday-based attack [14]. This algorithm has a complexity ofO(N 6) with
non-negligible probability for random inhQMLE instances where N = k. Its complexity for
inhQMLE instances derived from a collision attack depends strongly on the parameter κ . We
give a general description of the approach. For details on how it relates to the matrix pencil
equivalence problem, we refer to [15, Ch. 14].

The first step is to retrieve a basis of the solution space V of the subsystem of linear
equations S1. Let � = dim V and let (S[1],T[1]), . . . , (S[�],T[�]) be a basis of V . Once
the solution space of S1 is known, in order to find the solution space of the overall system
one rewrites S2 as a system in � variables. Concretely, this is done by replacing S and T by∑�

i=1 xiS[i] and
∑�

i=1 xiT[i] inEq. (13) and then looking for solutions in variables x1, . . . , x�.
This standard approach is also described in [13]. A key idea in the matrix-pencil attack is
to use the knowledge of F[1]/P[1] and F[0]/P[0] to find a (second) collision and double the
number of linear equations in S1. Supposing that there exists x’ such that x’P[1] = P[0], we
infer that there also exists y’ such that y’F[1] = F[0] and that y’ = x’S. We can thus append
the equations obtained from (Dx’P)T−1 = S(Dy’F) to S1. After applying this technique,
the resulting system is usually highly overdetermined and can be solved through direct
linearization. The most favorable case is when x’ and y’ are uniquely identified. However,
if dim ker F[1] = κ > 1, then x’ is chosen arbitrarily and we loop through the qκ possible
values for y’. The complexity of the algorithm is O(qκ�2N 4), under the condition that
�(� + 1)/2 ≤ |S2|. Another condition for the success of this approach is that P(x) �= 0 and
there is an x such that xDxP = P(x), because this assumption is used to find the second
collision. As per the analysis in [15], the probability that the condition for success is met is
1 − 1/q + 1/q3 + O(1/q6).

5.2 The complexity of inhBMLE

In the following analysis, we use the matrix-pencil algorithm as the inhBMLE solver, as it
seems to outperform the Gröbner attack and we have a better understanding of its complexity
for these specific instances.

5.2.1 The case k ≤ n + m

Based on the analysis in Sect. 4.3 for the purpose of usage in Algorithm 2 we can assume
without loss of generality that k ≤ n + m and m = min{m, n, k}.

The complexity of Algorithm 2 is dominated by the SampleZeros function, as long as the
complexity of the inhBMLE solver does not surpass O(qm). In the matrix-pencil algorithm,
we can not use the zero subsets F0 and P0, as this contradicts its condition for success
P(x) �= 0. The non-zeros subsets F and P can be used with a small adjustment to the
algorithm: after finding a basis of the solution space of S1, we rewrite and solve through
linearization the system comprised of both S2 and S0. Note that F andP are non-empty only
when the instance has at least two roots. Since in Algorithm 2 we do not restrict the value
of κ , we will approximate to the one that has the highest probability, which for the case of
k ≤ n + m is κ = (m + n) − k. Hence, CFF is approximated to

O(qm+n−k · (m + n)6).

123

858 K. Reijnders et al.

When k ≥ m, this is always smaller than O(qm).

5.2.2 The case n + m < k < 2(n + m)

This case is not relevant for Algorithm 2, but it is for Algorithm 1. Since the complexity of the
inhBMLE solver contains a non-negligible factor of qκ , the choice of κ needs to be adapted,
so that the running times of SampleSet and CollisionFind are equal. Let N = n + m and
let r = N − k. The optimal κ is chosen such that

q
N−(κ2+κr)

2 · qκ2+κr ≈ q N−(κ2+κr) · qκ .

This gives us κ = k−(n+m+√
δ)

2 + 1
3 , with δ = (k − (n + m))2 + 4

3 (k + 1
3). The complexity

of the overall algorithm with this optimal choice for κ is then

q
n+m
2 + k−√

δ
6 + 1

9 .

We get that
√

δ ≥ |k − (n + m)| and so for all values of k between n + m and 2(n + m),
the term k − √

δ is bounded by n + m, and hence this gives a bound on the complexity by

O(q
2
3 (n+m)+ 1

9). The term 1
9 adds a few bits at most to this complexity, but is negligible for

most cryptographic purposes.

5.2.3 The case k ≥ 2(n + m)

When k ≥ 2(n + m), as per Lemma 32, the probability that there exist elements with
dim ker D(a,b)F > 1 is extremely small, which is why we can not define a distinguish-
ing predicate for Algorithm 1 and κ = 1 with overwhelming probability. In this case, the
complexity of the matrix-pencil algorithm is

O(q · (m + n)6),

as with random inhBMLE instances.

6 Experimental results

To confirm our theoretical findings, we solved randomly generated positive instances of
the MCE problem, using the two approaches presented in this paper. First, we implement
the birthday-based Algorithm 1 in three steps. (1) We randomly generate a positive instance
IMCE(C,D) of MCE(n, m, k) and reduce it to an instance IhQMLE(F,P) of hQMLE(m+n, k).
(2) We build the two sample sets for a predefined predicate P and we combine them to create
pairs of potential collisions. (3) For each pair we create an inhQMLE instance andwe query an
inhQMLE solver until it outputs a solution for the maps S and T. Our implementation is built
on top of the open source birthday-based hQMLE solver from [15], which is implemented in
MAGMA [12].

Table 1 shows running times for solving theMCE problem using Algorithm 1. The goal of
this first experiments was to confirm that there is a parameter choice where the probability
of success of the algorithm surpasses 1 − 1/e and that our running times are comparable to
the ones given in [14]. These experiments are done with the parameter q = 2 and all results
are an average of 50 runs.

123

Hardness estimates of the code equivalence problem in the rank metric 859

Table 1 Experimental results on solving the MCE problem using Algorithm 1

m = n k κ Sample set size Runtime (s) Runtime (s) Success
SampleSet inhQMLE solver probability

10 20 5 2 21 3154 0.70

11 22 5 3 31 2004 0.63

12 24 5 6 76 13873 0.73

Table 2 Experimental results on solving the MCE problem using the non-zeros-subsets variant of Algorithm
2

m = n k Sample set size Runtime (s) Runtime (s) % instances
SampleZeros inhQMLE solver with two roots

8 15 10.4 0.56 175.34 24

14 35.56 0.60 236.12 68

9 17 12.00 1.74 396.04 22

16 37.97 1.72 1020.25 70

10 19 25.6 5.13 2822.32 14

18 36.72 5.05 1809.09 82

The second approach, described in Sect. 4.3 uses the bilinear structure of hQMLE instances
derived from MCE instances to have an improved algorithm for building the sample sets and
a more precise predicate that results in fewer queries to the inhQMLE solver. The conse-
quence of these two improvements to the runtime can be observed in Table 2 where we show
experimental results of Algorithm 2 using the non-zeros subsets. Recall that, this approach
can be used only when there exist at least two roots of F and P . Otherwise, the sampled
sets contain only the trivial root and the instance is solved using Algorithm 1. Table 2 shows
results of the case when the sets are non-trivial and the probability of this case for the given
parameters is shown in the last column. For efficiency, we take the minimal subset with a
common dimension of the kernel ofFb, andwhen looking for collisions, we are careful to skip
pairs (ab, a′b′) where dim ker Fb = dim ker Pb′ but dim ker D(a,b)F �= dim ker D(a′,b′)P .
In these experiments, q = 3 and all results are an average of 50 runs.

Our experiments confirm that Algorithm 2 outperforms Algorithm 1 for solving MCE
instances with non-trivial roots.

Acknowledgements The authors thank Charles Bouillaguet for providing the implementation resulting
from [15].

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

860 K. Reijnders et al.

References

1. Alfarano G.N., Lobillo F.J., Neri A., Wachter-Zeh A.: Sum-rank product codes and bounds on the mini-
mum distance. Finite Fields Appl. 80, 102013 (2022).

2. Aragon N., Blazy O., Deneuville J.-C., Gaborit P., Hauteville A., Ruatta O., Tillich J.-P., Zemor G.,
Melchor C.A., Bettaieb S., Bidoux L., Bardet M., Otmani A.: ROLLO (Rank-Ouroboros, LAKE and
LOCKER) (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

3. Aragon N., Gaborit P., Hauteville A., Ruatta O., Zémor G.: Low rank parity check codes: new decoding
algorithms and applications to cryptography. IEEE Trans. Inf. Theory 65, 7697–7717 (2019).

4. Barenghi A., Biasse J.-F., Persichetti E., Santini P.: LESS-FM: fine-tuning signatures from the code
equivalence problem. In: Post-Quantum Cryptography: 12th International Workshop, PQCrypto 2021,
Daejeon, South Korea, July 20–22, 2021, Proceedings 12, pp. 23–43. Springer (2021).

5. Barenghi A., Biasse J.-F., Persichetti E., Santini P.: On the computational hardness of the code equivalence
problem in cryptography. Cryptology ePrint Archive, Paper 2022/967. https://eprint.iacr.org/2022/967
(2022).

6. Belitskii G.R., Futorny V., Muzychuk M., Sergeichuk V.V.: Congruence of matrix spaces, matrix tuples,
and multilinear maps. Linear Algebra Appl. 609, 317–331 (2021). https://doi.org/10.1016/j.laa.2020.09.
018.

7. Bellini E., Caullery F., Gaborit P., Manzano M., Mateu V.: Improved veron identification and signature
schemes in the rank metric. In: 2019 IEEE International Symposium on Information Theory (ISIT), pp.
1872–1876 (2019).

8. Berger T.P.: Isometries for rank distance and permutation group of Gabidulin codes. IEEE Trans. Inf.
Theory 49, 3016–3019 (2003).

9. Beullens W.: Not enough LESS: an improved algorithm for solving code equivalence problems over Fq .
In: International Conference on Selected Areas in Cryptography, pp. 387–403. Springer (2020).

10. BeullensW., Preneel B.: Field lifting for smaller UOV public keys. In: Patra A., Smart N.P. (eds.) Progress
in Cryptology—INDOCRYPT 2017, pp. 227–246. Springer, Cham (2017).

11. Biasse J.-F.,MicheliG., Persichetti E., Santini P.: LESS ismore: code-based signatureswithout syndromes.
In:NitajA.,YoussefA. (eds.) Progress inCryptology—AFRICACRYPT2020, pp. 45–65. Springer, Cham
(2020).

12. BosmaW., Cannon J., Playoust C.: Themagma algebra system. I. The user language. J. Symbolic Comput.
24(3-4), 235–265 (1997). Computational algebra and number theory (London, 1993).

13. Bouillaguet C., Faugère J.-C., Fouque P.A., Perret L.: Practical cryptanalysis of the identification scheme
based on the isomorphism of polynomial with one secret problem. In: Public Key Cryptography—PKC
2011, vol. 6571, pp. 441–458. Lecture Notes in Computer Science. Springer, Berlin (2011).

14. Bouillaguet C., Fouque P., Véber A.: Graph-theoretic algorithms for the “isomorphism of polynomials”
problem. In: Johansson T., Nguyen P.Q. (eds.) Advances in Cryptology—EUROCRYPT 2013, 32nd
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26–30, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7881, pp. 211–227.
Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-38348-9_13.

15. Bouillaguet C.: Algorithms for some hard problems and cryptographic attacks against specific crypto-
graphic primitives. (études d’hypothèses algorithmiques et attaques de primitives cryptographiques). PhD
thesis, Paris Diderot University, France (2011). https://tel.archives-ouvertes.fr/tel-03630843.

16. Casanova A., Faugère J.-C., Macario-Rat G., Patarin J., Perret L., Ryckeghem J.: GeMSS: a great multi-
variate short signature. (2017).

17. Couvreur A., Debris-Alazard T., Gaborit P.: On the hardness of code equivalence problems in rank metric
(2021).

18. De Feo L., Galbraith S.D.: SeaSign: compact isogeny signatures from class group actions. In: Ishai Y.,
Rijmen V. (eds.) Advances in Cryptology—EUROCRYPT 2019, pp. 759–789. Springer, Cham (2019).

19. De Feo L., Kohel D., Leroux A., Petit C., Wesolowski B.: SQISign: compact post-quantum signatures
from quaternions and isogenies. In: Moriai S., Wang H. (eds.) Advances in Cryptology—ASIACRYPT
2020, pp. 64–93. Springer, Cham (2020).

20. Debris-AlazardT., SendrierN., Tillich J.-P.:Wave: a new family of trapdoor one-waypreimage sampleable
functions based on codes. In: Galbraith S.D., Moriai S. (eds.) Advances in Cryptology—ASIACRYPT
2019, pp. 21–51. Springer, Cham (2019).

21. Ding J., Schmidt D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis J.,
Keromytis A.D., Yung M. (eds.) ACNS. Lecture Notes in Computer Science, vol. 3531, pp. 164–175
(2005).

22. Dubois V., Granboulan L., Stern J.: An efficient provable distinguisher for HFE. In: International Collo-
quium on Automata, Languages, and Programming, pp. 156–167. Springer (2006).

123

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2022/967
https://doi.org/10.1016/j.laa.2020.09.018
https://doi.org/10.1016/j.laa.2020.09.018
https://doi.org/10.1007/978-3-642-38348-9_13
https://tel.archives-ouvertes.fr/tel-03630843

Hardness estimates of the code equivalence problem in the rank metric 861

23. Ducas L., van Woerden W.: On the lattice isomorphism problem, quadratic forms, remarkable lattices,
and cryptography. In: Dunkelman O., Dziembowski S. (eds.) Advances in Cryptology—EUROCRYPT
2022, pp. 643–673. Springer, Cham (2022).

24. Faugère J.-C., Perret L.: Polynomial equivalence problems: algorithmic and theoretical aspects. In: Vau-
denay S. (ed.) EUROCRYPT ’06. Lecture Notes in Computer Science, vol. 4004, pp. 30–47. Springer,
Berlin (2006).

25. Faugère J.-C., Otmani A., Perret L., Portzamparc F., Tillich J.-P.: Structural cryptanalysis of McEliece
schemeswith compact keys. Des. CodesCryptogr. 79(1), 87–112 (2016). https://doi.org/10.1007/s10623-
015-0036-z.

26. Faugère J., Otmani A., Perret L., de Portzamparc F., Tillich J.: Folding alternant and goppa codes with
non-trivial automorphism groups. IEEE Trans. Inf. Theory 62(1), 184–198 (2016). https://doi.org/10.
1109/TIT.2015.2493539.

27. Fiat A., Shamir A.: How to prove yourself: practical solutions to identification and signature problems.
In: Proceedings on Advances in cryptology—CRYPTO ’86, pp. 186–194. Springer, London (1987).

28. Fouque P.-A., Granboulan L., Stern J.: Differential cryptanalysis for multivariate schemes. In: Cramer R.
(ed.) Advances in Cryptology–EUROCRYPT 2005. Lecture Notes in Computer Science, vol. 3494, pp.
341–353. Springer, Berlin (2005).

29. Futorny V., Grochow J.A., Sergeichuk V.V.: Wildness for tensors. Linear Algebra Appl. 566, 212–244
(2019). https://doi.org/10.1016/j.laa.2018.12.022.

30. Girault M.: A (non-practical) Three-pass identification protocol using coding theory. In: Proceedings of
the International Conference on Cryptology on Advances in Cryptology. AUSCRYPT ’90, pp. 265–272.
Springer, Berlin (1990).

31. Gorla E.: Rank-metric codes. CoRR arXiv:1902.02650 (2019).
32. Grochow J.A., Qiao Y.: Isomorphism problems for tensors, groups, and cubic forms: completeness and

reductions. (2019). https://doi.org/10.48550/ARXIV.1907.00309.
33. Hua L.-K.: A theorem on matrices over a sfield and its applications. Bull. Am. Math. Soc. 55, 1046–1046

(1949).
34. Landsberg G.: Ueber eine Anzahlbestimmung und eine damit zusammenhängende Reihe. (1893).
35. Leon J.: Computing automorphism groups of error-correcting codes. IEEE Trans. Inf. Theory 28(3),

496–511 (1982).
36. McEliece R.J.: A public-key system based on algebraic coding theory. Jet Propulsion Laboratory, Cali-

fornia Institute of Technology, pp. 114–116 (1978). DSN Progress Report 44.
37. Melchor C.A., Aragon N., Bettaieb S., Bidoux L., Blazy O., Deneuville J.-C., Gaborit P., Zemor G., Cou-

vreur A., Hauteville A.: RQC (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-
2-submissions.

38. National Institute for Standards and Technology: NIST Workshop on Cybersecurity in a Post-Quantum
World. http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm. Accessed 1 Oct 2014.

39. Neri A.: Twisted linearized Reed-Solomon codes: A skew polynomial framework. arXiv preprint
arXiv:2105.10451 (2021).

40. Niederreiter H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf. Theory
15, 159–166 (1986).

41. Nóbrega R.W., Uchôa-Filho B.F.: Multishot codes for network coding using rank-metric codes. In: 2010
Third IEEE International Workshop on Wireless Network Coding, pp. 1–6 (2010). IEEE.

42. Patarin J., Goubin L., Courtois N.: Improved algorithms for isomorphisms of polynomials. In: EURO-
CRYPT ’98. Lecture Notes in Computer Science, vol. 1403, pp. 184–200. Springer, Berlin (1998).

43. Patarin J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): two new families of
asymmetric algorithms. In: Maurer U.M. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol.
1070, pp. 33–48. Springer, Berlin (1996).

44. Perret L.: A fast cryptanalysis of the isomorphism of polynomials with one secret problem. In: Advances
in Cryptology–EUROCRYPT 2005. 24th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Aarhus, Denmark, May 22–26, 2005, Proceedings. Lecture Notes in
Computer Science, vol. 3494, pp. 354–370. Springer, Berlin (2005).

45. PetersC.: Information-set decoding for linear codes overFq . In: InternationalWorkshop onPost-Quantum
Cryptography, pp. 81–94 (2010). Springer, New York.

46. Sendrier N.: Finding the permutation between equivalent linear codes: the support splitting algorithm.
IEEE Trans. Inf. Theory 46, 1193–1203 (2000).

47. Sergeı̆chukV.V.:Classification problems for systemsof forms and linearmappings.Math.USSR-Izvestiya
31(3), 481–501 (1988). https://doi.org/10.1070/im1988v031n03abeh001086.

123

https://doi.org/10.1007/s10623-015-0036-z
https://doi.org/10.1007/s10623-015-0036-z
https://doi.org/10.1109/TIT.2015.2493539
https://doi.org/10.1109/TIT.2015.2493539
https://doi.org/10.1016/j.laa.2018.12.022
http://arxiv.org/abs/1902.02650
https://doi.org/10.48550/ARXIV.1907.00309
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://arxiv.org/abs/2105.10451
https://doi.org/10.1070/im1988v031n03abeh001086

862 K. Reijnders et al.

48. Tang G., Duong D.H., Joux A., Plantard T., Qiao Y., SusiloW.: Practical post-quantum signature schemes
from isomorphism problems of trilinear forms. In: Dunkelman O., Dziembowski S. (eds.) Advances in
Cryptology—EUROCRYPT 2022, pp. 582–612. Springer, Cham (2022).

49. Witt E.: Theorie der quadratischen formen in beliebigen korpern: J. Reine Angew. Math. 176, 31–44
(1937).

50. Arf C.: Untersuchungen über quadratische formen in korpern der charakteristik 2, i. J. Reine Angew.
Math. 183, 148–167 (1941).

51. Vaudenay S.: A Classical Introduction to Cryptography: Applications for Communications Security.
Springer, New York (2005).

52. Wan Z.-X.: A proof of the automorphisms of linear groups over a sfield of characteristic 2. Sci. Sin. 11,
1183–1194 (1962).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Hardness estimates of the code equivalence problem in the rank metric
	Abstract
	1 Introduction
	1.1 Our contributions

	2 Preliminaries
	2.1 The Matrix Code Equivalence problem
	2.2 Systems of quadratic polynomials
	2.2.1 Differential of quadratic functions

	2.3 Isomorphism of polynomials

	3 How hard is MCE?
	3.1 Relations to equivalence problems for qaudratic polynomials
	3.2 Relations to equivalence problems for linear codes
	3.2.1 Hamming code equivalence
	3.2.2 Sum-rank code equivalence

	4 Solving Matrix Code Equivalence
	4.1 Solving MCE as QMLE
	4.2 First algorithm for solving MCE
	4.3 Second algorithm

	5 Filling the gaps in the complexity analysis
	5.1 Algorithms for inhQMLE
	5.1.1 The Gröbner bases attack
	5.1.2 The matrix-pencil attack

	5.2 The complexity of inhBMLE
	5.2.1 The case k len+m
	5.2.2 The case n+m < k < 2(n+m)
	5.2.3 The case k ge2(n+m)

	6 Experimental results
	Acknowledgements
	References

