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Abstract
In this paper, we present some new observations on the branch number and study concrete
differential analysis of SPEEDY. It is a new low-latency block cipher proposed at TCHES
2021. It employs SPS-type round function and consists of only 5/6/7 rounds. Since the
iteration rounds are rather small so as to achieve ultra low-latency in encryption speed,
it will be crucially important to analyze its security margin accurately. In this paper, we
first propose a new notation of partition branch number which can describe the minimum
number of active S-boxes for 2-round SPEEDY more accurately. An efficient algorithm to
compute the value of partition branch number is also given. Then by extending the notation to
higher-order partition branch number, we can obtain more accurate results of the minimum
number of active S-boxes for 3–7 rounds. As a result, the maximum expected differential
probabilities are significantly higher than the results estimated by designers. Based on this,
we search for optimal differential characteristics of SPEEDYwhile considering the difference
distribution table of S-box.We present examples of differential characteristics for 2–7 rounds.
Furthermore, by utilizing the simple bit-permutation key schedule of SPEEDY, we can extend
the differential trail search method and construct an efficient 6-round related-key differential
trail with probability 2−179.2. Based on it, we can present related-key differential attack
on full round SPEEDY-7-192 with data complexity of 2186.2 chosen-plaintexts and time
complexity of 2160.13 encryptions.
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1 Introduction

In recent years, the design of lightweight block ciphers is one of the most important research
areas and has attracted lots of attention from all over the world. Lightweight encryption
is motivated by the need to provide acceptable security for specific applications used in
resource constrained environment, such as RFID, sensor network, and microcontroller in the
Internet of Things (IoT). The most important concern is an optimal implementation with
much lower area, or power consumption than traditional encryption standard such as AES
[16]. A variety of lightweight schemes aiming at various goals have been proposed in the
last few years. The first generation of lightweight block ciphers such as PRESENT [8] and
KATAN [13], mainly focused on hardware implementation performance such as area cost.
Then software-oriented designs such as nibble-wise block cipher LBlock [23] and TWINE
[22] have emerged, which take not only hardware but also 8/16/32-bit multiple software
platforms into account. Nowadays, designs aiming at other goals have also been studied,
such as the lightweight tweakable block cipher SKINNY [7], Midori [3] which is focusing
on low energy, CRAFT [6] with efficient protection against DFA attacks. Moreover, designs
capable of serialized implementation such as SIMON [5], Piccolo [20], and WARP [2]
can achieve ultra lightweight with a very small hardware footprint compared to round-based
implementation but at the cost of long cycles.

On the other hand, some new designs aiming at low-latency have been proposed rather
recently. It is motivated by the need to provide real-time security for some specific applica-
tions, such as instant authentication, storage or memory encryption, high-speed encryption
for secure processor architectures, and embedded systems with real-time requirements. For
all these cases, low-latency encryption and instant response time are highly desirable. Hence
an encryption scheme should be optimized for latency and the entire process should be com-
pletedwithin the shortest possible delay. Therefore, themost important feature of low-latency
block cipher is to encrypt a block of data within one single clock cycle. However, for this
kind of fully-unrolled implementation it will be a huge challenge to achieve acceptable chip
area. Therefore, the number of rounds must be moderate and the round function may be
relatively complex. For example, SP-type or SPS-type round function with lightweight low
latency components such as 4-bit S-box and heavy linear layer such asMDSmatrix are usually
employed.

So far, only a few low-latency ciphers have been proposed. PRINCE [9] is the first low-
latency block cipher proposed byBorghoff et al. atASIACRYPT2012, and it has already been
deployed in a number of products including LPC55S of NXP Semiconductors [17]. Later,
Bozilov et al. proposed an updated version called PRINCEv2 [12] which claims to increase
the security level of PRINCE by making only small modifications. Inspired by the design of
PRINCE, Beierle et al. proposed a low-latency tweakable block cipher called MANTIS [7].
Qualcomm company has also proposed a low-latency block cipher family called QARMA [1],
which targets at applications such as memory encryption and pointer authentication. QARMA
has already been used to achieve control flow integrity (CFI) in the products of ARMv8.3
[18]. In 2021, Banik et al. proposed Orthros [4], a low-latency pseudorandom function
(PRF) which ignors the support of decryption to achieve ultra low-latency. Leander et al.
proposed another ultra low-latency block cipher family called SPEEDY at CHES 2021 [15].
It primarily targets at secure process architectures embedded in high-end CPUs. It achieves
ultra low-latency in single-cycle encryption speed, while the decryption is less efficient. Up to
now, SPEEDY outperforms all the other known encryption primitives with the lowest latency
in hardware.
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Observations and differential analysis of SPEEDY 1177

On the other hand, in the security aspect, there exists more risk for low-latency cipher
since the number of rounds must be as small as possible in order to achieve ultra low-latency.
Not surprisingly, many low-latency block ciphers suffer serious security problems. Several
theoretical attacks which can achieve even full-round have been reported. For example,
Soleimany et al. [21] proposed an effective reflection attack which can apply to full-round
PRINCEcore, and Dobraunig et al. [14] proposed a practical clustering differential attack
on full-round MANTIS5. Therefore, for low-latency block cipher designs, study about the
securitymargin and accurate security evaluation against known attacksmay be very important
and desirable.

Related Work: The notation of branch number is usually used to evaluate the minimum
number of active S-boxes for SP-type round function. However, for block ciphers employing
SPS-type round function, it will be difficult to obtain the accurate number of active S-boxes
based on branch number directly. Therefore, the combination of SPS is usually considered
together as a Super S-box and then the minimum number of active Super S-boxes
is evaluated instead. Obviously, it will be less accurate and this method is usually used as
a rough security evaluation against differential analysis in the design of block ciphers with
SPS-type round function.

As a newly proposed low-latency block cipher, SPEEDY has not only outstanding perfor-
mance in latency, but also has an unusual structure in contrast to other known low-latency
block ciphers. Instead of the α-reflection structure [9] with SP-type round function used in
PRINCE, MANTIS and QARMA, SPEEDY employs an SPS-type round function with two
layers of 6-bit S-box connected by bit rotations and then a binary matrix multiplication as
the linear function. The block size and key size of SPEEDY are both 192-bit, and the number
of rounds can be 5/6/7 which corresponds to different levels of security. In order to evaluate
its security against differential and linear attacks, the designers try to analyze the minimum
number of active S-boxes to give an upper bound for the probabilities of differential and
linear trails. A direct way to compute the minimum number of S-boxes is by making use of
the notation of branch number.

However, since the round function of SPEEDY consists of two layers of 6-bit S-box
connected by bit rotations which can be considered as a Super S-box, it will be difficult
to obtain the number of active 6-bit S-boxes directly. Therefore, in [15] the designers only
considered 1-bit to 1-bit transitions through Super S-box whose maximum differential
probability is 2−6, and then the binary matrix with branch number bn = 8 can ensure that the
maximum expected differential probability of differential trails over tow rounds of SPEEDY
is 2−6×8. Moreover, they proposed an extension for the definition of branch number called
higher-order branch number bnr , which represents the minimum number of 1-bit to 1-bit
transitions over r rounds. Then the maximum expected differential probability over r -round
SPEEDY is estimated by 2−6×bnr .

Obviously, this is inaccurate since only 1-bit to 1-bit transitions through Super S-box
are considered.Without the restriction of 1-bit difference, there should exist differential trails
with less active 6-bit S-boxes. Not surprisingly, when they search for the minimum number
of active S-boxes by assuming that all the differentials through the S-box are possible and
there are at most 8 active S-boxes in the internal state, the results of minimum number of
active 6-bit S-boxes for 2–4 rounds are all significantly smaller than the values estimated
according to branch number [15]. This may threaten the security margin since the round
number for low-latency block ciphers are usually rather small. Therefore, for block ciphers
employing SPS-type round function, accurate evaluation of the minimum number of active
S-boxes may be vital to the designers, especially when heuristic search for differential trail
of long rounds is impractical.
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1178 L. Zhang

Moreover, we have noticed that after the submission of our paper and during the review
phase, Boura et al. reported some similar results about differential attack of SPEEDY in
[10, 11]. They implemented a search for finding optimal trails under some constraints. The
main search strategy was to precompute all good one-round trails such that both columns
x and M(x) have at most 7 active bits each. Then they chained them to create longer trails
and finally obtained a 5.5-round differential distinguisher with probability 2−183.59. Their
main contributions focused on improvements of the key-recovery part. They proposed some
non-trivial techniques of efficient data and key-sieving, and based on them they presented a
full-round differential attack of SPEEDY-7-192with a time complexity of 2187.84 and data
complexity of 2187.28.

OurContribution: In this paper, we present some newobservations on the branch number
and study concrete differential analysis of SPEEDY. First of all, we propose a new notation
of partition branch number, which can describe the minimum number of active S-boxes
for SPEEDY more accurately. We also give an efficient algorithm to compute the value of
partition branch number. Then by extending the notation to higher-order partition branch
number, we can obtain more accurate results of the minimum number of active S-boxes for
more rounds. Based on this, we have obtained the minimum number of active 6-bit S-boxes
for 2–7 rounds SPEEDY are as follows:

pbn2 = 13, pbn3 = 23, pbn4 = 35, pbn5 = 45, pbn6 = 57, pbn7 = 67.

It is noteworthy that these results are significantly smaller than theminimumnumber of active
S-boxes in [15]. Hence, it will contradict the security margin evaluated by the designers.
Moreover, our computation of higher-order partition branch number can be used to evaluate
the minimum number of active S-boxes more directly and efficiently. Compared to the time-
consuming searchmethod,we can obtain accurate results for arbitrary roundswhile automatic
search may be infeasible for long rounds.

On this basis,we also search for the optimal differential characteristics of SPEEDY. Instead
of the assumption that all the differential transitions through the S-box are possible, we take
the Difference Distribution Table (DDT) of the 6-bit S-box into consideration. Therefore, we
can study concrete differential characteristics which satisfy the actual difference distribution
table and evaluate the security margin of SPEEDY more precisely. We first present a special
kind of 1-bit to 1-bit differential trails for 2–7 rounds SPEEDY together with the maximum
differential probabilities. Then, based on the computation of higher-order partition branch
number, we present examples of optimal differential characteristics for 2–7 rounds SPEEDY,
whose differential probabilities are 2−46.2, 2−76.72, 2−129.2, 2−170.0, 2−216.0 and 2−266.2.0

respectively.
Furthermore, by utilizing the simple bit-permutation key schedule of SPEEDY, we can

extend the differential trail search method and construct an efficient 6-round related-key
differential trail with probability 2−179.2. Based on it, we can present a related-key differential
attack on full round SPEEDY-7-192 with data complexity of 2186.2 chosen-plaintexts and
time complexity of 2160.13 encryptions. Compared to other third-party cryptanalysis results
on SPEEDY [10, 19], this is the first full-round related-key differential attack reported so far
and the attack complexity outperforms all the previous known results.

Organization of the Paper: First of all, we give a brief description of SPEEDY in Sect. 2.
Then, some observations of the branch number are explained in Sect. 3. In Sect. 4, we present
the definition of partition branch number and based on it we give some more accurate results
about the security evaluation of SPEEDY against differential analysis. Concrete differential
trails for 2–7 rounds SPEEDY and experimental validation are provided in Sect. 5. In Sect. 6,
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Observations and differential analysis of SPEEDY 1179

Table 1 Contents of the 6-bit
S-box used in SPEEDY (in
hexadecimal notation)

x0x1x2 x3x4x5

0 1 2 3 4 5 6 7

0 08 00 09 03 38 10 29 13

1 0c 0d 04 07 30 01 20 23

2 1a 12 18 32 3e 16 2c 36

3 1c 1d 14 37 34 05 24 27

4 02 06 0b 0f 33 17 21 15

5 0a 1b 0e 1f 31 11 25 35

6 22 26 2a 2e 3a 1e 28 3c

7 2b 3b 2f 3f 39 19 2d 3d

we present related-key differential attack on full round SPEEDY-7-192. Finally, Sect. 7
concludes the paper.

2 Specification of SPEEDY

SPEEDY is a family of ultra low-latency block ciphers with different block size and varying
number of rounds. For example, SPEEDY-r -6l is an instance with block and key sizes 6l bits
and it iterates r rounds. The suggested parameter is SPEEDY-r -192 which achieves 128-bit
security when iterated r = 6 rounds and full 192-bit security when iterated r = 7 rounds,
while a decent security level (≥ 2128 time complexity when data complexity is limited to
≤ 264) when iterated r = 5 rounds.

For SPEEDY-r -192, the internal state is viewed as an 32 × 6 array of bits. The
notation x[i, j] denotes the bit located at row i and column j of the state x with
0 ≤ i < 32 and 0 ≤ j < 6. First of all, the internal state is initialized with
the 192-bit plaintext with the same order used for indexing bits. Then, round functions
are applied on the internal state. Each round function is composed of the following
operations: AddRoundKey (Akr ), SubBox(SB), ShiftColumns(SC), SubBox(SB),
ShiftColumns(SC), MixColumns (MC), AddRoundConstant (Acr ). Note that in the
last round, the linear layer and constant addition are omitted, and instead an extra key addition
is applied. Therefore, the encryption procedure can be expressed as follows:

Ak0 → SB → SC → SB → SC → MC → Ac0 → · · · → Akr−1 → SB → SC → SB → Akr

• SubBox(SB): The 6-bit S-box S is applied to each row of the state. The contents of the
6-bit S-box is given in Table 1.

• ShiftColumns(SC): The j-th column of the state is rotated upside by j bits.
• MixColumns(MC): A cyclic binary matrix is multiplied to each column of the state.

Namely, it can be computed as follows and the addition in the indices of the state is in
module 32 for the first (row) index.

y[i, j] = xi, j ⊕ x[i+1, j] ⊕ x[i+5, j] ⊕ x[i+9, j] ⊕ x[i+15, j] ⊕ x[i+21, j] ⊕ x[i+26, j],∀i, j .
• AddRoundKey(Akr ): The 192-bit round key kr is XORed to the state.
• AddRoundConstant(Acr ): The 192-bit constant cr is XORed to the state.
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1180 L. Zhang

The KeySchedule of SPEEDY receives a 192-bit master key as the first round key and
then applies a simple bit permutation to compute the next round key iteratively. We will omit
the description of RoundConstant values since they are not related to our work. Interested
readers can refer to [15] for more details.

3 Observations on branch number

3.1 (Higher-order) branch number

The SP-type round function is one of the most widely used structures in the design of block
cipher. Normally, a layer of non-linear S-box is used to provide confusion effect and a linear
function is used to provide diffusion effect. For measuring diffusion effect, the notation of
branch number is defined to represent the minimum number of active S-boxes in consecutive
2-round. However, for block ciphers employing SPS-type round function, such as SPEEDY
and Piccolo, it will be difficult to obtain the number of active S-boxes directly based on
branch number. Therefore, they have to consider the two layers of S-boxes together asSuper
S-box and then evaluate the minimum number of active Super S-box instead [15, 20].

For the round function of SPEEDY, the linear function MC can be considered as a cyclic
binary matrix multiplied to each column of the state. Denote the corresponding binary cyclic
matrix of MC as M , and then its branch number is defined as:

bn = min
x∈Fl

2\{0}
hw(x) + hw(M × xT )

where hw(·) denotes the hamming weight of a binary array. According to the differential
analysis in [15], they only considered 1-bit to 1-bit differential over SB ◦ SC ◦ SB where the
first and second SB operations are both 1-bit to 1-bit transitions, and its maximum differential
probability is 2−6. Then, considering that the branch number of MC is bn = 8, they can ensure
that the maximum expected differential probability of this kind of 1-bit to 1-bit differential
trails over 2-round SPEEDY is (2−6)8 = 2−48.

Moreover, in order to evaluate the maximum differential probability of 1-bit to 1-bit dif-
ferential trails over several rounds of SPEEDY, they proposed a new notation of higher-order
branch number bnr . For example, the higher-order branch number for 3-round SPEEDY can
be computed as follows:

bn3 = min
i1,i2,i3 	=0

H [i1][i2]=H [i2][i3]=1

i1 + i2 + i3

where H is a binary table such that the element in the position H [i][ j] is 1 if and only if there
is an x ∈ Fl

2\{0} with hw(x) = i and hw(M × xT ) = j . Obviously, the branch number bn
is the same as bn2 defined as follows:

bn2 = min
i1,i2 	=0

H [i1][i2]=1

i1 + i2

Then the maximum expected differential probability of 1-bit to 1-bit differential trails over
r -round SPEEDY can be estimated as 2−6×bnr .
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Observations and differential analysis of SPEEDY 1181

Fig. 1 An example of 2-round differential trail for SPEEDY

3.2 Differential analysis of 2-round SPEEDY

In the above analysis, they have only considered 1-bit to 1-bit differential over SB ◦SC ◦SB
in order to use the branch number of MC to evaluate the maximum expected differential
probability over two rounds of SPEEDY. However, for all the differential trails over SB ◦
SC ◦ SB, if we can consider multiple nonzero bits differential transition for the second SB
operation, the number of active 6-bit S-boxes can be reduced significantly.

Without loss of generality, we set one column of the input and output states of MC as
active, and then the operations for two rounds of SPEEDY can be simplified as follows:

←−−−−−−−−
SB ◦ SC ◦ SB ◦ SC ◦ MC ◦ −−−−−−−−→

SB ◦ SC ◦ SB.

Take the central operation MC as a starting point, and assume the second SB operation in both
forward and backward directions can take n-bit differential transitions with 1 ≤ n ≤ 6. Then
we can obtain differential trail of 2-round SPEEDY with much higher probability. We give a
simple example to illustrate the differential transitions of this kind of trails in the following.

Example 1 We present an example of 2-round differential trail for SPEEDY. Fig. 1 illustrates
its differential propagations in detail. The black box denotes ’1’ difference and the empty
box denotes ’0’ difference, respectively. There are only 13 active S-boxes and the maximum
differential probability should be (2−3)13 = 2−39. Obviously, it is much higher than the
maximum differential probability of 1-bit to 1-bit differential trails which is estimated to be
2−48.

4 Partition branch number

Inspired by the analysis of 2-round differential trail of SPEEDY, we can define a new form
of branch number to describe the least number of active S-boxes more accurately. For the
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1182 L. Zhang

round function of SPEEDY, since SC does not change the column position and MC is a cyclic
matrix, we can omit the second SC in the computation of branch number as follows.

SB ◦ SC ◦ SB ◦ MC ◦ SB ◦ SC ◦ SB.

Similar to the definition of hamming weight of a binary array hw(·), we can define a new
form of partition hamming weight as follows.

Definition 1 (Partition Hamming Weight) For a binary array x , partition all the active bits
into several sets in order and each set satisfies that the maximum distance does not exceed
k. Then the minimum number of active sets is defined as the partition hamming weight of a
binary array, which is denoted as phwk(x).

Considering the round function of SPEEDY, the binary array x defined in the above
definition can be considered as a column of the state. Since the operation of SC is a rotation
with 5 bits at most, we will only consider the situation of k = 5. Therefore, in the remaining
of this paper, we will abbreviate phw5(x) as phw(x). The definition of partition hamming
weight represents the minimum number of active S-boxes for the output difference after the
operations of SB and SC. In Fig. 1, the difference propagation of the second round illustrates
a sample of partition. Moreover, we will give a more detailed example as follows.

For example, given the following binary array x , which can be considered as a column of
the state. There are 7 active bits in the positions {0,1,5,9,15,21,26}.

xT = [1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
They can be partitioned into 4 active sets as follows. The first set contains the 0-th and 1-th
bits and its maximum distance is 1. The second set contains the 5-th to 9-th bits and its
maximum distance is 4. The third set contains only the 15-th bit and its maximum distance
is denoted as 0. The last set contains the 21-th to 26-th bits and its maximum distance is 5.
Obviously, this is a valid partition. By checking all the possible valid partitions, we can get
the minimum number of active sets is 4, namely phw(x) = 4.

{1, 1} , 0, 0, 0, {1, 0, 0, 0, 1} , 0, 0, 0, 0, 0, {1} , 0, 0, 0, 0, 0, {1, 0, 0, 0, 0, 1} , 0, 0, 0, 0, 0

On this basis, we can define a new kind of branch number to evaluate the minimum
number of active S-boxes considering multi-bit differentials instead of only 1-bit to 1-bit
differentials. Similar to the above analysis, we set one column of input and output states of
MC as active, and assume the second SB operation in both forward and backward directions
can take n-bit differential transitions with 1 ≤ n ≤ 6. According to the definition of partition
hamming weight, the maximum distance of each active set does not exceed 5. Therefore, after
the operations of SB and SC, they can be transited into the same S-box. Then an improved
branch number can be defined as follows.

Definition 2 (Partition Branch Number) For the binary cyclic matrix M of the MC operation,
we define its partition branch number as follows:

pbn = min
x∈Fl

2\{0}
hw(x) + hw(M × xT ) + phw(x) + phw(M × xT ).

The partition branch number can ensure that there are at least pbn active S-boxes over two
rounds. Here we give a brief explanation for this claim. For any input difference x ∈ Fl

2\ {0},
the output difference after MC should be M × xT . We can use hw(x) + hw(M × xT ) to
denote the number of active S-boxes for the operations of SB ◦ MC ◦ SB. Then according to
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Observations and differential analysis of SPEEDY 1183

the definition of partition hamming weight, phw(x)+ phw(M × xT ) denotes the minimum
number of active S-boxes for the operations of SB ◦ SC. Therefore, the partition branch
number defined above can represent the the minimum number of active S-boxes through two
rounds operations of SB ◦ SC ◦ SB ◦ MC ◦ SB ◦ SC ◦ SB.

According to the difference distribution table (DDT) of the 6-bit S-box used in SPEEDY,
the maximum differential probability is 2−3. Therefore, the maximum expected differential
probability of differential trails over two rounds of SPEEDY can be estimated as (2−3)pbn . It
is noteworthy that based on partition branch number, we can directly evaluate the minimum
number of active S-boxes. Compared to the traditional branch number which is used to
evaluate the minimum number of active SB ◦ SC ◦ SB, we can obtain more accurate results
about the maximum differential probability of SPEEDY.

4.1 Computation of pbn

In order to compute the value of pbn, the main problem is to compute the partition hamming
weight of a binary array. For an arbitrary binary array x , we can use a recursive algorithm
to compute the value of phw(x). First of all, we choose all the non-zero bits to form a set.
Then we use a recursive algorithm to traverse all the possible partitions and check whether
the condition is satisfied for each partition. Finally, the minimum number of active sets for
all valid partitions is output as phw(x).

Denote an l-bit binary array as x = [x0, x1, . . . xl−1], and choose the indices of all non-
zero bits in order to form a set {i1, i2, . . . , i j }, where 0 ≤ i1 < i2 < . . . < i j ≤ l − 1
and xi1 = xi2 = . . . = xi j = 1. Moreover, since SC is a bit rotation operation, the indexes
i1, i2, . . . , i j can be considered as modular l in the computation of maximum distance. For
example, for the binary array displayed above after Definition 1, the index set formed by all
non-zero bits is {0, 1, 5, 9, 15, 21, 26}.

In order to compute the partition hamming weight, we present the following Algorithm 1
to traverse and check all the valid partitions for the set {i1, i2, . . . , i j }. Since there are j
elements in the set, the following trivial partition with j subsets is always valid.

{i1}, {i2}, . . . , {i j }

Therefore, we can start to traverse and check if there is a valid partition with j − 1 subsets.
If we obtain a valid partition, then we can abort the traversal and go on to check partitions
with j − 2 subsets and so on. The algorithm stops when all the possible partitions with
n (1 ≤ n ≤ j − 1) subsets are invalid and the output is phw = n + 1. As an exceptional
case, if the partition with n = 1 namely the set {i1, i2, . . . , i j } is also valid, then the output
is phw = 1.

Algorithm 1 Computation of partition hamming weight
Require: a set with j elements, {i1, i2, . . . , i j }
Ensure: phw

1: for n = j − 1 to 1 do
2: valid = TraverseCheck(n)

3: if valid is FALSE then return phw = n + 1
4: end if
5: end for
6: return phw = 1
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For partitions with n subsets, we use the following recursive function TraverseCheck to
traverse and check if there is a valid partition. According to the definition of phw, a partition
is valid if it satisfies the condition that the maximum distance of each subset does not exceed
5. Moreover, since MC is a cyclic binary matrix, without loss of generality, all the partitions
can start from the first element i1. Therefore, the set {i1, i2, . . . , i j } can be partitioned into n
subsets in order, and each subset contains s1, s2, . . . , sn elements,where s1+s2+. . .+sn = j .
Note that all the subsets should not be empty, namely 1 ≤ s1, s2, . . . , sn ≤ j . Considering
that the element in each set is just the index of active bit, the maximum distance of each
subset can be simply computed as the subtraction of the last element and the first element in
the subset. For example, the maximum distance of the first subset is equal to is1 − i1, and the
maximum distance of the second subset is equal to is1+s2 − is1+1, etc.

Algorithm 2 TraverseCheck
Require: n, j , {i1, i2, . . . , i j }
Ensure: valid
1: Initialize an array with n elements: subset[n]
2: Set global variable valid ← FALSE
3: for i = 1 to j do
4: subset[0] = i
5: Traverse(1, n, j)
6: end for
7: return valid

Algorithm 3 Traverse
Require: i , n, j
1: if i < n then
2: for l = 1 to j do
3: subset[i] = l
4: sum ← 0
5: for k = 0 to i do
6: sum + = subset[i]
7: end for
8: if sum > j then
9: break
10: end if
11: Traverse(i + 1, n, j);
12: end for
13: else
14: f lag ← TRUE
15: k ← 0
16: for l = 0 to n − 1 do
17: if (ik+subset[l]−1 − ik ) > 5 then
18: f lag = FALSE
19: end if
20: k = k+subset[l]
21: end for
22: if f lag is TRUE then
23: valid = TRUE
24: end if
25: end if
26: return
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4.2 Higher-order partition branch number

Similarly, in order to evaluate theminimum number of active S-boxes over several rounds, we
can further define the notation of higher-order partition branch number pbnr . For example,
the higher-order partition branch number for 3-round SPEEDY can be computed as follows:

pbn3 = min
i10,i11,i20,i21,i30,i31 	=0

R[i10][i11]=R[i20][i21]=R[i30][i31]=1
H [i11][i20]=H [i21][i30]=1

i10 + i11 + i20 + i21 + i30 + i31

where H is a binary table such that the element in the position H [i][ j] is 1 if and only if there
is an x ∈ Fl

2\{0} with hw(x) = i and hw(M × xT ) = j , and R is a binary table such that
the element in the position R[i][ j] is 1 if and only if there is an x ∈ Fl

2\{0} with hw(x) = i
and phw(x) ≤ j ≤ hw(x). Namely, the table R records all the possible differential trails
over SB ◦ SC ◦ SB where the second layer of SB can be n-bit to 1-bit differential.

Based on the above definition, we can compute the higher-order partition branch number
for 3–7 rounds SPEEDY and the results are as follows:

pbn3 = 21, pbn4 = 31, pbn5 = 41, pbn6 = 51, pbn7 = 61.

Considering that the best differential probability of the 6-bit S-box is 2−3, the maximum
probability of differential trails over 3–7 rounds is estimated to be smaller than 2−63, 2−93,
2−123, 2−153 and 2−183.

Notice that in the above computation, we only consider the hamming weight of a binary
array x , which is rather imprecise especially taking into account the operation MC between
two rounds. In order to improve the accuracy, we can precompute a table R2 to record all the
possible differential trails over 2-round SPEEDY (namely SB◦SC◦SB◦MC◦SB◦SC◦SB).
The table R2 is first initialized with 0, and then the element in the position R2[i][ j] is
updated with the minimum value of (hw(x) + hw(M × xT ) + i + j) if and only if there
is an x ∈ Fl

2\{0} with phw(x) ≤ i ≤ hw(x) and phw(M × xT ) ≤ j ≤ hw(M × xT ).
Namely, the element in R2[i][ j] stores the minimal number of active S-boxes for all the
possible differential trails over 2-round where the hamming weight of input difference is i
and the hamming weight of output difference is j .

Then, we can compute the value of higher-order partition branch numbermore accurately.
For even rounds, it can be computed as follows:

pbn4 = min
i10,i11,i20,i21 	=0

R2[i10][i11]	=0,R2[i20][i21]	=0
H [i11][i20]=1

R2[i10][i11] + R2[i20][i21]

pbn6 = min
i10,i11,i20,i21,i30,i31 	=0

R2[i10][i11]	=0,R2[i20][i21]	=0,R2[i30][i31]	=0
H [i11][i20]=H [i21][i30]=1

R2[i10][i11] + R2[i20][i21] + R2[i30][i31]

For odd rounds, we can combine the two tables R and R2 together, and the value of higher-
order partition branch number is computed as follows:

pbn3 = min
i10,i11,i20,i21 	=0
R2[i10][i11]	=0
H [i11][i20]=1
R[i20][i21]=1

R2[i10][i11] + i20 + i21

pbn5 = min
i10,i11,i20,i21,i30,i31 	=0

R2[i10][i11]	=0,R2[i20][i21]	=0
H [i11][i20]=H [i21][i30]=1

R[i30][i31]=1

R2[i10][i11] + R2[i20][i21] + i30 + i31
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Note that the partition branch number pbn is the same as pbn2 defined as

pbn2 = min
i10,i11 	=0

R2[i10][i11]	=0

R2[i10][i11]

Based on the above formulas of higher-order partition branch number, we can obtain
more accurate results about the minimum number of active 6-bit S-boxes for 3–7 rounds
SPEEDY as follows:

pbn2 = 13, pbn3 = 23, pbn4 = 35, pbn5 = 45, pbn6 = 57, pbn7 = 67.

Considering that the best differential probability of the S-box is 2−3, themaximumprobability
of differential trails over 2–7 rounds SPEEDY is estimated to be smaller than 2−39, 2−69,
2−105, 2−135, 2−171 and 2−201. It is noteworthy that these results are significantly higher than
the maximum expected differential probabilities estimated by the designers in [15].

Moreover, these results are also consist with the search results of minimum number of
active S-boxes obtained in [15]. By considering that there are at most 8 active words (of 6-bit)
per state, they searched for the minimum number of active S-boxes for up to 4 rounds and
the result are 13, 23 and 35 for 2, 3 and 4 rounds. Compared to the time-consuming search
method, our computation of higher-order partition branch number can directly evaluate the
minimum number of active S-boxes over several rounds more efficiently. Moreover, it can
obtain accurate results for arbitrary rounds while automatic search may be infeasible for long
rounds.

5 Concrete differential trails

In the above analysis, we always assume that all the differential transitions through the S-
box are possible. However, when taking the actual Difference Distribution Table (DDT) of
6-bit S-box used in SPEEDY into consideration, the expected differential trail with maxi-
mum differential probability may not exist. Therefore, in order to verify the effectiveness of
higher-order partition branch number obtained above and evaluate the security margin of
SPEEDYmore precisely, we will study concrete differential trails which satisfy the differen-
tial distribution table and compute its maximum differential probability.

In this section, we first present a special kind of 1-bit to 1-bit differential trails for 2–
7 rounds SPEEDY and evaluate the corresponding concrete differential probabilities. Then,
based on the computation of higher-order partition branch number, we present several effec-
tive n-bit concrete differential trails for 2–5.5 rounds SPEEDY and evaluate the maximum
differential probabilities.

5.1 Concrete 1-bit to 1-bit differential trails for SPEEDY

First of all, according to the analysis of MC having branch number bn = 8 and the maximum
differential probability of 1-bit to 1-bit transitions over SB ◦ SC ◦ SB is 2−6, the maximum
expected differential probability over two rounds of SPEEDY is supposed to be (2−6)8 =
2−48. However, we can prove that there is no possible 1-bit to 1-bit transition with such
maximum differential probability.

Similar to the notation used in [15], we also use a table T1[i, j] to present the 1-bit to
1-bit differential probabilities of the SPEEDY S-box, and a table T2[i, j] to present the 1-bit
to 1-bit differential probabilities over SB ◦ SC ◦ SB.
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Table 2 1-bit to 1-bit differential
probabilities of 6-bit S-box (T1)
and SB ◦ SC ◦ SB (T2)

T1: (×2−5) T2: (×2−10)

i \ j 0 1 2 3 4 5 0 1 2 3 4 5

0 – 1 3 2 1 1 4 6 9 9 6 3

1 4 3 4 4 – – 12 12 12 12 12 4

2 1 1 3 3 1 1 4 9 9 9 9 3

3 1 3 – 2 3 – 12 9 12 12 6 3

4 2 2 4 4 2 1 8 12 12 12 12 4

5 2 4 2 4 – 2 16 12 16 16 12 4

Table 3 Probabilities of 1-bit to
1-bit differential trails for
2-round SPEEDY (T4)

T4

i \ j 0 1 2 3 4 5

0 2−50.42 2−52.32 2−50.42 2−50.42 2−52.32 2−63.42

1 2−50 2−51.32 2−50 2−50 2−51.32 2−62.42

2 2−50.42 2−51.74 2−50.42 2−50.42 2−51.74 2−62.83

3 2−50.42 2−51.74 2−50.42 2−50.42 2−51.74 2−62.83

4 2−50 2−51.32 2−50 2−50 2−51.32 2−62.42

5 2−50 2−51.32 2−50 2−50 2−51.32 2−62.42

T2[i, j] = max
k

T1[i, k] · T1[k, j]

The results of (T1, T2) are listed in Table 2. We find that for most of the entries in T2, there is
a unique solution of k to achieve the maximum differential probability. For example, for the
entry T2[5, 2] = 16, the only possible transition is T1[5, 1] · T1[1, 2]. There are only seven
entries which have 2 or 3 solutions of k, and for simplicity we can choose the first solution
as the transition.

Moreover, since SC and MC do not change the column position of active bits, the 1-bit
to 1-bit differential trail over two rounds of SPEEDY can be illustrated as the following
connection:

SB ◦ SC ◦ SB
MC−→ SB ◦ SC ◦ SB.

Based on the branch number of MC, there are at least 8 active 1-bit to 1-bit transitions over
SB ◦ SC ◦ SB. All the possible patterns satisfy that there is one active SB ◦ SC ◦ SB in the
first round and seven active SB ◦ SC ◦ SB in the second round. Therefore, we can define a
table T4 to store the maximum differential probability of the above connection, where each
entry T4[i, j] denotes the maximum possible differential probability that the active input bits
in the column i transit to active output bits in the column j . Then, the values of T4[i, j] can
be computed by the following equation:

T4[i, j] = max
k

T2[i, k] · (T2[k, j])7.

The results of T4 are listed in Table 3. We can see that the maximum probability of concrete
1-bit to 1-bit differential trail over two rounds of SPEEDY is 2−50, which is slightly lower
than the estimated maximum probability of 2−48.
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Table 4 Probabilities of 1-bit to
1-bit differential trails for
3-round SPEEDY (T6)

T6

i \ j 0 1 2 3 4 5

0 2−82.49 2−84.40 2−82.49 2−82.49 2−84.40 2−92.32

1 2−82.08 2−83.40 2−82.08 2−82.08 2−83.40 2−91.32

2 2−82.49 2−83.81 2−82.49 2−82.49 2−83.81 2−91.74

3 2−82.49 2−83.81 2−82.49 2−82.49 2−83.81 2−91.74

4 2−82.08 2−83.40 2−82.08 2−82.08 2−83.40 2−91.32

5 2−82.08 2−83.40 2−82.08 2−82.08 2−83.40 2−91.32

Similarly, we can analyze the maximum concrete probability of 1-bit to 1-bit differential
trails for 3–7 rounds SPEEDY. Based on the above analysis, in order to keep the active
columns as few as possible, all the active SB ◦ SC ◦ SB in one round should transit to the
same active column. Moreover, since SC and MC are both column-rotation equivalent, the
number of active bits in each column will not be affected by SC. Therefore, the minimum
number of active 1-bit to 1-bit transitions over SB ◦ SC ◦ SB for r -round can be computed
as:

min
x∈Fl

2\{0}

r∑

i=1

hw(Mi−1 × xT )

where M is the corresponding binary matrix of MC and M0 denotes the identity matrix I . By
traversing all the possible values of x , we can know that the results of minimum number of
active 1-bit to 1-bit transitions over SB ◦ SC ◦ SB for 3–7 rounds are 13, 32, 36, 48 and 56
respectively. Then, similar to the computation of T4, we can traverse all the possible patterns
of x minimizing the above equation and compute the maximum concrete probability of 1-bit
to 1-bit differential trails for 3–7 rounds. For example, the table T6 stores the maximum
concrete probabilities of 1-bit to 1-bit differential trails for 3-round SPEEDY, and the value
of each entry T6[i, j] can be computed as follows.

T6[i, j] = max
k1,k2

(T2[i, k1])hw(x) · (T2[k1, k2])hw(M ·x) · (T2[k2, j])hw(M2·x).

Finally, the results of T6 are listed in Table 4, and more results of T8-T14 for 4–7 rounds are
listed in Table 9 in Appendix A.

To sum up, for this special kind of 1-bit to 1-bit differential trails, the maximum concrete
probabilities for 2–7 rounds are 2−50, 2−82.08, 2−196.49, 2−229.96, 2−306.60 and 2−356.60.
Moreover, in order to provide experimental verification, we present example differential
trails for 2–7 rounds SPEEDY in Table 5. The input difference of each round is represented
column-wise in hexadecimal and R/R−1 denotes one complete round and the final round
respectively.

5.2 Concrete n-bit differential trails for SPEEDY

In the above analysis of 1-bit to 1-bit differential trails, we have only considered 1-bit to 1-bit
differential transitions over the 6-bit S-box. In this section, we present concrete differential
trails which can take n-bit differential transitions over the S-box with 1 ≤ n ≤ 6. According
to the analysis in Sect. 4, the least number of active S-boxes for this kind of differential trails
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Table 5 Example 1-bit to 1-bit differential trails for 2–7 rounds SPEEDY

Rounds Propagation of the differential trail Prob.

2 (0,80000000, 0, 0, 0, 0)
R−→ (0, 0, 0, 0, 0,42082230) 2−50

R−1−−→ (84104460,0,0,0,0,0)

3 (0,80000000, 0, 0, 0, 0)
R−→ (0, 0, 0, 0, 0,42082230) 2−82.08

R−→ (0, 0,14000540, 0, 0, 0)
R−1−−→ (28000a80, 0, 0, 0, 0, 0)

4 (0, 0, 0, 0, 0,ff753c44)
R−→ (00000080, 0, 0, 0, 0, 0) 2−196.49

R−→ (0, 0, 0, 0, 0,2088c108)
R−→ (0, 0, 0,00150050, 0, 0)

R−1−−→ (002a00a0, 0, 0, 0, 0, 0)

5 (0,80080000, 0, 0, 0, 0)
R−→ (0, 0, 0, 0, 0,610c02b2) 2−229.96

R−→ (0, 0, 0,40014540, 0, 0)
R−→ (0, 0, 0,909c275c, 0, 0)

R−→ (0, 0, 0,01010011, 0, 0)
R−1−−→ (02020022, 0, 0, 0, 0, 0)

6 (0,80000000, 0, 0, 0, 0)
R−→ (0, 0, 0, 0, 0,42082230) 2−306.60

R−→ (0, 0, 0,14000540, 0, 0)
R−→ (0, 0, 0,6f8adff1, 0, 0)

R−→ (0, 0, 0,01011000, 0, 0)
R−→ (0, 0, 0,90514e0a, 0, 0)

R−1−−→ (40a29c15, 0, 0, 0, 0, 0)

7 (0,0000000a, 0, 0, 0, 0)
R−→ (0, 0, 0, 0, 0,28a2abc5) 2−356.60

R−→ (0, 0, 0,10004101, 0, 0)
R−→ (0, 0, 0,468680d3, 0, 0)

R−→ (0, 0, 0,14154000, 0, 0)
R−→ (0, 0, 0,4451d443, 0, 0)

R−→ (0, 0, 0,44010141, 0, 0)
R−1−−→ (88020282, 0, 0, 0, 0, 0)

can be reduced significantly. Therefore, we can construct effective differential trails with
much higher probability. Based on the result of higher-order partition branch number pbnr ,
we can obtain the least number of active S-boxes for r -round. Then by traversing all the
possible patterns and taking the actual Difference Distribution Table (DDT) of the S-box into
consideration, we can get concrete differential trail with maximum differential probability
for r -round SPEEDY.

5.2.1 2-Round differential trail

According to the analysis of partition branch number pbn2 = 13, there are at least 13 active
S-boxes over two rounds.Moreover, based on the analysis in Sect. 4.2, in order to compute the
value of pbn, we precompute a table R2[i][ j] to store the minimal number of active S-boxes
for all the possible differential trails over 2-round SPEEDY, where the hamming weight of
input difference is i and the hamming weigh of output difference is j . Then, by checking all
the entries of table R2, we can find that there is only one entry satisfying R2[1][4] = 13.
Namely, the only possible pattern of 2-round differential trail with 13 active S-boxes satisfies
that there is only one active bit in the input difference and 4 active S-boxes in the output
difference.
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Fig. 2 Concrete differential trail for 2-round SPEEDY

Therefore, by traversing all the possible patterns and taking the actual difference distribu-
tion table of the S-box into consideration, we can get the maximum differential probability
of 2-round differential trail for SPEEDY. In Fig. 2, we present an example differential trail
for 2-round SPEEDY, where the black box denotes ‘1’ difference and the empty box denotes
‘0’ difference. There are 13 active S-boxes and the concrete differential probability is equal
to 2−3.4 × 2−4 × (2−4)5 × (2−3)4 × (2−3.4)2 ≈ 2−46.2. Obviously, it is much better than the
concrete 1-bit to 1-bit differential trail for 2-round SPEEDY presented in Sect. 5.1.

5.2.2 3-Round differential trail

Similarly, according to the analysis of pbn3 = 23, there are at least 23 active S-boxes over
three rounds. Moreover, based on the definition of pbn3,

pbn3 = min
i10,i11,i20,i21 	=0
R2[i10][i11]	=0
H [i11][i20]=1
R[i20][i21]=1

R2[i10][i11] + i20 + i21

we traverse all the possible values of i10, i11, i20, i21 and find that there is only one solution
satisfying 23, namely i10 = 1, i11 = 7, i20 = 5, i21 = 2. Note that in this pattern the first two
rounds R2[1][7] just represents a 1-bit to 1-bit differential trail. Therefore, we can exploit
the results of concrete 1-bit to 1-bit differential probabilities of 2-round SPEEDY in Table 3.
By checking all the possible connections of 2-round 1-bit to 1-bit differential trail with 1-
round n-bit differential trail satisfying the given pattern, we can get the maximum differential
probability of concrete 3-round differential trail for SPEEDY.

In Fig. 3, we present an example of the best differential trail for 3-round SPEEDY, where
the black box denotes ’1’ difference and the empty box denotes ’0’ difference. There are 23
active S-boxes and the first 2-round (2R) is 1-bit to 1-bit differential trail corresponding to
T4[1, 4] in Table 3 whose differential probability is 2−51.32. Therefore, the total probability
of the 3-round differential trail is equal to 2−51.32×(2−3)2×(2−4)3×2−4×2−3.4 ≈ 2−76.72.
As a contrast, the best differential probability of concrete 1-bit to 1-bit differential trail for
3-round SPEEDY is only 2−82.08 as listed in Table 4.
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Fig. 3 Concrete differential trail for 3-round SPEEDY

5.2.3 4-Round differential trail

There are at least 35 active S-boxes for 4-round SPEEDY since pbn4 = 35,

pbn4 = min
i10,i11,i20,i21 	=0
R2[i10][i11]	=0
R2[i20][i21]	=0
H [i11][i20]=1

R2[i10][i11] + R2[i20][i21]

Unfortunately, there are only four solutions of i10, i11, i20, i21 satisfying there are 35 active
S-boxes, and by traversing all the possible patterns we find that it is impossible to construct
a concrete differential trail when the actual difference distribution table of the S-box is
considered. Therefore, we further check patterns with the almost least number of active S-
boxes. By traversing all the possible patterns with 36 and 37 active S-boxes, we can get the
maximum differential probability of concrete differential trails for 4-round SPEEDY.

In Table 6, we present an example of the best concrete differential trail for 4-round
SPEEDY. The input and output differences of each operation are expressed column-wise
in hexadecimal as follows. The total probability of this 4-round differential trail is 2−129.2.
Obviously, it is significantly higher than the best concrete 1-bit to 1-bit 4-round differential
trail listed in Table 5, whose probability is 2−196.49 exceeding the bound of 192-bit security
already.

5.2.4 5-Round differential trail

Similar to the situation of 4-round concrete differential trail, there is also no possible 5-round
differential trail satisfying pbn5 = 45 when the actual difference distribution table of the
S-box is considered. Therefore, we further check all the possible patterns with 46-48 active
S-boxes and search for the best concrete differential trail for 5-round SPEEDY. As a result,
we present an example of the best concrete differential trail for 5-round SPEEDY in Table 7.
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Table 6 Concrete differential trail for 4-round SPEEDY

Rounds Differential propagations for each round Prob.

Input (00200000,00200000, 0, 0, 0, 0) –

1
SB−−→ (0, 0, 0, 0, 0,00200000)

SC−−→ (0, 0, 0, 0, 0,04000000) 2−4 × 2−3.4

SB−−→ (0, 0, 0, 0, 0,04000000)
SC−−→ (0, 0, 0, 0, 0,80000000)

MC−−→ (0,0,0,0,0,82104111)

2
SB−−→ (0,82104111, 0, 0, 0, 0)

SC−−→ (0,04208223, 0, 0, 0, 0) (2−3)7

SB−−→ (0, 0, 0,04208223, 0, 0)
SC−−→ (0, 0, 0,21041118, 0, 0) ×(2−3)7

MC−−→ (0,0,0,00a0002a,0,0)

3
SB−−→ (00800002, 0, 0,00200020,00000008, 0) (2−5)2 × (2−4)2

SC−−→ (00800002, 0, 0,01000100,00000080, 0) ×2−3.4

SB−−→ (0, 0, 0,01800182, 0, 0)
SC−−→ (0, 0, 0,0c000c10, 0, 0) ×(2−4)4 × 2−3

MC−−→ (0,0,0,50203018,0,0)

4
SB−−→ (0,40200000, 0,10002010,00001008, 0) (2−3.4)4 × (2−4)3

SC−−→ (0,80400000,0,80010080,00010080,0) ×2−3 × 2−4

SB−−→ (00400000,0,0,00010080,80010080,0) ×(2−3.4)2

Total 2−129.2

The input difference and output difference can be expressed column-wise in hexadecimal as
follows.

(00200000,00200000, 0, 0, 0, 0)
5R−→ (0,00001000, 0,01001000,01000040, 0)

The total probability of this 5-round differential trail is 2−170.0. It is noteworthy that this
is still higher than 2−192 and hence it can be used to mount a key-recovery attack on
SPEEDY-7-192.

5.2.5 Differential trails for more rounds

We have also searched for the optimal differential trails for more rounds by considering the
least number of active S-boxes (pbn6 = 57 and pbn7 = 67). Unsurprisingly, there is no
valid differential trail for 6-round or 7-round SPEEDY with probability higher than 2192,
when considering the difference distribution table of S-box. For simplicity, we only present
input/output differences and the probabilities of 6-round and 7-round differential trails we
have obtained.

The input and output differences of 6-round differential trail can be expressed column-wise
in hexadecimal as follows, and the probability is 2−216.0.

(00200000,00200000, 0, 0, 0, 0)
6R−→ (0,08200000, 0,08000200, 0,00200200)

Similarly, we can extend to get the following 7-round differential trail and its differential
probability is 2−266.2.
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Table 7 Concrete differential trail for 5-round SPEEDY

Rounds Differential propagations for each round Prob.

Input (00200000,00200000, 0, 0, 0, 0) –

1
SB−−→ (0, 0, 0, 0, 0,00200000)

SC−−→ (0, 0, 0, 0, 0,04000000) 2−4 × 2−3.4

SB−−→ (0, 0, 0, 0, 0,04000000)
SC−−→ (0, 0, 0, 0, 0,80000000)

MC−−→ (0,0,0,0,0,82104111)

2
SB−−→ (0,82104111, 0, 0, 0, 0)

SC−−→ (0,04208223, 0, 0, 0, 0) (2−3)7

SB−−→ (0, 0, 0,04208223, 0, 0)
SC−−→ (0, 0, 0,21041118, 0, 0) ×(2−3)7

MC−−→ (0,0,0,00a0002a,0,0)

3
SB−−→ (00800002, 0, 0,00200020,00000008, 0) (2−5)2 × (2−4)2

SC−−→ (00800002, 0, 0,01000100,00000080, 0) ×2−3.4

SB−−→ (0, 0, 0,01800182, 0, 0)
SC−−→ (0, 0, 0,0c000c10, 0, 0) ×(2−4)4 × 2−3

MC−−→ (0,0,0,50203018,0,0)

4
SB−−→ (00000018,10001000, 0, 0,40202000, 0) (2−5)2

SC−−→ (00000018,20002000,0,0,02020004,0) ×(2−3.4)5

SB−−→ (0, 0, 0,2202201c, 0, 0)
SC−−→ (0, 0, 0,101100e1, 0, 0) ×(2−3)5 × (2−4)2

MC−−→ (0,0,0,0800110a,0,0)

5
SB−−→ (00001000,08000008, 0,00000002,00000100, 0) 2−5 × 2−4

SC−−→ (00001000,10000010,0,00000010,00001000,0) ×(2−3.4)3

SB−−→ (10000010,0,0,00001000,0,00001000) ×(2−4)2 × 2−3

Total 2−170.0

(00200000,00200000, 0, 0, 0, 0)
7R−→ (0,00000040,04100040,00000040,

0,00010000)

6 Full-round related-key differential attack

Utilizing the above differential characteristic, together with the simple linear key schedule
of SPEEDY, we can construct an efficient 6-round related-key differential trail and mount a
key recovery attack on full-round SPEEDY-7-192.

The key schedule of SPEEDY receives a 192-bit master key and initializes it to the state
of the round key (k0). Then, it applies a simple bit permutation PB to compute the next round
key. Contents of the bit-permutation PB are listed in Table 10 in Appendix A.
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Fig. 4 6-Round related-key differential trail and full-round key recovery attack

6.1 Related-key differential trail

Based on the simple bit-permutation of key schedule, if we choose one active bit in the master
key, then we can get a pair of related-key with only one active bit in each round. Moreover,
all the subkey differences can be directly determined with probability one.

Therefore, by carefully choosing the position of active bit in master key, we can construct
efficient related-key differential by trying best to cancel the input difference and control the
difference propagation for each round.We combine the subkey differencewith the differential
trail search method in Sect. 5 and traverse all the possible positions of one active bit . Finally,
we have obtained the following 6-round related-key differential trail and its probability is
about 2−179.2. Its difference propagation is illustrated in Fig.4 in detail.

�X0 = (04000000, 0, 0, 0, 0, 0)
�K 0 = (04000000, 0, 0, 0, 0, 0)

6R−→ �X6 = (0, 0, 0, 0, 0,97440108)
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Table 8 Time complexity evaluation of the attack procedure

Subkey Data Time Subkey Data Time
Row guessed filter complexity Row guessed filter complexity

17 26 2−5 26 5 26 2−2 213

16 26 2−5 27 4 26 2−2 · 2−6 217

15 26 2−5 28 3 26 2−2 215

14 26 2−5 29 2 26 2−2 · 2−6 219

13 26 2−4 210 1 26 2−3 · 2−6 217

12 26 2−4 · 2−6 212 0 26 2−3 · 2−6 214

11 26 2−5 28 31 26 2−4 211

10 26 2−5 29 30 26 2−4 · 2−6 213

9 26 2−4 210 29 26 2−5 29

8 26 2−4 · 2−6 212 28 26 2−5 210

7 26 2−4 28 27 26 2−5 · 2−6 211

6 26 2−3 210 Total 219.73

6.2 Full-round key recovery attack

We can extend the above 6-round related-key differential trail one round forwards to reach
the full 7-round and recover the key used in the last round.

Note that the output difference �X6 has only 9 active bits in the 5-th column and all the
other bits are zero. In the last round, after the first subkey addition Ak6, there will be another
active bit in the 0-th column. Then after the operations of SB ◦ SC ◦ SB, all the rows of
�C may be active. In order to enhance the filter of ciphertext pairs, we restrict the output
differences of the first layer of SB in Rows 23 and 28 to be 0x10 and 0x04 respectively. Then
the differential probability is reduced to 2−185.2, and the possible difference propagation of
the last round is illustrated in Fig.4. We denote the empty box as ’0’ difference, the black box
as ’1’ difference, the grey box as ’?’ difference, and the red box as key difference respectively.

The attack procedure can be described briefly as follows. First, choose randomly 2185.2

pairs of plaintexts with �P = (04000000, 0, 0, 0, 0, 0), and generate the corresponding
ciphertext pairs under a pair of related-key with �K = (04000000, 0, 0, 0, 0, 0). Second,
filter the ciphertext pairswith zero-difference conditions. There are seven inactive rowswhich
means a filter probability of 2−42. Hence, after this step, there remains about 2143.2 ciphertext
pairs. Third, guess the value of subkey k7 in Row 22 and 25 respectively, and partially decrypt
through the second layer of SB to check if it satisfies the difference condition. The time
complexity of this step is 2143.2 · 26 + 2143.2 · 2−6 · 212 = 2150.2, and after this step there
remains about 2131.2 pairs. Last, guess the value of subkey k7 row by row (from Row 17 to
Row 0 and then Row 31 to Row 27) and partially decrypt through the second layer of SB to
check if it satisfies the difference condition. Moreover, in some steps the filter condition of
first layer of SB can bring another data filter probability of 2−6. The data filter probability
and time complexity of each step are listed in Table 8. The overall time complexity is about
219.73 · 2143.2 = 2162.93, and there remains about 2−6.8 pairs. Therefore, if there still remains
a pair after all the filter steps, the corresponding subkey guess is correct.

To sum up, the data and time complexities of related-key differential attack on full-round
SPEEDY are 2185.2 ×2 = 2186.2 chosen-plaintexts and 2162.93÷7 ≈ 2160.13 encryptions. We
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1196 L. Zhang

have successfully recovered 150-bit keys, and the remaining 42-bit keys can be recovered
simply by exhaustive search with negligible complexity.

7 Conclusion

In this paper, we present concrete differential analysis of SPEEDY based on some new obser-
vations on the branchnumber. First of all,wepropose (higher-order) partition branchnumber,
which can describe the minimum number of active S-boxes for SPEEDY more accurately.
Then by utilizing an efficient algorithm to compute the value of pbnr , we can obtain more
accurate results about the minimum number of active S-boxes for 2–7 rounds SPEEDY. It is
noteworthy that these results are significantly higher than the maximum expected differential
probabilities estimated by the designers. Based on this, we search for optimal differential
characteristics of SPEEDY while considering the difference distribution table of the 6-bit
S-box. We present examples of optimal differential characteristics for 2–7 rounds SPEEDY,
whose probabilities are 2−46.2, 2−76.72, 2−129.2, 2−170.0, 2−216.0 and 2−266.2.0 respectively.

Furthermore, by utilizing the simple bit-permutation key schedule of SPEEDY, we can
extend the differential trail search method and construct an efficient 6-round related-key
differential trail with probability 2−179.2. Based on it, we can present related-key differential
attack on full round SPEEDY-7-192 with data complexity of 2186.2 chosen-plaintexts and
time complexity of 2160.13 encryptions. Moreover, our work will provide new insights in
evaluating the security against differential attackmore accurately for block ciphers employing
SPS-type round function with bit-wise rotation as the linear layer.
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Table 9 Probabilities of 1-bit to 1-bit differential trails for 4–7 rounds SPEEDY

i \ j 0 1 2 3 4 5

T8: 4-round

0 2−212.26 2−213.58 2−212.26 2−212.26 2−213.58 2−221.50

1 2−203.96 2−205.28 2−203.96 2−203.96 2−205.28 2−213.21

2 2−211.84 2−213.16 2−211.84 2−211.84 2−213.16 2−221.09

3 2−204.38 2−205.70 2−204.38 2−204.38 2−205.70 2−213.62

4 2−203.96 2−205.28 2−203.96 2−203.96 2−205.28 2−213.21

5 2−196.49 2−197.81 2−196.49 2−196.49 2−197.81 2−205.74

T10: 5-round

0 2−230.79 2−232.45 2−230.79 2−230.79 2−232.45 2−238.79

1 2−229.96 2−230.94 2−229.96 2−229.96 2−230.94 2−237.28

2 2−230.79 2−231.77 2−230.79 2−230.79 2−231.77 2−238.11

3 2−230.79 2−231.77 2−230.79 2−230.79 2−231.77 2−238.11

4 2−229.96 2−230.94 2−229.96 2−229.96 2−230.94 2−237.28

5 2−229.96 2−230.94 2−229.96 2−229.96 2−230.94 2−237.28

T12: 6-round

0 2−307.01 2−308.26 2−307.01 2−307.01 2−308.26 2−325.70

1 2−306.60 2−307.85 2−306.60 2−306.60 2−307.85 2−325.28

2 2−307.01 2−308.26 2−307.01 2−307.01 2−308.26 2−325.70

3 2−307.01 2−308.26 2−307.01 2−307.01 2−308.26 2−325.70

4 2−306.60 2−307.85 2−306.60 2−306.60 2−307.85 2−325.28

5 2−306.60 2−307.85 2−306.60 2−306.60 2−307.85 2−325.28

T14: 7-round

0 2−357.43 2−359.09 2−357.43 2−357.43 2−359.09 2−368.60

1 2−356.60 2−358.26 2−356.60 2−356.60 2−358.26 2−367.77

2 2−357.43 2−359.09 2−357.43 2−357.43 2−359.09 2−368.60

3 2−357.43 2−359.09 2−357.43 2−357.43 2−359.09 2−368.60

4 2−356.60 2−358.26 2−356.60 2−356.60 2−358.26 2−367.77

5 2−356.60 2−358.26 2−356.60 2−356.60 2−358.26 2−367.77
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Table 10 PB bit-permutation for SPEEDY-r-192

i 0 1 2 3 4 5 6 7 8 9 10 11

PB(i) 1 8 15 22 29 36 43 50 57 64 71 78

i 12 13 14 15 16 17 18 19 20 21 22 23

PB(i) 85 92 99 106 113 120 127 134 141 148 155 162

i 24 25 26 27 28 29 30 31 32 33 34 35

PB(i) 169 176 183 190 5 12 19 26 33 40 47 54

i 36 37 38 39 40 41 42 43 44 45 46 47

PB(i) 61 68 75 82 89 96 103 110 117 124 131 138

i 48 49 50 51 52 53 54 55 56 57 58 59

PB(i) 145 152 159 166 173 180 187 2 9 16 23 30

i 60 61 62 63 64 65 66 67 68 69 70 71

PB(i) 37 44 51 58 65 72 79 86 93 100 107 114

i 72 73 74 75 76 77 78 79 80 81 82 83

PB(i) 121 128 135 142 149 156 163 170 177 184 191 6

i 84 85 86 87 88 89 90 91 92 93 94 95

PB(i) 13 20 27 34 41 48 55 62 69 76 83 90

i 96 97 98 99 100 101 102 103 104 105 106 107

PB(i) 97 104 111 118 125 132 139 146 153 160 167 174

i 108 109 110 111 112 113 114 115 116 117 118 119

PB(i) 181 188 3 10 17 24 31 38 45 52 59 66

i 120 121 122 123 124 125 126 127 128 129 130 131

PB(i) 73 80 87 94 101 108 115 122 129 136 143 150

i 132 133 134 135 136 137 138 139 140 141 142 143

PB(i) 157 164 171 178 185 0 7 14 21 28 35 42

i 144 145 146 147 148 149 150 151 152 153 154 155

PB(i) 49 56 63 70 77 84 91 98 105 112 119 126

i 156 157 158 159 160 161 162 163 164 165 166 167

PB(i) 133 140 147 154 161 168 175 182 189 4 11 18

i 168 169 170 171 172 173 174 175 176 177 178 179

PB(i) 25 32 39 46 53 60 67 74 81 88 95 102

i 180 181 182 183 184 185 186 187 188 189 190 191

PB(i) 109 116 123 130 137 144 151 158 165 172 179 186
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