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Abstract
Entanglement-assisted quantum error-correcting (EAQEC) codes are a generalization of
quantum error-correcting (QEC) codes, which can be constructed from arbitrary classical
linear codes by relaxing the dual-containing condition and by using preshared entangled
states between the sender and the receiver. In this paper, we investigate EAQEC codes of

length n = 2(q2+1)
a , where q is an odd prime power, a = m2 +1 andm is an odd integer. The

resulting EAQEC codes are entanglement-assisted quantum maximum-distance-separable
(EAQMDS) codes when the minimum distance d ≤ n+2

2 .
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1 Introduction

As a powerful tool to protect quantum information from decoherence and quantum noise,
quantum error-correcting (QEC) codes have been used for a long time. Nowadays, it
was shown that QEC codes can be derived from some linear codes satisfying certain
dual-containing conditions [3, 32, 33]. However, many classical linear codes with good
performance are usually not dual-containing, and they thus cannot be used to produce QEC
codes. A natural problem is to construct QEC codes or generalized QEC codes from arbi-
trary linear codes. In 2006, Brun et al. [2] proved that nondual-containing quaternary linear
codes can be applied to construct so-called entanglement-assisted quantum error-correcting
(EAQEC) codes with the help of preshared entanglement, which contains QEC codes as a
special subclass. Generally, we use [[n, k, d; c]]q to denote a q-ary EAQEC code that encodes
k information qubits into n channel qubits with the help of c pairs of maximally entangled
states and can correct up to � d−1

2 � qubit errors, where d is the minimum distance of this
EAQEC code.

After that, many interesting methods and EAQEC codes were proposed and constructed
in [4, 10–12, 19–21, 27, 30, 34, 37]. Moreover, it should be noted that the key to these
methods and constructions is to determine the number of necessary entangled states. One
effective way is to decompose the defining set of a linear code, which can transmit the original
computational task into determining a subset of the defining set of the underlying codes. The
whole process of development of this approach can be summarized as follows. First, by
decomposing the defining set of primitive quaternary BCH codes, Lü et al. [22] constructed
some EAQEC codes with good parameters. Subsequently, Chen et al. [5] and Chen et al.
[6] generalized this method to negacyclic codes and constacyclic codes, respectively. As a
result, many EAQEC codes with good parameters have been constructed in this way in the
literature (see, for example, [14, 18, 23–26, 36]).

However, one can find that more entangled states need to be employed as the minimum
distances of the EAQEC codes increase. Thus, there are always trade-offs among the param-
eters of an EAQEC code, one of which is the so-called entanglement-assisted quantum
Singleton bound (see Lemma 1 in this paper). An [[n, k, d; c]]q EAQEC code that achieves
this bound with equality is called an entanglement-assisted quantum maximum-distance-
separable (EAQMDS) code, which has the largest error-correcting ability for fixed n, k, and
c. Therefore, there is always a major enthusiasm for constructing new EAQMDS codes. Let
us note that much progress has been made on this topic. In [31], Qian et al. constructed some
EAQMDS codes of length n = q2+1. Later, Wang et al. [35] further employed constacyclic
codes (including cyclic codes) to obtain several classes of EAQMDS codes withmore general
parameters of length n = q2 + 1; this achievement, contains almost all the known results
about EAQMDS codes of the same length. In [38], Zhu et al. constructed new EAQMDS

codes of length n = q2+1
5 . In [7], Chen et al. obtained new EAQMDS codes of lengths

n = q2+1
a , n = q2 + 1, and n = q2+1

2 from cyclic codes, where a = m2 + 1 (m ≥ 1 is
odd) and q is odd satisfying a | (q + m) or a | (q − m). Very recently, Pang et al. [29] also

derived some new EAQMDS codes of lengths n = q2 + 1 and n = q2+1
2 from negacyclic

codes and constacyclic codes.
Summarizing the above results, we see easily that the lengths of the known EAQMDS

codes are a divisor of q2 + 1. Enlightened by these works, we construct four families of

EAQEC codes of length n = 2(q2+1)
a from negacyclic codes, where q is odd, a = m2 + 1

and m is an odd integer. For ease of reference, we list them in Table 1. As a result, many
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EAQMDS codes with minimum distance d ≤ n+2
2 can be immediately deduced and we

present some specific examples in Table 2.
This paper is organized as follows. In Sect. 2, we review some basic results about nega-

cyclic codes. Section3 contains somebasic notation onEAQECcodes. In Sect. 4,we construct
four families of newEAQECcodes andEAQMDScodes fromnegacyclic codeswith a unified
form. Finally, Sect. 5 concludes the paper.

2 Review of negacyclic codes

In this section, we review some basic concepts and relevant results about negacyclic codes.
Throughout this paper, letFq2 be thefinite fieldwithq

2 elements andFn
q2
be then-dimensional

row vector space over Fq2 , where q is the power of a prime p and n is a positive integer. An
[n, k, d]q2 linear code C is a k-dimensional linear subspace of Fn

q2
given by the minimum

distance d . A q2-ary linear code C of length n is negacyclic if C is invariant under the
permutation of Fn

q2

(c0, c1, . . . , cn−1) → (−cn−1, c0, . . . , cn−2).

One can identify any codeword c = (c0, c1, . . . , cn−1) ∈ C with its polynomial represen-
tation c(x) = c0 + c1x + · · · + cn−1xn−1 ∈ Fq2 [x]/〈xn + 1〉; thus, C is a q2-ary negacyclic
code of length n if and only if C is an ideal of the quotient ring Fq2 [x]/〈xn + 1〉. Since
each ideal of Fq2 [x]/〈xn + 1〉 is principal, it implies that every negacyclic code C can be
generated by a monic divisor g(x) of xn + 1. If there is a monic polynomial g(x) with the
minimal degree k that can generate a negacyclic code C, then g(x) is unique, and we call it
the generator polynomial of C. In this sense, we further denote C = 〈g(x)〉 and note that the
dimension of C is n − k.

For any element a ∈ Fq2 , we denote the conjugate of a by a = aq . Let x =
(x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) be any two vectors in F

n
q2
. The Hermitian

inner product between x and y is defined by

〈x, y〉h = x0y0 + x1y1 + · · · + xn−1yn−1.

The vectors x and y are called orthogonal with respect to the Hermitian inner product if
〈x, y〉h = 0. The Hermitian dual code of any linear code C is given by

C⊥h = {y ∈ F
n
q2 | 〈x, y〉h = 0 for all x ∈ C}.

A linear code C is called Hermitian self-orthogonal if C ⊆ C⊥h , and it is called Hermitian
self-dual if C = C⊥h .

From now on, we always assume that n is coprime to q (i.e., gcd(n, q) = 1), which
guarantees that xn + 1 has no repeated root over Fq2 . Let β be a primitive 2n-th root of unity
in Fq2m , where m is the multiplicative order of q2 modulo 2n. Then it is easily seen that
γ = β2 is a primitive n-th root of unity. Furthermore, all roots of xn + 1 are βγ j = β1+2 j

for 0 ≤ j ≤ n − 1. Let Z2n = {0, 1, · · · , 2n − 1} and Ω2n be the set of all odd integers from
1 to 2n. For any i ∈ Z2n , let Ci be the q2-cyclotomic coset modulo 2n containing i , that is,

Ci = {i, iq2, iq4, . . . , iq2(li−1)},
where li is the smallest positive integer such that iq2li ≡ i mod 2n. Then, the minimal
polynomial Mi (x) of β i over Fq2 can be expressed as Mi (x) = �t∈Ci (x − β t ). For a
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negacyclic code C = 〈g(x)〉 of length n over Fq2 , the set Z = {i ∈ Ω2n | g(β i ) = 0} is
said to be the defining set of C. It is not difficult to verify that the defining set Z must be a
union of some q2-cyclotomic cosets modulo 2n and dim(C) = n − |Z |, where |Z | denotes
the cardinality of the set Z .

Finally, we end this section with two well-known bounds for arbitrary linear codes and
negacyclic codes, namely, the Singleton bound and the BCH bound for negacyclic codes.

Theorem 1 [28] (Singleton bound) Let C be an [n, k, d]q2 linear code. Then
n − k ≥ d − 1.

Moreover, if n − k = d − 1, then we call C a maximum-distance-separable (MDS) code.

From the property of pseudocyclic codes in [17], we obtain the following BCH bound of
negacyclic codes.

Theorem 2 [17] (BCH bound for negacyclic codes) We assume that n and q are coprime.
Let C be a q2-ary negacyclic code and its generator polynomial be g(x). Let β be a primitive
2n-th root of unity and b be an integer. If g(x) have the elements {β1+2 j | b ≤ j ≤ b+ δ −2}
as roots, then the minimum distance of C is at least δ.

3 Review of EAQEC codes

Let q be a prime power. A q-ary QEC code Q of length n and size K is a K -dimensional
subspace of a qn-dimensional Hilbert space H=Cqn=Cq ⊗...⊗C

q (see [1, 3, 16]). Let us
recall that an [[n, k, d; c]]q EAQEC code Q can encode k information qubits into n channel
qubits with the help of c pairs of maximally entangled states and can correct up to � d−1

2 �
qubits errors, where d is the minimum distance of Q. Huber and Grassl [13] proved that the
parameters of an EAQEC code obey the following entanglement-assisted quantum Singleton
bound. Grassl et al. [8] gave a proof of this bound for arbitrary q .

Lemma 1 [8, 13] (Entanglement-assisted quantum Singleton Bound) Let Q be an
[[n, k, d; c]]q EAQEC code. Then, the following holds:

k ≤ c + max{0, n − 2d + 2}, (1)

k ≤ n − d + 1, (2)

k ≤ (n − d + 1)(c + 2d − 2 − n)

3d − 3 − n
, if 2d ≥ n + 2. (3)

An EAQMDS code is referred to as an EAQEC code satisfying Equation (1) or Equation (3)
with equality, where 2d ≤ n + 2 or 2d ≥ n + 2, respectively.
As we mentioned before, the key in the construction of EAQEC codes is to determine the
number of maximally entangled states, and a possible way is to decompose the defining set
of a negacyclic code as follows.

Theorem 3 [14] Let C be a q2-ary negacyclic code of length n with a defining set Z. Suppose
that Z = Z1 ∪ Z2 is a decomposition of Z, where Z1 = Z ∩ (−qZ), Z2 = Z\Z1 and
−qZ = {2n − qx | x ∈ Z}. If C has parameters [n, n − |Z |, d]q2 , then there exists an
EAQEC code with parameters [[n, n − 2|Z | + |Z1|, d; |Z1|]]q .

123
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4 Construction of EAQMDS codes with new parameters

The main topic of this section is to give constructions of EAQEC codes with a unified
form via classical negacyclic codes. Consequently, a family of new EAQMDS codes of

length n = 2(q2+1)
a with general parameters are presented, where q is an odd prime power,

a = m2 + 1 and m is an odd integer.

Lemma 2 Let n = 2(q2+1)
a and s = n

2 , where q is an odd prime power, a = m2 + 1, m is
an odd integer, n is even and s = n/2 is odd. Then, the q2-cyclotomic cosets modulo 2n are
Cs = {s}, C3s = {3s} and Cs−2l = {s − 2l, s + 2l} for 1 ≤ l ≤ s − 1.

Let us note that Lemma 2 is a parallel promotion of Lemma 4.1 in [15], so we omit its
proof here for simplification.

We note that if n = 2(q2+1)
a , where q is an odd prime power, a = m2 + 1 and 2 | a, it

implies that q ≡ ±m mod a and m is an odd integer. Next, we discuss all cases according to
the various values of q and m.
Case I q = aξ − m

The following theorem can be used to determine the number of c of an EAQEC code
derived from a q2-ary negacyclic code, where q = aξ − m.

Theorem 4 Let n = 2(q2+1)
a and s = n

2 , where q = aξ−m is an odd prime power, a = m2+1
and m is an odd integer. For a nonnegative integer α with 0 ≤ α ≤ ξ , we suppose that C is a
negacyclic code with a defining set Z given by

Z = Cs ∪ Cs+2 ∪ · · · ∪ Cs+2[αq+(a−m)ξ+a−2m].

Let us define Z1 = Z ∩ (−qZ). Then the following statements hold.
(1) If m ≡ 1 mod 4 and ξ is an odd positive integer or m ≡ 3 mod 4 and ξ is an even

positive integer, then |Z1| = 2α[aα + 2(a − m)] + 2a − 4m + 1;
(2) If m ≡ 1 mod 4 and ξ is an even positive integer or m ≡ 3 mod 4 and ξ is an odd

positive integer, then |Z1| = 2α[aα + 2(a − m)] + 2a − 4m.

Proof For brevity, we show the case where m ≡ 1 mod 4 and ξ is an odd positive integer of
(1), and the other cases are similar. Since

Z = Cs ∪ Cs+2 ∪ · · · ∪ Cs+2[αq+(a−m)ξ+a−2m],

we have

−qZ = −qCs ∪ −qCs+2 ∪ · · · ∪ −qCs+2[αq+(a−m)ξ+a−2m].

For each −qCs , by examining the intersection of Z and −qCs , we obtain that

|Z ∩ (−qZ)| = 2α(aα + 2a − 2m) + 2a − 4m + 1;
the detailed proof is technical and can be found in arXiv:2305.08517v1.

Keeping the definition of Z1 in Theorem 3, we have

|Z1| = |Z ∩ (−qZ)| = 2α(aα + 2a − 2m) + 2a − 4m + 1.

This completes the proof. ��
From Theorem 4 above, we obtain the first construction of EAQEC codes in the following

theorem.
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Theorem 5 Let n = 2(q2+1)
a and s = n

2 , where q = aξ−m is an odd prime power, a = m2+1
and m is an odd integer. Let α be a nonnegative integer satisfying 0 ≤ α ≤ ξ . Then, the
following statements hold.

(1) If m ≡ 1 mod 4 and ξ is an odd positive integer or m ≡ 3 mod 4 and ξ is an even
positive integer, then there are EAQEC codes with parameters [[n, k, d; c]]q , where

k = n − 4αq + 4(a − m)(α − ξ) + 2aα2 − 2a + 4m − 1,

d = 2[αq + (a − m)ξ + a − 2m + 1],
c = 2α[aα + 2(a − m)] + 2a − 4m + 1.

(2) If m ≡ 1 mod 4 and ξ is an even positive integer or m ≡ 3 mod 4 and ξ is an odd
positive integer, then there are EAQEC codes with parameters [[n, k, d; c]]q , where

k = n − 4αq + 4(a − m)(α − ξ) + 2aα2 − 2a + 4m − 2,

d = 2[αq + (a − m)ξ + a − 2m + 1],
c = 2α[aα + 2(a − m)] + 2a − 4m.

In addition, they are EAQMDS codes if d ≤ n+2
2 .

Proof For brevity, let us just show the case where m ≡ 1 mod 4 and ξ is an odd positive
integer of case (1) and the other cases are similar. For a nonnegative integerα with 0 ≤ α ≤ ξ ,
we suppose that C is a negacyclic code of length n with a defining set

Z = Cs ∪ Cs+2 ∪ · · · ∪ Cs+2[αq+(a−m)ξ+a−2m],

where ξ , a, m, q and s are defined as above.
Then, the dimension of C is n − 2[αq + (a + m)ξ ] + 4m − 2a − 1. We observe that the

negacyclic code C has 2[αq + (a − m)ξ + a − 2m] + 1 consecutive roots. Then, it follows
from Theorem 2 that the minimum distance of C is at least 2[αq + (a −m)ξ + a − 2m + 1].
Hence, according to Theorem 1, C is an MDS code with parameters [n, n − 2[αq + (a +
m)ξ ] + 4m − 2a − 1, 2[αq + (a − m)ξ + a − 2m + 1] ]q2 .

We note from Theorem 4 that |Z1| = 2α(aα + 2a − 2m)+ 2a − 4m + 1. Then Theorem
3 can produce EAQEC codes with parameters [[n, k, d; c]]q , where

k = n − 4αq + 4(a − m)(α − ξ) + 2aα2 − 2a + 4m − 1,

d = 2[αq + (a − m)ξ + a − 2m + 1],
c = 2α[aα + 2(a − m)] + 2a − 4m + 1.

Moreover, it can be checked that

n + c − k = 4[αq + (a − m)ξ + a − 2m + 1] − 2 = 2(d − 1).

Therefore, it implies that the EAQEC codes are EAQMDS codes if d ≤ n+2
2 by Lemma

1. ��

Case II q = aξ + m

As for the case that n = 2(q2+1)
a and q = aξ + m, where a = m2 + 1 and m is an odd

integer, we can also obtain new EAQEC codes. The proof is similar to that in Case I, so we
omit it here.
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Theorem 6 Let n = 2(q2+1)
a and s = n

2 , where q = aξ+m is an odd prime power, a = m2+1
and m is an odd integer. For a nonnegative integer α with 0 ≤ α ≤ ξ , we suppose that C is a
negacyclic code with a defining set Z given as follows

Z = Cs ∪ Cs+2 ∪ · · · ∪ Cs+2[αq+mξ ].

Let us define Z1 = Z ∩ (−qZ). Then the following statements hold.
(1) If m ≡ 1 mod 4 and ξ is an odd positive integer or m ≡ 3 mod 4 and ξ is an even

positive integer, then |Z1| = 2α(aα + 2m) + 1;
(2) If m ≡ 1 mod 4 and ξ is an even positive integer or m ≡ 3 mod 4 and ξ is an odd

positive integer, then |Z1| = 2α(aα + 2m).

Proof For brevity, we show the case m ≡ 1 mod 4 and ξ is an odd positive integer of case
(1) and the other cases are similar. Since

Z = Cs ∪ Cs+2 ∪ · · · ∪ Cs+2[αq+mξ ].

We have

−qZ = −qCs ∪ −qCs+2 ∪ · · · ∪ −qCs+2[αq+mξ ].

For each −qCs , by examining the intersection of Z and −qCs , we obtain that

|Z ∩ (−qZ)| = 2α(aα + 2m) + 1;
the detailed proof is technical and can be found in arXiv:2305.08517v1.

Keeping the definition of Z1 in Theorem 3, we have

|Z1| = |Z ∩ (−qZ)| = 2α(aα + 2m) + 1.

This completes the proof.
��

From Theorem 6 above, we obtain the second construction of EAQEC codes in the
following theorem.

Theorem 7 Let n = 2(q2+1)
a and s = n

2 , where q = aξ+m is an odd prime power, a = m2+1
and m is an odd integer. Let α be a nonnegative integer satisfying 0 ≤ α ≤ ξ . Then, the
following statements hold.

(1) If m ≡ 1 mod 4 and ξ is an odd positive integer or m ≡ 3 mod 4 and ξ is an even
positive integer, then there are EAQEC codes with parameters [[n, k, d; c]]q , where

k = n − 4αq + 4m(α − ξ) + 2aα2 − 1,

d = 2(αq + mξ + 1),

c = 2α(aα + 2m) + 1.

(2) If m ≡ 1 mod 4 and ξ is an even positive integer or m ≡ 3 mod 4 and ξ is an odd
positive integer, then there are EAQEC codes with parameters [[n, k, d; c]]q , where

k = n − 4αq + 4m(α − ξ) + 2aα2 − 2,

d = 2(αq + mξ + 1),

c = 2α(aα + 2m).

In addition, they are EAQMDS codes if d ≤ n+2
2 .
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Proof For brevity, let us just show the case where m ≡ 1 mod 4 and ξ is an odd positive
integer of case (1) and the other cases are similar. For a nonnegative integerα with 0 ≤ α ≤ ξ ,
we suppose that C is a negacyclic code of length n with a defining set

Z = Cs ∪ Cs+2 ∪ · · · ∪ Cs+2[αq+mξ ],

where ξ , a, m, q and s are defined as above.
Then, the dimension of C is n − 2(αq +mξ) − 1. We observe that the negacyclic code C

has 2(αq + mξ) + 1 consecutive roots. Then, it follows from Theorem 2 that the minimum
distance of C is at least 2(αq +mξ + 1). Hence, according to Theorem 1, C is an MDS code
with parameters [n, n − 2(αq + mξ) − 1, 2(αq + mξ + 1)]q2 .

We note from Theorem 6 that |Z1| = 2α(aα + 2m) + 1. Then Theorem 3 can produce
EAQEC codes with parameters [[n, k, d; c]]q , where

k = n − 4αq + 4m(α − ξ) + 2aα2 − 1,

d = 2(αq + mξ + 1),

c = 2α(aα + 2m) + 1.

Moreover, it can be checked that

n + c − k = 4(αq + mξ + 1) − 2 = 2(d − 1).

Therefore, it implies that the EAQEC codes are EAQMDS codes if d ≤ n+2
2 by Lemma

1.
��

Remark 1 Some EAQEC codes obtained from Theorems 5 and 7 are listed in Table 2.

5 Conclusion

In this study, we construct four families of EAQEC codes with a unified length form n =
2(q2+1)

a derived from negacyclic codes, where q is an odd prime power, a is determined as
m2+1, andm represents an odd integer. Furthermore, ourEAQECcodes have largerminimum
distances compared to those of the existing codes reported in the literature. This characteristic
enhances their capability to detect and correct qubit errors effectively. In particular, new
EAQMDS codes can be deduced from these EAQEC codes.
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