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Abstract
Bent functions are Boolean functions in even number of variables that have maximal non-
linearity. They have flat Walsh–Hadamard spectrum and are of interest for their applications
in algebra, coding theory and cryptography. A bent function is called self-dual if it coin-
cides with its dual bent function. In current work we study the decomposition of the
form

(
f0, f1, . . . , f2k−1

)
of the vector of values of a self-dual bent function, formed by

the concatenation of 2k Boolean functions f j in n − k variables. We treat the cases k = 1, 2.
Based on a spectral characterization, we introduce a notion of self-dual near-bent function
in odd number of variables and prove that there exists a one-to-one correspondence between
the notions of self-duality for even and odd number of variables. As a result the characteriza-
tion for the decomposition ( f0, f1) is obtained. For the decomposition f = ( f0, f1, f2, f3)
we prove that if sign vectors of subfunctions f j are linearly dependent, then all these sub-
functions are bent. We prove that for n ≥ 6 the converse does not hold, that is the obtained
condition is sufficient only. These results are also generalized for the case of an arbitrary bent
function. Three new iterative constructions of self-dual bent functions are proposed. One of
them allows to build a class of self-dual bent functions which cannot be decomposed into the
concatenation of four bent functions. Based on the constructions a new iterative lower bound
on the cardinality of the set of self-dual bent functions is obtained.
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114 A. Kutsenko

1 Introduction

Bent functions are Boolean functions in even number of variables that have maximal non-
linearity. They were studied in 60th of the previous century in the USA and USSR (see the
report [12] and thesis [13] of Dillon, while the research in the Soviet Union was mentioned
in historical sections of [24, 41]) and firstly published by Rothaus in [35]. They are mathe-
matical objects of a great interest due to many applications in discrete mathematics, algebra,
coding theory, cryptography. Having a property of maximal nonlinearity these functions can
be used for obtaining Boolean and vectorial Boolean functions with good cryptographic
properties. Another applications use the fact that bent functions and only them have flat
Walsh–Hadamard spectrum that is crucial for some approaches within the signals theory,
including CDMA technology. More information about them one can find in monographies
[29, 41] and survey [7]. For extensive data about cryptographic properties of Boolean func-
tions and other their applications one can refer to the books [6, 10]. Despite the long history of
study there are many open problems related to bent functions, in particular, their cardinality
is still unknown, their affine classification is completely studied only for small number of
variables, obtaining of new constructions is also the goal worth pursuing.

For every bent function it is possible to define its dual Boolean function that defines the
signs of its Walsh–Hadamard transform. This function is also bent and, in turn, its dual
coincides with the initial function, so bent functions come in pairs. The duality mapping has
a great interest in a scope of bent functions since it is the only known isometric mapping
of the set of bent functions that is not an element of its group of automorphisms [5]. More
information about the duals and the properties of the duality mapping one can find in [7].

Among different classes of bent functions the class of self-dual bent functions is empha-
sized. Essentially, self-dual are precisely such bent functions that coincide with their duals.
They are also important from the perspective of obtaining polyphase sequences (sign vectors
for Boolean case) with particular properties. Note that the polyphase sequence of self-dual
bent function is the eigenvector of the Sylvester Hadamard matrix that appears in many areas
of discrete mathematics and also in quantum computation. So the construction and charac-
terization of self-dual bent functions has strong relation with the problem of description of
eigenvectors of the Sylvester–Hadamard matrix, which is a long-standing problem of inde-
pendent interest from linear algebra [15, 43]. Also self-dual bent functions are the fixed points
of the duality mapping. Note that on self-dual bent functions and only on them the Rayleigh
quotient of a Boolean function has maximal value for the case of even number of variables.

The notion of dual and anti-dual (precisely self-dual and anti-self-dual) bent functions in
terms of sign vectors was initially considered by Preneel et al. [33], whereas more general
definition of a self-dual bent function on a finite groupwas intriduced by Logachev, Sal’nikov
and Yashchenko in [26]. The first deep study of self-dual Boolean bent function was made
by Carlet et al. in paper [8], where several constructions and properties were obtained. From
that time there appeared a number of papers devoted to the study and characterization of self-
dual bent functions. In particular, the classification of quadratic self-dual bent functions was
provided by Hou in [18]. The classification of qubic self-dual bent functions in 8 variables
was done in paper [14], while the bounds for the cardinality of this class were deduced in [19].
A number of combinatorial and algebraic constructions one can find in [25, 27, 31, 34, 38].
Some combinatorial questions and open problems related to anti-self-dual bent functions
were considered and solved in [39]. Metrical properties of self-dual bent functions were
studied in papers [20–23]. Self-dual bent sequences, having connection with sign vectors of
self-dual bent functions, were recently studied in [36, 37].
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Decomposing self-dual bent functions 115

In current workwe study the decompositions of vector of values of self-dual bent functions
in n variables of the form

(
f0, f1, . . . , f2k−1

)
, where f j are Boolean functions in n − k

variables. These functions are subfunctions obtained by fixing first k variables. We consider
the cases k = 1, 2. The properties of such subfunctions and some relations comprising them
are treated. Note that the best known for today lower and upper bounds on the cardinality
of the set of self-dual bent functions are based on the analysis of such decompositions. For
details, these decompositions were considered in papers [8] (case k = 1) from the perspective
of generating all self-dual bent functions and [21] (case k = 2) for the conditions when all f j
are bent.

The structure of the work is following. Necessary notation is given in Sect. 2. In Sect. 3
we introduce the concept of self-duality on near-bent functions in odd number of variables
and prove that there is a one-to-one correspondence between self-dual bent function in n
variables and near-bent functions in n − 1 variables having particular value of the Rayleigh
quotient (Theorem 1). Note that this value coincides with the best known for today bound for
the maximal value of the Rayleigh quotient for the case of odd number of variables. Further,
in Sect. 4.2 we study the Gram matrix obtained via sign vectors of subfunctions obtained by
fixing two variables of bent function. The general form of this matrix is deduced (Theorem 6).
We use it for obtainingmetrical relations between subfunctions of every bent function (Corol-
lary 1). TheRayleigh quotients of subfunctions are characterized in Sect. 4.3 and their general
form is obtained (Proposition 2). The form of the Gram matrix is explicitly used in Sect. 4.4,
where we prove that given a self-dual bent function with linearly dependent sign vectors of
subfunctions, all these functions are neccesarily bent (Theorem 3, Corollary 2). The converse
of Theorem 3 is considered in Sect. 5. New constructions and a lower bound on the number
of self-dual bent functions are presented in Sect. 6. In Sect. 7 we study the properties of the
Gram matrix of decomposition for the general case, taking an arbitrary bent function. The
Conclusion is in Sect. 8.

2 Notation

Let Fn
2 be a set of binary vectors of length n. For x, y ∈ F

n
2 denote 〈x, y〉 =

n⊕

i=1
xi yi , where

sign ⊕ denotes a sum modulo 2.
A Boolean function f in n variables is any map from F

n
2 to F2. The set of Boolean

functions in n variables is denoted by Fn . A sign vector (also known as polyphase vector
or {±1}-sequence) of f ∈ Fn is an integer vector

(
(−1) f0 , (−1) f1 , . . . , (−1) f2n−1

)
of length

2n , where ( f0, f1, . . . , f2n−1) is a vector of values (truth table) of the function f . Any
Boolean function in n variables can be uniquely represented via the multivariate polynomial
over F2:

f (x1, x2, . . . , xn) =
⊕

i1,i2,...,in∈F2
ai1i2...,in x

i1
1 xi22 · . . . · xinn ,

where az ∈ F2 for all z ∈ F
n
2. Here we use the agreement 00 = 1. This representation is

called the algebraic normal form (ANF) of the Boolean function f . The degree deg( f ) of the
function f is themaximal degree (number of terms) of themonimial from its algebraic normal
form that has nonzero coefficient. If deg( f ) ≤ 1, the function is called affine. If deg( f ) = 2,
the function is said to be quadratic.
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116 A. Kutsenko

The Hamming weight wt(x) of the vector x ∈ F
n
2 is the number of nonzero coordinates

of x . The Hamming distance dist( f , g) between Boolean functions f , g in n variables is the
cardinality of the set

{
x ∈ F

n
2 | f (x) �= g(x)

}
.

The Walsh–Hadamard transform of the function f ∈ Fn is the integer function

W f (y) =
∑

x∈Fn2
(−1) f (x)⊕〈x,y〉, y ∈ F

n
2 .

For this functions the Parseval’s identity holds
∑

y∈Fn2
W 2

f (y) = 22n .

A Boolean function f in an odd number m of variables is said to be near-bent if

W f (y) ∈
{
0,±2(m+1)/2

}
, y ∈ F

m
2 .

For the case of an even number of variables, say n, the function f in n variables is said to be
near-bent if

W f (y) ∈
{
0,±2(n+2)/2

}
, y ∈ F

n
2 .

A Boolean function f in an even number n of variables is said to be bent if
∣∣W f (y)

∣∣ = 2n/2, y ∈ F
n
2 .

The set of bent functions in n variables is denoted by Bn . The Boolean function f̃ ∈ Fn

such that W f (y) = (−1) f̃ (y)2n/2 for any y ∈ F
n
2 is said to be dual of f . Note that the dual

function is uniquely defined for every bent function, moreover the function f̃ is bent as well.
A bent function f is said to be self-dual if f = f̃ , and anti-self-dual if f = f̃ ⊕ 1. The set
of self-dual bent functions in n variables is denoted by SB+

n .
The Rayleigh quotient of a Boolean function in n variables is a number

S f =
∑

x,y∈Fn2
(−1) f (x)⊕ f (y)⊕〈x,y〉 =

∑

y∈Fn2
(−1) f (y)W f (y).

This spectral characteristics of a Boolean function in a scope of bent functions were studied
in [11]. It is interesting for bent functions since it completely characterizes the Hamming
distance between the function and its dual. Indeed, for any bent function f it holds

S f =
∑

y∈Fn2
(−1) f (y)W f (y) = 2n/2

∑

y∈Fn2
(−1) f (y)⊕ f̃ (y) = 23n/2 − 2n/2+1dist

(
f , f̃

)
.

For a Boolean function f in n variables we call the number

S f = S f

2n/2

the sub-normalized Rayleigh quotient.
Let In be the identity matrix of size n and Hn = H⊗n

1 be the n-fold tensor product of the
matrix H1 with itself, where

H1 =
(
1 1
1 −1

)
.
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Decomposing self-dual bent functions 117

This matrix is known as the Sylvester–Hadamard matrix. It is known the Hadamard
property of this matrix

HnH
T
n = 2n I2n ,

where HT
n is transpose of Hn (it holds HT

n = Hn by symmetricity of Hn). Denote by Hn =
2−n/2Hn its normalized version.

The matrix Hn describes the Walsh–Hadamard transform in matrix form. More precisely,
it is known that the rows (columns) of this matrix are sign vectors of all linear Boolean
functions in n variables 〈a, x〉, a ∈ F

n
2, given in lexicographical order of vectors a, see [10].

Then the Walsh–Hadamard transform at the point y ∈ F
n
2 is just the inner product of sign

vector of the linear function 〈y, x〉, x ∈ F
n
2, and sign vector F of the function f . Thus, the

vector whose coordinates are Walsh–Hadamard coefficients is simply HnF . So in terms of
sign vectors the Rayleigh quotient of the function f has the expression

S f = 〈F, HnF〉 ,

where F is its sign vector.
For a real d×d matrix A a nonzero vector v ∈ R

d is called an eigenvector of A if Av = λv

for some λ ∈ C. This number is called the eigenvalue of A, associated with v.
It is clear that sign vectors if self-dual bent functions are eigenvectors of the normalized

Sylvester–Hadamard matrix that correspond to the eigenvalue 1. At the same time sign vec-
tors of anti-self-dual bent functions are eigenvectors of the normalized Sylvester–Hadamard
matrix that correspond to the eigenvalue (−1).

3 Decomposition of the form (f0, f1)

In this sectionwe study the decomposition for the case k = 1, that is consider the subfunctions
of self-dual bent functions that are obtained by fixing the first variable. It is known that for
any bent function in n variables such subfunctions are near-bent functions in n − 1 variables
with disjoint Walsh–Hadamard spectrum (see [42], for example).

In [8] and [14] the subfunctions in n − 1 variables were used in the algorithms for the
enumeration of all self-dual bent functions of prescribed algebraic degree. These algorithms
explicitly exploit the fact that the vector (Y , Z), where Y , Z ∈ {±1}2n−1

, is the sign vector
of some self-dual bent function in n variables if and only if

Y = Z + 2Hn−1

2n/2 Z . (1)

Regarding spectral characterization it is known [8] that for any Boolean function, say f ,
in even number n of variables it holds

∣∣S f
∣∣ ≤ 23n/2

with equality if and only if f is either self-dual
(+23n/2

)
or anti-self-dual

(−23n/2
)
bent. It

follows that extremal values are achieved if and only if

(−1) f (y)W f (y) = 2n/2 for any y ∈ F
n
2

or

(−1) f (y)W f (y) = −2n/2 for any y ∈ F
n
2 .
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118 A. Kutsenko

Table 1 Multiplicities of
Walsh–Hadamard coefficients of
a near-bent function g

Value Size

0 2m−1

2(m+1)/2 2m−2 + (−1)g(0)2(m−3)/2

−2(m+1)/2 2m−2 − (−1)g(0)2(m−3)/2

Accordingly, only self-dual and anti-self-dual bent functions possess these conditions for the
case of an even number of variables.

3.1 Self-duality for near-bent functions

Let m ≥ 3 be an odd integer. In current paper we introduce the notions of self-duality and
anti-self-duality for near-bent functions in odd number of variables that are based on the
spectral characterization. We are to call a near-bent function g in m variables self-dual if

(−1)g(y)Wg(y) ≥ 0 for any y ∈ F
m
2 .

In order, g is called an anti-self-dual near-bent if

(−1)g(y)Wg(y) ≤ 0 for any y ∈ F
m
2 .

Finding the exact maximal (minimal) value of the Rayleigh quotient of a Boolean function
in an odd number m of variables is an open problem. It is caused by the fact that for odd m
there are no eigenvectors of the Sylvester Hadamard matrix Hm , with coordinates having the
same absolute value. It is known that, as was shown in [8], it holds

max
f ∈Fm

∣∣S f
∣∣ ≥ 2(3m−1)/2.

For this bound the authors used the concatenation of two self-dual bent functions in m − 1
variables, so the obtained value was called the bent-concatenation bound. Nevertheless the
experiments have shown that this bound is not tight, at least for small values of m.

Self-dual near-bent functions, proposed in current paper, are extremal objects within the
set of near-bent functions in odd number of variables in a spectral sense, as we show in the
following statement

Proposition 1 Let g be a near-bent function in m variables, then

|Sg| ≤ 2(3m−1)/2

with equality if and only if f is either self-dual or anti-self-dual near-bent.

Proof By definition of the Rayleigh quotient we have

Sg =
∑

y∈Fm2
(−1)g(y)Wg(y). (2)

The multiplicities of Walsh coefficients of any near-bent function in m variables are well
known (see [30], for example), we list them in Table 1.
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Decomposing self-dual bent functions 119

Consider two nonnegative integers a1, a2, describing the signs of nonzero terms in the
sum (2):

a1 =
∣
∣
∣
{
y ∈ F

m
2 : (−1)g(y)Wg(y) > 0

}∣
∣
∣ ,

a2 =
∣
∣
∣
{
y ∈ F

m
2 : (−1)g(y)Wg(y) < 0

}∣
∣
∣ .

Then we have a following system
{
2(m+1)/2a1 − 2(m+1)/2a2 = Sg,

a1 + a2 = 2m−1.

It is clear that the maximal value of Sg corresponds to the case a2 = 0. Then a1 = 2m−1 and

Sg = 2(m+1)/2 · 2m−1 = 2(3m−1)/2.

By the same arguments the minimal value of Sg corresponds to the case a1 = 0, that
is a2 = 2m−1, and

Sg =
(
−2(m+1)/2

)
· 2m−1 = −2(3m−1)/2.

Thus, it holds |Sg| ≤ 2(3m−1)/2 with the equality only when either

(−1)g(y)Wg(y) ≥ 0 for any y ∈ F
m
2 ,

or

(−1)g(y)Wg(y) ≤ 0 for any y ∈ F
m
2 ,

that is g is either self-dual or anti-self-dual near-bent. 
�

Thus, the value of the Rayleigh quotient of a self-dual near-bent function coincides with
the bound for itsmaximal value,which is the best known one for today.Moreover, on self-dual
near-bent functions and only on them the value of the Rayleigh quoutient is maximal within
the set of near-bent functions. Just the same holds for the minimal value and anti-self-dual
near-bent functions.

3.2 Connection between self-duality for even and odd cases

Further we show that there exists a bijection between two types of self-duality with a descent
step from even to odd number of variables.

Theorem 1 There exists a one-to-one correspondence between the set of self-dual bent func-
tions in n ≥ 4 variables and the set of (anti-)self-dual near-bent functions in n − 1 variables.

Proof Put H = Hn−1. Let f be a self-dual bent functions in n variables and ( f0, f1) be its
truth table, where fi ∈ Fn−1, i = 1, 2. Denote by Fi the sign vector of fi , i = 1, 2. Then it
holds

1√
2

(H H
H −H

)(
F0
F1

)
=

(
F0
F1

)
,
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120 A. Kutsenko

that is equal to the system
{
HF0 + HF1 = √

2F0,

HF0 − HF1 = √
2F1.

(3)

Firstly one can notice that
〈√

2F0,
√
2F0

〉 = 〈HF0 + HF1,HF0 + HF1〉
= 〈HF0,HF0〉 + 2 〈HF0,HF1〉 + 〈HF1,HF1〉
= 〈F0, F0〉 + 2 〈F0, F1〉 + 〈F1, F1〉
= 2n−1 + 2 〈F0, F1〉 + 2n−1

= 2 · 2n−1,

therefore it holds 〈F0, F1〉 = 0 (It also follows from the orthogonality ofHF0 andHF1 and
symmetricity of H). Now consider the first equation from the system above:

HF0 = −HF1 + √
2F0.

Since H2 = In−1, it is the same as

F0 = −F1 + √
2HF0.

Consider the inner product

〈F0, F0〉 = − 〈F0, F1〉 + √
2 〈F0,HF0〉 .

The orthogonality of F0 and F1 implies the condition
√
2 〈F0,HF0〉 = 2n−1.

Under the used notation we have

S f0 = 〈F0, Hn−1F0〉 = 2
3(n−1)−1

2 .

Since from (1) it immediately follows that function f1 can be characterized by f0, there
exists an injective mapping from the set of all self-dual bent functions in n variables to the
set of self-dual near-bent functions in n − 1 variables. This mapping essentially maps every
self-dual bent function to its subfunction obtained by fixing the first coordinate with 0.

Now let f0 be a self-dual near-bent function in n − 1 variables. From Proposition 1 it
follows that the value of (−1) f0(y) and the sign of the Walsh–Hadamard coefficient W f0(y)
of f0 are agreed in a sense that their product is nonnegative for every y ∈ F

n−1
2 . Let F0 be a

sign vector of f0. Define

F1 = 2Hn−1

2n/2 F0 − F0. (4)

From (1) it follows that if F1 ∈ {±1}2n−1
, then the vector (F0, F1) is the sign vector of a

self-dual bent function in n variables. Indeed, the relation (1) for (F0, F1) is

F0 =
(
I2n−1 + 2Hn−1

2n/2

)
F1,

and its multiplication by
(
I2n−1 − 2Hn−1

2n/2

)
from the left yields (4) since

(
I2n−1 + 2Hn−1

2n/2

)(
I2n−1 − 2Hn−1

2n/2

)
= −I2n−1 .
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Decomposing self-dual bent functions 121

It is clear that the fact that W f0(y) and (−1) f0(y) are being agreed implies that
(

2

2n/2W f0(y) − (−1) f0(y)
)

∈ {±1}, y ∈ F
n−1
2 ,

then we can define a Boolean function in n − 1 variables, say f1, which has a sign vector F1
and consider the relation (4) in componentwise form

(−1) f1(y) = 2

2n/2W f0(y) − (−1) f0(y), y ∈ F
n−1
2 .

So the vector (F0, F1) is the sign vector of a self-dual bent function in n variables. Note
that this self-dual bent function is unique since the pair of subfunctions of any self-dual bent
function is defined uniquely.

Thus, it follows that for any self-dual near-bent Boolean function in n − 1 variables there
exists a self-dual bent function in n variables, moreover this function is an unique one.

Finally, we have that themapping thatmaps every self-dual bent function to its subfunction
obtained by fixing the first coordinate with 0, is an injective and surjective one from the set of
all self-dual bent functions in n variables to the set of self-dual near-bent functions in n − 1
variables. Therefore there exists a bijection between these sets of Boolean functions.

By the same arguments one can show that there exists a one-to-one correspondence
between the set of all self-dual bent functions in n ≥ 4 variables and the set of anti-self-dual
near-bent functions in n − 1 variables. In more details, it can be done by considering the
second equation from (3) and showing that

S f1 = 〈F1, Hn−1F1〉 = −2
3(n−1)−1

2 .

So it follows that subfunction f1 is anti-self-dual near-bent function in n − 1 variables.
Again, from (1) it immediately follows that function f0 can be characterized by f1, hence

there exists an injective mapping from the set of all self-dual bent functions in n variables to
the set of anti-self-dual near-bent functions in n − 1 variables. It maps every self-dual bent
function to its subfunction obtained by fixing the first coordinate with 1.

Given an anti-self-dual near-bent function f1 in n − 1 variables with sign vector F1, for
surjectivity of the mentioned mapping it is enough to consider the vector

F0 = 2Hn−1

2n/2 F1 + F1.

From Proposition 1 it follows that the value of (−1) f1(y) and the sign of theWalsh–Hadamard
coefficient W f1(y) of f1 are disagreed in a sense that their product is nonpositive for
every y ∈ F

n−1
2 . Therefore the vector (F0, F1) consists of ±1 only, that is it is the sign

vector of a self-dual bent function in n variables. This self-dual bent function is unique since
the pair of subfunctions of any self-dual bent function is defined uniquely.

Thus, it follows that for any anti-self-dual near-bent Boolean function in n − 1 variables
there exists a self-dual bent function in n variables, moreover this function is an unique one.


�
We have shown that for self-dual bent function f with vector of values

(
f0, f1

)
the

subfunction f0 is always self-dual near-bent and f1 is always anti-self-dual near-bent. From
the other side for every self-dual near-bent function g in n− 1 variables there exists a unique
self-dual bent function in n variables such that g is its subfunctions obtained by fixing the
first variable with 0. At the same time for every every anti-self-dual near-bent function h
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122 A. Kutsenko

in n − 1 variables there also exists a unique self-dual bent function in n variables such that h
is its subfunctions obtained by fixing the first variable with 1.

Thus, the mentioned bijection is defined via the mapping f ↔ f0 for self-dual near-bent
case and f ↔ f1 for anti-self-dual near-bent one.

We also have a bijection between self-dual and anti-self-dual near-bent functions, it is
provided by the considerations above and the relation (1).

There is an interesting consequence that if we want to obtain Boolean function in even
number n of variables that has the maximal value of the Rayleigh quotient, by using the
concatenation of twoBoolean functions in n − 1 variables,we likely should not take functions
that have extremal values of the Rayleigh quotient. The same holds if we are to construct
a Boolean function in odd number m of variables that also has the maximal value of the
Rayleigh quotient. Since in the first case self-dual or anti-self-dual near-bent functions are
not chosen, therefore the obtained Boolean functions will not be self-dual bent. In the second
case we obtain a bent-concatenation bound that is likely to be not tight for infinitely many n.

The reason of that can be explained by the following considerations. Assume we have the
Boolean function f in k variables (even or odd) with sign vector F , which is a concatenation
of functions f0 and f1 in k − 1 variables with sign vectors F0 and F1. Then it holds

S f = 〈F, HnF〉 = 〈
(F0, F1) ,

(
Hn−1 Hn−1

Hn−1 −Hn−1

) (
F0
F1

) 〉

= 〈
(F0, F1) ,

(
Hn−1 (F0 + F1)
Hn−1 (F0 − F1)

) 〉

= 〈F0, Hn−1F0〉 − 〈F1, Hn−1F1〉 + 〈F0, Hn−1F1〉 + 〈F1, Hn−1F0〉
= S f0 − S f1 + 〈F0, Hn−1F1〉 + 〈F1, Hn−1F0〉
= S f0 − S f1 + 2 〈F0, Hn−1F1〉 ,

where we have different signs for the Rayleigh quotients of the subfunctions and also the
term comprising both subfunctions, one of which is given in its Walsh–Hadamard transfrom
form.

Thus, the maximization of the Rayleigh quotient of subfunctions may lead to the “insta-
bility” and decrease of the Rayleigh quotient of the whole function. The maximization of
the Rayleigh quotient for the case of an odd number of variables is a problem of a complex
optimization, in particular, of the values of the Rayleigh quotient of its subfunctions.

4 Decomposition of the form (f0, f1, f2, f3) for self-dual case

In this sectionwe study the subfunctions of self-dual bent functions that are obtained by fixing
the first and the second coordinates of the argument. Metrical properties of subfunctions and
interconnections between them are considered.

Subfunctions of a bent function, in more general form, comprising the restriction of a bent
function on all subspaces of codimension 2, were extensively studied in works [3, 4]. The
considered sets of subfunctions were referred to as 4-decompositions of a bent function. In
particular, it was shown that such subfunctions of a bent function in n variables have the same
Walsh–Hadamard spectrum: either all of them are bent, all are the three valued almost optimal
(these are precisely near-bent functions with the spectrum having three values 0, ±2n/2), or
they have the sameWalsh–Hadamard spectrum with five values 0, ±2(n−2)/2, ±2n/2. In [17]
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the family of so-called totally (non-overlap) disjoint spectra plateaued functions was studied.
These functions are interesting since they are constituent functions in the 4-decompositions.

Throughout this section given a function f in n variables we will refer to four Boolean
functions fi , i = 0, 1, 2, 3, in n − 2 variables as to its subfunctions obtained by fixing the
first and the second coordinates of the argument with the values {(00), (01), (10), (11)},
correspondingly. In turn, vector of values of f will have the form ( f0, f1, f2, f3). The sign
vector of fi will be denoted by Fi , i = 0, 1, 2, 3. Let the notation H states for Hn−2.

Further we will use the following observation. Let f be a bent function in n variables,
then

1

2

⎛

⎜
⎜
⎝

H H H H
H −H H −H
H H −H −H
H −H −H H

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

F0
F1
F2
F3

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

R0

R1

R2

R3

⎞

⎟
⎟
⎠

or, equivalently,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F0 + F1 + F2 + F3 = 2HR0,

F0 − F1 + F2 − F3 = 2HR1,

F0 + F1 − F2 − F3 = 2HR2,

F0 − F1 − F2 + F3 = 2HR3,

(5)

where Ri , i = 0, 1, 2, 3, are sign vectors of subfunctions of f̃ . Obviously, the function f is
self-dual if and only if Ri = Fi , i = 0, 1, 2, 3.

4.1 Concatenation of four bent functions

The case when all four subfunctions are bent essentially leads to the idea of an iterative
construction of a bent function in n + 2 variables through four bent functions in n variables.
In [33] Preneel et al. proved that given four bent functions fi , i = 0, 1, 2, 3, in n variables,
the concatenation of vectors of values of fi yields a bent function in n + 2 variables if and
only if

W f0(y)W f1(y)W f2(y)W f3(y) = −22n for any y ∈ F
n
2 .

In terms of duals this condition is equivalent to the following

f̃0(y) ⊕ f̃1(y) ⊕ f̃2(y) ⊕ f̃3(y) = 1 for any y ∈ F
n
2 .

Note that the idea of concatenation also appears in a scope of so-called “bent based” bent
sequences, see [1]. The approach allows to obtain a bent sequence of length 4l through the
concatenation of four bent sequences of length l provided the similar conditions on these
sequences are satisfied.

Bent functions in n + 2 variables obtained by the concatenation of four bent functions in
n variables were also studied in [40] from the point of view of obtaining lower bounds on
the cardinality of the set of bent functions. Such functions were referred to as bent iterative
functions. Concatenation construction was also considered in [16] in a scope of generic
concatenation methods. New constructions of bent functions, based on the concatenation,
were recently proposed in [2, 32]. In [9] one can find another iterative approaches.

There are known two constructions of self-dual bent functions in n + 2 variables, based
on the concatenation of four bent functions in n variables. They are
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• the construction C1:
(
f , f̃ , f̃ , f ⊕ 1

)
,

where f is a bent function in n variables [8];
• the construction C2:

( f , g ⊕ 1, g, f ) ,

where f is a self-dual bent function, g is an anti-self-dual bent function both in n variables
[21].

It is worth noting that the best known for today lower bound on the cardinality of the set of
self-dual bent functions is the sum of cardinalities of C1 and C2.

In [21] the criteria of self-duality of a bent function in n + 2 variables obtained via
concatenation of four bent functions in n variables was presented.

4.2 Grammatrix for sign vectors of subfunctions

In this subsection we will study the Gram matrix of vectors Fi , i = 0, 1, 2, 3 which are sign
vectors of subfunctions of a Boolean function f . Recall that elements gi j of the Grammatrix
of vectors {vk}k∈M ⊂ R

d are inner products between vi and v j , i, j ∈ M . The determinant
of the Gram matrix is called the Gramian of the corresponding system of vectors. The basic
properties of real Gram matrices are:

• symmetricity;
• positive semi-definiteness;
• the Gramian is zero if and only if the vectors are linearly dependent.

Denote the inner products by gi j = 〈
Fi , Fj

〉
, i, j = 0, 1, 2, 3.

The form of the Gram matrix of self-dual bent functions is characterized in the following
statement

Theorem 2 The Gram matrix of any self-dual bent function in n variables has form
⎛

⎜⎜
⎝

2n−2 b b −a
b 2n−2 a −b
b a 2n−2 −b

−a −b −b 2n−2

⎞

⎟⎟
⎠ ,

for some even integers a, b such that

−2n−2 + 2|b| ≤ a ≤ 2n−2.

Proof For self-dual case the system (5) has form
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F0 + F1 + F2 + F3 = 2HF0,

F0 − F1 + F2 − F3 = 2HF1,

F0 + F1 − F2 − F3 = 2HF2,

F0 − F1 − F2 + F3 = 2HF3.

(6)

Consider pairwise inner products of right parts of all equations in the system (6). The sym-
metricity of Gram( f ) implies that we have at most six different coefficients outside the main
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diagonal in fact. For example, the 1st equation’s expression inner product with itself is

〈2HF0, 2HF0〉 = 〈F0 + F1 + F2 + F3, F0 + F1 + F2 + F3〉

=
3∑

i, j=0

gi j = 4 · 2n−2 +
3∑

i, j=0,
i �= j

gi j = 2n .

It yields the following equation on the coefficients:

g01 + g02 + g03 + g12 + g13 + g23 = 0.

Finally, after considering the rest ones, we have the following system of equations that
describe necessary relations between the entries of the Gram matrix:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g01 + g02 + g03 + g12 + g13 + g23 = 0,

g01 − g02 + g03 + g12 − g13 + g23 = 0,

g01 − g02 − g03 − g12 − g13 + g23 = 0,

g01 + g02 − g03 − g12 + g13 + g23 = 0,

2g01 = g02 − g13,

2g02 = g01 − g23,

g03 = −g12,

2g13 = g23 − g01,

2g23 = g13 − g02.

The system has rank 4, its general solution is

g01 = −g23, g02 = −g23, g03 = −g12,

g12 = g12, g13 = g23,

g23 = g23

for g12 and g23 being free variables. Denote b = −g23 and a = g12, then we obtain the
desired form of the Gram matrix:

Gram( f ) =

⎛

⎜⎜
⎝

2n−2 b b −a
b 2n−2 a −b
b a 2n−2 −b

−a −b −b 2n−2

⎞

⎟⎟
⎠ .

Now we are to point essential bounds on values of a and b and deduce some relations
between them. In order to do it recall that any Gram matrix is positive semi-definite, hence
all its eigenvalues must be nonnegative. The matrix Gram( f ) has four eigenvalues, they are

λ1,2 = 2n−2 − a,

λ3 = 2n−2 + a − 2b,

λ4 = 2n−2 + a + 2b.

Note that the eigenvalue 2n−2 − a has algebraic multiplicity 2, also its nonnegativity is
obvious. The rest imply that

a ≥ −2n−2 + 2b,

a ≥ −2n−2 − 2b,
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that is

a ≥ −2n−2 + max{2b,−2b},
and, consequently,

a ≥ −2n−2 + 2|b|,
where |b| is essentially bounded by 2n−2 from above. 
�

For example, the constructions C1 and C2 provide the following matrices:

Gram(C1) =

⎛

⎜
⎜
⎝

2n−2 S f S f −2n−2

S f 2n−2 2n−2 −S f

S f 2n−2 2n−2 −S f

−2n−2 −S f −S f 2n−2

⎞

⎟
⎟
⎠ ,

which has rank 1 in the case when S f = 2n−2 that is f is self-dual bent, and 2 otherwise,
and

Gram(C2) =

⎛

⎜⎜
⎝

2n−2 0 0 2n−2

0 2n−2 −2n−2 0
0 −2n−2 2n−2 0

2n−2 0 0 2n−2

⎞

⎟⎟
⎠

with rank equal to 2. It is obvious that for both constructions the sets {Fi } are linearly
dependent.

Inner products between sign functions are interesting since it is easy to deduce the Ham-
ming distance between two Boolean functions provided the inner product between their sign
functions is known. Indeed,

dist
(
fi , f j

) = 2n−3 − 1

2

〈
Fi , Fj

〉 = 2n−3 − 1

2
gi j , i, j = 0, 1, 2, 3.

Thus, Theorem 6 can be reformulated in terms of Hamming distances between subfunc-
tions:

Corollary 1 Let f be a self-dual bent function in n variables. The Hamming distances
between { fi }3i=0 are characterized by the matrix

Dist( f ) =

⎛

⎜⎜
⎝

0 0 0 2n−2

0 0 0 2n−2

0 0 0 2n−2

2n−2 2n−2 2n−2 0

⎞

⎟⎟
⎠ +

⎛

⎜⎜
⎝

0 d1 d1 −d2
d1 0 d2 −d1
d1 d2 0 −d1

−d2 −d1 −d1 0

⎞

⎟⎟
⎠

for some positive even integers d1, d2 such that

|2n−2 − 2d1| ≤ 2n−2 − d2.

Proof The relation between the inner product and the Hamming distance yields the matrix
whereas the inequality

|2n−2 − 2d1| ≤ 2n−2 − d2

is obtained from

−2n−2 + 2|b| ≤ a ≤ 2n−2
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with

b = 2n−2 − 2d1,

a = 2n−2 − 2d2.


�

4.3 Rayleigh quotients of subfunctions

Another application of the Gram matrix deals with the relations between Rayleigh quotients
of subfunctions. Let f be a self-dual bent function in n variables. Recall that by (5) we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F0 + F1 + F2 + F3 = 2HF0,

F0 − F1 + F2 − F3 = 2HF1,

F0 + F1 − F2 − F3 = 2HF2,

F0 − F1 − F2 + F3 = 2HF3.

The Gram matrix provides the expression of the Rayleigh quotients of the subfunctions in
terms of the coefficients a ans b.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2n−2 + 2b − a = 〈F0, 2HF0〉 ,

−2n−2 + a + 2b = 〈F1, 2HF1〉 ,

−2n−2 + 2b + a = 〈F2, 2HF2〉 ,

2n−2 − a + 2b = 〈F3, 2HF3〉 .

Finally we have expressions

S f0 = 2n/2−2 (
2n−2 − a + 2b

)
, S f1 = 2n/2−2 (−2n−2 + a + 2b

)
,

S f2 = 2n/2−2 (−2n−2 + a + 2b
)
, S f3 = 2n/2−2 (

2n−2 − a + 2b
)
,

and

S f0 + S f1 = S f2 + S f3 = 2n/2b.

It follows that the Rayleigh quotients of f0 and f3 coincide, as well as of f1 and f2. The sum
of all Rayleigh quotients is equal to

S f0 + S f1 + S f2 + S f3 = 2n/2+1b.

We collect all this to the following statement

Proposition 2 Let f be a self-dual bent function in n variables with Gram matrix

Gram( f ) =

⎛

⎜⎜
⎝

2n−2 b b −a
b 2n−2 a −b
b a 2n−2 −b

−a −b −b 2n−2

⎞

⎟⎟
⎠ ,

then

S f0 = S f3 = 2n/2−2 (
2n−2 − a + 2b

)
,

S f1 = S f2 = 2n/2−2 (−2n−2 + a + 2b
)
.
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4.4 Sufficient condition for the subfunctions of self-dual bent function to be bent

In this subsection we study the special cases of parameters a, b for which the Gram matrix
is singular.

Recall that the Gramian is equal to the product of the eigenvalues of the matrix so for a
self-dual bent function f with the Gram matrix Gram( f ) it has the following expression

Gramian( f ) = (
2n−2 − a

)2 (
2n−2 + a − 2b

) (
2n−2 + a + 2b

)
. (7)

Further the values such that the Gramian is zero will be considered for a self-dual case.
But before, we can characterize all self-dual bent functions that possess a = 2n−2, that

is f1 = f2. In order to do it consider the general system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F0 + F1 + F2 + F3 = 2HF0,

F0 − F1 + F2 − F3 = 2HF1,

F0 + F1 − F2 − F3 = 2HF2,

F0 − F1 − F2 + F3 = 2HF3,

which is transformed to
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F0 + 2F1 + F3 = 2HF0,

F0 − F3 = 2HF1,

F0 − F3 = 2HF1,

F0 − 2F1 + F3 = 2HF3.

By the triangle inequality we obtain

‖F0 − F3‖ ≤ ‖F0‖ + ‖F3‖ = 2 · 2(n−2)/2 = 2n/2.

From the other side by orthogonality of the matrix H we obtain that
‖2HF1‖ = 2 · 2(n−2)/2 = 2n/2. So we have an equality

‖F0 − F3‖ = ‖F0‖ + ‖F3‖ ,

hence F0 and F3 are linearly dependent vectors, that is either F0 = F3 or F0 = −F3. But from
the second and third equalities it follows that F0 and F3 can not coincide, therefore F3 = −F0.
Finally we obtain F0 = HF1, that is all subfunctions are bent and f0 and f1 are dual of each
other. This situation is exactly the construction C1.

Proposition 3 If for a self-dual bent function f it holds f1 = f2, then it is constructed viaC1.

In Sect. 4.2 it was mentioned that sign vectors of subfunctions mentioned in construc-
tionsC1 andC2 are linearly dependent. Also all those subfunctions are bent. The next results
covers all combinations for which the Gramian is zero.

Theorem 3 If the Gram matrix of a self-dual bent function f is singular then subfunc-
tions { fi }3i=0 are bent.

Proof At first notice that the condition (1) for the case of subfunctions in n − 2 variables has
the following form

(
F0
F1

)
=

(
F2
F3

)
+

(H H
H −H

)(
F2
F3

)
. (8)
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Table 2 All possible relations between values of subfunctions and their Walsh–Hadamard transform

i F0(y) F1(y) F2(y) F3(y) HF0(y) HF1(y) HF2(y) HF3(y)

1 +1 +1 +1 +1 +2 0 0 0

2 +1 −1 +1 −1 0 +2 0 0

3 −1 +1 −1 +1 0 −2 0 0

4 −1 −1 −1 −1 −2 0 0 0

5 −1 +1 +1 −1 0 0 0 −2

6 +1 −1 −1 +1 0 0 0 +2

7 +1 +1 −1 −1 0 0 +2 0

8 −1 −1 +1 +1 0 0 −2 0

9 +1 +1 −1 +1 +1 −1 +1 +1

10 +1 −1 −1 −1 −1 +1 +1 +1

11 −1 +1 +1 +1 +1 −1 −1 −1

12 −1 −1 +1 −1 −1 +1 −1 −1

13 +1 +1 +1 −1 +1 +1 +1 −1

14 −1 +1 −1 −1 −1 −1 +1 −1

15 +1 −1 +1 +1 +1 +1 −1 +1

16 −1 −1 −1 +1 −1 −1 −1 +1

Also by the condition H2 = I2n−2 we obtain
(HF0
HF1

)
=

(HF2
HF3

)
+

(
F2 + F3
F2 − F3

)
. (9)

Both of conditions (8) and (9) allow to characterize all possible combinations of signs of
Fi and HFi , i = 0, 1, 2, 3. As it was mentioned in Sect. 4.1, either all of subfunctions
are bent, all are near-bent, or they have the same Walsh–Hadamard spectrum with five val-
ues 0,±2(n−2)/2, 2n/2 [3, 4]. It means that in general caseHFi ∈ {0,±1,±2}, i = 0, 1, 2, 3.

For every row of Table 2 by ci we denote the number of vectors y ∈ F
n−2
2 for which the

corresponding sequence of values and signs stands. The Gram matrix from Theorem 6 for
the function f gives six equations:

〈F0, F1〉 = c1 − c2 − c3 + c4 − c5 − c6 + c7 + c8 + c9 − c10 − c11 + c12

+ c13 − c14 − c15 + c16 = b,

〈F0, F2〉 = c1 + c2 + c3 + c4 − c5 − c6 − c7 − c8 − c9 − c10 − c11 − c12

+ c13 + c14 + c15 + c16 = b,

〈F0, F3〉 = c1 − c2 − c3 + c4 + c5 + c6 − c7 − c8 + c9 − c10 − c11 + c12

− c13 + c14 + c15 − c16 = −a,

〈F1, F2〉 = c1 − c2 − c3 + c4 + c5 + c6 − c7 − c8 − c9 + c10 + c11 − c12

+ c13 − c14 − c15 + c16 = a,

123



130 A. Kutsenko

〈F1, F3〉 = c1 + c2 + c3 + c4 − c5 − c6 − c7 − c8 + c9 + c10 + c11 + c12

− c13 − c14 − c15 − c16 = −b,

〈F2, F3〉 = c1 − c2 − c3 + c4 − c5 − c6 + c7 + c8 − c9 + c10 + c11 − c12

− c13 + c14 + c15 − c16 = −b.

Finally, taking into account the cardinality of the space Fn−2
2 , we obtain the system of 7 linear

equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 − c2 − c3 + c4 − c5 − c6 + c7 + c8 + c9 − c10 − c11 + c12 + c13 − c14 − c15 + c16 = b

c1 + c2 + c3 + c4 − c5 − c6 − c7 − c8 − c9 − c10 − c11 − c12 + c13 + c14 + c15 + c16 = b

c1 − c2 − c3 + c4 + c5 + c6 − c7 − c8 + c9 − c10 − c11 + c12 − c13 + c14 + c15 − c16 = −a

c1 − c2 − c3 + c4 + c5 + c6 − c7 − c8 − c9 + c10 + c11 − c12 + c13 − c14 − c15 + c16 = a

c1 + c2 + c3 + c4 − c5 − c6 − c7 − c8 + c9 + c10 + c11 + c12 − c13 − c14 − c15 − c16 = −b

c1 − c2 − c3 + c4 − c5 − c6 + c7 + c8 − c9 + c10 + c11 − c12 − c13 + c14 + c15 − c16 = −b

c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8 + c9 + c10 + c11 + c12 + c13 + c14 + c15 + c16 = 2n−2

The system has rank 7, its equations in a row echelon form yield the relations

c1 + c4 + c14 + c15 = 2n−2 − a

4
,

c2 + c3 + c14 + c15 = 2n−2 − a

4
,

c5 + c6 + c14 + c15 = 2n−2 − a

4
,

c7 + c8 + c14 + c15 = 2n−2 − a

4
,

c9 + c12 − c14 − c15 = 0,

c10 + c11 − c14 − c15 = a − b

2
,

c13 − c14 − c15 + c16 = a + b

2
.

Now we are to consider all combinations of a, b such that the Gramian (7) is zero. In
order to do it we take ci , i = 1, 2, . . . , 16, as nonnegative integer variables. Before one can
note that one of subfunctions is bent (consequently all of them are bent) if and only if ci = 0
for i = 1, 2, . . . , 8. So we introduce an auxiliary equation

c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8 = k,

where k is nonnegative integer and put it to the system. The rank of the resulting system
of equations is 8. From the nonnegativity of variables it follows that if for a fixed pair a, b
provided by some self-dual bent function, the system has no solutions with positive k, all
subfunctions of this function are bent.

At first, note that for every eigenvalue of the Gram matrix given in the general form
there exists a self-dual bent function with a, b such that the eigenvalue is zero. Indeed,
for λ1,2 = 2n−2 − a = 0 the constructionC1 is suitable, since it provides a = 2n−2, b = S f .
For λ3 = 2n−2 + a − 2b = 0 and λ4 = 2n−2 + a + 2b = 0 the contruction C2 meets the
desired condition because it is clear that it admits a = −2n−2, b = 0.

Now consider all pairs of a, b, vanising the corresponding eigenvalue, and analyze the
obtained system:

123



Decomposing self-dual bent functions 131

• 2n−2 − a = 0: in this case

c1 = c2 = c3 = c4 = c5 = c6 = c7 = c8 = 0,

that holds if only if k = 0.
• 2n−2 + a − 2b = 0: the relations between variables must satisfy

c1 + c4 = k

4
, c2 + c3 = k

4
, c5 + c6 = k

4
, c7 + c8 = k

4
, c10 + c11 = −k

4
,

so the solution does not exist if k > 0, therefore k = 0.
• 2n−2 + a + 2b = 0: we have relations

c1 + c4 = k

4
, c2 + c3 = k

4
, c5 + c6 = k

4
, c7 + c8 = k

4
, c13 + c16 = −k

4
,

so again the solution does not exist if k > 0, therefore k = 0.


�
From Theorem 3 and properties of the Gram matrix we conclude that

Corollary 2 If sign vectors of subfunctions of a self-dual bent function f are linearly depen-
dent then subfunctions { fi }3i=0 are bent.

Thus, we obtain a sufficient condition for bentness of the subfunctions. The interesting
question arises: is it necessary to have linear dependence for sign vectors of subfunctions in
order to obtain a self-dual bent functionwith bent subfunctions? In particular, the experiments
show that

Remark 1 For n = 4 all self-dual bent functions with bent subfunctions have singular Gram
matrices.

We consider this question further in Sect. 5. Note that according to experiments conducted
for small n, most of self-dual bent functions are not bent concatenations hence their Gram
matrices are necessarily non-singular. In particular, from 42896 self-dual bent functions in 6
variables only 3408 are bent concatenations and 192 of them have singular Gram matrices.

From Table 2 we can also deduce an interesting property that can be useful.

Proposition 4 Let f be an (anti-)self-dual bent function in n variables, then { fi }3i=0 are bent
if and only if

f0(y) ⊕ f1(y) ⊕ f2(y) ⊕ f3(y) = 1 for any y ∈ F
n−2
2 .

This condition is not well seen from the results of [21] but can be deduced from [3]. Anti-self-
dual case follows from the existence of a certain bijection between self-dual and anti-self-dual
bent functions (see [8, 18, 22]). By using the condition we can clarify the decomposition of
a self-dual bent function with bent subfunctions:

f (y1, y2, x) = (y1 ⊕ 1) (y2 ⊕ 1) f0(x) ⊕ (y1 ⊕ 1) y2 f1(x)

⊕ y1 (y2 ⊕ 1) f2(x) ⊕ y1y2 f3(x)

= y1y2 ( f0(x) ⊕ f1(x) ⊕ f2(x) ⊕ f3(x))

⊕ y1 ( f0(x) ⊕ f2(x)) ⊕ y2 ( f0(x) ⊕ f1(x)) ⊕ f0(x)

= f0 ⊕ y1 ( f0 ⊕ f2) ⊕ y2 ( f0 ⊕ f1) ⊕ y1y2, y1, y2 ∈ F2, x ∈ F
n−2
2 .

FromCorollary 1 it follows thatHammingweights of functions f0 ⊕ f1 and f0 ⊕ f2 coincide.
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5 Linear independence of sign vectors and bentness of the
subfunctions of self-dual bent function

As it was mentioned in the previous section, the singularity of the Gram matrix is also
necessary for the case n = 4. It is known that all (self-dual) bent functions in 4 variables are
quadratic. So further we are to check if this property holds for any quadratic self-dual bent
function.

Any quadratic function in n variables, say f , can be written as

f (z) = 〈z, Az〉 ⊕ d, z ∈ F
n
2, (10)

where A is an upper triangular matrix of order n×n over F2 and d is constant. The quadratic
part of f , as well as its Hamming weight, is completely characterized by the so-called asso-
ciate alternatingmatrix Q = A ⊕ AT, seeMacWilliams and Sloane [28]. Recall that a square
matrix over F2 is called alternating if it is symmetric with zero diagonal.

In [18] self-dual quadratic bent functions were completely characterized through a classi-
fication of all n×n involutory alternating matrices over F2 under the action of the orthogonal
group. In particular, it was proved that the function (10) is self-dual or anti-self-dual bent
if and only if Q2 = In , that is Q is an involution (initially was proved in [8]), and the
matrix QAQ ⊕ AT is an alternating matrix. We will use this result in following.

Denote m = n − 2 and consider arbitrary (anti-)self-dual quadratic bent function in n
variables:

f (y1, y2, x) = λ1y1 ⊕ λ2y2 ⊕ λ12y1y2 ⊕ y1 〈u, x〉 ⊕ y2 〈v, x〉 ⊕ g(x),

y1, y2 ∈ F2, x ∈ F
m
2 ,

where λ1, λ2, λ12 ∈ F2, u, v ∈ F
m
2 and g is a function in m variables with degree at most 2.

Without loss of generality we assume that d = 0. The subfunctions { fi }3i=0 have form

f (00, x) = f0(x) = g(x),

f (01, x) = f1(x) = g(x) ⊕ 〈v, x〉 ⊕ λ2,

f (10, x) = f2(x) = g(x) ⊕ 〈u, x〉 ⊕ λ1,

f (11, x) = f3(x) = g(x) ⊕ 〈u ⊕ v, x〉 ⊕ λ1 ⊕ λ2 ⊕ λ12, x ∈ F
m
2 .

Assume these subfunctions are bent, then g is bent and by Proposition 4we have λ12 = 1. It is
clear that f has invertible Grammatrix if and only if the vectors u, v are linearly independent.

The upper triangular matrix A and associate alternating matrix Q are

A =
⎛

⎝
λ1 1 uT

0 λ2 vT

0 0 B

⎞

⎠ , Q = A ⊕ AT =
⎛

⎝
0 1 uT

1 0 vT

u v B ⊕ BT

⎞

⎠ ,

where the m × m submatrix B = (
bi j

)
characterizes quadratic function g. Note that the

matrix B ⊕ BT must have full rank since g is bent. Associate alternating matrix Q must be
an involutory matrix, therefore we have

Q2 =
⎛

⎝
1 ⊕ 〈u, u〉 〈u, v〉 vT ⊕ uT

(
B ⊕ BT

)

〈u, v〉 1 ⊕ 〈v, v〉 uT ⊕ vT
(
B ⊕ BT

)

v ⊕ (
B ⊕ BT

)
u u ⊕ (

B ⊕ BT
)
v M ⊕ (

B ⊕ BT
)2

⎞

⎠ = In,
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where M = (
mi j

)
is a square matrix with elements mi j = uiu j ⊕ viv j , i, j = 1, 2, . . . ,m.

The relation Q2 = In holds if and only if

〈u, u〉 = 〈u, v〉 = 〈v, v〉 = 0,
(
B ⊕ BT)

u = v,
(
B ⊕ BT)

v = u,

M ⊕ (
B ⊕ BT)2 = Im .

Also, one can easily show that M2 is all-zero matrix, hence
(
B ⊕ BT

)4 = Im .
The next condition for (anti-)self-duality of quadratic bent functions is that the

matrix QAQ ⊕ AT is alternating. In [18] it was noted that under condition Q2 = In the
matrix QAQ ⊕ AT is symmetric, hence it is alternating if and only if its diagonal elements
are equal to zero. Consider them in details:

diag
(
QAQ ⊕ AT) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈u, Bu〉 ⊕ λ1 ⊕ λ2
〈v, Bv〉 ⊕ λ1 ⊕ λ2

λ1u1 ⊕ u1v1 ⊕ λ2v1 ⊕ c1 ⊕ b11
λ2u2 ⊕ u2v2 ⊕ λ2v2 ⊕ c2 ⊕ b22

...

λ1um ⊕ umvm ⊕ λ2vm ⊕ cm ⊕ bmm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where ci = (
B ⊕ BT

)
i B

(
B ⊕ BT

)(i), i = 1, 2, . . . ,m.
Let us gather all the conditions for (anti-)self-duality of quadratic bent function, given in

the form of decomposition with a respect to the first and the second variables:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈u, u〉 = 〈u, v〉 = 〈v, v〉 = 0,
(
B ⊕ BT

)
u = v,

(
B ⊕ BT

)
v = u,

uiu j ⊕ viv j ⊕ 〈 (
B ⊕ BT

)(i)
,
(
B ⊕ BT

)( j) 〉 = δi j ,

〈u, Bu〉 = λ1 ⊕ λ2,

〈v, Bv〉 = λ1 ⊕ λ2,

λ1ui ⊕ uivi ⊕ λ2vi ⊕ (
B ⊕ BT

)
i B

(
B ⊕ BT

)(i) ⊕ bii = 0,

i, j = 1, 2, . . . ,m.

(�)

These relations form the criteria of (anti-)self-duality of a bent function and we implicitly
join here the requirement that the matrix B ⊕ BT has full rank and also take into account
linear independence of u and v.

We are to provide the construction that satisfies criteria �. Let thematrix B and vectors u, v

be equal to

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b11 1 1 · · · · · · · · · 1 1
0 b22 0 · · · · · · 0 1 0

0 0 b33 0 . .
. 0 0

...
. . . 1

...
...

. . .
...

...
. . .

...
...

. . . 0
0 · · · · · · · · · · · · · · · 0 bmm

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

u =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1
0
0
...

0
1

⎞

⎟⎟⎟⎟⎟⎟
⎠

v =

⎛

⎜⎜
⎝

1
1
...

1

⎞

⎟⎟
⎠
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for some b11, b22, . . . , bmm ∈ F2. These numbers must satisfy the following consistent
system of m linear equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m⊕

i=1
bii ⊕ (m/2) = λ1 ⊕ λ2,

b11 ⊕ bkk ⊕ bm−k+1,m−k+1 = λ2 ⊕ 1, for all k ∈ {2, 3, . . . ,m − 1},
b11 ⊕ bmm = λ1 ⊕ λ2 ⊕ 1,

which has rankm/2 orm/2+1, depending the parity ofm. So any solution yields either self-
dual or anti-self-dual quadratic bent function with bent subfunctions and nonzero Gramian.

If we obtain an anti-self-dual bent function, say f , then just apply the following transfor-
mation:

⎛

⎜
⎜
⎝

G0

G1

G3

G4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0 0 I2n−2 0
0 0 0 I2n−2

−I2n−2 0 0 0
0 −I2n−2 0 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

F0
F1
F3
F4

⎞

⎟
⎟
⎠ ,

that maps it to the self-dual quadratic bent function g. It follows from the fact that the affine
mapping

f (y1, y2, x) → f (y1 ⊕ 1, y2, x) ⊕ y1, y1, y2 ∈ F2, x ∈ F
m
2 ,

is a bijection between the sets of self-dual and anti-self-dual bent functions, see [8, 18, 22].
However the function g has Gram matrix

Gram(g) =

⎛

⎜⎜
⎝

2n−2 −b −b −a
−b 2n−2 a b
−b a 2n−2 b
−a b b 2n−2

⎞

⎟⎟
⎠ ,

for which it holds Gramian(g) = Gramian( f ).
For now we can give an answer to the question about necessity of singularity of the Gram

matrix for the subfunctions to be bent that is to resolve the converse of Theorem 3.

Theorem 4 For every even n ≥ 6 there exists a (quadratic) self-dual bent function f in n
variables with invertible Gram matrix, such that subfunctions { fi }3i=0 are bent.

One can show that this assertion holds also for anti-self-dual bent functions. For proof it is
enough to consider aforementioned one-to-one correspondence between the sets of self-dual
and anti-self-dual bent functions.

From Theorem 4 and properties of the Gram matrix we again conclude that

Corollary 3 For every even n ≥ 6 there exists a self-dual bent function f in n variables whose
subfunctions { fi }3i=0 are bent functions with linearly independent sign vectors.

Thus, the converse of Theorem 3 does not hold for n ≥ 6, that is the linear dependence of
sign vectors provides only sufficient condition for subfunctions in n − 2 variables to be bent.
It is also clear why this does not hold for n = 4 since there are only two distinct vectors in F2

2
that could satisfy the criteria (�): (00) and (11), but these vectors are linearly dependent.
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6 New iterative constructions and lower bound for the cardinality of
the set of self-dual bent functions

In current section we propose three new constructionsC3,C4 and C5 of self-dual bent func-
tions. The constructions use a 4-variables step. Let h be a bent function in n − 4 variables, r
be a self-dual bent function in n − 4 variables and g be an anti-self-dual bent function in n − 4
variables.

• the construction C3:
(
h, g, g ⊕ 1, h, h̃, r , r ⊕ 1, h̃, h̃, r ⊕ 1, r , h̃, h ⊕ 1, g, g ⊕ 1, h ⊕ 1

)

It is clear that the subfunctions f0, f1, f2, f3 are bent;
• the construction C4:

(
h, g, h̃, r , g ⊕ 1, h, r ⊕ 1, h̃, h̃, r ⊕ 1, h ⊕ 1, g, r , h̃, g ⊕ 1, h ⊕ 1

)

The subfunctions f0, f1, f2, f3 are bent if and only if h ⊕ h̃ ⊕ r ⊕ g = 0, so in some
cases we do not obtain bent decompositions. Thus, this construction also yields a class of
bent functionswhich cannot be decomposed into the concatenation of four bent functions;

• the construction C5:
(
h, h ⊕ 1, h̃, h̃, h, h, h̃ ⊕ 1, h̃, h̃, h̃, h ⊕ 1, h, h̃ ⊕ 1, h̃, h ⊕ 1, h ⊕ 1

)

It is clear that the subfunctions f0, f1, f2, f3 are bent.

It is possible to estimate theC4 case related with the (im)possibility of a bent decomposition:

Proposition 5 The number of self-dual bent functions in n ≥ 8 variables constructed via C4,
which cannot be (can be) decomposed into the concatenation of four bent functions, is at
least 2

∣∣SB+
n−6

∣∣2.

Proof Let r1 and r2 be two bent functions in n − 6 variables x7, x8, . . . , xn , such that the
first one is either self-dual or anti-self-dual while the second is a self-dual one. Define

f (x5, x6, x7, . . . , xn) = x5x6 ⊕ r1 (x7, x8, . . . , xn) ,

g (x5, x6, x7, . . . , xn) = x5x6 ⊕ x5 ⊕ x6 ⊕ r1 (x7, x8, . . . , xn) ,

h (x5, x6, x7, . . . , xn) = x5x6 ⊕ x5 ⊕ r2 (x7, x8, . . . , xn) ,

one can check that

h̃ (x5, x6, x7, . . . , xn) = x5x6 ⊕ x6 ⊕ r2 (x7, x8, . . . , xn) .

Thus, the self-dual bent function constructed via C4, is the concatenation of four bent func-
tions.

Finally, note that in order to obtain the function which is not the concatenation of four
bent functions, it is enough to take a negation of the two-variables part of either f or g, for
instance

f (x5, x6, x7, . . . , xn) = x5x6 ⊕ 1 ⊕ r1 (x7, x8, . . . , xn) .


�
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Table 3 Iterative lower bounds and lower bounds provided by some primary constructions

Class n = 2 n = 4 n = 6 n = 8

Dillon’s class PSap [8] 2 2 6 70

Maiorana–McFarland class [8] 2 8 48 768

Quadratic functions [18] 2 20 752 ∼= 216.68

Direct sum [8] — 8 80 ∼= 217.39

Construction C1 [8] — 8 896 ∼= 232.34

Constructions C1, C2 [21] — 12 1296 ∼= 232.7606

Constructions C1, C2, C3, C4, C5 — — 1332 ∼= 232.7607

Exact number [8, 14] 2 20 42896 ≥ 250.56

The constructions C3, C4 and C5 have the following Gram matrices:

Gram(C3) =

⎛

⎜⎜
⎝

2n−2 2Sh 2Sh 0
2Sh 2n−2 0 −2Sh
2Sh 0 2n−2 −2Sh
0 −2Sh −2Sh 2n−2

⎞

⎟⎟
⎠ ,

Gram(C4) =

⎛

⎜⎜
⎝

2n−2 0 0 0
0 2n−2 0 0
0 0 2n−2 0
0 0 0 2n−2

⎞

⎟⎟
⎠ ,

Gram(C5) =

⎛

⎜⎜
⎝

2n−2 0 0 −4Sh

0 2n−2 4Sh 0
0 4Sh 2n−2 0

−4Sh 0 0 2n−2

⎞

⎟⎟
⎠

with parameters a = 0, b = 2Sh , a = b = 0 and a = 4Sh, b = 0, correspondingly. The
Gramian of C3 is equal to 24n−8 − 22nS2

h hence it is nonzero besides the case |Sh | = 2n−4,
that is when h is either self-dual or anti-self-dual bent. The Gramian of C4 is equal

to 24n−8. The Gramian of C5 is equal to
(
22n−4 − 16S2

h

)2
, hence it is nonzero besides

the case |Sh | = 2n−4, that is again when h is either self-dual or anti-self-dual bent.
Note that the constructions C1, C2, C3 and C4 provide disjoint sets of self-dual bent

functions whereas C5 has clear intersection with C1 and C2. So we conclude that the sum
of the cardinalities of the first four constructions and the disjoint part of C5 is a lower bound
for the cardinality of the set of self-dual bent functions in n variables.

Theorem 5 The number of self-dual bent functions in n ≥ 6 variables is at least

|Bn−2| + ∣∣SB+
n−2

∣∣2 + |Bn−4|
(
2
∣∣SB+

n−4

∣∣2 + 1
) − 2

∣∣SB+
n−4

∣∣.

Thus, it increases the previous iterative bound |C1| + |C2| by the summand that corresponds
to the constructions that exploit functions in n − 4 variables. The comparison with other
iterative bounds and lower bounds provided by someprimary constructions is given inTable 3.
Note that constructions C1, C2 can be build via the so-called indirect sum construction [8]
of self-dual bent functions but it is difficult to estimate its cardinality for large n.
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7 Decomposition of the form (f0, f1, f2, f3) for the general case

In this section the form and properties of the Gram matrix of an arbitrary bent function are
considered.

It is interesting to study the conditions when the subfunctions f0, f1, f2, f3 of the function
itself and its dual are bent simultaneously. In current section we give an example of the
property of the initial bent function that provides such double bentness.

7.1 General form of the Grammatrix

The form of the Gram matrix of a bent function and its dual one is characterized by the
following

Theorem 6 The Gram matrices of any bent function, say f , in n variables and its dual bent
function f̃ have form

Gram( f ) =

⎛

⎜⎜
⎝

2n−2 b c −a
b 2n−2 a −c
c a 2n−2 −b

−a −c −b 2n−2

⎞

⎟⎟
⎠ , Gram

(
f̃
) =

⎛

⎜⎜
⎝

2n−2 c b −a
c 2n−2 a −b
b a 2n−2 −c

−a −b −c 2n−2

⎞

⎟⎟
⎠ ,

where a, b, c are even integers such that

−2n−2 + |b + c| ≤ a ≤ 2n−2 − |b − c|.

Proof Recall the subsystem from the proof of Theorem 2, obtained via the inner prod-
ucts 〈2HRi , 2HRi 〉, i = 0, 1, 2, 3:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g01 + g02 + g03 + g12 + g13 + g23 = 0,

g01 − g02 + g03 + g12 − g13 + g23 = 0,

g01 − g02 − g03 − g12 − g13 + g23 = 0,

g01 + g02 − g03 − g12 + g13 + g23 = 0.

(11)

This system has rank 3, its general solution is

g01 = −g23, g02 = −g13, g03 = −g12,

g12 = g12, g13 = g13,

g23 = g23

for g12, g13 and g23 being free variables. Denote a = g12, b = −g23 and c = −g13, then we
obtain the desired form of the Gram matrix:

⎛

⎜⎜
⎝

2n−2 b c −a
b 2n−2 a −c
c a 2n−2 −b

−a −c −b 2n−2

⎞

⎟⎟
⎠ .

We can also deduce that the Gram matrix of the dual function is strictly connected with
the matrix of the function itself. Since the dual function f̃ is bent as well, it is enough to
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investigate the first row of its Gram matrix. We have

〈2HR0, 2HR1〉 = 〈F0 + F1 + F2 + F3, F0 − F1 + F2 − F3〉
= 2g02 − 2g13 = 2c − 2(−c) = 4c,

〈2HR0, 2HR2〉 = 〈F0 + F1 + F2 + F3, F0 + F1 − F2 − F3〉
= 2g01 − 2g23 = 2b − 2(−b) = 4b,

〈2HR0, 2HR3〉 = 〈F0 + F1 + F2 + F3, F0 − F1 − F2 + F3〉
= 2g03 − 2g12 = 2(−a) − 2a = −4a,

hence 〈R0, R1〉 = c, 〈R0, R2〉 = b and 〈R0, R3〉 = −a.
Now we are to point essential bounds on values of a, b and c and deduce some relations

between them. In order to do it recall that any Gram matrix is positive semi-definite, hence
all its eigenvalues must be nonnegative. The matrix Gram( f ) has four eigenvalues, they are

λ1 = 2n−2 − a + b − c,

λ2 = 2n−2 − a − b + c,

λ3 = 2n−2 + a − b − c,

λ4 = 2n−2 + a + b + c.

One can note that these numbers are nonnegative if and only if

a ≤ 2n−2 ± (b − c),

a ≥ −2n−2 ± (b + c),

that is

a ≤ 2n−2 + min{b − c, c − b},
a ≥ −2n−2 + max{b + c,−b − c},

and, consequently,

a ≤ 2n−2 − |b − c|,
a ≥ −2n−2 + |b + c|,

where |b| and |c| are essentially bounded by 2n−2 from above. Parity of the numbers a, b, c
comes from the fact that they are are inner products of integer vectors of an even dimension
having odd coordinates. 
�
Thus, the duality mapping acts on the Gram matrix by switching values of the coefficients b
and c. One can show that these matrices are singular simultaneously and, moreover,

Corollary 4 The matrices Gram( f ) and Gram
(
f̃
)
have the same spectrum.

Theorem 6 can be reformulated in terms of Hamming distances between subfunctions:

Corollary 5 Let f be a bent function in n variables. The Hamming distances between { fi }3i=0
are characterized by the matrix

Dist( f ) =

⎛

⎜⎜
⎝

0 0 0 2n−2

0 0 0 2n−2

0 0 0 2n−2

2n−2 2n−2 2n−2 0

⎞

⎟⎟
⎠ + 2

⎛

⎜⎜
⎝

0 d2 d3 −d1
d2 0 d1 −d3
d3 d1 0 −d2

−d1 −d3 −d2 0

⎞

⎟⎟
⎠
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for some positive integers d1, d2, d3 such that

|d2 − d3| ≤ d1 ≤ 2n−2 − ∣∣2n−2 − d2 − d3
∣∣ ,

∣
∣2n−2 − 2 · min (d2, d3)

∣
∣ ≤ d1 + ∣

∣2n−2 − d2 − d3
∣
∣ .

Proof The relation between the inner product and the Hamming distance yields the matrix
whereas the inequalities are obtained from

−2n−2 + |b + c| ≤ a ≤ 2n−2 − |b − c|
with

a = 2n−2 − 2d1, b = 2n−2 − 2d2, c = 2n−2 − 2d3.


�

7.2 Linear dependence and bentness

In this subsection we are to consider the connection between singularity of the Gram matrix
of an arbitrary bent function and bentness of its subfunctions.

We will need the following

Lemma 1 Let f and g be Boolean functions in even number k of variables, such
that W f (y),Wg(y) ∈ {

0,±2k/2,±2(k+2)/2
}
for any y ∈ F

k
2 and

∑

x,y∈Fk2
(−1) f (x)⊕g(y)⊕〈x,y〉 = 23k/2. (12)

Then f and g are bent functions, moreover, it holds g = f̃ .

Proof Consider five nonnegative integers

t0 =
∣∣∣
{
y ∈ F

k
2 : W f (y) = 0

}∣∣∣ ,

t1 =
∣∣∣
{
y ∈ F

k
2 : (−1)g(y)W f (y) = 2k/2

}∣∣∣ ,

t2 =
∣∣∣
{
y ∈ F

k
2 : (−1)g(y)W f (y) = −2k/2

}∣∣∣ ,

t3 =
∣∣∣
{
y ∈ F

k
2 : (−1)g(y)W f (y) = 2(k+2)/2

}∣∣∣ ,

t4 =
∣∣∣
{
y ∈ F

k
2 : (−1)g(y)W f (y) = −2(k+2)/2

}∣∣∣ .

Then we have the following system
⎧
⎪⎨

⎪⎩

t0 + t1 + t2 + t3 + t4 = 2k,

(t1 + t2) 2k + (t3 + t4) 2k+2 = 22k,

(t1 − t2) 2k/2 + (t3 − t4) 2(k+2)/2 = 23k/2,

where the second equation follows from the Parseval’s identity applied for the function g,
and the third one is the product (12). The only nonnegative solution is

t0 = 0, t1 = 2k, t2 = 0, t3 = 0, t4 = 0.

Hence, we have
∣∣W f (y)

∣∣ = 2k/2 for any y ∈ F
k
2.
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By the same arguments one can show that
∣
∣Wg(y)

∣
∣ = 2k/2 for any y ∈ F

k
2, therefore both

of f and g are bent functions. Finally, it is enough to note that in this case the product (12)
is exactly

∑

x,y∈Fk2
(−1) f (x)⊕g(y)⊕〈x,y〉 = 2k/2

∑

y∈Fk2
(−1) f̃ (y)⊕g(y) = 23k/2,

that is f̃ = g. 
�

For a bent function f with the Gram matrix Gram( f ) the Gramian has the following
expression

Gramian( f ) = (
2n−2 − a + b − c

) (
2n−2 − a − b + c

) (
2n−2 + a − b − c

)

× (
2n−2 + a + b + c

)
.

(13)

In Sect. 4.4 it was proved that the singularity of the Gram matrix of a self-dual bent function
implies bentness of its subfunctions. It appears that this fact holds for any bent function as
well.

Theorem 7 If the Gram matrix of a bent function f is singular, then subfunctions { fi }3i=0 are
bent. Moreover, the subfunctions of f̃ are also bent.

Proof It is enough to consider all such combinations of a, b, c that the Gramian (13) is zero.
We will consider all the cases separately.

2n−2 − a + b − c = 0: in terms of sign vectors it is equivalent to the following

2n−2 + 〈F0, F1 − F2 + F3〉 = 0.

From system (5) it follows that
{
F0 + (−F1 + F2 − F3) = 2HR1,

〈F0,−F1 + F2 − F3〉 = 2n−2,

that after simple transformations becomes
{

−F1 + F2 − F3 = 2HR1 − F0,

〈F0,HR1〉 = 2n−2.

By Lemma 1 from the second equation we obtain that F0 and R1 are sign vectors of bent
functions.

For other cases it is sufficient to list the systems, the rest of considerations are the same.
2n−2 − a − b + c = 0:

{
F1 − F2 − F3 = 2HR2 − F0,

〈F0,HR2〉 = 2n−2;
2n−2 + a − b − c = 0:

{
F1 + F2 + F3 = 2HR0 − F0,

〈F0,HR0〉 = 2n−2;
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2n−2 + a + b + c = 0:
{

−F1 − F2 + F3 = 2HR3 − F0,

〈F0,HR3〉 = 2n−2.


�
Again, from Theorem 7 and properties of the Gram matrix we conclude that

Corollary 6 If sign vectors of subfunctions { fi }3i=0 of a bent function f are linearly dependent,
then these subfunctions are bent. Moreover, the subfunctions of f̃ are bent as well.

We can also consider 4 × 4 integer matrix, say M , with elements

mi j = 〈
Fi ,HR j

〉 = 〈HFi , R j
〉
.

In order to calculate its elements one can refer to the system (5) and consider inner products
of equations with sign vectors of the subfunctions of f . The matrix 1

2M is the following
⎛

⎜⎜
⎝

2n−2 − a + b + c 2n−2 + a − b + c 2n−2 + a + b − c 2n−2 − a − b − c
2n−2 + a + b − c −2n−2 + a + b + c 2n−2 − a + b + c −2n−2 − a + b − c
2n−2 + a − b + c 2n−2 − a + b + c −2n−2 + a + b + c −2n−2 − a − b + c
2n−2 − a − b − c −2n−2 − a − b + c −2n−2 − a + b − c 2n−2 − a + b + c

⎞

⎟⎟
⎠

It is clear that it is symmetric if and only if b = c. This matrix provides one more condition
for bentness of subfunctions.

Proposition 6 If matrix M of a bent function f is singular, then the subfunctions { fi }3i=0 are
bent. Moreover, the subfunctions of f̃ are bent as well.

Proof It is enough to straightly calculate the eigenvalues of the matrix M and consider cases
when at least one of them is zero. The eigenvalues are

μ1 =
√(

2n−2 − a
)2 − (b − c)2,

μ2 = −
√(

2n−2 − a
)2 − (b − c)2,

μ3 = −2n−2 − a + b + c,

μ4 = 2n−2 + a + b + c.

Note that μ3 = −λ3 and μ4 = λ4. The eigenvalues μ1,2 are zero if and only
if 2n−2 − a = |b − c|, but it implies that either λ1 = 0 or λ2 = 0. So, in all cases we have
that at least one of the eigenvalues of the matrix Gram( f ) is zero, hence from Theorem 7 the
result follows. 
�
Thus, we obtain the properties of a matrix that consists of the inner products between sign
vectors of subfunctions of a bent function and its dual. Whereas one of vectors is given in its
Walsh–Hadamard transform.

8 Conclusion

In this work we studied the decompositions of the vector of values of a self-dual bent function
and introduced the notation of the Grammatrix of a bent function. It is interesting to continue
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the study of thismatrix and obtain newmetrical relations between subfunctions of an arbitrary
(self-dual) bent function. The search of the constructions of bent functions with particular
Gram matrix is also a goal worth pursuing.

Subfunctions, considered in this work, were obtained by fixation of one or two first vari-
ables.We can also consider another way of choosing them, for instance by fixing some planes
of dimension n − 1 and n − 2.

Considering the Gram matrices for the constructions C1 and C3 we can conclude that the
problem of the classification of Gram matrices of self-dual bent functions (even in the case
when all subfunctions are bent) comprises the problem of finding all values of the Rayleigh
quotient that can be achieved by some of their subfunctions. The last problem has intersection
with the investigation of the Hamming distances spectrum between bent functions and their
duals.

Here we list main notation and results on the Gram matrix of a bent function, presented
in current work:

f = ( f0, f1, f2, f3) — decomposition of the vector of values of a (self-dual) bent
function f in n variables

gi j = ∑

x∈Fn−2
2

(−1) fi (x)⊕ f j (x)

Gram( f ) = (
gi j

)
— the Gram matrix of the function f

General form of the Gram matrix of bent function and its dual one:

Gram( f ) =

⎛

⎜⎜
⎝

2n−2 b c −a
b 2n−2 a −c
c a 2n−2 −b

−a −c −b 2n−2

⎞

⎟⎟
⎠

Gram
(
f̃
) =

⎛

⎜⎜
⎝

2n−2 c b −a
c 2n−2 a −b
b a 2n−2 −c

−a −b −c 2n−2

⎞

⎟⎟
⎠

The determinant of the Gram matrix:

Gramian( f ) = (
2n−2 − a + b − c

) (
2n−2 − a − b + c

) (
2n−2 + a − b − c

)

× (
2n−2 + a + b + c

)

If the Gramian is equal to zero, all subfunctions { fi }3i=0 are bent. The converse holds
for n = 4 if the considered function is self-dual and does not hold for n ≥ 6.
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