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Abstract
As a typical representative of the public key cryptosystem, RSA has attracted a great deal of
cryptanalysis since its invention, among which a famous attack is the small private exponent
attack. It is well-known that the best theoretical upper bound for the private exponent d that
can be attacked is d ≤ N 0.292, where N is a RSA modulus. However, this bound may not
be achieved in practical attacks since the lattice constructed by Coppersmith method may
have a large enough dimension and the lattice-based reduction algorithms cannot work so
well in both efficiency and quality. In this paper, we propose a new practical attack based
on the binary search for the most significant bits (MSBs) of prime divisors of N and the
Herrmann-May’s attack in 2010. The idea of binary search is inspired by the discovery of
phenomena called “multivalued-continuous phenomena”, which can significantly accelerate
our attack. Together with several carefully selected parameters according to our exact and
effective numerical estimations, we can improve the upper bound of d that can be practically
achieved. More specifically, without the binary search method, we successfully attack RSA
with a 1024-bit-modulus N when d ≤ N 0.285. Moreover, by our new method, we can
implement a successful attack for a 1024-bit-modulus RSA when d ≤ N 0.292 and for a
2048-bit-modulus RSA when d ≤ N 0.287 in about a month. We believe our method can
provide some inspiration to practical attacks on RSA with mainstream-size moduli.
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1 Introduction

1.1 Background

Since it was proposed in 1978, RSA public key cryptosystem [25] plays an important role in
lots of fields such as data encryption, key encapsulation, etc. A variety of security analysis
come along with its widespread application. As is known to all, the small private exponent
attack is one kind of the most famous attacks on RSA.

For the sake of efficiency in the decryption process, one may choose a small private
exponent d relative to the RSA modulus N when generating the parameters. Unfortunately,
in 1990,Wiener [32] showed that the RSA cryptosystemwas insecure once d ≤ 1

3N
1/4 using

a continued fraction method. Many attempts were made based on Wiener’s idea, N 1/4 was
still the order of magnitude of the upper bound of d without any additional condition, though
multiplied by a better coefficient [2, 5, 30].

A vital improvement was made in [4] by Boneh and Durfee with the lattice-based strategy
using the Coppersmith method. They firstly constructed a triangular lattice and got a bound
d ≤ N 0.284. By removing some unhelpful polynomials, they obtained a sublattice from the
original one and improved the bound to d ≤ N 0.292. However, the non-square sublattice
brought plenty of troubles in the computation of the lattice determinant. In 2010, Herrmann
andMay [13] (we call it HM2010 attack for short below) applied the technique of unravelled
linearization, which is introduced by Herrmann and May [12], to attack RSA and achieved
the same bound as [4]. More importantly, the lattice constructed in [13] is a lower triangular
square matrix which can avoid the complicated computation in [4]. Some generalizations of
Boneh-Durfee’s result can be seen in [14, 22], but the upper bound of d was no better than
[4] indeed. Overall, the upper bound d ≤ N 0.292 showed by Boneh and Durfee remains to
be the best theoretical achievement till now.

1.2 Previous works

We note that all the bounds of the private exponent above are theoretical, i.e., those bounds
are asymptotic which means that they will be achieved only if the lattice dimensions are
large enough. As we know, the reduction algorithm cannot work so well in both efficiency
and quality in a high-dimension lattice, which means that the best theoretical upper bound
given in [4, 13] may not be achieved in practice. A natural question is what practical bound
can be achieved. Therefore, many attempts have been made hoping to give an answer to this
question.

One kind of the implementation of the practical small private exponent attacks is using
the lattices constructed in [4, 13]. In [3], Boneh and Durfee ran their experiments to attack
the RSA cryptosystem successfully when d ≤ N 0.265 with moduli of 1000 bits, 3000 bits
and 10000 bits. Later, Durfee got a better results, namely, d ≤ N 0.277 for a 1024-bit-modulus
RSA and d ≤ N 0.275 for a 2048-bit-modulus RSA [10]. In 2001, Blömer and May proposed
a new attack and carried out some experiments [1]. In comparison with [3], they did not
improve the asymptotic bound but the dimension of the lattice they constructed was lower
under the same bound of d and the same size of N . For a 1000-bit modulus N , they can
implement an effective attack in 6 days as long as d ≤ N 0.278. Without the additional tricks
like [4] (such as using a reduction variant, Chebychev polynomials or some guess strategy),
the early lattice-based practical attacks [1, 3, 10] as well as the attack in [33] did not seem to
break through the bound d ≤ N 0.278 when the size of N is not less than 1024 bits. In 2021,
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Practical attacks on small private exponent RSA 4109

Miller et al. [19] carried out their “focus group” attack in which the bound of d was improved
to d ≤ N 0.280 for a 1000-bit modulus N .

Another kind of RSA practical attacks aimed to improve the bound of d is implemented
with knowledge of some bits of a prime factor p of N . Early attacks of this kind were mainly
theoretical since a large continuous fragment of bits must be known [8, 24], which may not
be feasible in practice. In 2003, Suk stated that by knowing just 1

100 log2 N most significant
bits (MSBs) of p, one could break the RSA cryptosystem for d < N 0.30 [29]. However,
in his experiments, by knowing 10 MSBs of p, he got a bound d ≤ N 0.285 for a 1000-bit
modulus N , which did not reach N 0.30 as he stated (detailed results can be seen in Table 5.8
in [29]). Later in 2008, Sarkar et al. ran large numbers of experiments and got some more
detailed corresponding tables like [29] by searching exhaustively a fewMSBs of p [27]. The
tables highlight that the small private exponent RSA can be successfully attacked with a low-
dimension lattice in practice. Note that the experiments in [29] and [27] are confirmatory, i.e.,
they verified that RSA can be broken when a fewMSBs of p were already known, instead of
searching for each candidate of their values. They did not finish the complete attack and the
running time of the complete attack was estimated. For example, in [27] they stated that, to
break a 1000-bit-modulus RSA for d ≤ N 0.285, the total time was 215 × 484 seconds since
each run required around 484s and 15 MSBs were needed to search, which means that they
needed about a week with a cluster of 26 machines using a 48-dimension lattice. More results
of this kind can be seen in [11, 17, 18, 23, 26].

1.3 Our contributions

In this paper, we focus on the practical attack on RSA. As we can see from the previous
works, there is still a considerable gap between the best theoretical bound of d and the
practical one. Then, can the gap be further narrowed? If so, what can be done to achieve this
goal? With these questions, we firstly take 1024-bit-modulus RSA as an example to carry
out our practical attack and then expand to the practical attack of RSA with other moduli,
such as 2048-bit-modulus RSA.

Firstly, we give a detailed and relatively accurate numerical estimation for the bound
of d. And then, guided by the estimation, we achieve an upper bound d ≤ N0.285 for
a 1024-bit-modulus N within a month, which is the best upper bound of this kind of
attack as far as we know. For the parameters m and t of Coppersmith method (for detailed
introduction, see Sect. 2.2 and Sect. 3), we get the optimal value of t responding to every
value of m by using our calculated accurate analytical approximations. After that, based on
the specific numerical parameter values and the experimental performance estimation of LLL
algorithm provided by Nguyen and Stehlé [21], we give a detailed and relatively accurate
estimation for the bound of d . The estimation table for the solvable upper bound of d we
make is well consistent with both our experimental results and those in [27] especially in the
case of medium-dimension lattices, which is mainly used in our practical attack. Guided by
our estimation table, we implement our first practical attack to find the upper bound we can
achieve based on the HM2010’s lattice. When the parameters m and t are set to 25 and 10,
within 17 days on our PC, we successfully attack 1024-bit-modulus RSA for d ≤ N 0.285

(without any exhaustion strategy or additional side channel information), which is better than
all the previous results we know.

Secondly, inspired by themultivalued-continuous phenomena in our experiments, we
propose a new effective practical attack based on the binary search for someMSBs of p.
Our experiments imply that it seems very difficult to successfully attack RSA for d > N 0.285
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in practicewithin amonth if no other tricks are added. Thenwhat canwe do to further improve
the practical bound of d ? A natural idea may be to enumerate all possible values of several
MSBsof p, which hadbeen tried in somepreviousworks. Frankly speaking, this idea is simple
and trivial. However, during our implementations, we find some nontrivial and inspiring
phenomena, which is called the “multivalued-continuous phenomena” for convenience: (I)
besides the real values of the MSBs of p and q , much more additional exhaustive values
(helpful guess values) can also help to attack the RSA cryptosystem successfully; (II) the
helpful guess values appear continuously around real values of the MSBs of p and q; (III)
the closer p and q are, the more helpful guess values there will be. Based on these inspiring
phenomena, we propose a new practical attack in which one helpful guess value can be
efficiently found by the binary search. As a result, we can significantly accelerate the attack,
which is far better than other current practical results. More precisely, for a relatively close
p and q , e.g., they share 4 MSBs, a 1024-bit-modulus RSA can be successfully attacked
within several hours in a single PC for d ≤ N 0.292; even when p is quite far from q , the
overwhelmingmajority of 1024-bit-modulus RSA can be brokenwithin amonthwith a single
PC for d ≤ N 0.292. By the way, the expression “p is close to q” means the value of |p − q|
is relatively small, while “p is far from q” means the value of |p − q| is relatively large.
Moreover, our attack scenario “p is close to q” is quite different from that in [9] (for details,
see Sect. 4.3.1).

Finally, we implement our new practical attack on 2048-bit-modulus RSA and also
get a nice upper bound. For a relatively close p and q in our experiment (p and q share
about 3 MSBs), the RSA can be successfully attacked in about a week with a single PC for
d ≤ N 0.287; when p is quite far from q , the overwhelming majority of 2048-bit-modulus
RSA can be broken in about a month with a single PC for d ≤ N 0.287. Moreover, for a quite
close p and q , the RSA also can be efficiently broken for d ≤ N 0.292, e.g., in our experiment,
with p and q sharing 50 MSBs, the RSA can be successfully attacked within 12 days with
a single PC for d ≤ N 0.292. Though the promotion effect is not so good as that of attack on
1024-bit-modulus RSA, the bound d ≤ N 0.287 (our attack on RSA can succeed with very
special p and q for d ≤ N 0.292 but may not work well in a general case) is still better than
all previous works as far as we know.

We would like to note that all our experimental results are obtained with a single PC, for
more computing power, the running time given by our attack will surely be further improved.

1.4 Organization of the paper

The rest of this paper is organized as follows. InSect. 2,we recall somepreliminary knowledge
and lemmas to be used latter. In Sect. 3, we revisit the Herrmann and May’s attack in 2010.
In Sect. 4, we introduce in detail our new practical attack on RSA based on the binary search.
In Sect. 5, we show some results of our experiments. Section6 is the conclusion.

2 Preliminaries

2.1 Lattices and the LLL algorithm

Let u1, . . . , uw ∈ R
n be w linearly independent vectors with w ≤ n. The n-dimensional

lattice L , spanned by u1, . . . , uw , is the set of all integer linear combinations of u1, . . . , uw,
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namely,

L =
{

w∑
i=1

kiui | k1, . . . , kw ∈ Z

}
.

The set of vectors u1, . . . , uw is called a basis of L and the integer w is called the rank
of L while n is called the dimension. Specially, the lattice L is called full rank if w = n.
Let U be the w × n matrix consisting of row vectors u1, . . . , uw. Then the determinant of
L is defined by det L = √

UU t . A famous hard problem is to find a short non-zero vector
in L , especially the shortest one. The famous LLL algorithm [16] behaves well in finding
a relatively short and nearly orthogonal lattice basis in polynomial time. Specifically, the
properties of the output lattice basis by LLL algorithm can be seen in the following lemma.

Lemma 1 (LLL [16]) Let L be a full-rank lattice of dimension w and let ṽ1, . . . , ṽw be a
reduced basis of L output by the LLL algorithm. Then

‖ṽi‖ ≤ 2
w(w−1)
4(w+1−i) (det L)

1
(w+1−i) for any 1 ≤ i ≤ w,

where ‖ṽi‖ is the Euclidean norm of ṽi .

In most cases, the first reduced basis vector ṽ1 attracts major attention. However, the upper

bound 2
w−1
4 (det L)

1
w of ṽ1 given by Lemma 1 is quite rough. In order to give a precise

estimation as an instruction for our practical attack, we need a more accurate bound for ṽ1.
In our attack implementations, we use the following estimation assumption given by Nguyen
et al. [21].

Assumption 1 With the same notations as above in this section, let λ1(L) denote the
Euclidean norm of the shortest lattice vector L , then

λ1(L)/(det L)1/w ≈ (1.02)w.

The experimental LLL bound 1.02w(det L)1/w was got when Nguyen et al. investigated
the practical behaviors of LLL, based on hundreds of experiments on different kinds of
lattices with dimensions varied from 50 to 130. Since the value of 1.02w is significantly less
than 2(w−1)/4 when the dimension w is suitably high (e.g., w = 50), they thought this may
be why cryptanalysts used to believe LLL returns vectors surprisingly small compared to the
original estimation. For more details, see Sect. 4.1 in [21]. We will also check the validation
of Assumption 1 in Sect. 4.1.

2.2 Coppersmithmethod

Let ‖h(x1, ..., xr )‖ denote the norm of a polynomial h(x1, ..., xr ) which represents the
Euclidean norm of the coefficient vector. Consider a modular equation h(x1, ..., xr ) =
0 (mod M), where all the absolute values of the target solutions x1, ..., xr are bounded by
X1, ..., Xr , respectively. In 1996, a polynomial time algorithm to find all the solutions under
the boundary was given by Coppersmith if �r

i=1Xi is smaller than M , determinately when
r ≤ 2 and heuristically when r > 2 [7]. Later, an important work was done by Howgrave-
Graham [15] who gave a simpler sufficient condition to transform a modular equation into
an integer equation.
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Lemma 2 (Howgrave-Graham) Letm, M, X1, ..., Xr be positive integers. Let g(x1, ..., xr ) ∈
Z[x1, ..., xr ] be a polynomial with at most n monomials and let ‖g(x1, ..., xr )‖ denote the
norm of the polynomial g(x1, ..., xr ). If

(1) g(x̃1, ..., x̃r ) = 0 (mod Mm), where |x̃1| < X1, ..., |x̃r | < Xr and
(2) ‖g(x1X1, ..., xr Xr )‖ < Mm/

√
n,

then g(x̃1, ..., x̃r ) = 0 holds over Z.

Lemma 2 provides a key instruction in RSA cryptanalysis. From Condition (2) of Lemma
2, we need to find polynomials with relatively small norms. Since there is one-to-one corre-
spondence between a polynomial and its coefficient vector, the target of finding polynomials
with small norms boils down to finding short non-zero vectors in the constructed lattice,
which can be achieved in polynomial time by LLL algorithm.

After finding enough short nonzero vectors, we need to compute the common roots of the
polynomials corresponding to the vectors. Usually, we need the following heuristic assump-
tion. Recall that polynomials f1, f2, . . . , fm ∈ k[x1, x2, . . . , xn] are called algebraically
independent over a field k, if there is no nonzerom -variate polynomial� ∈ k[y1, y2, . . . , ym]
such that �( f1, f2, . . . , fm) = 0.

Assumption 2 The polynomials output by the LLL algorithm are algebraically independent,
and so the common roots of these polynomials can be computed by computing resultants or
finding a Gröbner basis.

This assumption has been verified by experiments before as well as ours in Sect. 5.

3 The HM2010 attack revisited

Our practical attack on RSA in this paper relies heavily on the work of Herrmann and
May. Therefore, in this section we will revisit the HM2010 attack briefly. In order to show its
essence, wewill revisit Boneh andDurfee’s work together. For convenience, the lattices given
by Boneh and Durfee that yield the bounds 0.284 and 0.292 are called BD−0.284-lattice and
BD−0.292-lattice, respectively.

Let N = pq be a public RSA modulus whose prime factors p and q are of the same
bitsize. A public exponent e and a private exponent d satisfy ed ≡ 1 (mod ϕ(N )), i.e.,

ed − k(N + 1 − p − q) = 1 (1)

for some integer k. Let A = N + 1 and s = −p − q . Then it can be seen from (1) that

k(A + s) + 1 ≡ 0 (mod e).

Denote f (x, y) := x(A+ y) + 1. The original aim to recover d and factor N became to find
small roots of the polynomial f (x, y)(mod e). With a fixed positive integer m, a parameter
t to be optimized and the definitions of the following polynomials (usually called x-shift
polynomials and y -shift polynomials respectively)

gi,k(x, y) := xi f kem−k, k = 0, . . . ,m and i = 0, . . . ,m − k;
h j,k(x, y) := y j f kem−k, k = 0, . . . ,m and j = 1, . . . , t,

Boneh and Durfee constructed the BD−0.284-lattice using the Coppersmith method. All the
used shift polynomials are ordered as

gi,k(x, y) ≺ h j,k′(x, y) for any i, j, k, k′,
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Practical attacks on small private exponent RSA 4113

gi,k(x, y) ≺ gi ′,k′(x, y) for i + k < i ′ + k′,

gi,k(x, y) ≺ gi ′,k′(x, y) for i + k = i ′ + k
′
and i > i ′,

h j,k(x, y) ≺ h j ′,k′(x, y) for j < j
′
,

h j,k(x, y) ≺ h j,k′(x, y) for k < k′.

A simple BD−0.284-lattice with m = 2, t = 1 is shown below (9 × 9 matrix).

1 x xy x2 x2y x2y2 y xy2 x2y3

e2 e2

xe2 e2X
f e e eAX eXY
x2e2 e2X2

x f e eX eAX2 eX2Y
f 2 1 2AX 2XY A2X2 2AX2Y X2Y 2

ye2 e2Y
y f e eAXY eY eXY2

y f 2 2AXY A2X2Y 2AX2Y 2 Y 2XY 2 X2Y 3

Using the BD−0.284-lattice together with m → ∞, they got the bound d ≤ N 0.284. In
order to decrease the determinant of the lattice and improve the upper bound of d , they
tried to remove some rows that enlarge the determinant. They constructed the BD−0.292-
lattice by throwing away the y-shift polynomials y j f kem−k from the BD−0.284-lattice for
all j and k < �m/t j . For example, when m = 2 and t = 1, the bold rows of the above
BD−0.284-lattice is removed, and then the BD−0.292-lattice is as follows (7 × 9 matrix).

1 x xy x2 x2y x2y2 y xy2 x2y3

e2 e2

xe2 e2X
f e e eAX eXY
x2e2 e2X2

x f e eX eAX2 eX2Y
f 2 1 2AX 2XY A2X2 2AX2Y X2Y 2

y f 2 2AXY A2X2Y 2AX2Y 2 Y 2XY 2 X2Y 3

With the BD−0.292-lattice, the upper bound of d is improved to d ≤ N 0.292. However,
the BD−0.292-lattice is not a square matrix which results in a complex computation of the
lattice determinant.

In order to avoid the complex computation of the determinant, Herrmann andMay applied
a technique of unravelled linearization to construct a new square lattice and got the same
bound d ≤ N 0.292. They stated the reason why the BD−0.292-lattice is not square is that
the first y-shift polynomial brings more than one new term to the lattice. This phenomenon
results in more than one column adding to the lattice when one row is added. To solve the
trouble, they applied the unravelled linearization technique to their lattice construction. In
the technique the substitution xy = u − 1 is used twice. The first use changes f (x, y) to
f̃ (u, x) = u + Ax . Since all the shift polynomials are added according to the order defined
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above, the second use can make sure that every new-added y-shift polynomial adds only one
new term to the set constituted by all the terms of the former polynomials, which keeps the
lattice being a square matrix. More detailed, consider y j f̃ k being added to the lattice (the
factor em−k is omitted as it does not influence the set of terms). Since f̃ (u, x) = u + Ax , it
follows that

y j f̃ k = uk y j +
k∑

i=1

(
k
i

)
Aiuk−i x i y j .

The term uk y j is a new-added term. Consider the other terms in y j f̃ k . Using the second
substitution xy = u − 1 one can get

uk−i x i y j = uk−i (u − 1)min{i, j}xi−min{i, j}y j−min{i, j}.

If i ≥ j , then

uk−i x i y j = uk−i (u − 1) j x i− j =
j∑

l=0

(
j
l

)
(−1) j−l uk−i+l x i− j ,

whose terms already appear in the x-shift polynomials xi− j f̃ k−i , . . . , xi− j f̃ k−i+ j ; if i < j ,
then

uk−i x i y j = uk−i (u − 1)i y j−i =
i∑

l=0

(
i
l

)
(−1)i−l uk−i+l y j−i ,

whose terms already appear in y j−i f̃ k−i , . . . , y j−i f̃ k . All these polynomials as well as
the terms have been added to the lattice before. Therefore, by this technique, every y-shift
polynomial y j f̃ k adds only one new term uk y j to the lattice, which makes sure that the
lattice is square. A simple HM2010 lattice withm = 2, t = 1 is shown below (7×7 matrix).

1 x u x2 xu u2 u2y

e2 e2

xe2 e2X
f̃ e eAX eU
x2e2 e2X2

x f̃ e eAX2 eXU
f̃ 2 A2X2 2AXU U2

y f̃ 2 −A2X −2AU A2XU 2AU2 U2Y

Overall, the complete HM2010 attack can be briefly summarized as follows.

(1) Use the substitution xy = u − 1, f (x, y) becomes to f̃ (u, x) = u + Ax , and then
gi,k(x, y) and h j,k(x, y) are changed to g̃i,k(u, x) and h̃ j,k(u, x, y).

(2) Discard the y-shift polynomials h̃ j,k(u, x, y) if k < �m/t j , and then the retained y-shift
polynomials are h̃ j,k(u, x, y) := y j f̃ kem−k with j = 1, . . . , t and k = �m/t j, . . . ,m.

(3) Reuse the substitution xy = u − 1 to substitute all the xy in the monomials of g̃i,k(u, x)
and h̃ j,k(u, x, y).

(4) Construct a lower triangular lattice L based on g̃i,k(u, x) (k = 0, . . . ,m and i =
0, . . . ,m − k) and h̃ j,k(u, x, y) ( j = 1, . . . , t and k = �m/t j, . . . ,m).
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(5) Use the lattice basis reduction algorithm together with resultants computation or a
Gröbner basis method and finally get the value of d .

The core point of this technique is the double use of the substitution xy = u−1 in step (1)
and (3). The first use greatly reduces the terms of the polynomials and results in a decrease of
the lattice dimension. The second use makes sure that every new-added y-shift polynomial
adds only one new term to the set constituted by all the terms of the former polynomials,
which keeps the lattice being a square matrix.

Let d ≤ N δ for some real number δ. Let τ = t/m and let sX , sY , sU , se denote the
contribution of X , Y ,U , e to the determinant det L . Based on the simplified condition det L =
XsX Y sY UsU ese ≤ em dim L from Lemma 2, it can be obtained that

δ · m
3

6
+ 1

2
· τ 2m3

6
+

(
δ + 1

2

)
· (1 + 2τ)m3

6
+ (2 + τ)m3

6
≤ (1 + τ)m2

2
· m, (2)

using the upper bounds X = N δ, Y = N 1/2,U = N δ+1/2 together with the approximate
calculations of

sX = m3

6
+ o(m3),

sY = τ 2m3

6
+ o(m3),

sU = (1 + 2τ)m3

6
+ o(m3),

se = (2 + τ)m3

6
+ o(m3),

dim L = (1 + τ)m2

2
+ o(m2).

After getting an optimized value of τ = (1 − 2δ), they finally successfully obtained the
desired Boneh-Durfee bound

δ ≤ 1 −
√
2

2
≈ 0.292.

For details, see [13].

4 A new practical small private exponent attack on RSA

The majority of small private exponent attacks on RSA mainly focus on the theoretical
asymptotic upper bound of the private exponent d . Therefore, as far as we know, when
calculating the values of the exponents in the lattice determinant, only the highest order
terms of the parameter m are retained. Considering that the value of m cannot be too large
in the practical attack, the low-order terms should be retained for accurate estimations. In
this section, we will consider the modulus N with η-bit-size prime factors p and q where
q < p < 2q and set d = N δ .

With the same notations as Sect. 3, specific and relatively exact values of some parameters
used in the calculations of the dimension dim L and the determinant det L are shown as
follows.
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Lemma 3 With the same notations as Sect.3, we have

dim L =
m∑

k=0

m−k∑
i=0

1 +
τm∑
j=1

m∑
k=

⌊
1
τ

⌋
j

1 ≈ (m + 1)(m + 2)

2
+ τm2 + (2τ − 1)m

2
,

det L = XsX Y sY UsU ese ,

where

sX =
m∑

k=0

m−k∑
i=0

i = m(m + 1)(m + 2)

6
,

sY =
τm∑
j=1

m∑
k=

⌊
1
τ

⌋
j

j ≈ τ 2m3 + 3τ 2m2 + 3τm − m

6
,

sU =
m∑

k=0

m−k∑
i=0

k +
τm∑
j=1

m∑
k=

⌊
1
τ

⌋
j

k ≈ (4τ 2 + 2τ)m3 + (9τ 2 + 3τ)m2 + (7τ − 1)m

12τ
,

se =
m∑

k=0

m−k∑
i=0

(m − k) +
τm∑
j=1

m∑
k=

⌊
1
τ

⌋
j

(m − k)

≈ m(m + 1)(m + 2)

3
+ 2τ 2m3 + (3τ 2 − 3τ)m2 − (3τ − 1)m

12τ
.

Proof. See Appendix A.

With the same consideration as above, the second condition in Lemma 2 cannot be sim-
plified as det L ≤ em dim L . Let ṽ1 be the first reduced basis vector output by LLL algorithm.
Strictly following Lemma 2, we need

‖ṽ1‖ <
em√
dim L

.

By the LLL algorithm, the theoretical upper bound of ṽ1 can be given by

‖ṽ1‖ < 2(dim L−1)/4(det L)1/ dim L .

However, this estimation is too rough to instruct our experiments. Instead, in the practical
attack, we adopt the experimental estimation of ṽ1 given by Nguyen et al. in [21], i.e.,

‖ṽ1‖ < (1.02)dim L(det L)1/ dim L .

Then we can utilize the following modified estimation formula to obtain the upper bound of
the solvable δ, namely,

(1.02)dim L(det L)1/ dim L <
em√
dim L

. (3)

In the rest of this section, we will at first explore the practical solvable bound of δ using
HM2010’s method. In order to break through the bound, we then try a fewMSBs exhaustion
of p to obtain new bounds of δ. At last, we introduce our new attack based on the binary
search.
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4.1 The practical solvable bound of ı in HM2010 attack

Firstly, we use the above method to estimate the upper bound of the solvable δ. Take the
logarithm of both sides of Inequality (3) to base N , we can obtain

(dim L)2 · logN 1.02 + 1

2
dim L · logN dim L + logN det L < m · dim L · logN e.

Since

logN 1.02 ≈ log2 1.02

2η
, logN dim L ≈ 1

2η
log2 dim L,

logN e ≈ 1, logN det L ≈ δ · sX + 1

2
sY +

(
δ + 1

2

)
· sU + se,

it follows that

δ <
−(dim L)2 · log2 1.02

2η +
(
m − log2 dim L

4η

)
· dim L − 1

2 (sY + sU ) − se

sX + sU
. (4)

Since (4) is too complicated for us to give an optimal analytical expression of the bound,
instead we show the discrete corresponding relation of the upper bound of δ with m and t .
Using (4) together with analytical approximations in Lemma 3, we can get the optimal t
corresponding to various m. Based on the parameters m and the optimal t , we can obtain the
value of 1/τ (namely, m/t), which can help us to get all the real values of the parameters in
Lemma 3 by a rounding operation. Based on the real values and (4), a corresponding relation
between the upper bound of δ and m, t is displayed in Table 1.

As can be seen from Table 1, whenm = 21, t = 9 and δ ≤ 0.284, the method of HM2010
can successfully recover the private exponent d . This is also consistent with our experimental
results. Theoretical estimations and experimental results show that the minimum parameters
selected for solving δ ≤ 0.284 are m = 21, t = 9, and the success rate of such experiments
is more than 60% with 100 experiments. Similarly, if the private exponent d with the size
δ ≤ 0.285 is required to be solved, theminimumparameters to be chosen arem = 25, t = 10.
This is also consistent with our experiments since the rate of our experiments is about 60%
(see Sect. 5 for details of our experiments). Considering the running time of our attack for
δ ≈ 0.285 and the fact that we fail to attack RSA for d ≥ N 0.286 within a month, it seems
very difficult to get a better bound of δ in practical attacks on RSA.

Remark 1 The validation of Assumption 1 is checked by some representative experi-
ments when we give Table 1. Specially, we check the value of (

‖ṽ1‖
(det L)1/w

)1/w when m =
5, 10, 12, 14. Our experiments show that the value 1.011 when m = 5 is slightly less than
1.02 and the values 1.017, 1.019, 1.020 are nearly equal to 1.02 when m = 10, 12, 14. This
result implies that Assumption 1 is valid for lattices with medium dimensions, which is
consistent with [21].

From Table 1 we can see that, to get a better bound of δ, we need a lager value of m, thus
resulting in a lattice with a higher dimension. However, as we know, the LLL algorithm does
not perform well in a lattice with a high dimension. This fact makes it unpractical to further
improve the bound by utilizing HM2010’s lattice merely. There is no doubt that new ideas
need to be added into the attack in order to improve the practical bound of δ.
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Table 1 A corresponding relation
between δ and m, t for
2η = 1024

m Optimal t Actual τ Dim δ

5 2 0.4000 27 0.2679

6 2 0.3333 33 0.2704

7 3 0.4286 48 0.2731

8 3 0.3750 60 0.2752

9 4 0.4444 75 0.2763

10 4 0.4000 90 0.2779

11 5 0.4545 108 0.2789

12 5 0.4167 126 0.2797

13 5 0.3846 145 0.2806

14 6 0.4286 168 0.2811

15 6 0.4000 190 0.2818

16 7 0.4375 216 0.2821

17 7 0.4118 241 0.2827

18 7 0.3889 267 0.2832

19 8 0.4211 298 0.2834

20 8 0.4000 327 0.2839

21 9 0.4286 361 0.2840

22 9 0.4091 393 0.2844

23 10 0.4348 430 0.2845

24 10 0.4167 465 0.2848

25 10 0.4000 501 0.2851

26 11 0.4231 538 0.2854

4.2 New bounds of ıwith someMSBs exhaustion of p

When using HM2010 method directly to attack the small private exponent of RSA, there will
inevitably be a bottleneck. That is, a larger value of m would lead to a larger practical upper
bound of solvable δ; while at the same time, when m increases, the dimension of the lattice
increases rapidly, which results in a sharp rise in the running time. Based on our experiments,
it seems very difficult to break 1024-bit-modulus RSA within a month if δ > 0.285.

In order to further improve the practical upper bound of the assaultable private exponent,
we look back to Inequality (3). We note that, when m and t are fixed, decreasing the value
of det L will raise the upper bound of δ. In fact, let us consider the equation

det L = XsX Y sY UsU ese .

It can be seen from Lemma 3 that sX , sY , sU , se will remain unchanged for fixed m and t .
It is clear that if the bounds Y and U are decreased, then det L will decrease. A natural and
trivial idea to achieve this goal is to try an exhaustive search for some MSBs of p, which is
the same thought as Suk in [29] and Sarkar in [27]. In [29] and [27], Suk and Sarkar et al.
directly used N/p′ as an approximation of q where p′ is an approximation of p constructed
from the MSBs of p. With the approximation, Suk completed his simple extension of the
Boneh-Durfee attack and Sarkar et al. successfully realized their attack with low lattice
dimensions. In [29] and [27], they did not give the concrete construction of p′ and discuss
the deviation of MSBs from the approximation to the real value. However, in this paper, in
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order to explain clearly the multivalued-continuous phenomena, we should make sure that
the calculated approximateMSBs value we derive from pm (i.e., the sMSBs of p) is a perfect
approximation of qm (i.e., the s MSBs of q), that is, the derivation must be quite small. Under
this consideration, we give a lemma as follows.

Lemma 4 Let N = pq and the η-bit-size prime factors p and q satisfy q < p < 2q. Let
pm, qm be the s MSBs of p, q and let pl , ql be the η − s least significant bits (LSBs) of p, q.
Then we have

qm =
⌊⌊

N

pm · 2η−s + 2η−s−1

⌋
/2η−s

⌋
+ α, α ∈ {−1, 0, 1}, (5)

pm =
⌊⌊

N

qm · 2η−s + 2η−s−1

⌋
/2η−s

⌋
+ α′, α′ ∈ {−1, 0, 1}. (6)

Proof Let p̃ = pm · 2η−s + 2η−s−1 and denote q̃ = N/ p̃. Then

|q − q̃| =
∣∣∣∣q − N

p̃

∣∣∣∣ = q|p − p̃|
p̃

= q|pl − 2η−s−1|
p̃

.

The inequality |pl − 2η−s−1| < 2η−s−1 holds since 0 < pl < 2η−s . Since q < p < 2 p̃, we
can get

|q − q̃| = q · 2|pl − 2η−s−1|
2 p̃

< 2|pl − 2η−s−1| < 2 · 2η−s−1 = 2η−s . (7)

Let q̃m be the s MSBs of �q̃, that is

q̃m =
⌊ �q̃
2η−s

⌋
=

⌊⌊
N

pm · 2η−s + 2η−s−1

⌋
/2η−s

⌋
.

From (7), we can get |qm − q̃m | ≤ 1 (otherwise, |qm − q̃m | ≥ 2, and so |q − q̃| > 2η−s ,
which leads to a contradiction), and then (5) is obviously true.

Similarly, pm can also be computed when qm is known. Let q̃ = qm · 2η−s + 2η−s−1 and
p̃ = N/q̃ . Then

|p − p̃| =
∣∣∣∣p − N

q̃

∣∣∣∣ = p|q − q̃|
q̃

= p|ql − 2η−s−1|
q̃

.

The inequality |ql − 2η−s−1| < 2η−s−1 holds since 0 < ql < 2η−s . We note that p, q, q̃ are
all n-bit numbers, and so it is clear that p < 2q̃ . Therefore, we can get

|p − p̃| = p · 2|ql − 2η−s−1|
2q̃

< 2|ql − 2η−s−1| < 2η−s,

which implies that (6) is true with a same discussion as above. This completes the proof. ��
Remark 2 From Lemma 4 we know, for pm and qm , no matter which one is known, the other
one can be computed successfully by the same method. Therefore, in our experiments, pm
and qm have the same status and effect.

In our new practical attack, we will take α = 0 (or take α′ = 0 if we need) in Lemma 4.
Although α = 0 does not always hold in practice, it will not be an obstruction to our practical
attack, since good approximations of pm and qm can also help to realize a successful attack
thanks to the multivalued-continuous phenomena which will be introduced in Sect. 4.3.
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Table 2 Partial numerical
corresponding relation between δ

and s with m = 7,
t = 3, 2η = 1024

s ξ(s/1024) δ

24 24/1024 0.2899

25 25/1024 0.2906

26 26/1024 0.2913

27 27/1024 0.2920

28 28/1024 0.2927

29 29/1024 0.2935

30 30/1024 0.2942

Table 3 Partial numerical
corresponding relation between δ

and s with m = 12,
t = 5, 2η = 1024

s ξ(s/1024) δ

16 16/1024 0.2910

17 17/1024 0.2917

18 18/1024 0.2924

19 19/1024 0.2931

20 20/1024 0.2938

21 21/1024 0.2946

22 22/1024 0.2953

When s MSBs of p are enumerated, Eq. (1) then becomes to

ed − 1 = k(N + 1 − (pm + qm) · 2η−s − (pl + ql)).

Let A′ = N + 1 − (pm + qm) · 2η−s, y′ = −(pl + ql), x ′ = x = k. Then we have

f ′(x ′, y′) = x ′(A′ + y′) + 1 ≡ 0 (mod e).

Using the substitution u′ = x ′y′ + 1, the equation above changes to

f ′(u′, x ′) = u′ + A′x ′ ≡ 0 (mod e).

Let 2s = N ξ . Then the bounds of the new variables become to

x ′ < X ′ = N δ, y′ < Y ′ = N
1
2−ξ ,

e < N , u′ < U ′ = N δ+ 1
2−ξ .

A result similar to (4) can be obtained, i.e.,

δ <
−(dim L)2 · log2 1.02

2η +
(
m − log2 dim L

4η

)
· dim L − ( 12 − ξ)(sY + sU ) − se

sX + sU
. (8)

Similar to Sarkar in [27], we hence adopt the discrete strategy to show the relationship
numerically instead. Partial numerical corresponding relations between δ and s are given in
Tables 2and 3.

As can be seen from Tables 2 and 3, for a 1024-bit-modulus RSA, whenm = 7 and t = 3,
at least 27 MSBs of p need to be exhausted to raise the upper bound of δ to 0.292. Similarly,
when m = 12 and t = 5, the necessary number of exhausted MSBs is 18 to achieve the
same bound with a 1024-bit N . This is well consistent with our experiments. In details, when
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Table 4 Partial corresponding relation between δ and s given in [27, 29] and ours with m = 7, t = 3

Suk 2003 [29] Sarkar 2008 [27] Ours
N (bit) s (bit) δ N (bit) mean s (bit) δ N (bit) s (bit) δ

1000 10 0.285 1000 9 0.280 1000 20 0.2874

1000 20 0.291 1000 16.4 0.285 1000 21 0.2882

1000 30 0.298 1000 23.8 0.290 1000 22 0.2889

1000 40 0.304 1000 31.8 0.295 1000 23 0.2896

1000 50 0.308 1000 38.6 0.300 1000 24 0.2903

m = 7 and t = 3, the success rate with a 26-MSB exhaustion is 13%, while in sharp contrast
the rate with 27-MSB exhaustion is 87%; when m = 12 and t = 5, the success rates of
17-MSB exhaustion and 18-MSB exhaustion are 50% and 94%. For more details, see Sect. 5.

Remark 3 Tables 2 and 3 will play an important role in our new practical attack which is
introduced in Sect. 4.3. Since the necessary numbers of exhausted MSBs in Tables 2 and
3 are given by our estimations and well consistent with our experiments, they may be nice
instructors for us to choose suitable parameters (namely m, t, s) to implement our attack.

Similar results can be seen in [29] and [27] andwedisplay part of thembelow inTable 4.We
note that the necessary numbers of exhausted MSBs in [29] were given by estimations while
those in [27] were given by experiments. Moreover, the maximum number, the minimum
number and the mean number of the necessary exhausted MSBs were provided in [27] by
large amounts of experiments. From Table 4 we can see, 20-MSB exhaustion is needed to
attain the bound δ ≤ 0.291 in [29] while the mean number of necessary exhausted MSBs to
attain the bound δ ≤ 0.290 is 23.8 in [27]; our estimations show that 24-MSB exhaustion
is needed to attain the bound δ ≤ 0.2903, roughly the same as [27]. This implies that our
estimation is reasonable and more consistent with implementations than [29].

4.3 A new practical attack based on the binary search

When implementing our practical small private exponent attack onRSA, some interesting and
nontrivial phenomena appear: (I) besides pm and qm , the real values of the MSBs of p and q ,
a value close to pm or qm can also help to attack RSA successfully in the exhaustion process;
(II) these additional exhaustive values appear continuously around pm and qm (the word
“continuously” here means continuous integral point in the interval); (III) the closer p and
q are, the more additional exhaustive values there will be. We call the above phenomena the
“multivalued-continuous phenomena”. Themultivalued-continuous phenomena immediately
inspire us a new attack based on the binary search. That is, to complete the attack effectively,
we can try the binary search for the MSBs of p in the exhausted space. The binary search
means that we need neither to go through the exhausted space from the smallest value to the
largest ineffectively to find the real values of pm and qm , nor to know the exact amount of
these values close to pm and qm who can help to attack RSA successfully. What we should
do is just to efficiently find one of such values. Our experiments have verified the correctness
and effectiveness of our algorithm based on the binary search.
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4.3.1 The multivalued-continuous phenomena

At first we give a necessary lemma, whichwill be helpful to prove themultivalued-continuous
phenomena.

Lemma 5 Let

h(x) = x +
⌊⌊

N

bx + b/2

⌋
/b

⌋
− c,

where x is a non-negative integer and N , b, c are positive integers. Then

h(x) ≤ h(x − 1) if 1 ≤ x ≤
⌊√

N

b2
+ 1

4

⌋
; and

h(x) ≥ h(x − 1) if x ≥
⌈√

N

b2
+ 1

4

⌉
.

Proof If 1 ≤ x ≤
⌊√

N
b2

+ 1
4

⌋
, then N ≥ b2(x + 1/2)(x − 1/2), and so

N

b(x − 1) + b/2
− N

bx + b/2
= Nb

(bx + b/2)(b(x − 1) + b/2)
= Nb

b2(x + 1/2)(x − 1/2)
≥ b.

We note that
⌊
u
⌋ − ⌊

v
⌋ ≥ w naturally holds for any positive real numbers u, v and positive

integer w with u − v ≥ w. Therefore, we have⌊
N

b(x − 1) + b/2

⌋
−

⌊
N

bx + b/2

⌋
≥ b,

and hence ⌊
N

b(x − 1) + b/2

⌋
/b −

⌊
N

bx + b/2

⌋
/b ≥ 1,

which implies that ⌊⌊
N

b(x − 1) + b/2

⌋
/b

⌋
−

⌊⌊
N

bx + b/2

⌋
/b

⌋
≥ 1.

Note that

h(x − 1) − h(x) = x − 1 +
⌊⌊

N

b(x − 1) + b/2

⌋
/b

⌋
− x −

⌊⌊
N

bx + b/2

⌋
/b

⌋

=
⌊⌊

N

b(x − 1) + b/2

⌋
/b

⌋
−

⌊⌊
N

bx + b/2

⌋
/b

⌋
− 1.

Therefore, h(x) ≤ h(x − 1) holds if 1 ≤ x ≤
⌊√

N
b2

+ 1
4

⌋
.

If x ≥
⌈√

N
b2

+ 1
4

⌉
, then N ≤ b2(x + 1/2)(x − 1/2), and so

N

b(x − 1) + b/2
− N

bx + b/2
= Nb

b2(x + 1/2)(x − 1/2)
≤ b.

With a similar discussion as above, we can get h(x) ≥ h(x − 1). This completes the proof. ��
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Remark 4 It is not difficult to see that, for x ≥ 1,

h(x) − h(x − 1) =
⌊⌊

N

bx + b/2

⌋
/b

⌋
−

⌊⌊
N

b(x − 1) + b/2

⌋
/b

⌋
+ 1 ≤ 1

since N
bx+b/2 < N

b(x−1)+b/2 . Then combining with Lemma 5 we can conclude that: if x ≥⌈√
N
b2

+ 1
4

⌉
, then 0 ≤ h(x) − h(x − 1) ≤ 1.

Let us consider the case where pm is known. Let A′ = N + 1− (pm + qm) · 2η−s . Then

ed − 1 = x ′(A′ + y′) (9)

obviously holds if y′ = −(pl + ql), x ′ = k. Without loss of generality, we assume s > 2
and the value of s we choose will make sure that d can be correctly recovered based on Eq.
(9).

Let p̃m be a guess value of pm . Since the MSB of p is 1, we can assume that 2s−1 ≤
p̃m < 2s . Then by Lemma 4,

q̃m =
⌊⌊

N

p̃m · 2η−s + 2η−s−1

⌋
/2η−s

⌋
(10)

is a good approximation of qm . Let

�(x) = x +
⌊⌊

N

bx + b/2

⌋
/b

⌋
− (pm + qm), x ∈ [2s−1, 2s), (11)

where b = 2η−s . It is clear that �( p̃m) = ( p̃m + q̃m) − (pm + qm). Let

p̃l = p − p̃m · 2η−s, q̃l = q − q̃m · 2η−s and A′′ = N + 1 − ( p̃m + q̃m) · 2η−s .

Then

ed − 1 = x ′′(A′′ + y′′) (12)

obviously holds if y′′ = −( p̃l + q̃l), x ′′ = k.
In our experiments, we find that there are some other guess values except pm and qm that

can help to correctly recover d . The reason why these guess values exist may come from
two aspects. The first one is that in most cases there exist some additional p̃m besides pm
and qm such that �( p̃m) = 0 (i.e., p̃m + q̃m = pm + qm), which implies that Eq. (12) is the
same as Eq. (9). In this case d can be correctly recovered based on Eq. (12). The second one
is that the bound in Condition (1) of Lemma 2 is not so tight. In other words, in practical
cases, when the values of some variables slightly exceed their presupposed upper bounds
and other conditions remain unchanged, g(x̃1, ..., x̃r ) = 0 may still hold over Z. This means
that, in our experiments, even if |�( p̃m)| is slightly larger than 0, the private exponent d may
be correctly recovered based on Eq. (12), though the value of | − ( p̃l + q̃l)| may exceed its

presupposed upper bound 2η−s = N
1
2−ξ .

From the discussion above, if d can be correctly recovered based on Eq. (12), the practical
small private exponent attack will be successful. For convenience, a guess value p̃m that can
help to realize a successful small private exponent attack on RSA is called a helpful guess
value. A pair ( p̃m , q̃m) is called a helpful guess pair if p̃m is a helpful guess value. Such a
set which consists of all the helpful guess values is called the Helpful Guess Set, denoted
by �. Note that the parameter s we choose will guarantee that d can be correctly recovered
based on Eq. (9). Therefore, we have {pm, qm} ⊆ �.
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In order to present a better understanding of the “continuous” property, we need a heuristic
assumption as follows.

Assumption 3 There exist two largest non-negative integers ρ1 and ρ2 such that: if −ρ1 ≤
�( p̃m) ≤ ρ2, then the private exponent d can be correctly recovered based on Eq. (12) by
the CopperSmith method with the help of the LLL algorithm and resultants computation.

Our experiments imply that ρ1 and ρ2 are small integers, which are closely related to
specific experimental instances (i.e., N , e, δ), the dimension of the lattice constructed with
the CopperSmith method and the ability of the LLL algorithm.

Now we give a strict statement of the “multivalued-continuous” phenomena, which is
stated as follows.

Theorem 1 Let � denote the Helpful Guess Set. Let �(x) be defined as (11) and ρ1, ρ2 be
the same as Assumption 3. Let pmin ∈ [2s−1, 2s) ∩Z satisfying that �(pmin) = min{�(x) |
x ∈ [2s−1, 2s) ∩ Z}.
(I) If�(pmin) ≥ −ρ1, then there exist two integers a1 ≤ a2 such that {a1, a1+1, . . . , a2} ⊆

�, where a1, a2 can be uniquely determined by ρ2 satisfying that

�(a1) ≤ ρ2 < �(a1 − 1), �(a2) = ρ2 < �(a2 + 1).

(II) If �(pmin) < −ρ1, then there exist four integers b1 ≤ b2 < b3 ≤ b4 such that {b1, b1 +
1, . . . , b2} ∪ {b3, b3 + 1, . . . , b4} ⊆ �, where b1, b2, b3, b4 can be uniquely determined
by ρ1, ρ2 satisfying that

�(b1) ≤ ρ2 < �(b1 − 1), �(b4) = ρ2 < �(b4 + 1),

�(b2 + 1) < −ρ1 ≤ �(b2), �(b3 − 1) < �(b3) = −ρ1.

Proof We note first that by Remark 4, for an arbitrary integer ρ between �

(⌈√
N
b2

+ 1
4

⌉)
and �(2s − 1), there exists at least one guess value p̃mρ such that �( p̃mρ ) = ρ.
Case I �(pmin) ≥ −ρ1.

Let pm, pl , qm, ql be the same meanings as above and b = 2η−s . Note that pm ≥ qm .
Since

N

b2
+ 1

4
>

N

b2
= (pmb + pl)(qmb + ql)

b2
≥ b2q2m

b2
= q2m,

it can be seen that qm ≤
⌊√

N
b2

+ 1
4

⌋
. Note that −ρ1 ≤ �(qm) ≤ ρ2 since the value of

s we choose will guarantee the success of our attack. Therefore, according to Lemma 5, if

�(2s−1) > ρ2, then there must exist an integer a1 ≤
⌊√

N
b2

+ 1
4

⌋
such that

�(a1) ≤ ρ2 < �(a1 − 1). (13)

Meanwhile, according to Lemma 5 and the discussion at the beginning of this proof, if

�(2s − 1) > ρ2, there must exist an integer a2 ≥
⌈√

N
b2

+ 1
4

⌉
such that �(a2) = ρ2 <

�(a2 + 1). For β ∈ [a1, a2] ∩ Z, we have

−ρ1 ≤ �(pmin) ≤ �(β) ≤ max{�(a1),�(a2)} = ρ2.
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Fig. 1 A simple visualization of the two cases in the proof of Theorem 1

Therefore, according to Assumption 3, for any β ∈ [a1, a2] ∩ Z, the private exponent d can
be correctly recovered based on Eq. (12).

If �(2s−1) ≤ ρ2 or �(2s − 1) ≤ ρ2, we can take a1 = 2s−1 or a2 = 2s − 1 and get the
same conclusion. A simple visualization of this case can be seen in Case I of Fig. 1.

To finish the proof of Case I, it suffices to show the uniqueness of a1 and a2. Suppose

there exists another integer a′
1 ≤

⌊√
N
b2

+ 1
4

⌋
such that

�(a′
1) ≤ ρ2 < �(a′

1 − 1). (14)

If a′
1 ≥ a1+1, then it follows fromLemma5 andEqs. (13) and (14) that�(a′

1−1) ≤ �(a1) ≤
ρ2 < �(a′

1 − 1), a contradiction; if a′
1 ≤ a1 − 1, we can get that �(a′

1) ≥ �(a1 − 1) >

ρ2 ≥ �(a′
1), still a contradiction. As a result, it must hold that a′

1 = a1. The uniqueness of
a2 can be proved similarly.
Case II �(pmin) < −ρ1.

If �(2s−1) > ρ2 and �(2s − 1) > ρ2, with a similar discussion as Case I, we can find
b1 ≤ b2 < pmin < b3 ≤ b4 such that

�(b1) ≤ ρ2 < �(b1 − 1), �(b4) = ρ2 < �(b4 + 1),

�(b2 + 1) < −ρ1 ≤ �(b2), �(b3 − 1) < �(b3) = −ρ1.

For any β ∈ {[b1, b2] ∩ Z} ∪ {[b3, b4] ∩ Z}, according to Lemma 5, we have

−ρ1 = min{�(b2),�(b3)} ≤ �(β) ≤ max{�(b1),�(b4)} = ρ2.

If �(2s−1) ≤ ρ2 or �(2s − 1) ≤ ρ2, we can take b1 = 2s−1 or b4 = 2s − 1 and get the
same conclusion.

A simple visualization of this case can be seen in Case II of Fig. 1.
Similarly, the uniqueness of b1, b2, b3, b4 can be proved as Case I. This completes the

proof of Theorem 1. ��
In order to give amore intuitive presentation of the phenomena, we provide partial specific

experimental data in Table 5. As shown in Table 5, when |�( p̃m)| is slight greater than 0, such
p̃m may still be a helpful guess value. For the first specific (p, q, d), the set � contains two
continuous intervals over Z. For example, when (m, t, s) = (7, 3, 27), we find 38 helpful
guess values which appear as two parts around pm = 108904923 and qm = 77936267
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respectively. For the second specific (p, q, d), the set � contains one continuous interval
over Z. For example, when (m, t, s) = (12, 5, 19), we find 2093 helpful guess values which
appear as a continuous integer interval including pm = 265700 and qm = 265446.

Another phenomenon should be mentioned that there are much more helpful guess values
when p is close to q in our experiments (one of the detailed comparison can be seen in
Table 5, noting that the first |p − q| is much greater than the second one). The “p close to
q” contributes to the efficiency of our experiments pretty well. It must be mentioned that
the use of “p close to q” in our attack is quite different from the attacks with small prime
difference in [9]. In [9], p and q should share tens or even hundreds of MSBs to effectively
implement the Fermat factoring attack or the extension of the Wiener attack, while in our
attack, a significant improvement can be get when p and q share only several bits (detailed
results, see Tables 9and 10); for the extension of the Boneh-Durfee attack, the upper bound
of |p − q| should be known ahead, since the information of � = p − q will be used in
the improved lattice, while in our attack, without knowing how close between p and q in
advance, our newmethod will make good use of the hidden information of p−q to complete
the attack.

4.3.2 A new practical attack based on the binary search

Based on the multivalued-continuous phenomena, we propose a new practical small private
exponent attack on RSA based on the binary search. The complete and detailed algorithm is
displayed as follows.

We note that, the efficiency of Algorithm 1 relies on its input parameters m, t, s. Then
a question may come up immediately that how should we choose appropriate m, t and s in
order to attack the RSA cryptosystem efficiently.

According to our experiments and Miller’s discussion in [19], BKZ reduction algorithm
doesn’t performwell in the HM2010 attack. Therefore, we adopt LLL algorithm in SageMath
to carry out the lattice basis reduction in our attack.

It is not difficult to see that the total running time of our attack mainly comes from two
parts: the search of a helpful guess value and the lattice basis reduction. In the following of
this subsection, we first focus on the cost of LLL algorithm, and then discuss how to find
appropriate m, t and s based on some theoretical derivation and experimental results.

The time complexity of LLL algorithm and its variants is displayed below (the vec-
tor length, the number of basis vectors, the size of vector norm are denoted by n, d, B
respectively).
Making a specific analysis on the lattice we constructed, we get

n = d = dim L ′ = (m + 1)(m + 2)

2
+ τm2 + (2τ − 1)m

2
. (15)

The size of the vector norm B is given by the following Proposition 1.

Proposition 1 With the notations as above, the approximate size of the largest vector norm
B in our new lattice is (m + δm + ( 12 − ξ)τm) log N, where 2s = N ξ .

Proof See Appendix B.
It is not difficult to see that, the approximation size of B in Proposition 1 changes very

little with s, since s is at most several dozens and the size of N is more than 1000 bits in our
experiments. Note that the optimal t is determined and so is the parameter τ since τ = t/m for
a fixedm. Therefore, based on Eq. (15) and Proposition 1, the dimension remains unchanged
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Table 7 Our experimental results on the upper bound of δ and some comparison with [1, 3, 10, 19]

log2 N δ Parameters Dim Running time Success%

[3] 1000 0.265 (m, t) = (5, 3) 39 45min /

[1] 1000 0.278 (m, t) = (11, 5) 72 6 days /

[10] 1024 0.277 (m, t) = (7, 3) 45 2.5h /

[19] 1000 0.279 (m, t, σ, τ ) = (10, 4, 2, −3) 92 / 62%

[19] 1000 0.280 (m, t, σ, τ ) = (10, 4, 2, −3) 92 / 1%

Ours 1024 0.284 (m, t) = (21, 9) 304* 89h 63%

Ours 1024 0.285 (m, t) = (25, 10) 429* 16.4 days 60%

* These dimensions are get after a code optimization

Algorithm 1: New practical attack based on the binary search

Input: N, e, δ;m, t, s
Output: p, q, d
0 η ← �log2 p
1 for j := 1, · · · , s − 1
2 for i := 1, · · · , 2 j−1

3 p̃m ← 2s−1 + (2i − 1) · 2s−1− j ;
4 q̃m ←

⌊⌊
N

p̃m ·2η−s+2η−s−1

⌋
/2η−s

⌋
;

5 A ← N + 1 − ( p̃m + q̃m ) · 2η−s ;

6 Y ←
⌊√

N/2s
⌋
, X ← N δ , U ←

⌊√
N/2s

⌋
· N δ ;

7 Run HM2010 attack with bounds in step 6;
8 if d is correctly found then
9 return d, p, q;
10 end if
11 end for
12 end for

LLL (1982) [16] LLL (Schnorr 1988) [28] L2 (Nguyen 2005) [20]

O(d5nB3) O(d3n(d + B)2B) O(d4n(d + B)B)

Table 8 Experimental comparison of success rates with δ = 0.292, 2η = 1024 when m = 7 and m = 12

m t s number of experiments number of successes success rate

7 3 26 100 13 13%

7 3 27 100 87 87%

12 5 17 50 25 50%

12 5 18 50 47 94%

and vector norm B is almost unchanged for fixed m. Above all, no matter whether MSBs
guess strategy is added to HM2010 attack or not, the running time of the LLL algorithm is
nearly unchanged, which is consistent with the results of our experiments.

Now we can try to determine the parameters m, t, s. Several groups of experiments are
implemented and one of them is displayed in Table6. The set � consists of two consecutive
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Table 9 Experimental results of our new practical attack on RSA with d ≤ N0.292 for 1024-bit moduli

Parameters Real MSBs (pm , qm ) Helpful guess pair ( p̃m , q̃m ) Total running time

Exp. 1 m=12 (132850, 132723) (133120, 132454) 2.3h

Exp. 2 t=5 (194574, 183696) (194560, 183709) 4.1h

Exp. 3 s=18 (255247, 152844) (255248, 152843) 21.6 days

Table 10 Experimental results of our new practical attack on RSA with 2048-bit moduli

Parameters δ Real MSBs (pm , qm ) Helpful guess pair ( p̃m , q̃m ) Total running time

Exp. 4 m=12 0.287 (363847, 306431) (306432, 363846) 7.1 days

Exp. 5 t=5 0.287 (514229, 312777) (514240, 312770) 35.8 days

Exp. 6 s=19 0.292 (7263440332, 7263440332) (7263485952, 7263394712) 11.2 days

parts and the amount of helpful guess values is the sum of the two parts. For the same m and
t , as s increases by 1, the amount of helpful guess values is less than twice as the original
ones (all our experiments have verified the conclusion). This result indicates that the guess
bit should try as few as possible. Meanwhile, after a simple computation we can conclude
that an appropriately large m will reduce the total running time of our new attack. As can be
seen from Table1, whenm increases continuously the improvement effect of upper bound of
δ is less and less significant. Therefore, we would like to choose a medium m for our attack.

From the discussion above, to get a practical bound δ ≤ 0.292 for 1024-bit-modulus
RSA, the recommended parameters we provide are m = 12, t = 5, s = 18. The reason
why we don’t recommend s = 17 is that the success rate cannot be guaranteed both from the
estimation in Table3 and the experimental results in Table8. These parameters may not be the
optimal ones, but they can help to implement our new attack very well to recover the private
exponent for RSA with a 1024-bit modulus. With the same discussion, for 2048-bit-modulus
RSA, the recommended parameters we provide are m = 12, t = 5, s = 19 to attain the
bound δ ≤ 0.287.

5 Experiments

All our experiments are implemented in SageMath 9.1 on our PC with Intel(R) Xeon(R)
W-2255 CPU (3.70GHz, 160GB RAM Windows 10). The codes of experiments which are
shown in Tables7, 9 and 10 can be seen in https://pastebin.com/zpUkrfDh.

We carry out some experiments to research the practical bound of δ based on HM2010
attack at first. Our experimental results on the upper bound of δ and some comparison with
[1, 3, 10, 19] are provided in Table 7.

It should bemade clear that the upper bound of δwe get in Table 7 is just based onHM2010
attack. We implement 100 experiments for the bound 0.284. And for the bound 0.285, 5
experiments have been done since the running time is too long. From the experiments, we
get a nice bound within a month with a reasonable success rate. Moreover, for a no-less-
than-1000-bit modulus N , this bound is the best practical one within a month for this kind
of attacks as far as we know.

123

https://pastebin.com/zpUkrfDh


Practical attacks on small private exponent RSA 4131

In order to investigate the necessary number of exhausted MSBs that can guarantee the
success of the attack, we implement some experiments to verify the estimations for δ = 0.292
in Tables 2 and 3, which is displayed in Table 8. As can be seen in Table 8, when m = 7, we
should choose s = 27 considering the comparison of success rates; similarly, when m = 12,
s should be chosen to 18 for the same reason.

Based on Algorithm 1, we implement our new practical attack. The results are shown in
Table 9 below.

All the three experiments above successfully recover the private exponent of 1024-bit-
modulus RSA with d ≤ N 0.292 within a month, which is certainly an acceptable running
time for a practical attack on a cryptosystem. The validity of our algorithm and the rationality
of the recommended parameters are verified by the success of the experiments. As we can
see from Table 9, the helpful guess value p̃m who contributes to the recovery of the private
exponent actually does not equal to pm . It needs still long to reach the real value pm by the
binary search. The smaller |p − q| is, the more helpful guess values there will be, thus leads
to a shorter total running time. Detailed parameters of the three experiments are shown in
Appendix C.

As can be seen in [27], to implement an experiment for δ ≈ 0.285with a 1000-bitmodulus,
they need about a week with a cluster of 26 machines. While in our implementations for
δ ≈ 0.292with a 1024-bitmodulus, we can successfully complete them in about 3weekswith
a single PC. Particularly, the running time may reach several hours when p is appropriately
close to q (e.g., p shares just several MSBs with q in Exp. 1 in Table 9).

At last, we apply Algorithm 1 to a 2048-bit-modulus RSA. The improving effect of upper
bound of δ is not so good as the 1024-bit one since the proportion s/ log2 N decreases for
the same amount of guess bits. Moreover, the running time becomes about triple longer since
the data size B in LLL reduction is twice as the original. Three experiments are carried out
for 2048-bit-modulus RSA, which are displayed in Table 10.

From Table 10 we can see that, for random primes p and q (such as p, q in Exp. 5), a
majority of the 2048-bit-modulus RSA can be successfully attacked in about a month for
δ ≤ 0.287; if p is slightly close to q (e.g., in Exp. 4, p, q share 3 MSBs), the efficiency
will be better than random case; while p is quite close to q (e.g., in our setting in Exp. 6, p
and q 50 MSBs), we can effectively recover the private exponent when δ ≤ 0.292. Detailed
parameters can be seen in Appendix D.

6 Conclusion

In this paper, we focus on the practical small private exponent attack on RSA. After some
detailed and relatively exact calculations of related parameters in the lattice determinant, we
give a few precise estimations about the upper bound of solvable δ based the experimental
LLL estimation by Nguyen et al.. With the instruction of our estimations, we implement the
HM2010 attack and get a bound δ ≤ 0.285 for a 1024-bit-modulus RSA within a month,
which is better than the former results as far aswe know. To improve the boundwe can achieve
by the HM2010 attack, we add a simple idea of the MSBs guess of p. Based on the nontrivial
and inspiring multivalued-continuous phenomena, we propose a new attack based on the
binary search and succeed to attack the 1024-bit-modulus RSA cryptosystem for δ ≤ 0.292.
Additionally, a slightly weaker result δ ≤ 0.287 can be obtained after applying our new
attack to 2048-bit-modulus RSA, which is also the best one among this kind of attacks as far
as we know.
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Furthermore, there are still some questions to be answered. Since the number of helpful
guess values has close relation to the value of |p − q| from the experiments, how should
we exactly understand the relationship? How can we estimate the lower bound of the size of
�? As the effect of our new attack turns weak in a 2048-bit-modulus RSA attack, what else
should we try to break through the 0.292 bound for a mainstream practical RSA? Although
the gaps still exist, we believe our attack can provide some inspiration to searchmore practical
attacks on RSA.

Acknowledgements This research was supported by NSF of China (No. 12371526, No. 61872383).

Appendix A: Proof of Lamma 3

Proof Take τ = t/m, then we have
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⌊
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⌋
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⌊
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⌊
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⌋
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⌊
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⌋
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⌊
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⌋
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⌊
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= (4τ 2 + 2τ)m3 + (9τ 2 + 3τ)m2 + (7τ − 1)m

12τ
,

se =
m∑

k=0

m−k∑
i=0

(m − k) +
τm∑
j=1

m∑
k=

⌊
1
τ

⌋
j

(m − k)

=
m∑

k=0

(m − k)(m − k + 1)

+
τm∑
j=1

⎛
⎜⎜⎜⎝m

(
m −

⌊
1

τ

⌋
j + 1

)
−

(
m +

⌊
1
τ

⌋
j

) (
m −

⌊
1
τ

⌋
j + 1

)
2

⎞
⎟⎟⎟⎠

≈
m∑

k=0

(m − k)(m − k + 1)

+
τm∑
j=1

(
m

(
m − 1

τ
j + 1

)
−

(
m + 1

τ
j
) (
m − 1

τ
j + 1

)
2

)

=
m∑

k=0

(m(m + 1) − (2m + 1)k + k2) + 1

2

τm∑
j=1

((
m − 1

τ
j

) (
m − 1

τ
j + 1

))

= m(m + 1)2 − (2m + 1)m(m + 1)

2
+ m(m + 1)(2m + 1)

6

+
τm∑
j=1

(
m(m + 1) − (2m + 1)

1

τ
j + 1

τ 2
j2

)

= m(m + 1)(m + 2)

3

+1

2

(
m(m + 1)τm − (2m + 1)τm(τm + 1)

2τ
+ τm(τm + 1)(2τm + 1)

6τ 2

)

= m(m + 1)(m + 2)

3
+ 2τ 2m3 + (3τ 2 − 3τ)m2 − (3τ − 1)m

12τ
,
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dim L =
m∑

k=0

m−k∑
i=0

1 +
τm∑
j=1

m∑
k=

⌊
1
τ

⌋
j

1

=
m∑

k=0

(m − k + 1) +
τm∑
j=1

(
m −

⌊
1

τ

⌋
j + 1

)

≈
m∑

k=0

(m − k + 1) +
τm∑
j=1

(
m − 1

τ
j + 1

)

= (m + 1)2 − m(m + 1)

2
+ τm(m + 1) − 1

τ
· τm(τm + 1)

2

= (m + 1)(m + 2)

2
+ τm2 + (2τ − 1)m

2
.

The proof of Lamma 3 has completed. ��

Appendix B: Proof of Proposition 1

Proof It must be pointed out that the largest size of the vector norm B can be perfectly
approximated by the maximum component of all the vectors in the lattice basis, e.g., the
maximum coefficient of the term in all the polynomials.

At first we compute B in the lattice of the HM2010 attack. Note that vectors are produced
by x-shift polynomials and y-shift polynomials:

g̃i,k(u, x) = xi f̃ kem−k, i = 0, . . . ,m − k, k = 0, . . . ,m

h̃ j,k(u, x, y) = y j f̃ kem−k, j = 1, . . . , τm, k = �1/τ j, . . . ,m,

where f̃ (u, x) = A + ux and t = τm.
(I) The size of the maximum coefficient in x-shift polynomials
Note that

g̃i,k(u, x) = xi f̃ kem−k =
k∑

a=0

(
k

a

)
xi ua Ak−axk−aem−k .

Terms in g̃i,k(u, x) are of the form
(k
a

)
ua Ak−axk−a+i em−k . The final coefficients

of such terms (i.e., the values of vector components when constructing lattices) is(k
a

)
Ua Ak−a Xk−a+i em−k with a size of

(
a

(
1

2
+ δ

)
+ k − a + (k − a + i)δ + m − k

)
log N =

(
m − 1

2
a + (k + i)δ

)
log N .

The size of themaximum coefficient is (m + mδ) log N according to the formula above since
0 ≤ a ≤ k < m, 0 ≤ k + i ≤ k + m − k = m.

(II) The size of the maximum coefficient in y-shift polynomials
Note that Terms in h̃ j,k(u, x, y) is of the form

(k
b

)
y j ub Ak−bxk−bem−k .
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Case A
When j ≥ k − b,

k∑
b=0

(
k

b

)
y j ub Ak−bxk−bem−k =

k∑
b=0

(
k

b

)
y j−(k−b)ub Ak−bem−k(u − 1)k−b.

Therefore, the term which has the maximum coefficient is
(k
b

)
y j−(k−b)Ak−bukem−k with the

final coefficient
(k
b

)
Y j−(k−b)Ak−bUkem−k . In this case the size of the maximum coefficient

is(
1

2
( j − (k − b)) + k

(
1

2
+ δ

)
+ k − b + m − k

)
log N =

(
1

2
j − 1

2
b + δk + m

)
log N .

We get
( 1
2 j − 1

2b + δk + m
)
log N ≤ ( 12 j − 1

2b + δ j + δb + m) for k ≤ j + b. Finally,
the size of the maximum coefficient is (m + τδm + 1

2τm) log N when j = τm, b = 0 as
0 ≤ b ≤ k ≤ m, 1 ≤ j ≤ τm.

Case B
When j < k−b, after a similar discussion asCase A, we can get the size of the maximum

coefficient in y j f̃ kem−k is(
(b + j)

(
1

2
+ δ

)
+ k − b + (k − b − j)δ + m − k

)
log N =

(
1

2
j − 1

2
b + δk + m

)
log N .

Finally, since j < k − b, 0 ≤ b ≤ k, 1 ≤ j ≤ τm, �1/τ j ≤ k ≤ m, the size of the
maximum coefficient is (m + δm + 1

2τm) log N when j = τm, b = 0, k = m.
According to the detailed discussion, we obtain that

B = max

{
(m + mδ) log N ,

(
m + τδm + 1

2
τm

)
log N ,

(
m + δm + 1

2
τm

)
log N

}

=
(
m + δm + 1

2
τm

)
log N .

At the second step we compute B in our lattice. Use the notations above, the upper bound
of each variable becomes to

x ′ < X ′ = N δ, y′ < Y ′ = N
1
2−ξ ,

e < N , u′ < U ′ = N δ+ 1
2−ξ ,

where 2s = N ξ and s is the amount of MSBs exhaustion. Note that the terms in the
polynomials do not change while the bounds of variables differs comparing the lattice of
HM2010 with ours. With a simple analysis as former, we can obtain the maximum sizes
of coefficient in x ′-shift polynomials and y′-shift polynomials are (m + mδ) log N and
(m + δm + ( 12 − ξ)τm) log N . Finally we obtain B = (m + δm + ( 12 − ξ)τm) log N.

Based on the discussion above, we can see that the largest size of vector norm B is
(m + δm + ( 12 − ξ)τm) log N . The proof of Proposition 1 has completed. ��

Appendix C: Detailed parameters of the three experiments in Table 9

Exp. 1
N =

46126089040452448339448600417060313922101098426244293259787635
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87074530673491676174094741308570008991308086429133694253082502

08322979383825756505663848479411358228528222527395327435101891

24124500359010333442383692988340095271183825614638791911699269

162046275028679426500348785157345976662456325437259705160061

e =
36614584641331081308456049556562616703353184435474954472543851

64159874655507513240178939924241301243795285290427026969984191

93417336370186256151741426122690631967234543279797441311494545

48205774006091224643569311902728986446145416739772661245661572

872595702072188094041649860081717657262961694486055770442903

p =
67948679188399660033177882768593480036059591634701532395565550

86565666723761153014913169297896634069961179454031340099285043

376680194594851361518965438191

q =
67883716933716631074522673334050992083124031396996898938020837

71485358806632262195329165541096647967833821293875054198640528

209010624705809648621661183571

d =
68845001992677564960353986498476584008893082985088950620216788

3636867990095285712393863167

Exp. 2
N =

93502450932903310633064573151907317024294867669134678632093362

46297788099166895737544153127851852138932264560083819167132205

42943047406167744180006421454219231575086254775401435086568101

80893794178324182089403622394064939255883017451942933893424910

850870147643227272288485474147840684850717753717586472451201

e =
66858620224726705843141951973966747720864781039484831550691634

09294281451926768980157225811154880346715028924829626919171141

60786364943066431341308061576266724936876531701099477141597025

75928828432166081285992511952702707653041998543208057095834381

069598542543859865005532560613469773387993762913083830903645

p =
99518569133681654608883617987619781762536839523918823141580161
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97123835376178581844008644586889905048955222245453609041221097

121126837776453250821684510563

q =
93954778235710974203677377216985836253852371657508142242651124

33882347772961954728089804437932682899351880809635985985823721

278448590959326657930561582027

d =
84621421118866086279480677455817189905395785567701311624227231

1992184907517426187202723837

Exp. 3
N =

10205793884912309428243538885795108687967400364358859068757105

27366676256258700648163154922583229485417321567269849917383364

64656067954130787989822823376442710598097310129836268241537114

71952829908327055972448207678376586518255364121854918727930884

3770512577006453837517293155340490761206708661611812914183899

e =
80900458040712014796201499026385729329804135026384835491013425

86092605732136485389209880857013543736344572515888256253718707

08436780537181756263571337006232687007715876604623603003318929

36401425760635712653711506424050436067133668344381418365690036

931579614717233156905341293247889945042931394909865508914479

p =
130550858861846841747727958575739547701679174283776488146464000

035126653179894990637272044524427541060375052834227051238884085

86029300473284150150163760489

q =
781748505822731655261191706621539039622764767903458858428781536

263460148861416123276603543978929241699568615263385404823218907

1292155782177922355115574691

d =
868126999952902548361525189983896174511773826207382896837234598

157112101757767726001029119
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Appendix D: Detailed parameters of the three experiments in Table 10

Exp. 4
N =

13108249020538785310663414698582637064820950198561878706735851

65703644339810427940041439226962830915168487281788869208017778

64923887358082167988616026368541195282045124591109789444274263

26718715032735164557685449265721895500116475985815536552066383

98902635748400290357538362875036895327848802671465354828268316

19459190428496888414853786863007208331552517424436288121969788

57993634225342593766658498158262129054566502609859174903015093

10543060200243513864877744474764130353698543557524799219837216

81177688022836416789341375825625350075504640416012415003418082

73695609938403611734357471580735947449865433515838599015767

e =
89451479500251299951266471597772406719039486388733814263161727

77277693744087994022236345476762214316234081707614457014149993

07086353862705412696231771650983658024823969641299772311875452

35751367575578627668994418983506635558378045495835658481986197

64498956959651824723201619704850371101473507734971701102683193

24725402870657449338885605852347781947910706904405925408817023

60111680067003156460400937994396681812731602263538839593687345

62219589235850846108119781315380911546600335260644624325458166

47435720465040339844832330681577201708958823066483795645154297

8645874176685545024632447680732323591071139368778498577639

p =
12475716189463277471168125160458453539576717759904860818958950

12014825348919743719578184669777821230125550070704404895576204

52941396889634025921970794255590369593505603793752936553527919

38379990938303607598997653011866480954848015397181895617491220

3077504115908974119391542269233365957211095336385587786710643

q =
10507011238047985984905944714077857914018323916121653018787711

19630266681204488009378026133638912480941505942176252858307437

32991043217939651634566680101998984493904772645000773580396638

66392564560306397986626626825696478790443273047686349310580634

5028770283044102294594624281933734776943133629178895741769869
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d =
16203833775447352356853531181274614215508930119487698497783433

20417126835821821597640064942591829248499538916881397751938428

70347081603575753080006255052855504063533452418351103

Exp. 5
N =

18909672181904151395097968169920434800151774976081336450891174

87637992213220042585977009330732380044765810427401976038590837

11873143826745772602607516127893011661052190642253756693227076

98926584779010796261564768643160271391197294787916627864241401

91442506166372883954050983092065122469794049346568026032600851

06520619119309685394418339932570134971764214265160652504821910

54728868131847284573195025675911240577689925121207663441802463

95424763276465590987069458679529387973710595569647138338589685

41003463475729539029975985698319117707054049488848688491897152

76445558134402328090544913847971380379882458726005541831877

e =
71750525858644602573827151612109334198329801833575974634891308

81495398383619485101066743946892399989979056836606216684862725

57211251358518687663563498732052487860671897005525731875587709

48285298803158025787222714686015007936511780408515333161477308

33938515599770436750069222320451660592526204534805678560379611

66401313318683780361047153401836775380248541241640858508425424

17567958496040977474953521700071041506080838448030690016792476

72933113105225110610011794291511678512931585633775157710522063

46208952124338836289923112469153753848820848393483936342199771

0031387152470262859696222361705999483806613844394759888651

p =
17632053007251238779460491844609267953184637057432293238819260

45182034840480286908458849795483938148101996899679104684164224

74443986695404811633893785378170226481910000920070470403858119

63853022804280585705368356890551045545683993527388328068472661

0142603148675130345130093490471284531708421254883794726933731

q =
10724600348086231138978615424494121452147302572884539393558466

49494608032097842525445414641585733688186933655325569963690234

73297386324910499142225474129024782995490552263782465106021625
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38318333121616296839163140328592966430893795983414382893135148

9815771244076937362708739778582739737422552531974179680294967

d =
74371802615146241472896188271041978689492703240379646141995046

73820493661253184594168451370887921723607130820247798059973262

06710810842150444333271043589416784775482885854461951

Exp. 6
N =

23106605651041615213646000110077851420712757917776430930326056

60296830951476238797402172985663226841689573922131931924256474

42373164767688138199312178870617014197433167498889179888412544

74185076959806015212320711881448073618683164329640885570487353

50354182223829749002048540419684771479273577984952576597834431

10876017808739917408013571983470008797535808485837831985030128

18980694013921518439031616253599644305480276822960370194442400

29680528535253331304066794571579472555287555198582878649996706

70189200424088850932169339900976909686922394456370919349825147

79933248467489575820613721302800274215988236180595306270631

e =
12306595799514227604950469560934424785746654745458886525393457

58899783970499242533791938472818667104241589586924790854906048

54925263611470499944927026328816440185366245189763792436116837

57561103528778660481890339014924778781448952317743651644045890

34734358672625085976939766863203987473622112403467008193246531

18811333558134310761081974826858002018445896729330025874175254

08511656625722972253589317139568494268155847524384162663775384

56174150943940984854862543628588707580008442653426773237869939

26533039846186871551451618391840130895864570824139236237941156

12847782672209965094853232413711557861305091453331658286885

p =
15200857097888143612235928515088793346264155533550218885999558

43118029224237682629271323091741303390999578531540748865895441

28299767695057057649418113935154004959819709868376351089412151

66689369221389374628670381926958230967689721241987218903900245

6978031157591446602279278447377998069848764568730671548941379

q =
15200857097888130222480933300617571310430741971257868954229473
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99010773432783299974566489666130612156702118428957004402934567

26259649410467624692928043525938992850157984384838932304533523

37960458325033282161048364788519071913365063106030773291799585

7967631386967340066303738923024637820931061972877004540650189

d =

95106665770280602013064006456747612094114888110214050993001292

18842148846561624186845878708855870619895801364016214375097533

53978037760812938848119029882054844495851034227001786365
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