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Abstract
In this paper, we study the fourth weight of generalized Reed–Muller codes. Erickson in
his Ph.D. thesis proved that the second weight of Rq(a(q − 1) + b,m) depends on the
second weight Rq(b, 2). Also, Leducq (Discret Math 338:1515–1535, 2015) proved that
under the same condition, by the third weight of Rq(b, 2) we can determine the third weight
of Rq(a(q − 1) + b,m). In this paper we will show that the similar result does not hold for
the fourth weight of generalized Reed–Muller codes. We will determine the fourth weight of
generalized Reed–Muller codes of order r = a(q − 1) + b with 3 ≤ b <

q+4
3 .

Keywords Generalized Reed–Muller codes · Fourth weight · Affine subspace · Affine
hyperplane
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1 Introduction

Let Fq be the finite field with q elements and m ≥ 1 an integer. We denote by Bq
m the

Fq -algebra of the functions from Fm
q to Fq and by Fq [X1, · · · , Xm] the Fq -algebra of

polynomials in m variables with coefficients in Fq .
Let r be an integer such that 1 ≤ r < m(q − 1). The generalized Reed–Muller code of

order r is the following subspace of the space Fqm
q

Rq(r ,m) =
{
( f (x))x∈Fm

q
| f ∈ Fq [X1, · · · , Xm] and deg( f ) ≤ r

}

Throughout this article, we write r = a(q − 1) + b, 0 ≤ a ≤ m − 1, 0 ≤ b < q − 1,
dmr = (q − b)qm−a−1 and by Wi we denote the i th minimum weight of Rq(r ,m). The
support of f ∈ Fq [X1, · · · , Xm] is the set {x ∈ Fm

q : f (x) �= 0} and we denote by | f | the
cardinal of its support.
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There exist many questions concerning generalized Reed–Muller codes. Some of the
most important questions are about the first minimum weights and weight distribution of
generalized Reed–Muller codes. Not much is known for the mentioned questions for q ≥ 3
and r ≥ 3.

The minimum weight has been determined by Kasami et al. [9]. It has been proved that
the minimal weight of the generalized Reed–Muller code Rq(r ,m) is (q − b)qm−a−1 where
r = a(q − 1) + b and 0 ≤ b < q − 1. The codewords reaching this bound were described
by Delsarte et al. [5] (see also [11]).

Erickson [7] proved that if we know the second weight of Rq(b, 2) then, we can determine
the second weight for all generalized Reed–Muller codes. He conjectured that the second
weight of Rq(b, 2) is (q − b)q + b − 1 and Bruen proved the conjecture using blocking
set in [2]. This problem was studied by Geil using Gröbner basis in [8] for r < q and
r > (m − 1)(q − 1) and it was almost completely solved by Rolland [16]. Second weight
codewords have been studied in [4, 17] and finally completely described in [12].

Leducq [13] got a full description of the third weight and the third weight codewords of
generalized Reed–Muller codes of order r = a(q − 1) + b for 3 ≤ b <

q+4
3 .

The weight distribution of Rq(2,m) was given by McEliece in [15] for any q and due
to some mistakes in the computation, Li [14] provided a precise account for the weight
distribution of second order generalized Reed–Muller codes. For q = 2, for all m and all r ,
the weight distribution is known in the range [W1, 2.5W1] by a result of Kasami et al [10].
We refer the reader to [1, 3, 6] for further results.

In this paper, we want to determine the fourth weight of generalized Reed–Muller codes.
Themain result of this article is the determination of the fourth weight of Rq(a(q−1)+b,m)

the generalized Reed–Muller code of length qm for prime number q and order a(q − 1) + b
for 3 ≤ b <

q+4
3 .

From a geometric point of view a polynomial f defines a hypersurface in Fm
q and Z( f )

the set of points of this hypersurface (the set of zeros of f ) is related to the support of the
associated codeword by the following formula:

| f | = qm − #Z( f )

2 Preliminaries

2.1 Notation and preliminary remark

Let f ∈ Bq
m , λ ∈ Fq . We define fλ ∈ Bq

m−1 by

∀x = (x2, ..., xm) ∈ Fm−1
q , fλ(x) = f (λ, x2..., xm).

Let 0 ≤ r ≤ (m − 1)(q − 1) and f ∈ Rq(r ,m). We denote by S the support of f .
Consider H an affine hyperplane in Fm

q , by an affine transformation, we can assume x1 = 0
is an equation of H . Then S ∩ H is the support of f0 ∈ Rq(r ,m − 1) or the support of

(1 − xq−1
1 ) f ∈ Rq(r + (q − 1),m).

2.2 Useful lemmas

Here, we present some lemmas that we need to prove our main results. The Lemmas 1–8 are
proved in [7]
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Lemma 1 Let m ≥ 1, q ≥ 2, f ∈ Bq
m and w ∈ Fq. If for all (x2, · · · , xm) in Fm−1

q ,
f (w, x2, · · · , xm) = 0, then for all (x1, x2, · · · , xm) ∈ Fm

q ,

f (x1, · · · , xm) = (x1 − w)g(x1, · · · , xm)

with degx1(g) ≤ degx1( f ) − 1 and deg(g) ≤ deg( f ) − 1.

Lemma 2 Let m ≥ 2, q ≥ 3, 0 ≤ r ≤ m(q − 1). If f ∈ Rq(r ,m), f �= 0 and there exists
y ∈ Rq(1,m) and (λi )1≤i≤n n elements in Fq such that the hyperplanes of equation y = λi
do not meet the support of f , then

| f | ≥ (q − b)qm−a−1 +
{
n(b − n)qm−a−2 ifn < b,
(n − b)(q − 1 − n)qm−a−1 ifn ≥ b.

where r = a(q − 1) + b, 1 ≤ b ≤ q − 1.

Lemma 3 If f ∈ Rq(r ,m) with r ≤ q − 1 and | f | < (1 + 1
q )dmr , then f is the product of r

linear factors.

Lemma 4 Let m ≥ 2, q ≥ 3, 1 ≤ b ≤ q − 1. Assume f ∈ Rq(b,m) is such that f depends
only on x1 and g ∈ Rq(b − k,m), 1 ≤ k ≤ b. Then either f + g depends only on x1 or
| f + g| ≥ (q − b + k)qm−1.

Lemma 5 Letm ≥ 2, q ≥ 3, 1 ≤ a ≤ m−1, 1 ≤ b ≤ q−2. Assume f ∈ Rq(a(q−1)+b,m)

is such that ∀x = (x1, · · · , xm) ∈ Fm
q ,

f (x) = (1 − xq−1
1 ) f̃ (x2, · · · , xm)

and g ∈ Rq(a(q − 1) + b − k,m), 1 ≤ k ≤ q − 1, is such that (1 − xq−1
1 ) does not divide

g. Then either | f + g| ≥ (q − b + k)qm−a−1 or k = 1.

Lemma 6 Let m ≥ 2, q ≥ 3, 1 ≤ a ≤ m − 2, 1 ≤ b ≤ q − 2 and f ∈ Rq(a(q − 1) + b,m).
We set an order on the elements of Fq such that | fλ1 | ≤ · · · ≤ | fλq |.
If f has no linear factor and there exists k ≥ 1 such that (1 − xq−1

2 ) divides fλi for i ≤ k

but (1 − xq−1
2 ) does not divide fλk+1 then,

| f | ≥ (q − b)qm−a−1 + k(q − k)qm−a−2

Lemma 7 Let m ≥ 2, q ≥ 3, 1 ≤ a ≤ m and f ∈ Rq(a(q − 1),m) such that | f | = qm−a

and g ∈ Rq(a(q−1)−k,m), 1 ≤ k ≤ q−1, such that g �= 0. Then, either | f +g| = kqm−a

or | f + g| ≥ (k + 1)qm−a.

Lemma 8 Let m ≥ 2, q ≥ 3, 1 ≤ a ≤ m−1 and f ∈ Rq(a(q−1),m). If for some u, v ∈ Fq,
| fu | = | fv| = qm−a−1, then there exists T an affine transformation fixing x1 such that

( f ◦ T )u = ( f ◦ T )v

The following results can be found in [13].

Theorem 1 Let m ≥ 2, q ≥ 9, 0 ≤ a ≤ m − 2 and 4 ≤ b <
q+4
3 . The third weight of

Rq(a(q − 1) + b,m) is W3 = (q − 2)(q − b + 2)qm−a−2.

Theorem 2 Let m ≥ 3, q ≥ 7 and 0 ≤ a ≤ m − 3. The third weight of Rq(a(q − 1) + 3,m)

is W3 = (q − 1)3qm−a−3.
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Theorem 3 For q ≥ 7, m ≥ 2, 0 ≤ a ≤ m − 2, 4 ≤ b <
q+4
3 , up to affine transformation,

the third weight codewords of Rq(a(q − 1) + b,m) are of the form:

f (x) =
a∏

i=1

(1 − xq−1
i )g(xa+1, xa+2) ∀x = (x1, · · · , xm) ∈ Fm

q

where g ∈ Rq(b, 2) is such that |g| = (q − 2)(q − b + 2).

Theorem 4 For q ≥ 7, m ≥ 3, 0 ≤ a ≤ m − 3, up to affine transformation, the third weight
codewords of Rq(a(q − 1) + 3,m) are of the form:

f (x) =
a∏

i=1

(1 − xq−1
i )xa+1xa+2xa+3 ∀x = (x1, · · · , xm) ∈ Fm

q .

3 A lower bound on the fourth weight

In this section, we determine a lower bound on the fourth weight of Rq(a(q − 1) + b,m)

for the cases where 3 ≤ b <
q+4
3 . Throughout this paper, by hyperplane we mean affine

hyperplane and q is a prime number. The validity of the results of this paper has been checked
by a computer program.

Lemma 9 Let f ∈ Rq(b,m) be the product of b distinct linear factors such that x1−λi for i =
1, · · · , k are k of these linear factors. If for some j0 /∈ {1, · · · , k}, | fλ j0

| = (q −b+ k)qm−2

(the minimum weight of Rq(b − k,m − 1)) then, for all j /∈ {1, · · · , k}, there is an integer t
where 0 ≤ t ≤ b − k − 1 such that | fλ j | = (q − b + k + t)qm−2.

Proof We denote by Hλi the affine hyperplane with the equation x1 = λi for i = 1, · · · , q .
Assume that S denotes the support of f . By the assumption of the lemma, S does not meet
the hyperplanes Hλi for i = 1, · · · , k. Denote by H (i) i = 1, · · · , b − k the other affine
hyperplanes corresponding to the other linear factors which do not meet S. Since for some
j0 /∈ {1, · · · , k}, | fλ j0

| = (q − b + k)qm−2 then, fλ j0
is a minimum weight codeword of

Rq(b − k,m − 1). So Hλ j0
∩ H (i) = P(i) is an affine subspace of codimension 2 where

P(i) ∩ P(i ′) = ∅ for i �= i ′. We get that for each two hyperplanes H (s) and H (s′), H (s) ∩H (s′)

is either empty or an affine subspace of codimension 2 which is included in one of the
hyperplanes Hλi for i = 1, · · · , q . Denote by Pi j the affine subspace of codimension 2
Hλi ∩ H ( j) for k + 1 ≤ i ≤ q and 1 ≤ j ≤ b − k in which for j �= j ′, Pi j ∩ Pi j ′ = ∅
or Pi j = Pi j ′ . So we get that | fλi | = qm−1 − (b − k − t)qm−2 in which b − k − t is the
number of distinct subspaces Pi j which is included in Hλi . ��

Lemma 10 Let m ≥ 3, q ≥ 9, 4 ≤ b <
q+4
3 and f ∈ Rq(b,m). If | f | > (q − 2)(q − b +

2)qm−2, then | f | ≥ (q − 1)2(q − b + 2)qm−3.

Proof Let f ∈ Rq(b,m) such that | f | > (q − 2)(q − b + 2)qm−2. Assume | f | < (q −
1)2(q − b + 2)qm−3. Since

(q − 1)2(q − b + 2)qm−3 ≤ (1 + 1

q
)dmb = (1 + 1

q
)(q − b)qm−1 (1)
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for b <
q+4
3 , by Lemma 3 f is the product of b linear factors. For y ∈ Rq(1,m), denote by

n the number of distinct λ ∈ Fq such that y − λ divides f . Since n ≤ b by Lemma 2

(q − b)qm−1 + n(b − n)qm−2 < (q − 1)2(q − b + 2)qm−3

we get that n ∈ {1, 2, b − 2, b − 1, b}.
By applying an affine transformation we can assume that x1 = λ1, λ1 ∈ Fq is one of the
linear factors.
If n = b, then for all x = (x1, · · · , xm) ∈ Fm

q , we have

f (x) = α

b∏
i=1

(x1 − λi )

with λi ∈ Fq , λi �= λ j for i �= j . In this case f is a minimum weight codeword of Rq(b,m)

which is absurd.
If n = b − 1, then for all x = (x1, · · · , xm) ∈ Fm

q , we have

f (x) =
b−1∏
i=1

(x1 − λi )g(x)

with λi ∈ Fq , λi �= λ j for i �= j and g ∈ Rq(1,m). If deg(g) = 0, then f is a minimum
weight codeword of Rq(b − 1,m). If deg(g) = 1, then f is a second minimum weight
codeword of Rq(b,m). Both cases give us a contradiction, since (q − 2)(q − b+ 2)qm−2 <

| f | < (q − 1)2(q − b + 2)qm−3.
If n = b − 2, then for all x = (x1, · · · , xm) ∈ Fm

q , we have

f (x) =
b−2∏
i=1

(x1 − λi )g(x)

with λi ∈ Fq , λi �= λ j for i �= j and g ∈ Rq(2,m). If deg(g) = 0, then f is a minimum
weight codeword of Rq(b − 2,m). If deg(g) = 1, then f is a second minimum weight
codeword of Rq(b−1,m). Both cases give a contradiction. So deg(g) = 2. For all i ≥ b−1,
fλi ∈ Rq(2,m − 1) and | fλi | = |gλi | ≥ (q − 2)qm−2. Denote by N := #{i ≥ b− 1; | fλi | =
(q − 2)qm−2}. For λ ∈ Fq , if | fλ| > (q − 2)qm−2, then | fλ| ≥ (q − 1)2qm−3. Since
| f | < (q − 1)2(q − b + 2)qm−3, we get that N ≥ 1. So by Lemma 9 we conclude that for
all i ≥ b − 1, | fλi | = (q − 2)qm−2 or | fλi | = (q − 1)qm−2. From

N (q − 2)qm−2 + (q − b + 2 − N )(q − 1)qm−2 < (q − 1)2(q − b + 2)qm−3

we get that N = q − b + 2 that gives a third minimum weight codeword of Rq(b,m) which
is absurd.
If n = 2, then for all x = (x1, · · · , xm) ∈ Fm

q , we have

f (x) = (x1 − λ1)(x1 − λ2)g(x)

with λ1, λ2 ∈ Fq , λ1 �= λ2 and g ∈ Rq(b−2,m). Then for all i ≥ 3, fλi ∈ Rq(b−2,m−1)
and | fλi | = |gλi | ≥ (q − b + 2)qm−2. Denote by N := #{i ≥ 3; | fλi | = (q − b + 2)qm−2}.
For λ ∈ Fq , if | fλ| > (q − b + 2)qm−2, then | fλ| ≥ (q − 1)(q − b + 3)qm−3. Since

(q − 2)(q − 1)(q − b + 3)qm−3 > (q − 1)2(q − b + 2)qm−3
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we get that N ≥ 1. So byLemma 9 for all i ≥ 3, | fλi | = (q−b+t)qm−2 where 2 ≤ t ≤ b−1.
Therefore we have

| f | ≥ N (q − b + 2)qm−2 + (q − 2 − N )(q − b + 3)qm−2

=
(
q(q − 2)(q − b + 3) − Nq

)
qm−3.

By considering | f | < (q − 1)2(q − b + 2)qm−3, we get that N = q − 2 that gives a third
minimum weight codeword of Rq(b,m) which is absurd.
From now, assume n = 1. Then for all x = (x1, · · · , xm) ∈ Fm

q , we have

f (x) = (x1 − λ1)g(x)

with λ1 ∈ Fq and g ∈ Rq(b − 1,m). Then for all i ≥ 2, fλi ∈ Rq(b − 1,m − 1) and
| fλi | = |gλi | ≥ (q − b + 1)qm−2. Denote by N := #{i ≥ 2; | fλi | = (q − b + 1)qm−2}. For
λ ∈ Fq , if | fλ| > (q − b + 1)qm−2, then | fλ| ≥ (q − 1)(q − b + 2)qm−3. Since

(q − 1)(q − 1)(q − b + 2)qm−3 ≥ (q − 1)2(q − b + 2)qm−3

we get that N ≥ 1. Assume H0 is the hyperplane with the equation x1 = λ1. Let H =
{H1, · · · , Hb−1} be the set of (b − 1) other affine hyperplanes which do not meet S. Denote
by A the affine subspace of codimension 2 which is included in both of H0 and H1. Let
A = {Hi ; i ≥ 1, Hi ∩ H0 = A}. Since n = 1 and N ≥ 1, for each pair (H , H ′) ∈
A × (H − A), H ∩ H ′ is an affine subspace of codimension 2 which is included in one of
H (i) (the hyperplane with the equation x1 = λi ) for 2 ≤ i ≤ q . Then we have

| f | ≥ (q − 1)(q − b + 1)qm−2 + #A(b − 1 − #A)qm−2.

By considering | f | < (q − 1)2(q − b+ 2)qm−3, we get that |A| = b− 1 that gives a second
minimum weight codeword of Rq(b,m) which is absurd. ��
Lemma 11 Let m ≥ 3, q ≥ 9 and 4 ≤ b <

q+4
3 . If f ∈ Rq((m − 3)(q − 1) + b,m) and

| f | > (q − 2)(q − b + 2)q, then | f | ≥ (q − 1)2(q − b + 2).

Proof The case where m = 3 comes from Lemma 10. Assume m ≥ 4. Let f ∈ Rq((m −
3)(q − 1) + b,m) such that | f | > (q − 2)(q − b+ 2)q . Assume | f | < (q − 1)2(q − b+ 2).
We denote by S the support of f .

Assume S meets all affine hyperplanes. We set an order on the elements of Fq such that
| fλ1 | ≤ · · · ≤ | fλq |. Then for all H hyperplane, #(S ∩ H) ≥ (q − b)q and since

q((q − 2)(q − b + 2) + 1) ≥ (q − 1)2(q − b + 2)

we get that | fλ1 | = (q − b)q or | fλ1 | = (q − 1)(q − b + 1) or | fλ1 | = (q − 2)(q − b + 2).

By applying an affine transformation, we can assume (1 − xq−1
2 ) divides fλ1 . Let k ≥ 1 be

such that for all i ≤ k, (1 − xq−1
2 ) divides fλi and (1 − xq−1

2 ) does not divide fλk+1 . Then
by Lemma 6

| f | ≥ (q − b)q2 + k(q − k)q

≥ (q − b)q2 + q(q − 1)

we get a contradiction, since (q − b)q2 + q(q − 1) ≥ (q − 1)2(q − b + 2).
So there exists a hyperplane H0 which does not meet S. By applying an affine transformation,
we can assume x1 = α, α ∈ Fq is an equation of H0. Denote by n the number of hyperplanes
parallel to H0 which do not meet S.
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If n = q − 1, then for all x = (x1, · · · , xm) ∈ Fm
q we can write

f (x) = (1 − xq−1
1 )g(x2, · · · , xm)

where g ∈ Rq((m − 4)(q − 1) + b,m − 1) and | f | = |g|. So g has the same conditions as
f with one variable less. Iterating this process we end either in the case where a = 0 (which
is absurd by Lemma 10) or in the case where n < q − 1.
From now, we assume n < q − 1. By Lemma 2 since | f | < (q − 1)2(q − b + 2), n ∈
{1, 2, b − 2, b − 1, b}. We can write for all x = (x1, · · · , xm) ∈ Fm

q ,

f (x) =
∏

1≤i≤n

(x1 − λi )g(x)

where g ∈ Rq((m − 3)(q − 1) + b − n,m). Then for all i ≥ n + 1, fλi ∈ Rq((m − 3)(q −
1) + b − n,m − 1) and | fλi | = |gλi | ≥ q(q − b + n).
Assume n = b. For λ ∈ Fq if |gλ| > q2 then |gλ| ≥ 2(q − 1)q . Denote by N := #{i ≥
b + 1; |gλi | = q2}. Since

(q − b)2(q − 1)q ≥ (q − 1)2(q − b + 2)

for b <
q+4
3 , we get N ≥ 1. Furthermore, since

(q − b)q2 < (q − 2)(q − b + 2)q

N ≤ q − b − 1.
Assume | fλb+N+1 | ≥ (N + 1)q2. Then

Nq2 + (q − b − N )(N + 1)q2 ≤ | f | < (q − 1)2(q − b + 2).

Therefore

Nq2(q − b − N ) ≤ 2bq − 3q − b + 2 < (2b − 3)q

which gives N (q − b − N ) < 1 for b <
q+4
3 and this is absurd since 1 ≤ N ≤ q − b − 1. If

| fλb+N+1 | = Nq2 then

Nq2 + (q − b − N )Nq2 ≤ | f | < (q − 1)2(q − b + 2).

So

Nq2(q − b) − N (N − 1)q2 − q2(q − b) < 2bq − 3q − b + 2 < (2b − 3)q

which gives

(N − 1)(q − b − N )q2 < (2b − 3)q.

So the only possibility such that | fλb+N+1 | = Nq2 is N = 1 or N = q − b which are absurd
by definition of N and inequality N ≤ q − b − 1, respectively.

By Lemma 8 for all b + 1 ≤ i ≤ N + b, gλb+1 = gλi . So we can write for all x =
(x1, · · · , xm) ∈ Fm

q

f (x) =
∏

1≤i≤b

(x1 − λi )

(
gλb+1(x2, · · · , xm) +

∏
b+1≤i≤N+b

(x1 − λi )h(x)

)

=
∏

1≤i≤b

(x1 − λi )

(
α fλb+1(x2, · · · , xm) +

∏
b+1≤i≤N+b

(x1 − λi )h(x)

)
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where h ∈ Rq((m − 3)(q − 1) − N ,m) and α ∈ F∗
q .

Then for all (x2, · · · , xm) ∈ Fm−1
q ,

fλb+N+1(x2, · · · , xm) = β fλb+1(x2, · · · , xm) + γ hλb+N+1(x2, · · · , xm)

which is absurd by Lemma 7.
Now, assume n ∈ {1, 2, b − 2, b − 1}.
Applying argument as in the beginning of the proof of this lemma, we can assume that

(1 − xq−1
2 ) does not divide f .

Since n ≥ 1, fλ1 = 0. So (1 − xq−1
2 ) divides fλ1 . Then since (1 − xq−1

2 ) does not divide

f , there exists k ∈ {1, 2, · · · , q − 1} such that for all i ≤ k, (1 − xq−1
2 ) divides fλi and

(1 − xq−1
2 ) does not divide fλk+1 . For λ ∈ Fq , if | fλ| > q(q − b + n), then

| fλ| ≥ W2 =

⎧⎪⎪⎨
⎪⎪⎩

q2 if n = b − 1,
(q − 1)(q − b + 2) if n = 1,
(q − 1)(q − b + 3) if n = 2,
(q − 1)2 if n = b − 2.

Denote by N := #{i ≥ n+1; | fλi | = q(q −b+n)}. In all cases, (q −n)W2 ≥ (q −1)2(q −
b + 2). So N ≥ 1. Furthermore, for all n ∈ {1, 2, b − 2, b − 1}, (q − n)q(q − b + n) ≤
(q − 2)(q − b + 2)q . So N ≤ q − n − 1.
Then | fλn+1 | = q(q − b + n) and fλn+1 is a minimal weight codeword of Rq((m − 3)(q −
1) + b − n,m − 1). So by applying an affine transformation we can assume (1 − xq−1

2 )

divides fλn+1 . Then k ≥ n + 1 ≥ 2.
If N ≥ 2 and n+1 ≤ k ≤ n+N−1, then | fλk+1 | = q(q−b+n) < q(q−b+k). If N = 1

and n + 1 ≤ k ≤ q − 1 or N ≥ 2 and n + N ≤ k ≤ q − 1, assume | fλk+1 | ≥ q(q − b + k).
Then

| f | ≥ Nq(q − b + n) + (k − n − N )W2 + (q − k)q(q − b + k)

≥ (q − 1)2(q − b + 2)

which is absurd.
Since for all n + 1 ≤ i ≤ k, (1 − xq−1

2 ) divides fλi , it divides gλi too. Then for all
x = (x1, · · · , xm) ∈ Fm

q we can write

f (x) =
∏

1≤i≤n

(x1 − λi )

( ∏
n+1≤i≤k

(x1 − λi )h(x1, · · · , xm) + (1 − xq−1
2 )l(x1, x3, · · · , xm)

)

with deg(h) ≤ (m − 3)(q − 1) + b − k. Then for all x = (x1, · · · , xm) ∈ Fm
q

fλk+1(x2, · · · , xm) = αhλk+1(x2, · · · , xm) + β(1 − xq−1
2 )lλk+1(x3, · · · , xm))

Therefore, we get a contradiction by Lemma 5, since k ≥ 2 and | fλk+1 | < q(q − b + k). ��
Lemma 12 Let q ≥ 4, m ≥ 3. If f ∈ Rq(3,m) and | f | > (q − 1)3qm−3 then, | f | ≥
((q − 1)3 + 1)qm−3.

Proof We prove this lemma by induction on m. The case where m = 3 is an immediate
result. Suppose that for some m ≥ 4, if f ∈ Rq(3,m − 1) is such that | f | > (q − 1)3qm−4

then | f | ≥ ((q − 1)3 + 1)qm−4.
Let f ∈ Rq(3,m) such that | f | > (q−1)3qm−3. Assume | f | < ((q−1)3+1)qm−3. Denote
by S the support of f .
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Assume Smeets all affine hyperplanes. Then for all H hyperplanes #(S∩H) ≥ (q−3)qm−2.
Suppose that there exists H1 such that #(S ∩ H1) = (q − 3)qm−2. By applying an affine
transformation, we can assume x1 = α is an equation of H1. Set an order on the elements of
Fq such that | fλ1 | ≤ · · · ≤ | fλq |. Then fλ1 is a minimum weight codeword of Rq(3,m − 1).
By applying an affine transformation, we can assume fλ1 depends only on x2. Let k ≥ 1 be
such that fλi depends only on x2 for all i ≤ k but fλk+1 does not depend only on x2. If k > 3,
we can write for all x = (x1, · · · , xm) ∈ Fm

q

f (x) =
3∑

i=0

f (i)
λi+1

(x2, · · · , xm)
∏

1≤ j≤i

(x1 − λ j )

Since for i ≤ 4, fλi depends only on x2, then f depends only on x1, x2, Then | f | ≡ 0 (mod
qm−2). Since | f | > (q−1)3qm−3, then | f | ≥ ((q−1)3+1)qm−3 which is absurd. So k ≤ 3.
Since fλ1 , · · · , fλk depend only on x2, we can write for all x1, x2 ∈ Fq and x̂ ∈ Fm−2

q

f (x1, x2, x̂) = g(x1, x2) +
k∏

i=1

(x1 − λi )h(x1, x2, x̂)

where deg(h) ≤ 3 − k. Then

fλk+1(x2, x̂) = gλk+1(x2) + αhλk+1(x2, x̂)

where α ∈ F∗
q . So by Lemma 4 since fλk+1 does not depend only on x2, | fλk+1 | ≥ (q − 3 +

k)qm−2. So

| f | ≥ k(q − 3)qm−2 + (q − k)(q − 3 + k)qm−2 = (q − 3)qm−1 + k(q − k)qm−2.

By considering | f | < ((q − 1)3 + 1)qm−3, we get a contradiction.
So for all H hyperplanes, #(S ∩ H) ≥ (q − 1)(q − 2)qm−3. By induction hypothesis and

considering q parallel hyperplanes there exists an affine hyperplane H0 such that #(S∩H0) =
(q − 1)(q − 2)qm−3 or #(S ∩ H0) = (q − 1)3qm−4. In both cases, we get that there exists
A an affine subspace of codimension 2 included in H0 which does not meet S. Considering
all hyperplanes through A, since for all H hyperplanes, #(S ∩ H) ≥ (q − 1)(q − 2)qm−3,
we get

(q + 1)(q − 1)(q − 2)qm−3 < ((q − 1)3 + 1)qm−3

and this is absurd. So there exists an affine hyperplane H1 which does not meet S. Denote
by n the number of hyperplanes parallel to H1 which do not meet S.

By applying an affine transformation, we can assume x1 = λ1 is an equation of H1. We
have n ≤ 3.

If n = 3, then for all x = (x1, · · · , xm) ∈ Fm
q we can write

f (x) = (x1 − λ1)(x1 − λ2)(x1 − λ3)g(x)

where λi ∈ Fq , λi �= λ j for all i �= j , deg(g) = 0. So | f | = (q − 3)qm−1 that gives a
minimum weight codeword of Rq(3,m) which is absurd.

If n = 2, then for all x = (x1, · · · , xm) ∈ Fm
q we can write

f (x) = (x1 − λ1)(x1 − λ2)g(x)

where λi ∈ Fq , λ1 �= λ2, deg(g) ≤ 1. If deg(g) = 0, | f | = (q − 2)qm−1. If deg(g) = 1,
| f | = (q − 2)(q − 1)qm−2. We get a contradiction in both cases.
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From now, assume n = 1. Then for all x = (x1, · · · , xm) ∈ Fm
q we have

f (x) = (x1 − λ1)g(x)

where deg(g) ≤ 2. Then for i ≥ 2, deg( fλi ) ≤ 2 and so either | fλi | = (q − 2)qm−2 or
| fλi | = (q − 1)2qm−3 or | fλi | ≥ (q2 − q − 1)qm−3 (see [13]). Since

(q − 1)(q2 − q − 1)qm−3 ≥ ((q − 1)3 + 1)qm−3,

is a contradiction, there exists i ≥ 2 such that | fλi | = (q −2)qm−2 or | fλi | = (q −1)2qm−3.
Denote by H ′ a hyperplane such that #(S ∩ H ′) = (q − 2)qm−2 (#(S ∩ H ′) = (q −
1)2qm−3). Then there exist P1 and P2 two parallel affine subspaces of codimension 2 (two
affine subspaces of codimension 2 intersect in an affine subspace of codimension 3) included
in H ′ not in S. Consider P an affine subspace of codimension 2 included in H ′ which intersect
P1 and P2 (in two different subspace of codimension 3). Then #(S ∩ P) = (q − 2)qm−3.
Then for all H hyperplane through P , #(S ∩ H) ≥ (q − 1)(q − 2)qm−3. We can apply the
same argument to all affine subspaces of codimension 2 included in H ′ parallel to P . Now,
consider a hyperplane through P and the q−1 parallel hyperplanes to this hyperplane. Since
| f | < ((q − 1)3 + 1)qm−3, by induction hypothesis one of these hyperplanes say H ′′ meets
S either in (q − 2)(q − 1)qm−3 or (q − 1)3qm−4 points.

Denote by (Ai )1≤i≤3 the 3 affine subspaces of codimension 2 included in H ′′ which do
not meet S. Suppose that S meets all hyperplanes through Ai and consider H one of them. If
all hyperplanes parallel to H meet S then as in the beginning of the proof of this lemma, we
get that #(S ∩ H) ≥ (q − 1)(q − 2)qm−3. If there exists a hyperplane parallel to H which
does not meet S then #(S ∩ H) ≥ (q − 2)qm−2. In all cases we get a contradiction since
(q + 1)(q − 1)(q − 2)qm−3 ≥ ((q − 1)3 + 1)qm−3.

Then there exist three hyperplanes H1 (with the equation x1 = λ1), H2 and H3 which do
not meet S. Since n = 1, the intersection of H2 and H3 is an affine subspace of codimension
2 say A2,3. There are three following cases:
If A2,3 is contained in the hyperplane H1, then for all i ≥ 2 | fλi | = (q − 2)qm−2. So
| f | = (q − 1)(q − 2)qm−2 which is absurd.
If A2,3 is contained in one of the hyperplanes x1 = λ j for j ≥ 2, then | fλ j | = (q − 1)qm−2

and | fλi | = (q − 2)qm−2 for i ≥ 2 and i �= j . So

| f | = (q − 2)(q − 2)qm−2 + (q − 1)qm−2

= (q2 − 3q + 3)qm−2

= ((q − 1)3 + 1)qm−3,

we get a contradiction, since | f | < ((q − 1)3 + 1)qm−3.
If A2,3 meets the hyperplane x1 = λi in an affine subspace Pi of codimension 3 for all i , then
| fλi | = (q − 1)2qm−3. So | f | = (q − 1)(q − 1)2qm−3 = (q − 1)3qm−3 which is absurd. ��

In what follows, let

c̃b =
{

(q − 2)(q − b + 2)q if 4 ≤ b <
q+4
3 , q ≥ 9

(q − 1)3 if b = 3, q ≥ 7

and

d̃b =
{

(q − 1)2(q − b + 2) if 4 ≤ b <
q+4
3 , q ≥ 9

(q − 1)3 + 1 if b = 3, q ≥ 7
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Proposition 1 Letm ≥ 3, q ≥ 9, 0 ≤ a ≤ m−3, 3 ≤ b <
q+4
3 and f ∈ Rq(a(q−1)+b,m).

If | f | > c̃bqm−a−3 then | f | ≥ d̃bqm−a−3.

Proof The cases where a = 0 orm = 3 have been considered in Lemmas 10 and 12. Assume
m ≥ 4 and a ≥ 1. We prove the result by induction on m − a. The case where a = m − 3
is an immediate result for b = 3 and follows from Lemma 11 for b ≥ 4. If m = 4, the only
possibilities are a = 0 and a = 1 that have been considered before. So, from now suppose
that m ≥ 5. Let 1 ≤ a ≤ m − 4. Assume if f ∈ Rq((a + 1)(q − 1) + b,m) is such that
| f | > c̃bqm−a−4 then, | f | ≥ d̃bqm−a−4.

Let f ∈ Rq(a(q − 1) + b,m) such that | f | > c̃bqm−a−3. Assume | f | < d̃bqm−a−3.
Denote by S the support of f .

Suppose that S meets all affine hyperplanes. We set an order on the elements of Fq
such that | fλ1 | ≤ · · · ≤ | fλq |. Since | f | < d̃bqm−a−3, by induction hypothesis, fλ1 is
either a minimal weight codeword or second weight codeword or third weight codeword of
Rq(a(q − 1) + b,m − 1). In all cases, by applying an affine transformation we can assume

(1 − xq−1
2 ) divides fλ1 . Let k ≥ 1 be such that for all i ≤ k, (1 − xq−1

2 ) divides fλi but

(1 − xq−1
2 ) does not divide fλk+1 . Then, by Lemma 6,

| f | ≥ (q − b)qm−a−1 + k(q − k)qm−a−2 ≥ (q − b)qm−a−1 + (q − 1)qm−a−2

which is absurd, since (q − b)qm−a−1 + (q − 1)qm−a−2 ≥ d̃bqm−a−3.
So there exists a hyperplane H0 which does not meet S. By applying an affine transfor-

mation we can assume x1 = α, α ∈ Fq , is an equation of H0. We denote by n the number of
hyperplanes parallel to H0 which do not meet S.

If n = q − 1, then we can write for all x = (x1, · · · , xm) ∈ Fm
q

f (x) = (1 − xq−1
1 )g(x2, · · · , xm)

where g ∈ Rq((a − 1)(q − 1) + b,m − 1) and | f | = |g|. Then g has the same conditions as
f . Iterating this process, we end either in the case where a = 0 (which gives a contradiction
by Lemma 10 and 12) or in the case where n < q − 1. So from now we assume n < q − 1.
Since | f | < d̃bqm−a−3, by Lemma 2 the only possibilities are n ∈ {1, 2, b − 2, b − 1, b}.
We can write for all x = (x1, · · · , xm) ∈ Fm

q

f (x) =
n∏

i=1

(x1 − λi )g(x)

where g ∈ Rq(a(q−1)+b−n,m). Then for all i ≥ n+1, fλi ∈ Rq(a(q−1)+b−n,m−1)
and | fλi | = |gλi | ≥ (q − b + n)qm−a−2.

Assume n = b. For λ ∈ Fq , if |gλ| > qm−a−1, then |gλ| ≥ 2(q − 1)qm−a−2. We
denote By N = #{i ≥ b + 1 : |gλi | = qm−a−1}. Since for i ≥ b + 1 | fλi | = |gλi | and
(q − b)2(q − 1)qm−a−2 > d̃bqm−a−3, N ≥ 1. On the other hand since (q − b)qm−a−1 <

c̃bqm−a−3 < | f |, N ≤ q − b − 1.
Assume | fλb+N+1 | ≥ (N + 1)qm−a−1. Then

Nqm−a−1 + (q − b − N )(N + 1)qm−a−1 ≤ | f | < d̃bq
m−a−3

which gives

(q − b)Nq2 − N 2q2 < d̃b − (q − b)q2
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therefore

N (q − b − N )q2 < (2b − 3)q.

which is absurd since N (q − b − N ) ≥ 1 and b <
q+4
3 .

If | fλb+N+1 | = Nqm−a−1, then

Nqm−a−1 + (q − b − N )Nqm−a−1 ≤ | f | < d̃bq
m−a−3

which gives

Nq2(q − b − N + 1) < d̃b < q2(q − b + 1).

So we have

(N − 1)(q − b + 1) < N 2

which is absurd for 2 ≤ N ≤ q−b−1. So the only possibility such that | fλb+N+1 | = Nqm−a−1

is the case where N = 1 that is a contradiction by definition of N .
By Lemma 8, for all b + 1 ≤ i ≤ N + b, gλb+1 = gλi . So we can write for all x =

(x1, · · · , xm) ∈ Fm
q

f (x) =
∏

1≤i≤b

(x1 − λi )

(
gλb+1(x2, · · · , xm) +

∏
b+1≤i≤N+b

(x1 − λi )h(x)

)

=
∏

1≤i≤b

(x1 − λi )

(
α fλb+1(x2, · · · , xm) +

∏
b+1≤i≤N+b

(x1 − λi )h(x)

)

where h ∈ Rq(a(q − 1) − N ,m) and α ∈ F∗
q .

Then, for all (x2, · · · , xm) ∈ Fm−1
q ,

fλb+N+1(x2, · · · , xm) = β fλb+1(x2, · · · , xm) + γ hλb+N+1(x2, · · · , xm).

This is a contradiction by Lemma 7.
From now, assume n ∈ {1, 2, b − 2, b − 1}.
Applying argument as in the begining of the proof of this proposition, we can assume that

(1 − xq−1
2 ) does not divide f .

Since n ≥ 1, fλ1 = 0. So, (1 − xq−1
2 ) divides fλ1 . Since (1 − xq−1

2 ) does not divide f ,

there exists k ∈ {1, · · · , q −1} such that for all i ≤ k, (1− xq−1
2 ) divides fλi and (1− xq−1

2 )

does not divide fλk+1 . For i ≥ n + 1, if | fλi | > (q − b + n)qm−a−2 then

| fλi | ≥ W2 =

⎧⎪⎪⎨
⎪⎪⎩

qm−a−1 if n = b − 1,
(q − 1)(q − b + 2)qm−a−3 if n = 1,
(q − 1)(q − b + 3)qm−a−3 if n = 2 and b �= 3,
(q − 1)2qm−a−3 if n = b − 2.

We denote by N = #{i ≥ n + 1 : | fλi | = (q − b + n)qm−a−2}. Since for n ∈ {1, 2, b −
2, b − 1} if (n, b) �= (1, 3) (q − n)W2 ≥ d̃bqm−a−3, N ≥ 1. Furthermore, in all cases,
(q − n)(q − b + n)qm−a−2 ≤ c̃bqm−a−3 < | f |. So N ≤ q − n − 1.
Assume (n, b) = (1, 3). We denote by N = #{i ≥ 2 : | fλi | = (q − 2)qm−a−2 or | fλi | =
(q − 1)2qm−a−3}. For i ≥ 2, if | fλi | > (q − 1)2qm−a−3 then | fλi | ≥ W3 = (q2 − q −
1)qm−a−3. Since (q − 1)(q2 − q − 1)qm−a−3 > ((q − 1)3 + 1)qm−a−3, N ≥ 1. Also, since
(q − 1)(q − 1)2qm−a−3 < | f |, N ≤ q − 2.
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The above arguments show that for 3 ≤ b <
q+4
3 and n ∈ {1, 2, b−2, b−1} except possibly

(n, b) = (1, 3) fλn+1 is a minimum weight codeword of Rq(a(q − 1) + b − n,m − 1)
and if (n, b) = (1, 3) fλn+1 is either a minimum or second minimum weight codeword of

Rq(a(q −1)+2,m−1). So by applying an affine transformation we can assume (1− xq−1
2 )

divides fλn+1 . Thus k ≥ n + 1 ≥ 2.
If N ≥ 2 and n+1 ≤ k ≤ n+N −1, then k+1 ∈ N and so | fλk+1 | < (q−b+k)qm−a−2.

If N = 1 and n + 1 ≤ k ≤ q − 1 or N ≥ 2 and n + N ≤ k ≤ q − 1, assume that
| fλk+1 | ≥ (q − b + k)qm−a−2. We get

| f | ≥ N (q − b + n)qm−a−2 + (k − n − N )W2 + (q − k)(q − b + k)qm−a−2

which is absurd since | f | < d̃bqm−a−3 and 1 ≤ N ≤ q − n − 1.
Since (1 − xq−1

2 ) divides fλi for all i ≤ k, it divides gλi too. Therefore, we can write for
all x = (x1, x2, · · · , xm) ∈ Fm

q

f (x) =
∏

1≤i≤n

(x1 − λi )

( ∏
n+1≤i≤k

(x1 − λi )h(x1, x2, · · · , xm)

+(1 − xq−1
2 )l(x1, x3, · · · , xm)

)

with deg(h) ≤ a(q − 1) + b − k and l ∈ Rq((a − 1)(q − 1) + b − n,m − 1). Then for all
(x2, · · · , xm) ∈ Fm−1

q ,

fλk+1(x2, · · · , xm) = αhλk+1(x2, · · · , xm) + β(1 − xq−1
2 )lλk+1(x3, · · · , xm).

We get a contradiction by Lemma 5, since k ≥ 2 and | fλk+1 | < (q − b + k)qm−a−2 ��

4 An upper bound on the fourth weight

Theorem 5 Let q ≥ 3, m ≥ 2, 0 ≤ a ≤ m − 1, 1 ≤ b ≤ q − 1, then if W4 is the fourth
weight of Rq(a(q − 1) + b,m), we have

(1) If b = 1 then,

– for q = 3, m ≥ 3 and 1 ≤ a ≤ m − 2, W4 ≤ 4.3m−a−1,
– for q = 4, m ≥ 3 and 1 ≤ a ≤ m − 2, W4 ≤ 6.4m−a−1,
– for q = 3 and a = m − 1 or q = 4 and a = m − 1, W4 ≤ 2q,
– for q ≥ 5 and 1 ≤ a ≤ m − 1, W4 ≤ 2(q − 1)qm−a−1,

(2) If 2 ≤ b ≤ q − 1

– for q ≥ 5, m ≥ 3, 0 ≤ a ≤ m − 3, and 4 ≤ b ≤ � q
2 + 2�, W4 ≤ (q − 1)2(q − b +

2)qm−a−3,
– for q ≥ 7, 0 ≤ a ≤ m−2, and � q

2 +2� ≤ b ≤ q−1, W4 ≤ (q−2)(q−b+2)qm−a−2,
– for q ≥ 4, m ≥ 3, 0 ≤ a ≤ m − 3 and b = 3, W4 ≤ ((q − 1)3 + 1)qm−a−3,
– for q ≥ 4, 0 ≤ a ≤ m − 2 and b = 2, W4 ≤ qm−a.
– for q = 3, 1 ≤ a ≤ m − 1 and b = 2, W4 ≤ 2.3m−a−1.
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Proof (1) – For q = 3, m ≥ 3 and 1 ≤ a ≤ m − 2, define for x = (x1, · · · , xm) ∈ Fm
q ,

f (x) =
a−1∏
i=1

(1 − x2i )(xa − u)(xa+1 − v)

with u, v ∈ Fq . Then, f ∈ R3(2a,m) and | f | = 4.3m−a−1 ≥ 3m−a .
– For q = 4, m ≥ 3 and 1 ≤ a ≤ m − 2, define for x = (x1, · · · , xm) ∈ Fm

q ,

f (x) =
a−1∏
i=1

(1 − x3i )(xa − u)(xa − v)(xa+1 − w)

with u, v, w ∈ Fq and u �= v. Then, f ∈ R4(3a,m) and | f | = 6.4m−a−1 ≥
18.4m−a−2.

– For q = 3 and a = m − 1 define for x = (x1, · · · , xm) ∈ Fm
3

f (x) =
m−2∏
i=1

(1 − x2i )(xm−1 − u)

with u ∈ Fq . Then, f ∈ Rq(2m − 3,m) ⊂ Rq(2(m − 1) + 1,m) and | f | = 6 >

4 ≥ W3.
– For q = 4 and a = m − 1 define for x = (x1, · · · , xm) ∈ Fm

4

f (x) =
m−3∏
i=1

(1 − x3i )(xm−2 − u1)(xm−2 − u2)(xm−1 − u3)

(xm−1 − u4)(xm − u5)(xm − u6)

with ui ∈ Fq and u2i−1 �= u2i for i = 1, 2, 3. Then, f ∈ Rq(3m − 3,m) ⊂
Rq(3(m − 1) + 1,m) and | f | = 8 > 6 ≥ W3.

– For q ≥ 5 and 1 ≤ a ≤ m − 1 define for x = (x1, · · · , xm) ∈ Fm
q

f (x) =
a−1∏
i=1

(1 − xq−1
i )

q−2∏
j=1

(xa − b j )(xa+1 − u)

with u, b j ∈ Fq and bi �= b j for i �= j . Then f ∈ Rq(a(q − 1),m) ⊂ Rq(a(q −
1) + 1,m) and | f | = 2(q − 1)qm−a−1 > 2(q − 2)qm−a−1 ≥ W3.

(2) For q ≥ 5, 0 ≤ a ≤ m − 3 and 4 ≤ b ≤ � q
2 + 2�, define for x = (x1, · · · , xm) ∈ Fm

q ,

f (x) =
a∏

i=1

(1 − xq−1
i )

b−2∏
j=1

(xa+1 − b j )(xa+2 − c)(xa+3 − d)

with b j ∈ Fq , b j �= bk for j �= k and c, d ∈ Fq . Then, f ∈ Rq(a(q − 1) + b,m) and
| f | = (q − 1)2(q − b + 2)qm−a−3 > (q − 2)(q − b + 2)qm−a−2.

– For q ≥ 7, 0 ≤ a ≤ m−2, � q
2 +2� ≤ b ≤ q−1, define for x = (x1, · · · , xm) ∈ Fm

q ,

f (x) =
a∏

i=1

(1 − xq−1
i )

b−2∏
j=1

(xa+1 − b j )(xa+2 − c)(xa+2 − d)

with b j ∈ Fq , b j �= bk for j �= k, c, d ∈ Fq and c �= d . Then, f ∈ Rq(a(q − 1) +
b,m) and | f | = (q − 2)(q − b + 2)qm−a−2 > W3.
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– For q ≥ 4, m ≥ 3, 0 ≤ a ≤ m − 3 and b = 3,

f (x) =
a∏

i=1

(1 − xq−1
i )(xa+1 − c)(xa+2 − d)(αxa+1 + βxa+2 − e)

with c, d, e ∈ Fq , α, β ∈ F∗
q and e �= αc+ βd . Then, f ∈ Rq(a(q − 1) + 3,m) and

| f | = ((q − 1)3 + 1)qm−a−3 > (q − 1)3qm−a−3.
– For q ≥ 4, 0 ≤ a ≤ m − 2 and b = 2, define for x = (x1, · · · , xm) ∈ Fm

q ,

f (x) =
a∏

i=1

(1 − xq−1
i )

then, f ∈ Rq(a(q − 1),m) ⊂ Rq(a(q − 1) + 2,m) and | f | = qm−a > (q −
1)qm−a−1 ≥ W3.

– For q = 3, 1 ≤ a ≤ m − 1 and b = 2, define for x = (x1, · · · , xm) ∈ Fm
q ,

f (x) =
a∏

i=1

(1 − x2i )(xa+1 − u)

with u ∈ Fq . Then, f ∈ R3(2a + 1,m) ⊂ R3(2a + 2,m) and | f | = 2.3m−a−1 >

16.3m−a−3 ≥ W3. ��

5 Fourth weight in the case wherem ≥ 3

By combining the results in Sections 3 and 4, we have the following results.

Theorem 6 Let m ≥ 3, q ≥ 9, 0 ≤ a ≤ m − 3 and 4 ≤ b <
q+4
3 . The fourth weight of

Rq(a(q − 1) + b,m) is W4 = (q − 1)2(q − b + 2)qm−a−3.

Theorem 7 Let m ≥ 3, q ≥ 7 and 0 ≤ a ≤ m−3. The fourth weight of Rq(a(q −1)+3,m)

is W4 = ((q − 1)3 + 1)qm−a−3.

Proof By Proposition 1 we have

W4 ≥
{

(q − 1)2(q − b + 2)qm−a−3 if 4 ≤ b <
q+4
3 ,

((q − 1)3 + 1)qm−a−3 if b = 3.

By Theorem 5 Part (2), there exists g ∈ Rq(b, 3) such that |g| = d̃b. For x = (x1, · · · , xm) ∈
Fm
q , we define

f (x) =
a∏

i=1

(1 − xq−1
i )g(xa+1, xa+2, xa+3).

Then f ∈ Rq(a(q − 1) + b,m) and | f | = |g|qm−a−3 which proves both of theorems. ��

6 Fourth weight in the case wherem = 2

In this section, we determine the fourth weight and the fourth weight codewords of Rq(b, 2).
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Proposition 2 For q ≥ 11, the fourth weight of Rq(4, 2) is W4 = (q − 2)2 + 1.
Furthermore, if f ∈ Rq(4, 2) is such that | f | = (q−2)2+1 then up to affine transformation
for all (x, y) ∈ F2

q either

f (x, y) =
2∏
j=1

(a1x + b1y + c j )(a2x + b2y)(a3x + b3y)

with (ai , bi ) ∈ F2
q \ {(0, 0)} are such that ai b j − a jbi �= 0 for i �= j and c j ∈ F∗

q for
j = 1, 2

or

f (x, y) =
3∏
j=1

(a j x + b j y)(a4x + b4y + c)

with (ai , bi ) ∈ F2
q \ {(0, 0)} are such that ai b j − a jbi �= 0 for i �= j and c ∈ F∗

q .

Proof The third weight in this case is (q − 2)2. So if there exists f ∈ Rq(4, 2) such that
| f | = (q−2)2 +1,W4 = (q −2)2 +1 and f is a fourth weight codeword of Rq(4, 2). Since
(q − 2)2 + 1 < (q − 3)q and (q − 3)q is the minimum weight of Rq(3, 2), deg( f ) = 4. We
prove first that f is the product of 4 affine factors. Let p be a point of F2

q which is not in S

and l be a line in F2
q such that p ∈ l. Then either l does not meet S or l meets S in at least

q − 4 points. If any line through p meets S then,

(q + 1)(q − 4) ≤ | f | = (q − 2)2 + 1

which is absurd for q ≥ 11. So there exists a line through p which does not meet S. By
applying the same argument to all points not in S, we get that f is the product of affine
factors.

Denote by Z the set of zeros of f . We have just proved that Z is the union of 4 lines in
F2
q . If the 4 lines are parallel then, f is the minimum weight codeword of Rq(4, 2) which

is absurd. If 3 of these lines are parallel or the 4 lines intersect in one common point, f is a
second weight codeword of Rq(4, 2) which is absurd. Assume 2 of these lines are parallel. If
the 2 other lines are parallel or intersect in a point which is included in one of the parallel lines
then, f is a third weight codeword of Rq(4, 2) which is absurd. If the 2 other lines intersect
in a point which is not included in any of the parallel lines then we are in the first case of the
proposition. Finally, assume all of 4 lines intersect pairwise. They can not intersect in one
point. If 3 of 4 lines intersect in a point then, we are in the second case of the proposition.
Otherwise |Z | = 4q − 6 < 4q − 5 which is absurd. ��

Proposition 3 For q ≥ 13, the fourth weight of Rq(5, 2) is W4 = (q − 2)(q − 3) + 1.
Furthermore, if f ∈ Rq(5, 2) is such that | f | = (q − 2)(q − 3) + 1 then up to affine
transformation for all (x, y) ∈ F2

q either

f (x, y) =
3∏
j=1

(a1x + b1y + c j )(a2x + b2y)(a3x + b3y)

with (ai , bi ) ∈ F2
q \ {(0, 0)} are such that ai b j − a jbi �= 0 for i �= j and c j ∈ F∗

q for
j = 1, 2, 3
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or

f (x, y) =
2∏

i=1

(a1x + b1y + ci )
2∏
j=1

(a2x + b2y + d j )(α(a1x + b1y + ci )

+β(a2x + b2y + d j )), i, j ∈ {1, 2}
with (ai , bi ) ∈ F2

q \{(0, 0)}, a1b2 −a2b1 �= 0, ci , di ∈ Fq are such that c1 �= c2 and d1 �= d2
and α, β ∈ F∗

q
or

f (x, y) =
3∏

i=1

(ai x + bi y)(a1x + b1y + c)(α(a j x + b j y) + β(a1x + b1y + c)),

j = 2, 3

with (ai , bi ) ∈ F2
q \{(0, 0)}, ai b j − a jbi �= 0 for i �= j and c, α, β ∈ F∗

q
or

f (x, y) =
4∏
j=1

(a j x + b j y)(a5x + b5y + c)

with (a j , b j ) ∈ F2
q \ {(0, 0)} are such that ai b j − a jbi �= 0 for i �= j and c ∈ F∗

q .

Proof The third weight in this case is (q − 2)(q − 3). So if there exists f ∈ Rq(5, 2) such
that | f | = (q−2)(q−3)+1,W4 = (q−2)(q−3)+1 and f is a fourth weight codeword of
Rq(5, 2). Let f ∈ Rq(5, 2) such that | f | = (q − 2)(q − 3) + 1. Since (q − 2)(q − 3) + 1 <

(q − 4)q and (q − 4)q is the minimum weight of Rq(4, 2), deg( f ) = 5. We prove first that
f is the product of 5 affine factors. Let p be a point of F2

q which is not in S and l be a line
in F2

q such that p ∈ l. Then either l does not meet S or l meets S in at least q − 5 points. If
any line through p meets S then

(q + 1)(q − 5) ≤ | f | = (q − 3)(q − 2) + 1

which is absurd for q ≥ 13. So there exists a line through p which does not meet S. By
applying the same argument to all points not in S, we get that f is the product of affine
factors.

Denote by Z the set of zeros of f . We have just proved that Z is the union of 5 lines in
F2
q . If the 5 lines are parallel then f is a minimum weight codeword of Rq(5, 2) which is

absurd. If 4 of these lines are parallel or the 5 lines intersect in one common point, then f
is a second minimum weight codeword of Rq(5, 2) which is absurd. Assume that 3 of these
lines are parallel. Consider all possibilities:

1. If the 2 other lines are parallel or intersect in one point which is included in one of the
parallel lines then, f is a third minimum weight codeword of Rq(5, 2) which is absurd.

2. If the 2 other lines intersect in one point which is not included in any of the parallel lines
then we are in the first case of the proposition.

Assume 2 of these lines are parallel. Consider all of cases.

1. If an other pair of lines are parellel and the fifth line meets the four other lines in two
points then, f is a third minimum weight codeword of Rq(5, 2) which is absurd. If the
fifth line meets the four other lines in three points then, we are in the second case of the
proposition. Otherwise #Z = 5q − 8 < 5q − 7 which is absurd.
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2. If the 3 other lines intersect in one common point which is included in one of the parallel
lines then, f is a third minimum weight codeword of Rq(5, 2) which is absurd. If 2 of
the three other lines intersect in a point which is included in one of 2 parallel lines and
the fifth line meets the four other lines in 3 points then, we are in the third case of the
proposition. Otherwise #Z ≤ 5q − 8 < 5q − 7 which is absurd.

Assume all lines intersect pairwise. They can not intersect in one point. If 4 of 5 lines intersect
in one common point and the fifth line meets the other lines in different points of that point
then, we are in the last case of the proposition. Otherwise #Z ≤ 5q − 8 < 5q − 7 which is
absurd. ��
Proposition 4 For q ≥ 16, the fourth weight of Rq(6, 2) is W4 = (q − 2)(q − 4) + 1.
Furthermore, if f ∈ Rq(6, 2) is such that | f | = (q − 2)(q − 4) + 1 then up to affine
transformation for all (x, y) ∈ F2

q either

f (x, y) =
4∏
j=1

(a1x + b1y + c j )(a2x + b2y)(a3x + b3y)

with (ai , bi ) ∈ F2
q \ {(0, 0)} are such that ai b j − a jbi �= 0 for i �= j and c j ∈ F∗

q for
j = 1, 2, 3, 4

or

f (x, y) =
3∏

i=1

(a1x + b1y + ci )
3∏
j=1

(a2x + b2y + d j )

with (ai , bi ) ∈ F2
q \ {(0, 0)} are such that a1b2 −a2b1 �= 0, ci , di ∈ Fq and ci �= c j , di �= d j

for i �= j
or

f (x, y) =
3∏

i=1

(x − ai )
2∏
j=1

(y − b j )
(
(ai − ak)y + (b1 − b2)x + akb2 − aib1

)
i �= k

with ai , b j ∈ Fq, b1 �= b2 and ai �= a j for i �= j
or

f (x, y) = (a1x + b1y)
2∏

i=1

(a1x + b1y + ci )
4∏
j=2

(a j x + b j y)

with (ai , bi ) ∈ F2
q \ {(0, 0)} are such that ai b j − a jbi �= 0, c1, c2 ∈ F∗

q and c1 �= c2
or

f (x, y) =
3∏

i=1

(x − ai )(y − b1)(αx + β y − αa1 − βb1)
(
α(a1 − a2)(x − a3)

+β(a3 − a2)(y − b1)
)

with b1, ai ∈ Fq, ai �= a j for i �= j and α, β ∈ F∗
q

or

f (x, y) =
2∏

i=1

(x − ai )
2∏
j=1

(y − b j )
(
(b2 − b1)x + (a2 − a1)y + a1b1 − a2b2

)
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(
(b2 − b1)x + (a2 − a1)y + a1b2 + a2b1 − 2a2b2

)

with ai , bi ∈ Fq are such that a1 �= a2 and b1 �= b2 and a1b1 + a2b2 �= a1b2 + a2b1
or

f (x, y) =
2∏

i=1

(x − ai )
2∏
j=1

(y − b j )
(
(b2 − b1)x + (a2 − a1)y + a1b1 − a2b2

)

(
(b1 − b2)x + (a2 − a1)y + b2a1 − b1a2

)

with ai , bi ∈ Fq are such that a1 �= a2 and b1 �= b2
or

f (x, y) =
5∏
j=1

(a j x + b j y)(a6x + b6y + c)

with (a j , b j ) ∈ F2
q \ {(0, 0)} are such that ai b j − a jbi �= 0 for i �= j and c ∈ F∗

q .

Proof The third weight in this case is (q − 2)(q − 4). So if there exists f ∈ Rq(6, 2) such
that | f | = (q−2)(q−4)+1,W4 = (q−2)(q−4)+1 and f is a fourth weight codeword of
Rq(6, 2). Let f ∈ Rq(6, 2) such that | f | = (q − 2)(q − 4) + 1. Since (q − 2)(q − 4) + 1 <

q(q − 5) and q(q − 5) is the minimum weight of Rq(5, 2), deg( f ) = 6. We prove first that
f is the product of 6 affine factors. Let p be a point of F2

q which is not in S and l be a line
in F2

q such that p ∈ l. Then either l does not meet S or l meets S in at least q − 6 points. If
any line through p meets S then

(q + 1)(q − 6) ≤ | f | = (q − 2)(q − 4) + 1

which is absurd for q ≥ 16. So there exists a line through p which does not meet S. By
applying the same argument to all points not in S, we get that f is the product of affine
factors.

Denote by Z the set of zeros of f . We have just proved that Z is the union of 6 lines in
F2
q . If the 6 lines are parallel then, f is the minimum weight codeword of Rq(6, 2) which is

absurd. If 5 of these lines are parallel or the 6 lines intersect in one common point then, f
is a second weight codeword of Rq(6, 2) which is absurd. If 4 of these lines are parallel, the
following cases will happen:

1. If the two other lines are parallel or intersect in one point which is included in one of the
parallel lines then, f is a third weight codeword of Rq(6, 2) which is absurd.

2. If the two other lines intersect in one point which is not included in any of the parallel
lines then, we are in the first case of the proposition (see Fig. 1a).

If 3 of these lines are parallel, the following cases will happen:

1. If the three other lines are parallel then, we are in the second case of the proposition (see
Fig. 1b).

2. Assume that two of three other lines are parallel. If the last line meets the five other
lines in 3 points then, we are in the third case of the proposition (see Fig. 1c). Otherwise
#Z ≤ 6q − 10 < 6q − 9 which is absurd.

3. If the three other lines intersect in one common point which is included in one of the
parallel lines then, we are in the fourth case of the proposition (see Fig. 1d).
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Fig. 1 Possible sets of zeros of fourth weight codewords in Rq (6, 2) for q ≥ 16

4. If the three other lines intersect pairwise in three different points which are included in
the parallel lines then, we are in the fifth case of the proposition (see Fig. 1e). Otherwise
#Z ≤ 6q − 10 < 6q − 9 which is absurd.

If 2 of these lines are parallel, the following cases will happen:

1. Assume the 6 lines can be partitioned to three pair of parallel lines. If the lines of each
pair meet the four other lines in 5 points, we are in the 6th case of the proposition (see
Fig. 1f). Otherwise #Z ≤ 6q − 11 < 6q − 9 which is absurd.

2. Assume the 6 lines can be partitioned so that there are two pair of parallel lines. So if
the two other lines meet the four other lines in 4 points, we are in the 7th case of the
proposition (see Fig. 1g). Otherwise #Z ≤ 6q − 10 which is absurd.

3. Assume there is one pair of parallel lines. If the four other lines intersect in one point
included in one of the parallel lines then f is a third weight codeword of Rq(6, 2) which
is absurd. Otherwise #Z ≤ 6q − 10 that is a contradiction.

If the 6 lines intersect pairwise, they can not intersect in one point. Then if 5 lines intersect
in one point and the 6th line meets the other lines in different points of that point then we are
in the last case of the proposition (see Fig. 1h). Otherwise #Z ≤ 6q − 11 which is absurd. ��

Theorem 8 For q ≥ 19 and 7 ≤ b <
q
3 + 1, the fourth weight of Rq(b, 2) is W4 =

(q − 2)(q − b + 2) + 1.
Furthermore, if f ∈ Rq(b, 2) is such that | f | = (q − 2)(q − b + 2) + 1 then up to affine
transformation for all (x, y) ∈ F2

q either

f (x, y) =
b−2∏
j=1

(a1x + b1y + c j )(a2x + b2y)(a3x + b3y)
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Fig. 2 Possible sets of zeros of fourth weight codewords in Rq (7, 2) for q ≥ 19

with (ai , bi ) ∈ F2
q \ {(0, 0)} are such that ai b j − a jbi �= 0 for i �= j and c j ∈ F∗

q for
j = 1, · · · , b − 2 or

f (x, y) =
b−1∏
j=1

(a j x + b j y)(abx + bby + c)

with (ai , bi ) ∈ F2
q \ {(0, 0)} are such that ai b j − a jbi �= 0 for i �= j and c ∈ F∗

q .

Proof The third weight in this case is (q − 2)(q − b + 2). So if there exists f ∈ Rq(b, 2)
such that | f | = (q − 2)(q − b + 2) + 1, W4 = (q − 2)(q − b + 2) + 1 and f is a fourth
weight codeword of Rq(b, 2). Let f ∈ Rq(b, 2) such that | f | = (q − 2)(q − b + 2) + 1.
Denote by S its support.
Since (q − 2)(q − b + 2) + 1 < q(q − b + 1) and q(q − b + 1) is the minimum weight of
Rq(b − 1, 2), deg( f ) = b. We prove first that f is the product of b affine factors. Let p be
a point of F2

q which is not in S and l be a line in F2
q such that p ∈ l. Then either l does not

meet S or l meets S in at least q − b points. If any line through p meets S then

(q + 1)(q − b) ≤ | f | = (q − 2)(q − b + 2) + 1

which is absurd for b <
q
3 + 1. So there exists a line through p which does not meet S.

By applying the same argument to all points not in S, we get that f is the product of affine
factors.

Denote by Z the set of zeros of f . We have just proved that Z is the union of b lines in F2
q .

For each line l which does not meet S, we denote by nl = #({l ′| l ∩ l ′ = ∅, l ′ ∩ S = ∅}∪ {l})
the number of lines parallel to l and not in S plus 1. By Lemma 2 since nl ≤ b,

(q − b)q + nl(b − nl) ≤ (q − 2)(q − b + 2) + 1

we get that nl ∈ {1, 2, b − 2, b − 1, b}.
We say that those lines are in configuration Ab if the b lines are parallel, in configuration

Bb if exactly b − 1 lines are parallel, in configuration Cb if the b lines meet in a point,
in configuration Db if b − 2 lines are parallel and the 2 other lines are also parallel, in
configuration Eb if b−2 lines are parallel and the 2 other lines intersect in one point included
in one of the parallel lines, in configuration Fb if b − 1 lines intersect in one point and the
bth line is parallel to one of the previous, in configuration Gb if b − 2 lines are parallel and
the 2 other lines intersect in one point which is not included in any of the parallel lines, in
configuration Hb if b − 1 lines intersect in one point and the bth line meets the other lines
in different points of that point (see Fig. 2) and in configuration Ib if we are in none of the
previous configurations.
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We prove by induction on b that Z the set of zeros of f is of type Gb or Hb. Since the
number of points in such set is bq − 2b + 3, we get the result.

Assume b = 7. We have just proved that Z is the union of 7 lines in F2
q . According

to what we said nl ∈ {1, 2, 5, 6, 7}. If the 7 lines are parallel (configuration A7) then f is
the minimum weight codeword of Rq(7, 2) which is absurd. If 6 of these lines are parallel
(configuration B7) or the 7 lines intersect in a point (configuration C7) then, f is a second
weight codeword of Rq(7, 2)which is absurd. If 5 of these lines are parallel, then if the 2 other
lines are parallel (configuration D7) or intersect in one point included in one of the parallel
lines (cofiguration E7) then, f is the third weight codeword of Rq(7, 2) which is absurd. So
the only possibility in this case is configurationG7. If 2 of these lines are parallel then, if the 5
other lines intersect in one point included in one of parallel lines (configuration F7) then, f is
the third weight codeword of Rq(7, 2) which is absurd. Otherwise #Z ≤ 7q − 12 < 7q − 11
that gives a contradiction. If all lines intersect pairwise then they cannot intersect in one point.
Then if b − 1 lines intersect in one point and the bth line meets the other lines in different
point of that point then, we are in configuration H7. Otherwise #Z ≤ 7q − 14 < 7q − 11
which is absurd. This proves the result for b = 7.Let 7 ≤ b <

q
3 +1. Assume if f ∈ Rq(b, 2)

and | f | = (q − 2)(q − b + 2) + 1 then its set of zeros is of type Gb or Hb.
Let f ∈ Rq(b + 1, 2) such that | f | = (q − 2)(q − b + 1) + 1. Denote by Z the set of
zeros of f . Then as in the beginning of the proof, we get that Z is the union of b + 1 lines
in F2

q and as we said before for any line l in Z nl ∈ {b + 1, b, b − 1, 2, 1}. Let us consider
now a type Ib+1 configuration of b + 1 lines. By considering the structure of the introduced
configuration, we get that nl = 1 or 2. So if we extract from this configuration a subset with
b lines we obtain one of the following situations:

1. Z is the union of a type Fb configuration and a line l. Since Z is a configuration Ib+1, l
cannot intersect the configuration Fb in the point where b − 1 lines of the configuration
intersect. So, l intersects the configuration Fb in at least b − 2 points. We get that
#Z ≤ bq − 2b + 4 + q − b + 2 = (b + 1)q − 3b + 6 < (b + 1)q − 2b + 1.

2. Z is the union of a type Hb configuration and a line l. Since Z is a configuration Ib+1, l
cannot intersect the configuration Hb in the point where b − 1 lines of the configuration
intersect. So, l intersect the configuration Hb in at least b − 2 points. We get that #Z ≤
bq − 2b + 4 + q − b + 2 = (b + 1)q − 3b + 6 < (b + 1)q − 2b + 1.

3. Z is the union of a type Ib configuration and a line l. Since for any line l nl = 1 or
2 so, l meets the configuration Ib in at least 2 points. Then, by induction hypothesis,
#Z < bq − 2b + 3 + q − 2 = bq + q − 2b + 1.

��
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