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Abstract
We investigate the isotopy question for Taniguchi semifields. We give a complete character-
ization when two Taniguchi semifields are isotopic. We further give precise upper and lower
bounds for the total number of non-isotopic Taniguchi semifields, proving that there are
around pm+s non-isotopic Taniguchi semifields of order p2m where s is the largest divisor of
m with 2 s �= m. This result proves that the family of Taniguchi semifields is (asymptotically)
the largest known family of semifields of odd order. The key ingredient of the proofs is a
technique to determine isotopy that uses group theory to exploit the existence of certain large
subgroups of the autotopism group of a semifield.
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1 Introduction

Afinite semifieldS = (S,+, ◦) is a finite set S equippedwith twooperations (+, ◦) satisfying
the following axioms.

(S1) (S,+) is a group.
(S2) For all x, y, z ∈ S,

• x ◦ (y + z) = x ◦ y + x ◦ z,
• (x + y) ◦ z = x ◦ z + y ◦ z.
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(S3) For all x, y ∈ S, x ◦ y = 0 implies x = 0 or y = 0.
(S4) There exists ε ∈ S such that x ◦ ε = x = ε ◦ x .

An algebraic object satisfying the first three of the above axioms is called a pre-semifield.
If P = (P,+, ◦) is a pre-semifield, then (P,+) is an elementary abelian p-group [15, p.

185], and (P,+) can be viewed as an n-dimensional Fp-vector space F
n
p . A pre-semifield

P = (Fn
p,+, ◦) can be converted to a semifield S = (Fn

p,+, ∗) using Kaplansky’s trick (see
e.g. [16, Section 1.1]).

Two pre-semifields P1 = (Fn
p,+, ◦1) and P2 = (Fn

p,+, ◦2) are said to be isotopic if
there exist Fp-linear bijections L, M and N of F

n
p satisfying

N (x ◦1 y) = L(x) ◦2 M(y).

Such a triple γ = (N , L, M) is called an isotopism betweenP1 andP2. Isotopisms between a
pre-semifield P and itself are called autotopisms. Isotopy of pre-semifields is an equivalence
relation and the pre-semifieldP and the corresponding semifieldS constructed byKaplansky’s
trick are always isotopic.

Research on semifields started more than 100 years ago with the work of Dickson [5].
Over time, they received much attention due to their connections to several different areas.
Firstly, every semifield coordinatizes a projective plane and different semifields coordinatize
isomorphic planes if and only if they are isotopic ([1], see [15, Section 3] for a detailed
treatment). More recently, semifields have been the center of much attention since they are
equivalent to Maximum Rank Distance codes with certain parameters (see e.g. [20]) and can
be used to construct other combinatorial structures like relative difference sets (see [18]).

Deciding whether given (pre-)semifields are isotopic or not is generally a very difficult
question, and finding effective ways to prove non-isotopy of semifields is considered a major
open question (see e.g. [12, p. 936]). Most results on the isotopy of semifields are based
on isotopy invariants like the nuclei, however it is well known that potentially many non-
isotopic semifields can have the same nuclei, and having more precise tools is desirable. In
[6], the authors developed a technique to settle the isotopy question for a specific family of
commutative semifields. In this work, we will focus on the (non-commutative) Taniguchi
semifields introduced in [22] by extending the methods introduced in [6].

Note that many constructions of semifields also yield corresponding constructions of
almost perfect nonlinear (APN) functions which play a big role in the design of block ciphers
for cryptography. This is also the case with the Taniguchi semifields. However, the construc-
tion used by Taniguchi for the semifields, by design, are more complicated than that for the
Taniguchi APN functions. The equivalence question for the Taniguchi APN functions was
recently solved in [13, 14] using a more elementary, but a very technical approach compared
to the techniques we use. A variant of the approach we introduce here yields a much shorter
proof for the equivalence problem for the Taniguchi APN functions. It seems that the isotopy
question of the Taniguchi semifields is more complex than the equivalence question for the
Taniguchi APN functions.

In Sect. 2, we give the basic definitions that are important for our problem and give some
simple general results. In Sect. 3, we introduce the group theoretic techniques that are key
to later sections. In Sect. 4, we investigate when two Taniguchi pre-semifields are isotopic.
A complete characterization is given in Theorem 3. Section5 deals with giving a count
of non-isotopic Taniguchi pre-semifields, with precise bounds given in Theorem 5. The last
section compares these results to similar results for other semifields, in particular to semifields
constructed via skew-polynomial rings (or cyclic semifields).

123



Counting the number of non-isotopic Taniguchi semifields 683

2 The setup

The Taniguchi pre-semifields are defined in [22] on Fpn ∼= Fpm × Fpm with n = 2m via the
pre-semifield multiplication

(x, y) ∗ (u, v) = ((xqu + αxuq)q2 − a(xqv − αuq y)q − b(yqv + αyvq), xv + yu),

where

• q = pk for some 1 ≤ k ≤ m − 1,
• −α is not a (q − 1)-st power, and
• the projective polynomial Pq,a,b(x) = xq+1 + ax + b has no roots in Fpm .

In this paper, we will instead use a different, isotopic representation of the Taniguchi pre-
semifield. This representation arises after taking x, u to the q2-th power, where q = pm−k ,
and then taking the second component to the q2-th power:

(x, y) ◦ (u, v) = (xqu + αq2
xuq − a(xvq − αq uyq) − b(yqv + αyvq), xvq2 + yq2

u).(1)

The benefit of this representation is that both components of the operations employ only one
nontrivial field automorphism (namely, x �→ xq in the first, and x �→ xq2

in the second
component), which gives in particular more structure to certain autotopisms as we will see
later.

If a �= 0 we can always find an isotopic Taniguchi pre-semifield with the parameter a = 1
by using the transformation y �→ δy and v �→ δv for a suitable δ ∈ F

∗
pm . We thus only have

to distinguish the cases a = 0 and a = 1 when discussing the isotopy question. We will
denote the Taniguchi pre-semifield on Fpn ∼= Fpm × Fpm by T (q, α, a, b), where the value
of m is fixed and taken from context.

We also exclude the case k = m/2 since in this case q2 ≡ 1 (mod pm − 1) which is a
special case that requires slightly different methods. Also observe that these pre-semifields
are already contained in a family of Bierbrauer [2, 3], so we believe that it makes sense to
exclude them from our treatment here.

It is possible to discern some isotopisms immediately:

Proposition 1 Let q = pk and q = pm−k . Each Taniguchi pre-semifield T (q, α, a, b) = P1

is isotopic to another Taniguchi pre-semifield T (q, 1/αq2
, a(αq−1/b), αq2−1/b) = P2.

Proof We first perform a change of variables x ↔ y, u ↔ v on P1 (which clearly preserves
isotopy). The result is

(x, y) ∗1 (u, v) = (yqv + αq2
yvq − a(yuq − αq xqv) − b(xqu + αxuq), yuq2 + xq2

v).

We take the second component to the power q and then x, y, u, v to the power q as well. The
result is

(x, y) ∗2 (u, v) =(yvq + αq2
yqv − a(yqu − αq xvq) − b(xuq + αxqu), yq2

u + xvq2
)

=(αq2
((1/αq2

)yvq + yqv) − aαq((1/αq)yqu − xvq)

− bα((1/α)xuq + xqu),

yq2
u + xvq2

).

123
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Now we can divide the first component by −bα, which yields

(x, y) ∗3 (u, v) =(xqu + (1/α)xuq − a(αq−1/b)(xvq − (1/αq)yqu)

− (αq2−1/b)(yqv + (1/αq2
)yvq),

xvq2 + yq2
u),

proving the desired isotopy. �
With Proposition 1 it suffices to consider coefficients q = pk with k < m/2 when tackling

the isotopy question (recall that we exclude the case k = m/2).

3 Group theoretic preliminaries

We now introduce the machinery of the technique to determine isotopy. The ideas are based
on an approach developed by the authors in [6] for a family of commutative semifields.

We denote the set of all autotopisms of a pre-semifield P by Aut(P). It is easy to check that
Aut(P) is a group under component-wise composition, i.e., (N1, L1, M1) ◦ (N2, L2, M2) =
(N1 ◦ N2, L1 ◦ L2, M1 ◦ M2). We will often view Aut(P) as a subgroup of GL(Fpn )3 ∼=
GL(Fpm × Fpm )3 ∼= GL(n, Fp)

3. Our approach is based on the following simple and well-
known result (see e.g. [6]).

Lemma 1 Let P1 = (Fn
p,+, ◦1), P2 = (Fn

p,+, ◦2) be isotopic pre-semifields via the iso-

topism γ ∈ GL(Fpn )3. Then γ −1 Aut(P2)γ = Aut(P1).

The key fact that we will use is that the autotopism groups of the Taniguchi pre-semifields
have a large and easily identifiable subgroup. We introduce some notations:

We write Fp-linear mappings L from Fpn to itself as 2×2 matrices of Fp-linear mappings
from Fpm to itself. That is,

L =
(

L1 L2

L3 L4

)
, for Li : Fpm → Fpm .

We call the constituent functions L1, . . . , L4 of L subfunctions of L . Set

γr = (Nr , Lr , Mr ) ∈ GL(Fpn )3 with Nr =
(

mrq+1 0
0 m

rq2+1

)
, Lr = Mr =

(
mr 0
0 mr

)
,

where mr denotes multiplication with the finite field element r ∈ F
∗
pm . For simplicity, we

write these diagonal matrices also in the form diag(mr , mr ), so

γr = (diag(mrq+1 , m
rq2+1), diag(mr , mr ), diag(mr , mr )).

We fix some further notation that we will use from now on:

Notation 1

• Let p be a prime.
• Set q = pk with k < m/2 and q = pm−k .
• Define the cyclic group

Z (q) = {γr : r ∈ F
∗
pm } ≤ GL(Fpn )3

of order pm − 1. It is easy to see (Lemma 2 below) that Z (q) ≤ Aut(P).
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• Let p′ be a p-primitive divisor of pm −1, i.e. p′|pm −1 and p′
� pk′ −1 for k′ < m. Such

a prime p′ always exists if m > 2 and (p, m) �= (2, 6) by Zsigmondy’s Theorem (see e.g.
[7, Chapter IX., Theorem 8.3.]). We thus always stipulate m > 2 and (p, m) �= (2, 6)
from now on.

• Let R be the unique Sylow p′-subgroup of F
∗
pm .

• Define

Z (q)
R = {γr : r ∈ R},

which is the unique Sylow p′-subgroup of Z (q) with |R| elements.
• For a Taniguchi pre-semifield P = T (q, α, a, b), denote by

Cq,α,a,b = CAut(P)(Z (q)
R ),

the centralizer of Z (q)
R in Aut(P).

• Define

S = {diag(mr , mr ) : r ∈ F
∗
pm },

and

SR = {diag(mr , mr ) : r ∈ R}.
Observe that the condition m > 2 that is necessary to work with a Zsygmondy prime is
actually not restrictive since for m = 2 the only admissible value for q is q = p = pm/2

which is precisely the case we exclude anyway.
The crucial fact for our technique is that γr ∈ Aut(P) for all r ∈ F

∗
pm whenP is a Taniguchi

pre-semifield T (q, α, a, b) for arbitrary α, a, b, which can be directly verified using Eq. (1):

Lemma 2 Let T (q, α, a, b) = P be a Taniguchi pre-semifield on Fpn with n = 2m. Then
Z (q) ≤ Aut(P).

The key result that enables us to settle the question of isotopy for Taniguchi semifields
is a slight adaptation from [6, Theorem 5.10.], which deals with certain commutative pre-
semifields. In some sense, the result we present here is an adaptation of the one from [6] to
a non-commutative semifield.

Lemma 3 ([6, Lemma 5.7.]) Let NGL(Fpn )(SR), NGL(Fpn )(S) and CGL(Fpn )(SR), CGL(Fpn )(S)

be the normalizers and the centralizers of SR and S in GL(Fpn ). Then

(a) NGL(Fpn )(SR) = NGL(Fpn )(S)

=
{(

mc1τ mc2τ

mc3τ mc4τ

)
: c1, c2, c3, c4 ∈ F

∗
pm , τ ∈ Gal(Fpm /Fp)

}
∩ GL(Fpn ),

(b) CGL(Fpn )(SR) = CGL(Fpn )(S) =
{(

mc1 mc2
mc3 mc4

)
: c1, c2, c3, c4 ∈ F

∗
pm

}
∩ GL(Fpn ).

The following is an analogue of [6, Lemma 5.8.].

Lemma 4 Let P = T (q, α, a, b) be a Taniguchi pre-semifield. Assume that Cq,α,a,b contains

Z (q) as an index I subgroup such that p′ does not divide I . Then Z (q)
R is a Sylow p′-subgroup

of Aut(P).

Proof Let T be a Sylow p′-subgroup of Aut(P) that contains the p′-group Z (q)
R . T itself is (by

Sylow’s Theorem) contained in a Sylow p′-subgroup of GL(Fpn )3, say U . In particular, T is
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abelian since all Sylow p′-subgroups of GL(Fpn )3 are abelian, see [6, Proof of Lemma 5.8.].

This implies that T is a subgroup of the centralizerCq,α,a,b of Z (q)
R in Aut(P). By assumption,

Z (q) is an index I subgroup of Cq,α,a,b and p′ does not divide I . Moreover, Z (q)
R is a Sylow

p′-subgroup of Z (q) and therefore p′
� [Z (q) : Z (q)

R ] = I1. Let [T : Z (q)
R ] = I2 = p′h for

h ≥ 0, since both are p′-groups. Since I2|I1 I , and p′
� I1 I , we must have p′

� I2 and I2 = 1.

Thus, Z (q)
R = T and Z (q)

R is a Sylow p′-subgroup of Aut(P) as claimed. �

The following theorem is the main result that enables us to solve the isotopy question. It
states that if two Taniguchi pre-semifields are isotopic (and a certain condition is satisfied),
then there must exist an isotopism of a very simple form. Note that this does not prove that
all isotopisms necessarily have this structure.

Theorem 2 Let P1 = T (q1, α, a, b) and P2 = T (q2, α′, a′, b′) be Taniguchi pre-semifields
such that 0 < k1 < m/2 and 0 < k2 ≤ m/2. Assume that

Cq1,α,a,b contains Z (q1) as an index I subgroup such that p′ does not divide I . (C)

If P1, P2 are isotopic, then there exists an isotopism γ = (N , L, M) ∈ GL(Fpn )3 such that
all non-zero subfunctions of L, M are monomials. Moreover, all non-zero subfuncions of L
and M have the same degree. (The degree of the subfunctions of L could be different than
the degree of the subfunctions of M).

Proof By Lemma 2, we have Z (q1)
R ≤ Aut(P1) and Z (q2)

R ≤ Aut(P2). Assume P1 and P2 are
isotopic via the isotopism δ ∈ GL(Fpn )3 that maps P1 to P2. Then δ−1 Aut(P2)δ = Aut(P1)

by Lemma 1. Observe that |δ−1Z (q2)
R δ| = |R| = |Z (q1)

R |, so Z (q1)
R and δ−1Z (q2)

R δ are Sylow
p′-subgroups of Aut(P1) by Lemma 4 as long as Condition (C) holds. In particular, these
two subgroups are conjugate in Aut(P1) by Sylow’s theorem, i.e., there exists a λ ∈ Aut(P1)

such that

λ−1δ−1Z (q2)
R δλ = (δλ)−1Z (q2)

R (δλ) = Z (q1)
R . (2)

Set γ = (N , L, M) = δλ. Note that γ is an isotopism between P1 and P2 since λ ∈
Aut(P1). Equation (2) then immediately implies that

diag(mrq2+1 , m
rq22+1)N = N diag(msq1+1 , m

sq21+1)

diag(mr , mr )L = L diag(ms, ms)

diag(mr , mr )M = M diag(ms, ms)

for all r ∈ R and s = π(r) where π : R → R is a permutation. In particular, L and M are in
the normalizer of SR = {diag(ma, ma) : a ∈ R}. By Lemma 3, all of the four subfunctions
of L and M are zero or monomials of the same degree. �

We will now systematically investigate isotopisms (N , L, M) where the subfunctions
of L, M are monomials or zero. We want to emphasize that without this simplification, a
treatment of the isotopy question is very complicated, whereas the calculations we will do,
while still technical, are much easier to handle. We also note that the remaining question on
the crucial Condition (C) is naturally answered along the way and does not require much
additional work.
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4 Settling the isotopy question for Taniguchi semifields

We apply Theorem 2. First, we achieve some further strong restrictions.

Proposition 2 Let q1 = pk1 , q2 = pk2 ,

P1 = T (q1, α, a, b) = (Fpm × Fpm ,+, ◦1), and,

P2 = T (q2, α
′, a′, b′) = (Fpm × Fpm ,+, ◦2)

be Taniguchi pre-semifields such that 0 < k1 < m/2, 0 < k2 ≤ m/2. Further, let (N , L, M)

be an isotopism between P1, P2 such that all non-zero subfunctions of L, M are monomials
of the same degree. Then N2, N3, L2, L3, M2, M3 = 0, all other subfunctions are monomials
of the same degree, and k1 = k2.

Proof Say the degree of the non-zero subfunctions of L and M is pt2 and pt3 , respectively.
Then, for all (x, y), (u, v) ∈ F

2
pm ,

L(x, y) ◦2 M(u, v) = (a2x pt2 + b2y pt2
, c2x pt2 + d2y pt2

)

◦2 (a3u pt3 + b3v
pt3

, c3u pt3 + d3v
pt3

)

= (h1(x, y, u, v), h2(x, y, u, v))

for some a2, b2, c2, d2, a3, b3, c3, d3 ∈ Fpm .
Hence,

h2 = (a2x pt2 + b2y pt2
)(c3u pt3 + d3v

pt3
)q2

2 + (c2x pt2 + d2y pt2
)q2

2 (a3u pt3 + b3v
pt3

). (3)

We also have

N ((x, y) ◦1 (u, v)) = (∗, N3(xq1u + αq2
1 xuq1 − a(xvq1 − αq1uyq1) − b(yq1v + αyvq1))

+ N4(xvq2
1 + yq2

1 u)).

Set N ((x, y) ◦1 (u, v)) = L(x, y) ◦2 M(u, v). Let us assume N3 �= 0, i.e. the second
component contains a term

c(xq1u + αq2
1 xuq1 − a(xvq1 − αq1uyq1) − b(yq1v + αyvq1))pt

. (4)

Note that none of these terms can be canceled out by N4(xvq2
1 + yq2

1 u). Thus, those
monomials also have to occur in h2. Let us consider the monomials x pk1+t

u pt
, x pt

u pk1+t
.

Those appear in h2 if and only if t2 = k1 + t , t3 + 2k2 = t , t2 + 2k2 = t , t3 = k1 + t ,
k1 ≡ −2k2 (mod m), or t2 = t3 = t , k1 ≡ 2k2 (mod m). In both cases we get t2 = t3 and
t is uniquely determined by t2, so N3 is a monomial. In order for all monomials in Eq. (4)
to occur in h2, it is necessary that a2a3b2b3c2c3d2d3 �= 0, but then h2 will also contain the
terms y pt2 u pt3+2k2 and y pt2+2k2 u pt3 which cannot both occur in the second component of
N ((x, y) ◦1 (u, v)) (again, by the choice of t2, t3 and the conditions on k1, k2 it is impossible
that those terms are covered by N4(xvq2

1 + yq2
1 u)). We infer N3 = 0.

Thus

N ((x, y) ◦1 (u, v)) = (∗, N4(xvq2
1 + yq2

1 u)).

Comparing with Eq. (3) immediately yields that N4 is a monomial, say of degree pt , and
either t = t2 = t3, q1 = q2, b2 = c2 = b3 = c3 = 0 or t2 + 2k2 = t , t3 = t + 2k1,
t + 2k1 = t2, t = t3 + 2k2. The second case leads to t2 = t3 and k1 ≡ −k2 (mod m), which
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is by our condition 0 < k1 < m/2, 0 < k2 ≤ m/2 impossible. So q1 = q2, t = t2 = t3,
b2 = c2 = b3 = c3 = 0 (implying L2 = L3 = M3 = M3 = 0).

Let us now check the first component. We have

N ((x, y) ◦1 (u, v)) =(N1(xq1u + αq2
1 xuq1

− a1(xvq1 − αq1uyq1)

− b1(yq1v + αyvq1))

+N2(xvq2
1 + yq2

1 u), ∗)

and

h2 =C1x pk1+t2 u pt2 + α′q2
1 C2x pt2 u pk1+t2

− a′(C3x pt2
v pk1+t2 − α′q1C4u pt2 y pk1+t2

)

− b′(C5y pk1+t2
v pt2 + α′C6y pt2

v pk1+t2
)

for non-zero coefficients C1, . . . , C6. A comparison of degrees immediately shows N2 = 0
and that N1 is a monomial of degree pt as desired. �

In the next step, we determine the remaining subfunctions. This also immediately verifies
Condition (C).

Proposition 3 Let q1 = pk1 , q2 = pk2 ,

P1 = T (q1, α, a, b) = (Fpm × Fpm ,+, ◦1), and,

P2 = T (q2, α
′, a′, b′) = (Fpm × Fpm ,+, ◦2)

be Taniguchi pre-semifields such that 0 < k1 < m/2 and 0 < k2 ≤ m/2. Further, let
(N , L, M) be an isotopism between P1, P2 such that all non-zero subfunctions of M, N are
monomials of the same degree. Then

• a = a′ = 0, α pt
/α′ is a (q − 1)-st power in F

∗
pm and b′pt

/b is a (q + 1)-st power in F
∗
pm

for some 0 ≤ t ≤ m − 1, or
• a = a′ = 1, α pt

/α′ is a (q − 1)-st power in F
∗
pm and b = b′pt

for some 0 ≤ t ≤ m − 1.

Moreover,

|Cq1,α,a,b| =
{

(pgcd(k,m) − 1)(pm − 1) if a �= 0

(pgcd(k,m) − 1)(pm − 1) · gcd(pm − 1, pk + 1) if a = 0.

Proof From Proposition 2, we infer that L2, L3, N2, N3, M2, M3 = 0, all other subfunctions
are monomials of the same degree pt , and q1 = q2 =: pk = q .

Set N1 = a1x pt
, N4 = d1x pt

. Then

N ((x, y) ◦1 (u, v)) = (a1(xqu + αq2
xuq − a(xvq − αq yqu) − b(yqv + αyvq))pt

,

d1(xvq2 + yq2
u)pt

). (5)

Likewise, the subfunctions of L and M are monomials of degree pt , so

L((x, y)) ◦2 M((u, v)) = (a2x pt
, d2y pt

) ◦2 (a3u pt
, d3v

pt
).

Thus

L(x, y) ◦2 M(u, v) = (A1(x, y, u, v), A2(x, y, u, v))
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where

A1(x, y, u, v) =(a2x)pt+k
(a3u)pt + α′q2

(a2x)pt
(a3u)pt+k

− a′ ((a2x)pt
(d3v)pt+k − α′q(a3u)pt

(d2y)pt+k
)

− b′ ((d2y)pt+k
(d3v)pt + α′(d2y)pt

(d3v)pt+k
)

,

and

A2(x, y, u, v) = (a2x)pt
(d3v)pt+2k + (a3u)pt

(d2y)pt+2k
.

AcomparisonwithEq. (5) yields for all possible terms (xqu)pt
, (xuq)pt

, (xvq)pt
, (yqu)pt

,
(yqv)pt

, (yvq)pt
in the first component and the two terms in the second component the

following 8 equations:

a1 = (aq
2a3)

pt
(6)

a1α
q2+pt = α′q2

(a2aq
3 )pt

(7)

a1a = a′(a2dq
3 )pt

(8)

a1aαq+pt = a′α′q(a3dq
2 )pt

(9)

a1bpt = b′(dq
2 d3)

pt
(10)

a1bpt
α pt = b′α′(d2dq

3 )pt
(11)

d1 = (a2dq2

3 )pt
(12)

d1 = (a3dq2

2 )pt
. (13)

Eq. (8) can only be satisfied if a = a′ = 0 or a = a′ = 1, so we only need to consider these
two cases.

Substituting Eq. (6) into Eq. (7) yields (aq
2a3)pt

(α pt
/α′)q2 = (a2aq

3 )pt
which leads to

aq−1
2 (α pt

/α′)p2k−t = aq−1
3 . (14)

In particular, α pt
/α′ must be a (q − 1)-st power. We set a3 = a2γ , where γ q−1 =

(α pt
/α′)p2k−t

. Similarly, substituting Eq. (10) into Eq. (11) yields

dq−1
2 (α pt

/α′)pm−t = dq−1
3 ,

and we set d3 = d2γ2 where γ
q−1
2 = (α pt

/α′)pm−t
. Comparing now Eq. (12) with Eq. (13)

gives a2dq2

2 γ
q2

2 = a2dq2

2 γ , that is γ = γ
q2

2 . A comparison between Eq. (6) and Eq. (10)
yields

(b′pm−t
/b) = (a2/d2)

q+1γ /γ2 = (a2/d2)
q+1γ

q2−1
2

= (a2/d2)
q+1(α pt

/α′)pm−t ·(q+1). (15)

Thus (b′pm−t
/b) must also be a (q + 1)-st power; in other words b and b′pm−t

have to be
in the same coset of the subgroup of (q + 1)-st powers in F

∗
pm .

We now consider the case a = a′ = 0. Then Eq. (8) and Eq. (9) always hold and the
conditionswe have gathered so far cover all equations.We can thus find an isotopism between
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T (q, α, 0, b) and T (q, α′, 0, b′) if and only if α pt
/α′ is a (q − 1)-st power and (b′pt

/b) is a
(q + 1)-st power for some t ∈ N.

Now consider the case a = a′ = 1. Of course, all previously derived constraints still
apply, and Eq. (8) and Eq. (9) give two additional conditions. We first rewrite Eq. (8) with
Eq. (6). The result is a2dq

3 = aq
2a3 and, using Eq. (14), we get

dq
3 = aq

3

γ q−1 = aq
3 (α′/α pt

)p2k−t
.

Similarly, rewriting Eq. (9) with Eq. (6) yields

aq
2α pk

/α′pk−t = dq
2 .

We show that these two statements are equivalent under the previous conditions. Indeed, we
have

dq
3 = aq

3 (α′/α pt
)p2k−t

⇔ dq
2 γ

q
2 = aq

2 γ q(α′/α pt
)p2k−t

⇔ dq
2 = aq

2 γ
q3−q
2 (α′/α pt

)p2k−t = aq
2

(
(α pt

/α′)pm−t
)q(q+1)

(α′/α pt
)p2k−t

⇔ dq
2 = aq

2 (α pt
/α′)pk−t = aq

2α pk
/α′pk−t

.

Substituting this condition into Eq. (15) gives

(b′pm−t
/b) = (α′/α pt

)pm−t ·(q+1)(α pt
/α′)pm−t ·(q+1) = 1.

We conclude that for fixed α, α′, t with α pt
/α′ a (q − 1)-st power, the presemifields

T (q, α, 1, b) and T (q, α′, 1, b′) are isotopic if and only if b = b′pt
for some 0 ≤ t ≤ m − 1.

It remains to prove the statement on the centralizer. By Lemma 3, we only have to check
autotopisms where the subfunctions of L, M are monomials of degree 1. This is a special
case of this proposition, which is realized by setting P1 = P2 and t = 0. To compute the size
of the centralizer, we have to go through our previous calculations and count the autotopisms
of this form. For a = 0, we have a3 = a2γ , d3 = d2γ q2

and aq+1
2 = dq+1

2 , where γ

is (q − 1)-st root of unity (see Eqs. (14) and (15)), and all other coefficients are uniquely
determined from that. So there are in total pm − 1 choices for a2, pgcd(k,m) − 1 choices of γ

and gcd(pk + 1, pm − 1) choices for d2.
For a = 1, we have again a3 = a2γ and the additional conditions determine all other

coefficients uniquely. So the centralizer has size (pm − 1)(pgcd(k,m) − 1) because there are
again pm − 1 choices for a2 and pgcd(k,m) − 1 choices of γ . �

We are now able to piece everything together in the following result:

Theorem 3 Let q1 = pk1 , q2 = pk2 ,

P1 = T (q1, α, a, b) = (Fpm × Fpm ,+, ◦1), and,

P2 = T (q2, α
′, a′, b′) = (Fpm × Fpm ,+, ◦2)

be Taniguchi pre-semifields such that k1 �= m/2 and a, a′ ∈ {0, 1}. If k2 ≡ −k1 (mod m)

then, for fixed α′, a′, b′, there exist α, a, b such that P1 and P2 are isotopic. If k1 �≡ k2
(mod m) and k1 �≡ −k2 (mod m), the pre-semifields P1 and P2 are not isotopic.

T (q, α, a, b) and T (q, α′, a′, b′) are isotopic if and only if one of the two following cases
occurs:
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• a = a′ = 0, α pt
/α′ is a (q − 1)-st power in F

∗
pm and b′pt

/b is a (q + 1)-st power in F
∗
pm

for some 0 ≤ t ≤ m − 1.
• a = a′ = 1, α pt

/α′ is a (q − 1)-st power in F
∗
pm and b = b′pt

for some 0 ≤ t ≤ m − 1.

Proof Let us first check Condition (C) from Theorem 2. By Proposition 3,

|Cq1,α,a,b| ∈ {(pgcd(k1,m) − 1)(pm − 1), (pgcd(k1,m) − 1)(pm − 1) · gcd(pm − 1, pk1 + 1)}.
Observe that p′

� (pgcd(k1,m) − 1) since p′ is a p-primitive divisor and p′
� pk1 + 1 since

otherwise p′|(pk1 +1)(pk1 −1) = p2k1 −1 which is not possible since 2k1 �= m and, again,
p′ is a p-primitive divisor. So (pm − 1)p′

� |Cq1,α,a,b| and Condition (C) is satisfied.
Assume P1 and P2 are isotopic. Then there is an isotopism (N , L, M) between P1 and P2

with the properties stated in Theorem 2.We already dealt with the case k1 ≡ −k2 (mod m) in
Proposition 1, so we can assume k2 < m/2. The statement then follows from Proposition 3.�

5 Counting the number of non-isotopic Taniguchi semifields

To count the number of Taniguchi (pre-)semifields, we need a famous result by Bluher [4]
on projective polynomials and a well known basic lemma.

Theorem 4 ([4, Theorem 5.6.]) Let q = pk and denote by N (p, m) the number of polyno-
mials P(x) = xq+1 + x + b with b ∈ Fpm such that P does not have a root in Fpm . Set
d = gcd(k, m) and l = m/d. Then

N (p, m) =

⎧⎪⎪⎨
⎪⎪⎩

pm+d−pd

2(pd+1)
if l is even,

pm+d−1
2(pd+1)

if p, l are odd,
pm+d+pd

2(pd+1)
if p is even and l is odd.

Lemma 5 Let k, m ∈ N and p be a prime. Then

• gcd(pk − 1, pm − 1) = pgcd(k,m) − 1.

• gcd(pk + 1, pm − 1) =

⎧⎪⎨
⎪⎩
1 if m/ gcd(k, m) odd, and p = 2,

2 if m/ gcd(k, m) odd, and p > 2,

pgcd(k,m) + 1 if m/ gcd(k, m) even.

Theorem 5 Let NT (p, k, m, a)be the number of non-isotopic Taniguchi semifields T (q, α, a, b)

on Fpm × Fpm with k �= m/2. Set d = gcd(k, m) and l = m/d. Then

(pd − 2) · N (p, m)/m ≤ NT (p, k, m, 1) ≤ (pd − 2) · N (p, m),

where N (p, m) is determined in Theorem 4. Further,

(pd − 2) · pd/m ≤ NT (p, k, m, 0) ≤ (pd − 2) · pd

if l is even,

(pd − 2)/m ≤ NT (p, k, m, 0) ≤ pd − 2

if p, l are odd and NT (p, k, m, 0) = 0 if p is even and l is odd. The total number of
non-isotopic Taniguchi semifields with k �= m/2 is

NT (p, m) =
� m
2 �∑

k=1

(NT (p, k, m, 0) + NT (p, k, m, 1)) .
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Proof By Theorem 3, T (q, α, 1, b) and T (q, α′, 1, b′) are isotopic if and only if there is a t
such that α pt

/α′ is a (q − 1)-st power and b′pt = b. α pt
/α′ is a (q − 1)-st power if and only

if α pt
, α′ are in the same coset of the cyclic subgroup with (pm − 1)/ gcd(q − 1, pm − 1) =

(pm −1)/(pd −1) elements of F
∗
pm . There are thus pd −1 such cosets. But−α,−α′ must not

be (q − 1)-st powers themselves by the necessary conditions for Taniguchi pre-semifields,
so there are between (pd − 2)/m and pd − 2 possible choices for α that yield non-isotopic
pre-semifields. The overall number of permissible b is (by Theorem 4) N (p, m). For a fixed
b, t there is exactly one choice of b′ that yields an isotopic semifields, so there are N (p, m)

many non-isotopic choices for b, yielding the desired bound.
For a = 0, we have again between (pd − 2)/m and pd − 2 choices for α for ranging

t . b, b′ yield isotopic pre-semifields if and only if b′pt
/b is a (q + 1)-st power for some

t . Here, similar to before, this means that b′pt
and b are in the same coset of the cyclic

subgroup with (pm − 1)/ gcd(q + 1, pm − 1) elements of F
∗
pm . By Lemma 5, we have

gcd(q + 1, pm − 1) = pd + 1 if l is even and gcd(q + 1, pm − 1) = 2 if l, p are odd
and gcd(q + 1, pm − 1) = 1 if p = 2 and l is odd. So the number of cosets is pd + 1, 2
or 1 depending on p, l. Since −b,−b′ themselves must not be (q + 1)-st powers (by the
conditions on the Taniguchi pre-semifield xq+1 + b has no roots) we thus have pd , 1 or 0
valid cosets.

By Theorem 3, different choices for 1 ≤ k < m/2 yield non-isotopic semifields, proving
our result. �
Remark 1 The precise values for NT (p, k, m, a) in Theorem 5 depend on the precise values
of m and d , and could be computed with additional effort, see [14, Section 5] where a similar
computation is applied for the p = 2, d = 1 case. However, these calculations are quite
involved and since the factor 1/m that lies between the bounds in Theorem 5 does not change
the asymptotics of the result, we choose to not go into any more details.

6 Comparison with other semifield families and conclusion

Theorem 5 (together with Theorem 4) shows that the total amount of pairwise non-isotopic
Taniguchi semifields of order p2m is approximately pm+s where s is the largest divisor of

m, excluding m/2. In particular if 3|m, the number of semifields is around p
4
3 m .

On the other hand,

• the best known lower bound on the number of pairwise non-isotopic odd-order semifields
of order pn constructed using skew-polynomial rings (or, equivalently, cyclic semifields;
see [17] for details) is less than pn/2 [8, Theorem 10].

• The number of pairwise non-isotopic generalized twisted fields of order pn is around pt ,
where t is the largest divisor of n that is less than n/2 [19, Theorem 27].

• The best known lower bound on the number of pairwise non-isotopic semifields of order
p4l constructed with the HMO construction is less than p2l [10]. We are not aware of
any other construction of odd-order semifields that yields better lower bounds.

The count in Theorem 5 thus shows that the family of Taniguchi semifields yields a better
bound compared to the best currently known lower bounds. In particular, the results in this
paper show that the family of Taniguchi semifields is the largest known family of odd-order
semifields to date. Interestingly, the amount of non-isotopic Taniguchi semifields is even
larger than the known upper bound on the number of non-isotopic odd-order semifields of
order pn constructed using skew-polynomial rings, which is pn/2 log2(pn) [11]. Note that
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the family of semifields constructed via skew-polynomial rings was recently extended [21],
however it remains so far unclear how much this changes the bound mentioned above. The
upper bound given by Kantor [10, Theorem 1.6.] on the number of non-isotopic semifields
from the HMO construction is larger than the number of non-isotopic Taniguchi semifields.
However, it is unclear how strict this bound is.

Note that the situation for non-isotopic semifields of even order is quite different, as
the construction by Kantor and Williams [12] yields bounds that are much higher. More
precisely, the number of non-isotopic semifields of even order is not bounded from below
by a polynomial in the order of the semifield (see [9]). Whether the number of non-isotopic
semifields of odd order is also not bounded by a polynomial in the order of the semifield is an
open problem, widely known asKantor’s conjecture. In fact, even the number of commutative
semifields of odd order is asymptotically not much different from the current state-of-the-art
bound for non-commutative semifields, with [6] giving a family of around pn/4 non-isotopic,
commutative semifields of order pn . It is thus desirable to construct new, larger families of
(non-commutative) semifields especially of odd order.
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