
Designs, Codes and Cryptography
https://doi.org/10.1007/s10623-023-01255-z

Linear codes from arcs and quadrics

Kanat Abdukhalikov1 · Duy Ho1

Received: 9 May 2022 / Revised: 20 May 2023 / Accepted: 27 May 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Using characterizations of ovals, KM-arcs and elliptic quadrics recently described in polar
coordinates, we construct some families of LCD, self-orthogonal, three-weight and four-
weight linear codes. We also demonstrate some applications to quantum codes.
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1 Introduction

In the projective plane PG(2, q), where q is even, a KM-arc of type t (also known as a
(q + t, t)-arc of type (0, 2, t)) is a set H of q + t points meeting every line in 0, 2 or t
points. When t = 2, the set H is called a hyperoval. Hyperovals are well-studied objects in
geometry as they have important applications in symmetric cryptography and coding theory.
In standard coordinates, hyperovals can be represented by so-called o-polynomials. From
hyperovals and o-polynomials, many good linear codes were obtained, cp. [20, Chapter 12],
[29, 43]. Themore general KM-arcswere introduced in [32] and further studied in [19, 26, 41,
42]. It appears that linear codes from KM-arcs were not considered before in the literature.

In the projective space PG(3, q) with q > 2, an ovoid V is a set of q2 + 1 points no
three of which are on the same line. The classical example of an ovoid is an elliptic quadric,
whose points come from a non-degenerate elliptic quadratic form. Linear codes from points
of ovoids in standard coordinates were considered in [20, Chapter 13], [22].
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In this paper, we study linear codes using a newly developed representation of KM-arcs,
hyperovals and elliptic quadrics in polar coordinates. This representation was initiated by
investigations in [1–4]. Characterizations for KM-arcs and hyperovals were obtained via
power sums in [5] and [7], which we will demonstrate to be expedient for constructing linear
codes with special properties.

Linear codes with complementary duals (LCD codes) were introduced byMassey in [36].
In recent years, LCD codes became an attractive research interest as they offer solutions
to many cryptographic problems, for example against side-channel attacks and fault non-
invasive attacks [17]. On the other hand, linear codes with few weights have applications in
secret sharing schemes [8, 16] and authentication codes [21, 23]. Using polar presentation
of KM-arcs, we obtain new constructions of LCD codes with few weights.

A quantum error-correcting code is a code that protects quantum information from cor-
ruption by noise in a way that is similar to how a classical error-correcting code protects
information on the classical channel. The theory of stabilizer codes allows the construction
of quantum error-correcting codes using classical codes that are self-orthogonal with respect
to symplectic, Euclidean and Hermitian inner products.

Oneof themainproblems in quantumcoding theory is tofindquantumstabilizer codeswith
optimal parameters. Recently Ball et al. [11, 13, 14] described quantum MDS (maximum
distance separable) codes using methods of finite geometry. We further demonstrate the
potential of these methods in constructing quantum error-correcting codes. We construct
Euclidean andHermitian self-orthogonal codes based on arcs and other combinatorial objects,
which lead, in turn, to quantum codes.

In general, databases of known linear and quantum codes (cp. [27] and external links
therein) are only available forq ≤ 10.Consequently, there is an increasing interest in studying
codes over large finite fields, cp. [37, 38]. Constructions of LCD codes, self-orthogonal
codes and quantum codes we provided in this paper are considered over large finite fields
of characteristic 2. Examples of codes we obtained are either new or with good parameters
compared to the literature.

The paper is organized as follows. In Sect. 2, we recall preliminary results from coding
theory andfinite geometry. In Sect. 3,we considerLCDcodes obtained fromfinite geometries.
In Sect. 4, we describe a large family of Euclidean self-orthogonal codes derived from ovals
and obtain some examples of quantum codes from this family. In Sect. 5, we consider three-
weight and four-weight LCD codes derived from KM-arcs.

2 Preliminaries

2.1 Linear codes, LCD and self-orthogonal codes

Let Fq be a finite field of q elements. A linear [n, k]-code C over Fq is a k-dimensional
vector subspace of Fq . A generator matrix G of C is a k × n matrix whose rows form a basis
of C . The weight wt(c) of a codeword c ∈ C is the number of nonzero components of c. Let
Ai denote the number of codewords with Hamming weight i in C . The weight enumerator
of C is defined by

A(z) = 1 + A1z + A2z2 + · · · + Anzn .

The sequence (1, A1, A2, . . . , An) is called the weight distribution of the code C . The min-
imum weight d of all nonzero codewords in C is called the minimum weight of C . An
[n, k, d]-code is an [n, k]-code with the minimum weight d .
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We say that two codes are equivalent if one can be obtained from the other by a permutation
of the coordinates.

Given a linear code C of length n over Fq (resp. Fq2 ), its Euclidean dual code (resp.
Hermitian dual code) is denoted by C⊥ (resp. C⊥H ). The codes C⊥ and C⊥H are defined
by

C⊥ =
{

(b0, b1, . . . , bn−1) ∈ F
n
q :

n−1∑
i=0

bi ci = 0,∀(c0, c1, . . . , cn−1) ∈ C

}
,

C⊥H =
{

(b0, b1, . . . , bn−1) ∈ F
n
q2 :

n−1∑
i=0

bi c
q
i = 0,∀(c0, c1, . . . , cn−1) ∈ C

}
,

respectively.
A linear code C over Fq is called a Euclidean linear complementary dual code (or for

short, Euclidean LCD code) if C ∩C⊥ = {0}. A linear code C over Fq2 is called aHermitian
linear complementary dual code (Hermitian LCD code) if C ∩ C⊥H = {0}. The following
lemma characterizes of Euclidean and Hermitian LCD codes.

Lemma 1 If G is a generator matrix for the [n, k]-linear code C, then C is a Euclidean (resp.
Hermitian) LCD code if and only if the k × k matrix GGT (resp. GḠT ) is nonsingular.

A linear code C is called Euclidean self-orthogonal (resp. Hermitian self-orthogonal)
if C ⊆ C⊥ (resp. C ⊆ C⊥H ). The following lemma provides a characterization for self-
orthogonal codes.

Lemma 2 If G is a generator matrix for an [n, k]-linear code C, then C is a Euclidean (resp.
Hermitian) self-orthogonal code if and only if GGT = 0 (resp. GḠT = 0).

The code C is called Euclidean self-dual (resp. Hermitian self-dual) if C = C⊥ (resp.
C = C⊥H ).

2.2 Polar coordinates

In this paper we consider finite fields only in characteristics 2. Let F = F2m be a finite field
of order q = 2m . Consider F as a subfield of K = F2n , where n = 2m, so K is a two
dimensional vector space over F . Let F∗ and K ∗ denote the multiplicative group of F and
K , respectively. The conjugate of x ∈ K over F is

x̄ = xq .

Then the trace and the norm maps from K to F are

T (x) = TrK/F (x) = x + x̄ = x + xq ,

N (x) = NK/F (x) = x x̄ = x1+q .

The unit circle of K is the set of elements of norm 1:

S = {u ∈ K | uū = 1}.
Therefore, S is the multiplicative group of (q + 1)st roots of unity in K . Since F ∩ S = {1},
each non-zero element of K has a unique polar coordinate representation x = λu withλ ∈ F∗
and u ∈ S. For any x ∈ K ∗ we have λ = √

x x̄ and u = √
x/x̄ .
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One can define a nondegenerate bilinear form 〈·, ·〉 : K × K → F by

〈x, y〉 = T (x ȳ) = x ȳ + x̄ y.

Then the form 〈·, ·〉 is alternating and symmetric, that is, 〈a, a〉 = 0 and 〈a, b〉 = 〈b, a〉.
Following [25], consider an element i ∈ K with property T (i) = i + iq = 1. Then

K = F(i) and i is a root of a quadratic equation

z2 + z + δ = 0,

where δ = N (i) ∈ F . Any element z ∈ K can be represented as z = x + yi, where x, y ∈ F .
For z = x + yi we have x = 〈i, z〉, and y = 〈1, z〉.

2.3 Affine and projective planes in polar presentation

In [1, 2] (see also [10] and references therein), the polar representation of PG(2, q) was
introduced using the field K . Consider pairs (x : z), where x ∈ K , z ∈ F , x = 0 or z = 0,
and we identify (x : z) with (λx : λz), λ ∈ F∗. Then points of PG(2, q) are

{(x : 1) | x ∈ K } ∪ {(u : 0) | u ∈ S}.
For α ∈ K , β ∈ F , (α, β) = (0, 0), we define the lines [α : β] in PG(2, q) as

[α : β] = {(x : z) ∈ PG(2, q) | 〈α, x〉 + βz = 0}.
Pairs [α : β] and [λα : λβ] with λ ∈ F∗ define the same lines. The point (x : z) is incident
with the line [α : β] if and only if 〈α, x〉+βz = 0. The element u∞ = (u : 0), u ∈ S, will be
referred to as the point at infinity in the direction of u. So [0 : 1] indicates the line at infinity.

We define an affine plane AG(2, q) = PG(2, q)\[0 : 1], so points of this affine plane
AG(2, q) are {(x : 1) | x ∈ K }. Associating (x : 1) with x ∈ K we can identify points of
the affine plane AG(2, q) with elements of the field K , and we write AG(2, q) = K . Lines
of AG(2, q) = K are of the form

L(u, μ) = {x ∈ K | 〈u, x〉 + μ = 0},
where u ∈ S and μ ∈ F (cp. [10, subsection 2.1]).

2.4 Hyperovals, ovals, andVandermonde sets

We recall sets with the following property first considered by Gács and Weiner [26] (and
subsequently by other authors in [15, 39]). Let 1 < t < q . A set T = {y1, . . . , yt } ⊆ Fq is
called a Vandermonde set if

πk(T ) :=
∑
y∈T

yk = 0,

for all 1 ≤ k ≤ t − 2. The set T is a super-Vandermonde set if it is a Vandermonde set and
πt−1(T ) = 0. Some examples of Vandermonde sets can be found in [39, Proposition 1.8].

In the projective plane PG(2, q), where q is even, an oval is a set of q+1 points, no three
of which are collinear. Any line of the plane meets the oval O at either 0, 1 or 2 points and
is called exterior, tangent or secant, respectively. All the tangent lines to the oval O concur
at the same point N , called the nucleus of O. The set H = O ∪ N becomes a hyperoval.
Conversely, by removing any point from hyperoval one gets an oval.
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In [5], it was shown that ifO is an oval with points in AG(2, q) = K and nucleus 0, then
O is a super-Vandermonde set. Also, a hyperoval with points in K is a Vandermonde set.

3 LCD codes over Fq and Fq2 , q even

In this section, we consider LCD codes obtained from sets of points in PG(2, q) identified as
elements from finite fields. Particular cases are ovals and Vandermonde sets. With a similar
approach, we will also consider LCD codes obtained from elliptic quadrics in PG(3, q).

3.1 LCD codes from sets of points in Fq2

Let V := {v1, . . . , vt } be a set of size t in K = Fq2 with the property

(∗)
t∑

i=1
vi = 0 and

t∑
i=1

v
q+1
i = 0.

For each 1 ≤ i ≤ t, let xi , yi ∈ F be such that vi = xi + yi i.

Theorem 1 For α ∈ F
∗
q2
, let

A =
⎡
⎣x1 x2 x3 . . . xt 0
y1 y2 y3 . . . yt 0
1 1 1 . . . 1 α

⎤
⎦ .

1. If α ∈ F
∗
q such that α + t = 0, then the [t + 1, 3]-linear code C�(V ) over Fq with

generator matrix A is a Euclidean LCD code.
2. If α ∈ F

∗
q2

such that αq+1 + t = 0, then the [t + 1, 3]-linear code C�(V ) over Fq2 with
generator matrix A is a Hermitian LCD code.

Proof We have

t∑
i=1

xi =
t∑

i=1

〈i, vi 〉 =
t∑

i=1

(vi iq + v
q
i i) =

(
t∑

i=1

vi

)
iq +

(
t∑

i=1

v
q
i

)
i = 0,

and so
t∑

i=1
x2i = 0. Since

t∑
i=1

vi = 0, it follows that

t∑
i=1

v2i =
t∑

i=1

x2i + i2
t∑

i=1

y2i = 0,

and so
t∑

i=1
y2i = 0. Also,

t∑
i=1

xqi yi =
t∑

i=1

xi y
q
i =

t∑
i=1

xi yi

=
t∑

i=1

〈1, vi 〉〈i, vi 〉 =
t∑

i=1

(vi + v
q
i )(vi iq + v

q
i i)
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=
t∑

i=1

(v2i i
q + v

q+1
i iq + v

q+1
i i + v

2q
i i)

=
(

t∑
i=1

v2i

)
iq +

t∑
i=1

v
q+1
i +

(
t∑

i=1

v
2q
i

)
i

= 0 + a + 0 = a,

where a =
t∑

i=1
v
q+1
i = 0.

1. If α ∈ F
∗
q such that α + t = 0, then

AAT =
⎡
⎣0 a 0
a 0 0
0 0 α2 + t

⎤
⎦

is nonsingular, since α + t = 0 if and only if α2 + t = 0. It follows that Cα(V ) is a
Euclidean LCD code over Fq .

2. If α ∈ F
∗
q2

such that αq+1 + t = 0, then

AĀT =
⎡
⎣0 a 0
a 0 0
0 0 αq+1 + t

⎤
⎦

is nonsingular, and so Cα(V ) is a Hermitian LCD code over Fq2 .

��
Corollary 1 Let V be a super-Vandermonde set of size q + 1 in K . Then for α ∈ Fq\{0, 1},
the code Cα(V ) is a Euclidean LCD code over Fq . Similarly, for α ∈ F

∗
q2

such that αq+1 = 1,
the code Cα(V ) is a Hermitian LCD code over Fq2 .

Corollary 2 LetO be an oval of q + 1 points in K with nucleus at 0. Then for α ∈ Fq\{0, 1},
the code Cα(O) is a Euclidean LCD MDS code over Fq .

Remark 1 According to [20, Section 12.2], the code Cα(O) in Corollary 2 has parameters
[q + 2, 3, q] and weight enumerator

1 + (q + 2)(q2 − 1)

2
zq + q(q − 1)2

2
zq+2.

The dual of Cα(O) has parameters [q + 2, q − 1, 4].
Remark 2 A particular case of Corollary 2 is when O is the hyperconic. The resulting code
Cα(O) is equivalent to the code constructed in [18, Lemma 1].

Corollary 3 Let O be an oval of q + 1 points in K with nucleus at 0. Then for α ∈ F
∗
q2

such

that αq+1 = 1, the code Cα(O) is a Hermitian LCD MDS code over Fq2 with parameters
[q + 2, 3, q].
Proof The parity-check matrix for the dual code Cα(O)⊥ is A. Any three columns of A are
linearly independent, thus the minimum distance of Cα(O)⊥ is greater than 3. Hence Cα(O)⊥
has a minimum distance 4 by the Singleton bound. This implies Cα(O)⊥ is an MDS code
with parameters [q+2, q−1, 4]. It follows that Cα(O) is also anMDS code with parameters
[q + 2, 3, q]. ��
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Example 1 Ovals are super-Vandermonde sets of size q + 1. However, it was shown in [5]
that there are Vandermonde sets of size q + 1 which are not ovals. For q = 8, let λ,μ ∈ F∗
such that 1 + λ3 + μ3 = 0. Let

H := {1, ω, ω̄, λ, λω, λω̄, μ,μω,μω̄},
where ω ∈ S such that ω3 = 1, ω = 1. Then H is a Vandermonde set but not an oval, as the
line L(1, 0) intersects H in three points 1, λ and μ.

For α ∈ F8\{0, 1}, the code Cα(H) over F8 is a Euclidean LCD code with parameters
[10, 3, 6]. This code is almost optimal (since [10, 4, 6]8 is an optimal code according to [27]).

For α ∈ F
∗
64 such that αq+1 = 1, the Hermitian LCD code Cα(H) over F64 also has

parameters [10, 3, 6]. To our knowledge, this code is new.

3.2 LCD cyclic codes from the elliptic quadric

In standard coordinates, a classical ovoid V can be defined as the following set of points:

V = {(0, 0, 1, 0)} ∪ {(x, y, x2 + xy + ay2, 1) : x, y ∈ Fq},
where a ∈ Fq such that the polynomial x2 + x + a has no root in Fq . Such ovoid is called
an elliptic quadric, as the points come from a non-degenerate elliptic quadratic form.

Let E ⊃ K ⊃ F be a chain of finite fields, |E | = q4, |K | = q2, |F | = q , q = 2m . We
note that PG(3, q) can be represented using the field E = Fq4 (cp. [10]). In [6, Theorem 4],
it was shown that the set

O = {u ∈ E | uq2+1 = 1}
determines an elliptic quadric in PG(3, q). In [6, Theorem 5], it was shown that an ovoid
code C obtained from an elliptic quadric in PG(3, q) is equivalent to a cyclic code over Fq

with parameters [q2 + 1, 4, q2 − q]. In the following theorem, we extend this result further
by showing that this code C is an LCD code.

Theorem 2 An ovoid code C obtained from an elliptic quadric in PG(3, q) is equivalent to
an LCD cyclic code over Fq with parameters [q2 + 1, 4, q2 − q].
Proof In the proof of [6, Theorem 5], it was shown that C⊥ is a cyclic [q2+1, q2−3, 4]-code
with generator polynomial (for a definition see [30, Chapter 4])

g(x) = (x − γ )(x − γ q)(x − γ q2)(x − γ q3),

where γ ∈ E such that γ q2+1 = 1. Let g∗(x) = xdeg(g)g(x−1) be the reciprocal of g(x). We
note that γ q3+q2+q+1 = 1, and so

g∗(x) = x4(x−1 − γ )(x−1 − γ q)(x−1 − γ q2)(x−1 − γ q3)

= (1 − xγ )(1 − xγ q)(1 − xγ q2)(1 − xγ q3)

= (γ q2 − x)(γ q3 − x)(γ − x)(γ q − x) = g(x).

Since g∗(x) = g(x), by [33, Theorem 4], C⊥ is an LCD code. Therefore C is also an LCD
code. ��
Remark 3 By [20, Theorem 13.6], the weight enumerator of C is

1 + (q2 − q)(q2 + 1)zq
2−q + (q − 1)(q2 + 1)zq

2
.
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4 Euclidean self-orthogonal linear codes from ovals in Fq2 , q even

4.1 Self-orthogonal codes from the unit circle

Let S = {u ∈ K | uq+1 = 1} = 〈w〉 = {1, w, . . . , wq} be the unit circle. We note that

∑
u∈S

ui =
{
0 if i = 0 (mod q + 1),

1 if i = 0 (mod q + 1).

Let L := {l1, . . . , łt }, where 1 ≤ li ≤ q for each 1 ≤ i ≤ t . Let v := (v1, . . . , vt ) ∈ St .
Let G be the matrix whose (i, j)-entry is

〈
vi , w

( j−1)li
〉
, where 1 ≤ i ≤ t, 1 ≤ j ≤ q + 1,

that is,

G =

⎡
⎢⎢⎣

〈v1, 1〉
〈
v1, w

l1
〉
. . .
〈
v1, w

ql1
〉

〈v2, 1〉
〈
v2, w

l2
〉
. . .
〈
v2, w

ql2
〉

. . . . . . . . . . . .

〈vt , 1〉
〈
vt , w

lt
〉

. . .
〈
vt , w

qlt
〉
⎤
⎥⎥⎦ .

Let C be the linear code over Fq with generator matrix G.

Theorem 3 If li = l j and li +l j = q+1 for each i = j , then C is a Euclidean self-orthogonal
code over Fq with parameters [q + 1, t].

Proof 1. For 1 ≤ i ≤ t , let ri be the i-th row of G. For (c1, . . . , ct ) ∈ Ft , we have

c1r1 + c2r2 · · · + ctrt = 0

if and only if
t∑

i=1
ci
〈
vi , uli

〉 = 0 for each u ∈ S. For u ∈ S, let

P(u) =
t∑

i=1

ci
〈
vi , u

li
〉
=

t∑
i=1

ci (v
q
i u

li + vi u
li q)

=
t∑

i=1

civ
q
i u

li +
t∑

i=1

civi u
li q

=
t∑

i=1

civ
q
i ψli (u) +

t∑
i=1

civiψqli (u),

where each ψi is a homomorphism from S to K ∗ defined by

ψi : x �→ xi .

From the conditions on L , the set Ψ := {ψi | i ∈ {l1, . . . , lt , ql1, . . . qlt }} consists of
pairwise distinct homomorphisms and by Artin’s Lemma [34, Lemma 2.33], Ψ is a linearly
independent set. In particular, if P(u) = 0 for each u ∈ S, then ci = 0 for each i . This
implies that the rows of G are linearly independent and so rank(G) = t .

2. For 1 ≤ i ≤ t , since 1 ≤ li ≤ q , we have∑
u∈S

〈
vi , u

li
〉
=
∑
u∈S

(
v
q
i u

li + vi u
li q
)

= v
q
i

∑
u∈S

uli + vi
∑
u∈S

uli q = 0.
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This implies
∑
u∈S
〈
vi , uli

〉2 = 0. For 1 ≤ i, j ≤ t, i = j ,

∑
u∈S

〈
vi , u

li
〉 〈

v j , u
l j
〉
=
∑
u∈S

(vi u
li q + v

q
i u

li )(v j u
l j q + v

q
j u

l j )

= viv j

∑
u∈S

uli q+l j q + v
q
i v j

∑
u∈S

uli+l j q

+ viv
q
j

∑
u∈S

uli q+l j + v
q
i v

q
j

∑
u∈S

uli+l j

= 0,

from the assumption on L . It follows that GGT is the zero matrix and so C is a Euclidean
self-orthogonal code over Fq . ��

Extended codes from Theorem 3 are also self-orthogonal codes. For suitable parameters,
we can further obtain self-dual and near-MDS codes, as seen in the following example.

Example 2 Let m = 3 so that q = 8. Let v = (a, b, c, d) ∈ S4 and L = {1, 2, 3, 4}. Let

G =

⎡
⎢⎢⎢⎢⎣

〈a, 1〉 〈a, w〉 . . .
〈
a, w8

〉
0

〈b, 1〉 〈b, w2
〉
. . .
〈
b, w16

〉
0

〈c, 1〉 〈c, w3
〉
. . .
〈
c, w24

〉
0

〈d, 1〉 〈d, w4
〉
. . .
〈
d, w32

〉
0

1 1 . . . 1 1

⎤
⎥⎥⎥⎥⎦ .

The code C over Fq with generator matrix G is a self-dual linear code. Furthermore, C is
near-MDS when it has parameters [10, 5, 5]. Based on calculations from GAP [40] package
GUAVA [9], we include some suitable vectors v for this to occur.

1. v = (1, 1, 1, wi ) is not suitable for any i .
2. v = (1, 1, w,wi ), where i = 1, 2, 7, 8.
3. v = (1, w,w,wi ), where i = 0, 2.
4. v = (1, w,w2, wi ) is not suitable unless i = 2.
5. v = (1, w,w3, wi ) is not suitable for any i .
6. v = (1, w,w4, wi ), where i = 0, 2, 6.

Remark 4 We note that if v = (a, b, c, d) is a suitable vector, then so is (a2, b2, c2, d2). To
show that this is true, let gi, j be the (i, j)-entry of G. Let G ′ be the matrix whose (i, j)-entry
is g2i, j . Since the map x �→ x2 is a permutation of S, up to permutations of columns, G ′ is
equal to the matrix ⎡

⎢⎢⎢⎢⎣

〈
a2, 1

〉 〈
a2, w

〉
. . .

〈
a2, w8

〉
0〈

b2, 1
〉 〈
b2, w2

〉
. . .
〈
b2, w16

〉
0〈

c2, 1
〉 〈
c2, w3

〉
. . .
〈
c2, w24

〉
0〈

d2, 1
〉 〈
d2, w4

〉
. . .
〈
d2, w32

〉
0

1 1 . . . 1 1

⎤
⎥⎥⎥⎥⎦ .

Remark 5 Linear codes over F8 with parameters [10, 5, 5] are optimal according to [27]. In
Example 2, the code C is self-dual, which is not the case for the code presented in [27]. A
self-dual [10, 5, 5]8 code was described in [28] as a random code. Example 2 is a constructive
example of a self-dual [10, 5, 5]8 code.
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4.2 Self-orthogonal codes from ovals

Generalising Theorem 3, in this subsection we construct linear codes from arbitrary ovals.
For a set X ⊆ Z, denote Xn := {x (mod n) | x ∈ X}.

Recall that q = 2m . Let

E :=
⎧⎨
⎩

m−1∑
j=0

2 j x j > 0 | x j ∈ {0, 1, q}
⎫⎬
⎭ .

Lemma 3 Let O ⊂ K be an oval with nucleus at 0. Let v,w ∈ K and i, j ∈ E, i = j . If
{i + j, iq + j}q2−1 ⊂ E , then ∑

u∈O

〈
v, ui

〉 〈
w, u j

〉 = 0.

Proof We recall from [5, Theorem 4.7] that
∑
u∈O

ui = 0 for each i ∈ E . The proof follows
from the calculation∑
u∈O

〈
v, ui

〉 〈
w, u j

〉
=
∑
u∈O

(vuiq + vqui )(wu jq + wqu j )

=
∑
u∈O

(vwuiq+ jq + vqwui+ jq + vwquiq+ j + vqwqui+ j )

= vw
∑
u∈O

uiq+ jq + vqw
∑
u∈O

ui+ jq + vwq
∑
u∈O

uiq+ j + vqwq
∑
u∈O

ui+ j .

��
Definition 1 A subset L of E is called admissible if {li + l j , li q + l j }q2−1 ⊂ E whenever
li , l j ∈ L , li = l j .

Example 3 We describe some examples of admissible sets.

1. If L is an admissible set, then any of its subsets is an admissible set.
2. The set L1 = {2i | 0 ≤ i ≤ m − 1} is an admissible set.

3. The set L2 =
{
i(q − 1) | 1 ≤ i ≤ q

2

}
is an admissible set. This follows from the fact

that, modulo q2 − 1, nonzero multiples of (q − 1) are of the form
m−1∑
j=0

2 j x j , where

x j ∈ {1, q}.
4. For m = 3, the set L3 = {20, 49} is an admissible set. Furthermore, L3 cannot be

extended to a larger admissible set.

Theorem 4 LetO := {u1, . . . , uq+1} ⊆ K be an oval with nucleus at 0. Let L := {l1, . . . , lt }
be an admissible set of size t . Let v := (v1, . . . , vt ) ∈ K t , where vi = 0 for each i . Let
C(O, v, L) be the linear code over Fq spanned by the vectors

ri := (θi (u1), θi (u2), . . . , θi (uq+1)),

where 1 ≤ i ≤ t , and θi (u j ) =
〈
vi , u

li
j

〉
. Then C(O, v, L) is a Euclidean self-orthogonal

code.

Proof By [5, Theorem 4.7], for 1 ≤ i ≤ t , we have∑
u∈O

θi (u) =
∑
u∈O

〈
vi , u

li
〉
=
∑
u∈O

(
v
q
i u

li + vi u
li q
)

= v
q
i

∑
u∈O

uli + vi
∑
u∈O

uli q = 0,
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since li ∈ E . This implies
∑
u∈O

θi (u)2 = 0. For 1 ≤ i, j ≤ t , i = j , by Lemma 3,

∑
u∈O

θi (u)θ j (u) =
∑
u∈O

〈
vi , u

li
〉 〈

v j , u
l j
〉
= 0.

It follows that C(O, v, L) is a Euclidean self-orthogonal code. ��
Remark 6 We note that using the set L2, we obtain linear codes equivalent to codes con-
structed in Theorem 3.

Example 4 Let m = 3 and recall the set L3 = {20, 49} from Example 3. Let S = 〈w〉 be the
unit circle and let v = {1, w8}. Then the code C = C(S, v, L3) is a [9, 2, 7]-code. The dual
of C has parameters [9, 7, 2] and so C is a near-MDS code.

Let S = {w1, . . . , wq+1} be the unit circle. We recall from [12] that if k is odd, then the
code

C1 =
{
(h(w1) + h(w1)

q , . . . , h(wq+1) + h(wq+1)
q | h ∈ K [X ], deg h ≤ 1

2
(k − 1)

}
is a [q + 1, k, q + 2 − k] generalized Reed-Solomon code over Fq .

Let l = 1

2
(k − 1). Since k ≤ q + 1, we have l ≤ q

2
.

Lemma 4 The matrix

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈1, w1〉 〈1, w2〉 . . .
〈
1, wq+1

〉
〈i, w1〉 〈i, w2〉 . . .

〈
i, wq+1

〉
〈
1, w2

1

〉 〈
1, w2

2

〉
. . .
〈
1, w2

q+1

〉
〈
i, w2

1

〉 〈
i, w2

2

〉
. . .
〈
i, w2

q+1

〉
. . . . . . . . . . . .〈

1, wl
1

〉 〈
1, wl

2

〉
. . .
〈
1, wl

q+1

〉
〈
i, wl

1

〉 〈
i, wl

2

〉
. . .
〈
i, wl

q+1

〉
1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is a generator matrix of C1.

Proof Let

h(X) = h0 + h1X + · · · hl Xl .

For each 0 ≤ i ≤ l, let

hi = xi + yi iq .

For each w ∈ S, we have

h(w) + h(w)q = 〈1, h(w)〉 =
l∑

i=0

〈
1, hiw

i
〉
=

l∑
i=0

〈
1, xiw

i + yi iqwi
〉

= (h0 + hq0) +
l∑

i=1

〈
1, xiw

i
〉
+

l∑
i=1

〈
1, yi iqwi

〉

= (h0 + hq0) +
l∑

i=1

xi
〈
1, wi

〉
+

l∑
i=1

yi
〈
i, wi

〉
,
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which shows that each codeword in C1 is a linear combination of rows of the matrix G1. ��
Let C = C(S, v, L) be the linear code over Fq defined in Theorem 3, which is a special case
of Theorem 4. Let

l̄ := max
1≤i≤t

li .

Theorem 5 If l̄ ≤ q/2, then C is a Euclidean self-orthogonal subcode of a [q+1, 2l̄+1, q+
1 − 2l̄]q generalized Reed-Solomon code.

Proof For each 1 ≤ i ≤ t , let xi , yi ∈ F be such that vi = xi + yi i. Then the vector

ri = (θi (w1), θi (w2), . . . , θi (wq+1)),

is a linear combination of (2li − 1)-th row and (2li )-th row of the matrix G1 in Lemma 4.
The proof now follows. ��
Remark 7 For q even, Theorem 5 shows that generalized Reed-Solomon codes with odd
dimension contain Euclidean self-orthogonal subcodes. To our knowledge, this was not con-
sidered before in the literature. For q odd, some Euclidean self-orthogonal codes contained
in generalized Reed-Solomon codes are described in [24].

4.3 Quantum codes from self-orthogonal codes

It is well known that quantum codes can be constructed from self-orthogonal linear codes.
We recall from [35] (also [30, p. 667]) the following result.

Theorem 6 Let q be a prime power and let C1 be a q-ary [n, k1, d1]-linear code which
contains its Euclidean dual C⊥

1 . Suppose C1 can be enlarged to an [n, k2, d2]-linear code
C2 with k2 > k1 + 1, i.e. C1 ⊆ C2. Then a pure q-ary quantum code of parameters [[n, k1 +
k2 − n,min{d1, �(1 + 1/q)d2�}]] can be constructed.
Example 5 Let m = 3 so that q = 8. Let v = (v1, v2, v3, v4) ∈ S4 and L = {1, 2, 3, 4}. Let

G =

⎡
⎢⎢⎣

〈v1, 1〉 〈v1, w〉 . . .
〈
v1, w

8
〉

〈v2, 1〉
〈
v2, w

2
〉
. . .
〈
v2, w

16
〉

〈v3, 1〉
〈
v3, w

3
〉
. . .
〈
v3, w

24
〉

〈v4, 1〉
〈
v4, w

4
〉
. . .
〈
v4, w

32
〉
⎤
⎥⎥⎦ .

Let C be the linear code over F8 with generator matrix G. Denote the i-th row of G by ri .
Let D be the subspace of C generated by a subset d of the rows of G. We have the following
diagram of containment:

C D

C⊥ D⊥

⊃

⊂

⊃ ⊃

Let C1 = C⊥ and C2 = D⊥. Using Theorem 6, we obtain some quantum codes over F8 in
Table 1. We also include codes from [27] over F4 for comparison.
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Table 1 Quantum codes over F8
of length 9

d v Parameters [27]

{r3} [1, w,w2, w] [[9, 4, 3]]8 [[9, 4, 2]]4
{r1, r2} [1, w,w8, 1] [[9, 3, 3]]8 [[9, 3, 3]]4

Table 2 Quantum codes over F8
of length 10

d v Parameters [27]

{r5} [1, w,w,w5] [[10, 4, 3]]8 [[10, 4, 3]]4
{r1, r5} [1, w,w4, w] [[10, 3, 3]]8 [[10, 3, 3]]4
{r2, r4, r5} [1, w,w3, w3] [[10, 2, 4]]8 [[10, 2, 4]]4

Table 3 Quantum codes over F16 of length 17

d v Parameters [27]

{r2, r3, r4, r5, r7, r8} [1, w,w8, w7, w15, w15, w3, w10] [[17, 3, 6]]16 [[17, 3, 5 − 6]]4
{r1, r2, r3, r5, r6} [1, w,w7, w9, 1, w13, w,w4] [[17, 4, 5]]16 [[17, 4, 5]]4
{r1, r2, r3, r7} [1, w,w5, w2, w3, w10, w13, w3] [[17, 5, 4]]16 [[17, 5, 4 − 5]]4
{r1, r4, r5} [1, w,w15, w11, w2, w7, w8, w7] [[17, 6, 3]]16 [[17, 6, 4 − 5]]4

Example 6 Recall from Example 2 the linear code C over F8 with generator matrix

G =

⎡
⎢⎢⎢⎢⎣

〈v1, 1〉 〈v1, w〉 . . .
〈
v1, w

8
〉
0

〈v2, 1〉
〈
v2, w

2
〉
. . .
〈
v2, w

16
〉
0

〈v3, 1〉
〈
v3, w

3
〉
. . .
〈
v3, w

24
〉
0

〈v4, 1〉
〈
v4, w

4
〉
. . .
〈
v4, w

32
〉
0

1 1 . . . 1 1

⎤
⎥⎥⎥⎥⎦ .

Denote the i-th row of G by ri . Let D be the subspace of C generated by a subset d of the
rows of G. Let C1 = C⊥ and C2 = D⊥. Using Theorem 6, we obtain some quantum codes
over F8, as described in Table 2.

Example 7 Let m = 4 so that q = 16. Let S = 〈w〉 be the unit circle. Let v =
(v1, v2, . . . , v8) ∈ S8 and L = {1, 2, . . . , 8}. Let

G =

⎡
⎢⎢⎣

〈v1, 1〉 〈v1, w〉 . . .
〈
v1, w

16
〉

〈v2, 1〉
〈
v2, w

2
〉
. . .

〈
v2, w

32
〉

. . . . . . . . . . . .

〈v8, 1〉
〈
v8, w

8
〉
. . .
〈
v8, w

128
〉
⎤
⎥⎥⎦ .

Let C be the linear code over F16 with generator matrix G. Denote the i-th row of G by
ri . Let D be the subspace of C generated by a subset d of the rows of G. Let C1 = C⊥
and C2 = D⊥. Using Theorem 6, we obtain some quantum codes of length 17 over F16, as
described in Table 3.

Example 8 Let m = 4 so that q = 16. Let S = 〈w〉 be the unit circle. Let v =
(v1, v2, . . . , v8) ∈ S8 and L = {1, 2, . . . , 8}. Let
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Table 4 Quantum codes over F16 of length 18

d v Parameters [27]

{r1, r3, r5, r6, r8, r9} [1, w,w3, w3, w9, w6, w8, w9] [[18, 3, 6]]16 [[18, 3, 5 − 6]]4
{r1, r2, r5, r7, r9} [1, w,w8, w5, w5, w10, w10, w14] [[18, 4, 5]]16 [[18, 4, 5 − 6]]4
{r2, r5, r6, r9} [1, w, 1, w6, w4, w14, w8, w14] [[18, 5, 4]]16 [[18, 5, 5]]4
{r4, r5, r9} [1, w,w2, w7, w6, w13, w,w9] [[18, 6, 4]]16 [[18, 6, 5]]4

G =

⎡
⎢⎢⎢⎢⎣

〈v1, 1〉 〈v1, w〉 . . .
〈
v1, w

16
〉

0
〈v2, 1〉

〈
v2, w

2
〉
. . .

〈
v2, w

32
〉

0
. . . . . . . . . . . . . . .

〈v8, 1〉
〈
v8, w

8
〉
. . .
〈
v8, w

128
〉
0

1 1 . . . 1 1

⎤
⎥⎥⎥⎥⎦ .

Let C be the linear code over F16 with generator matrix G. Denote the i-th row of G by
ri . Let D be the subspace of C generated by a subset d of the rows of G. Let C1 = C⊥
and C2 = D⊥. Using Theorem 6, we obtain some quantum codes of length 18 over F16, as
described in Table 4.

Remark 8 In Examples 5, 6, 7 and 8, the choices for d and the coordinates of v (excluding the
first two coordinates) are random. In Tables 1, 2, 3 and 4, we only included random choices
that produce quantum codes with highest distance within our GAP calculations. We also note
that different choices of d and v can result in codes with same parameters.

Remark 9 In general, there are no databases for quantum codes over Fq for q > 4. The
quantum codes over F8 and F16 we obtained in Examples 5, 6, 7 and 8 are new, to our
knowledge.

5 Linear codes from KM-arcs

5.1 Three-weight codes from KM-arcs

We recall that in the projective plane PG(2, q), where q is even, aKM-arc of type t is a set H
of q + t points meeting every line in 0, 2 or t points. If H is a KM-arc of type t in PG(2, q),
2 < t < q , then

1. q is even and t is a divisor of q , cp. [32];
2. each point of H is on exactly one t-secant and every other line through this point is a

2-secant of H , cp. [32];
3. there are q/t+1 different t-secants to H , and they are concurrent at a unique point called

the t-nucleus of H , cp. [26];
4. all other lines contain 0 or 2 points of H , cp. [32].

We further note that, by direct counting, the number of 2-secants and 0-secants are q(q+t)
2

and q − q
t + q(q−t)

2 , respectively.
Let n := q+ t . Let H := {u1, . . . , un} be a KM-arc of type t with points in K and nucleus

at 0. For each i , we rewrite ui = xi + yi i. Let C be an [n, 3]-code over Fq with generator
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matrix

G =
⎡
⎣ x1 x2 . . . xn
y1 y2 . . . yn
1 1 . . . 1

⎤
⎦ .

We will assume t > 2, since the case t = 2 (corresponding to hyperovals) was considered in
[20]. In the next theorem, we study the weight enumerator and the minimum distance of of
C⊥.
Theorem 7 Let t > 2. Then C is a three-weight [n, 3, q]-code over Fq with weight enumer-
ator

A(z) = 1 + An−t z
n−t + An−2z

n−2 + Anz
n,

where

An−t = (q − 1)
(q
t

+ 1
)

,

An−2 = (q − 1)
q(q + t)

2
,

and

An = (q − 1)

(
q − q

t
+ q(q − t)

2

)
.

The minimum distance of C⊥ is 3.

Proof By [20, Theorem 2.36] (also compare [20, Section 12.2]), the only possible weights
of C is n, n − 2, n − t . Let the weight enumerator of C be

A(z) = 1 + An−t z
n−t + An−2z

n−2 + Anz
n .

For convenience, we denote An−t , An−2, An by X , Y , Z , respectively. We note that C is a
projective code, that is, the minimum distance of C⊥ is greater than 2 (cp. [20, p. 85]). The
first three Pless power moments of C (compare [20, Section 2.3], [31, Section 7.3]) give the
following system of equations⎧⎪⎨

⎪⎩
1 + X + Y + Z = q3

(n − t)X + (n − 2)Y + nZ = q2(q − 1)n

(n − t)2X + (n − 2)2Y + n2Z = q(q − 1)n(qn − n + 1)

Solving the system gives us the weight enumerator of C .
We now consider theweight enumerator A⊥(z) of the dualC⊥, which is a [q+t, q+t−3]-

code. From the MacWilliams Identity,

q3A⊥(z) = (1 + (q − 1)z)n A

(
1 − z

1 + (q − 1)z

)

= (1 + (q − 1)z)n
(
1 + X

(1 − z)q

(1 + (q − 1)z)q
+ Y

(1 − z)n−2

(1 + (q − 1)z)n−2

+Z
(1 − z)n

(1 + (q − 1)z)n

)
= (1 + (q − 1)z)n + X(1 − z)q(1 + (q − 1)z)t

+ Y (1 − z)n−2(1 + (q − 1)z)2 + Z(1 − z)n .
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We have

(1 + (q − 1)z)n =
n∑

i=0

(
n

i

)
(q − 1)i zi ,

Z(1 − z)n =
n∑

i=0

(
n

i

)
Z(−z)i .

Also, following the calculations in [20, p. 316, 317], we have

X(1 − z)q(1 + (q − 1)z)t =
n∑

l=0

⎛
⎝ ∑

i+ j=l

(
q

i

)(
t

j

)
(−1)i (q − 1) j

⎞
⎠ Xzl ,

Y (1 − z)n−2(1 + (q − 1)z)2 =
n∑

l=0

⎛
⎝ ∑

i+ j=l

(
n − 2

i

)(
2

j

)
(−1)i (q − 1) j

⎞
⎠ Y zl .

It follows that

q3A⊥
1 = n(q − 1) + (t(q − 1) − q)X + (2(q − 1) − (n − 2))Y − nZ

= 0,

q3A⊥
2 =

(
n

2

)
(q − 1)2 +

((
t

2

)
(q − 1)2 − qt(q − 1) +

(
q

2

))
X

+
(

(q − 1)2 − (n − 2)2(q − 1) +
(
n − 2

2

))
Y +

(
n

2

)
Z

= 0,

q3A⊥
3 =

(
n

3

)
(q − 1)3 +

((
t

3

)
(q − 1)3 − q

(
t

2

)
(q − 1)2 +

(
q

2

)
t(q − 1) −

(
q

3

))
X

+
(
0 −

(
n − 2

1

)
(q − 1)2 +

(
n − 2

2

)
2(q − 1) −

(
n − 2

3

))
Y −

(
n

3

)
Z .

Then

6q3A⊥
3 = q5t2 + q4t3 − 3q5t − 4q4t2 − q3t3 + 2q5 + 5q4t + 3q3t2 − 2q4 − 2q3t

= q3(q − 1)(q + t)(t − 1)(t − 2).

Since t > 2, we have A⊥
3 > 0 and so the minimum distance of C⊥ is 3. ��

Remark 10 From [20, Theorem 2.36], alternatively one can easily see that the numbers An−t ,
An−2, An are (q − 1) times the number of t-secants, 2-secants and 0-secants to a KM-arc.
We thank one of the reviewers for pointing this out.

Remark 11 When t = 2, calculations for the weight enumerator in Theorem 7 still hold. In
this case, C is a two-weight code with weight enumerator

1 + (q − 1)
(q + 2)(q + 1)

2
zq + (q − 1)

q(q − 1)

2
zq+2.

We have A⊥
3 = 0 and by the Singleton bound, the minimum distance of C⊥ is 4.

Remark 12 The case q = 8, t = 4 produces a linear code C over F8 with parameters
[12, 3, 8]. This code is almost optimal according to [27]. The dual C⊥ has parameters
[12, 9, 3] which is almost-MDS.
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5.2 Four-weight LCD codes from KM-arcs

Recall q = 2m , F = Fq , K = Fq2 . Let r = 2h , where h | m. Let F ′ = Fr , and K ′ = Fr2 .
We recall the relative trace map TrF/F ′ : F → F ′, where

TrF/F ′(x) = xq/r + xq/r2 + · · · + xr + x .

Let V1 := {x ∈ F | TrF/F ′(x) = 1}.
We recall from [7, Theorem 4] a construction of KM-arcs in polar coordinates, which is

equivalent to the construction of Gács andWeiner [26]. Assumem/h is odd. Let H ′ ⊂ K ′ be
an oval with nucleus at 0. Let Vc := cV1 for some c ∈ K ∗. Then H := {λu | 1/λ ∈ Vc, u ∈
H ′} is a KM-arc in K of type t = q/r with t-nucleus at 0.

Let n := q + t and let the elements of H be vi , where 1 ≤ i ≤ n. For each i , let
vi = xi + yi i. We can apply Theorem 1 to obtain LCD codes over Fq and Fq2 from the set
H as follows.

Theorem 8 Let α ∈ F
∗
q . Let C = Cα(H) be a linear code over Fq with generator matrix

G =
⎡
⎣ x1 x2 . . . xn 0
y1 y2 . . . yn 0
1 1 . . . 1 α

⎤
⎦ .

Then C is a four-weight Euclidean LCD [n + 1, 3, q]-code. The weight enumerator of C is

A(z) = 1 + An−t z
n−t + An−1z

n−1 + Anz
n + An+1z

n+1

where

An−t = (q − 1)
(q
t

+ 1
)

,

An−1 = (q − 1)
q(q + t)

2
,

An = (q − 1)
(
q − q

t

)
,

and

An+1 = (q − 1)
q(q − t)

2
.

Proof 1. Since H ′ is an oval, it is a Vandermonde set, and so
n∑

i=1
vi = 0. In view of Theorem

1, to prove that C is a Euclidean LCD code it is sufficient to prove that
n∑

i=1
v
q+1
i = 0. We

have

n∑
i=1

v
q+1
i =

∑
1/λ∈Vc

λ2
∑
u∈H ′

uq+1.

We first show that
∑

1/λ∈Vc
λ2 = 0, by showing that

∑
λ∈V1

λq−2 = 0. For λ ∈ V1, we have

TrF/F ′(λ) = λq/r + λq/r2 + · · · + λr + λ = 1.
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Rewrite ∑
λ∈V1

λq−2 =
∑
λ∈V1

λ
q
r −2λ

q
r (r−1) =

∑
λ∈V1

λ
q
r −2

(
λq/r2 + · · · + λ + 1

)r−1
.

We note that r = 2h so that r − 1 =
h−1∑
i=0

2i . Then

A = λ
q
r −2

(
λq/r2 + · · · + λ + 1

)r−1 = λ
q
r −2

h−1∏
i=0

(
λq/r2 + · · · + λ + 1

)2i
.

Let λd be a term in the expansion of A. Then

0 ≤ d ≤ 2
q

r
− q

r2
− 2.

From parts 1 and 2 of the proof of [7, Lemma 7], for d in this range,
∑

λ∈V1
λd = 0 if and

only if d = q/r − 1. Since the term λq/r−1 appears in the expansion of A, it follows that∑
λ∈V1

λq−2 = 0. Then

∑
1/λ∈Vc

λ2 =
∑
λ∈V1

1

c2λ2
= 1

c2
∑
λ∈V1

λq−2 = 0.

On the other hand, since H ′ is an oval,
∑

u∈H ′ ur+1 = 0. For u ∈ H ′ ⊂ K ′, we have

ur
2 = u, and since m/h is odd,

uq+1 = ur
m/h+1 = ur+1.

Then ∑
u∈H ′

uq+1 =
∑
u∈H ′

ur+1 = 0.

By Theorem 1, it follows that C is a Euclidean LCD code.
2. Let H̄ be the set of points in PG(2, q) with homogeneous coordinates given by the

columns of G. Then H̄ = H ∪ {(0 : 0 : 1)}. Since H is a KM-arc of type t , every line in
PG(2, q) intersects H̄ at 0, 1, 2 or t + 1 points. By [20, Theorem 2.36], the only possible
weights of C are n + 1, n, n − 1, n − t and so C is a four-weight code.

Let c be a codeword of C . Then

c = [b1 b2 b3]G,

where b1, b2, b3 ∈ Fq . We observe that the i-th coordinate of c is zero if and only if the
point (xi : yi : 1) is on the line L determined by the equation b1x + b2y + b3 = 0. In
particular, for l ∈ {0, 1, 2, t + 1}, the codeword c has weight n + 1 − l if and only if the
line L contains l points of H̄ . On the other hand, triples (b1, b2, b3) and (λb1, λb2, λb3)with
λ ∈ F

∗
q determine the same line. It follows that the number of codewords of C with weight

n + 1 − l is equal to (q − 1) times the number of l-secants to H̄ .
We note that the number of (t + 1)-secants, 2-secants, 1-secants and 0-secants to H̄ are

q
t +1, q(q+t)

2 , q− q

t
and q(q−t)

2 , respectively. The weight enumerator ofC now follows from

counting the l-secants to H̄ . ��
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Theorem 9 Let α ∈ F
∗
q2
. Let C = Cα(H) be a linear code over Fq2 with generator matrix

G =
⎡
⎣ x1 x2 . . . xn 0
y1 y2 . . . yn 0
1 1 . . . 1 α

⎤
⎦ .

Then C is a four-weight Hermitian LCD [n + 1, 3, q]-code. The weight enumerator of C is

A(z) := 1 + An−t z
n−t + An−1z

n−1 + Anz
n + An+1z

n+1

where

An−t = (q2 − 1)
(q
t

+ 1
)

,

An−1 = (q2 − 1)
q(q + t)

2
,

An = (q2 − 1)
(
q2 − q

t
+ (q2 − q)(q + t)

)
,

and

An+1 = (q2 − 1)
(
q4 − (q + t)

(
q2 − q

2

))
.

Proof Similar to part 1 in the proof of Theorem 8, it can be shown that C is a Hermitian LCD
code. In the remainder of the proof, we show that C is a four-weight code and calculate the
weight enumerator of C .

Let H̄ be the set of points in PG(2, q2) with homogeneous coordinates given by the
columns of G. We note that the homogeneous coordinates of points from H̄ can be chosen
from Fq . Since H is a KM-arc of type t in PG(2, q), every line in PG(2, q2) intersects
H̄ at 0, 1, 2 or t + 1 points. By [20, Theorem 2.36], the only possible weights of C are
n + 1, n, n − 1, n − t and so C is a four-weight code.

We now consider the number of l-secants to H̄ in PG(2, q2), for l ∈ {0, 1, 2, t + 1}.
Since two points of H̄ determine a unique line in PG(2, q2) (which is lifted from a line
in PG(2, q)), the number of (t + 1)-secants to H̄ is equal to the number of t-secants to

H ⊂ PG(2, q), which is
q

t
+ 1. Also, the number of 2-secants to H̄ is

q(q + t)

2
.

For each point P of H̄\{(0 : 0 : 1)}, there are q2 −q lines intersecting H̄ at only P . Also,
there are q2 − q/t lines intersects H̄ at only (0 : 0 : 1). Hence, the total number of 1-secants
to H̄ is

q2 − q

t
+ (q2 − q)(q + t).

It follows that the number of 0-secants to H̄ is

q4 − (q + t)(q2 − q

2
).

Similar to part 2 in the proof of Theorem 8, for l ∈ {0, 1, 2, t + 1}, the number of codewords
of C with weight n + 1 − l is equal to (q2 − 1) times the number of l-secants to H̄ . The
weight enumerator of C now follows. ��
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