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Abstract
We study the upper bounds for A(n, d), the maximum size of codewords with length n
and Hamming distance at least d . Schrijver studied the Terwilliger algebra of the Hamming
scheme and proposed a semidefinite program to bound A(n, d).We derivemore sophisticated
matrix inequalities based on a split Terwilliger algebra to improve Schrijver’s semidefinite
programming bounds on A(n, d). In particular, we improve the semidefinite programming
bounds on A(18, 4) to 6551.

Keywords Semidefinite program · Binary codes · Terwilliger algebra · Weight
enumeration · Distance distribution

Mathematics Subject Classification 94B65

1 Introduction

In coding theory, one of the classical problems is to determine A(n, d), the maximum size
of a binary (n, d) code with length n and minimum distance at least d . The (Hamming)
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distance distribution of a code is considered since theMacWilliams identities provide a linear
relation between the distance distribution and its transform [27]. With this linear relation,
the maximum possible size of a code can be formulated as a linear programming problem.
Delsarte showed that the transform of the distance distribution is nonnegative and used linear
programming techniques to derive upper bounds on A(n, d) [11].

Schrijver considered the distance relations among triplets of codewords and derived
positive-semidefinite relations based on the Terwilliger algebra of Hamming scheme [32].
Thus one can formulate a semidefinite program (SDP) on themaximumpossible size of a code
and derive a semidefinite programming bound on the size of a binary code. Several linear
programming upper bounds on A(n, d) are improved since Schrijver’s semidefinite con-
straints implyDelsarte’s linear inequalities [32] by diagonalizing certain positive semidefinite
matrices derived from Schrijver’s semidefinite constraints in the Bose–Mesner algebra.

This method was later extended to nonbinary codes by Gijswijt et al. [17]. Gijswijt et
al. further studied the distance relations among quadruples of codewords and generalized
Schrijver’s SDP [16], called quadruple SDP,which improvedmany upper bounds for A(n, d).
Although an SDP based on the distance relations of m-tuple codewords for any m is studied,
an SDPbased on quadruple distances has alreadymany variables, leading to high computation
complexity.

On the other hand, there are several known linear constraints for binary codes, including
Delsarte’s inequalities [11], the ones derived by Best [5] and Mounits et al. [25], which can
be used to strengthen linear programming or semidefinite programming bounds on A(n, d).
Moreover, Kim and Toan proved additional linear constraints on the variables of Schrijver’s
SDP and improved upper bounds on A(18, 8) and A(19, 8) [19]. Then, A(18, 8) = 64 has
later been settled by Östergård [28] by using a computer-aided search.

The A(n, d) problem can be regarded as finding the maximum number of an independent
set of a graph as follows. Let E be a graph with 2n vertices corresponding to all the binary
vectors of length n. There is an edge between two binary vectors if their Hamming distance
is less than d . Now an (n, d) code corresponds to an independent set of E . Consequently,
Delsarte’s linear programming bound can be viewed an upper bound on the independent
number of E . Moreover, this bound can be extended to serve as an upper bound on the inde-
pendent number an arbitrary graph [31]. Based on this connection, Laurent gave a hierarchy
for semidefinite programming bounds on A(n, d) and proposed strengthened bounds [21],
which improve bounds on A(20, 8) and A(25, 6).

Upper bounds for several related coding problems in various spaces can also be derived
using semidefinite programming techniques. For instance,Bachoc andVallentin studiedSDPs
for codes inHamming balls, projective spaces and spherical codes (kissing number problems)
[2, 8]. Barg and Yu also used semidefinite programming techniques to obtain better upper
bounds for spherical two-distance sets and equiangular lines [9, 10].

In this paper, we would like to study Schrijver’s SDP and derive additional semidefinite
constraints. One can define a split distance distribution of a code, and derive a split version of
Delsarte’s inequalities,which provide subtler linear constraints [33].Recently, splitHamming
weight distributions and their MacWilliams identities have been studied in various quantum
codes [1, 20, 22]. It has been demonstrated that linear programming bounds on quantum
codes can be improved with additional constraints from split MacWilliams identities [20].

Inspired by the effects of split distance or weight distributions in linear programming,
we would like to study a similar notion in Schrijver’s SDP. Consider a partition of the
support of a code with two subsets. We define a split Terwilliger algebra with respect to
the partition. Similar to the derivation of Schrijver’s semidefinite constraints, we show that
this split Terwilliger algebra can be block-diagonalized to derive finer positive-semidefinite
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constraints.Moreover, we show that these split Schrijver’s semidefinite constraints also imply
corresponding split Delsarte’s inequalities, and hence they are natural generalizations of
Schrijver’s constraints. Together with Schrijver’s semidefinite constraints and the known
linear constraints in the literature, we have a strengthened SDP on A(n, d). In particular,
we improve the semidefinite programming bound on A(18, 4) to 6551, while the previously
known upper bound is 6552, by linear programming with Delsarte’s inequalities and Best’s
inequalities [5]. The number has not been updated since more than four decades ago [4, 7].
The numerical error of this SDP program can be pessimistically estimated from its dual SDP
as suggested by Gijswijt [14]. Using this method, we are able to verify that A(18, 4) ≤ 6551.

One of our semidefinite constraint Rs can be derived from the quadruple SDP. It is not
clear whether the other semidefinite constraint on R′

s obtained by a split Terwilliger algebra
is included in the constraints of the quadruple SDP as well. However, in our experiment, we
are able to improve the bound A(18, 4) over the quadruple SDP in [16].

All the results and proofs can be generalized to a split Terwilliger algebra on m subsets
of a partition with m ≤ n (called m-split Terwilliger algebra), from which we may derive
more additional positive-semidefinite constraints. However, this m-split Terwilliger induces
an SDP with O(( n

m )3m) variables and may not be practical in implementation with large m.
Finally, we mention m-split Terwilliger algebras for the Hamming scheme, which might

allow us to apply our method to other association schemes. To implement an SDP program,
one of the key points is to block diagonalize the algebra in use and Gijswijt has developed a
general method to handle this problem [15]. Gijswijt’s method was refined and extended to
nonbinary codes by Litjens et al. [23]. Moreover, the method can be further generalized to the
groups of the form (Gn1

�Sn1)×· · ·×(Gnm
�Snm )with

∑m
i=1 nm = n and Sni are symmetric

groups [29]. Together with those approaches, one can calculate the block diagonalization
formula of split Terwilliger algebras in various types of codes, such as constant-weight codes
and nonbinary codes with Hamming or Lee distances.

The paper is organized as follows. We introduce the Terwilliger algebra of the Hamming
scheme and Schrijver’s SDP. In Sect. 3 we define a split Terwilliger algebra and derive
semidefinite constraints. Then we provide our SDP together with the linear constraints in the
literature in Sect. 4. A generalization of the method on m-split Terwilliger algebra is given
in Sect. 5. Finally, we conclude our work in Sect. 6.

2 Terwilliger algebra and Schrijver’s SDP

LetP be the power set of {1, . . . , n}. A binary codeC is a subset ofP . For X , Y ∈ P , denote

X�Y = {a ∈ {1, . . . , n} : a ∈ (X\Y ) ∪ (Y\X)} .

Let |S| denote the size of a set S ∈ P . Hence the (Hamming) distance of X and Y ∈ P is
|X�Y |. The distance distribution of the code C is

A j = 1

|C |
∑

x∈C

{y ∈ C : |x�y| = j} (1)

for j = 0, . . . , n. The minimum distance d of C is the minimum Hamming distance of two
distinct elements in C and hence

d = min{ j > 0 : A j > 0}.
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Note that for |C | ≤ 1, its minimum distance is defined to be ∞. C is said to be an (n, d)

code if C has minimum distance d and length n. See more details about codes in [27].
We review the Terwilliger algebra of the Hamming scheme [3, 34, 35]. Let G be the group

of all distance-preserving automorphisms of P . Consider the action of G on P × P defined
by g(X , Y ) = (gX , gY ) for g ∈ G and (X , Y ) ∈ P × P with orbits O1, . . . ,Om for some
m. For each Ou , we define a |P| × |P| matrix MOu , indexed by the elements in P , as

(
MOu

)
X ,Y =

{
1, if (X , Y ) ∈ Ou;
0, otherwise.

Observe that (X , Y ) and (U , V ) ∈ P × P belong to the same orbit if and only if there is
an automorphism g ∈ G such that gX = U and gY = V , that is, if and only if |X | = |U |,
|Y | = |V |, and |X�Y | = |U�V |. Thus, MOu can be rewritten as

(
Mt

i, j

)

X ,Y
=

{
1, if |X | = i, |Y | = j, |X ∩ Y | = t;
0, otherwise,

where each orbitOu is represented by some (i, j, t) for i, j, t ∈ {0, . . . , n}with i + j −2t ∈
{0, . . . , n}. Let An be the collection of all linear combinations of

{
Mt

i, j

}
over the complex

field C. Then An is closed under matrix multiplication and adjoint. Moreover, An is a C
∗-

algebra, called the Terwilliger algebra of the Hamming scheme.An is finitely generated with
dimension

(n+3
3

)
.

Schrijver described a block diagonal formula for the Terwilliger algebra of the Hamming
scheme.

Theorem 1 [32, Theorem 1] There is an isomorphism from An to
⊕	 n

2 

k=0 C

(n−2k+1)×(n−2k+1)

that maps A = ∑
i, j,t x t

i, j Mt
i, j ∈ An to

⊕	 n
2 


k=0 Bk, where

Bk =
(
∑

t

(
n − 2k

i − k

)− 1
2
(

n − 2k

j − k

)− 1
2

β t
i, j,k xt

i, j

)n−k

i, j=k

with

β t
i, j,k =

n∑

u=0

(−1)u−t
(

u

t

)(
n − 2k

u − k

)(
n − k − u

i − u

)(
n − k − u

j − u

)

.

The formula says An as the direct sum of matrices. Therefore, we can represent the
elements of An on a computer with a minimal memory.

Now, Schrijver’s semidefinite constraints for a nontrivial code C [32] can be derived as
follows. Consider the action of G. Let � = {π ∈ G | ∅ ∈ π(C)} and �′ = {π ∈ G | ∅ /∈
π(C)}. Let χπ(C) be the incidence vector (as a column vector) of π(C) indexed by P . Define
|P| × |P| matrices

R = 1

|�|
∑

π∈�

χπ(C)(χπ(C))T ,

R′ = 1

|�′|
∑

π∈�′
χπ(C)(χπ(C))T .

123



Semidefinite programming bounds... 3245

It is obvious that R and R′ are positive semidefinite. Let

xt
i, j = 1

|C |( n
i−t, j−t,t

)λt
i, j ,

where
( n

a,b,c

) = n!
a!b!c! for a, b, c ≥ 0 with a + b + c ≤ n, and

λt
i, j =|{(X , Y , Z) ∈ C3 : |X�Y | = i, |X�Z | = j, |(X�Y ) ∩ (X�Z)| = t}|,

for each i, j, t ∈ {0, . . . , n} with i − t ≥ 0, j − t ≥ 0, and i + j − 2t ≤ n. λt
i, j counts

the number of triple codewords in C satisfying certain distance relations. The following
proposition says that R, R′ ∈ An .

Proposition 2 [32, Proposition 1]

R =
∑

i, j,t

x t
i, j Mt

i, j ,

R′ = |C |
2n − |C |

∑

i, j,t

(
x0i+ j−2t,0 − xt

i, j

)
Mt

i, j .

By Theorem 1, R and R′ are positive semidefinite if and only if for k = 0, . . . , 	 n
2 
, the

following matrices

(
∑

t

(
n − 2k

i − k

)− 1
2
(

n − 2k

j − k

)− 1
2

β t
i, j,k xt

i, j

)n−k

i, j=k

, (2)

(
∑

t

(
n − 2k
i − k

)− 1
2
(

n − 2k
j − k

)− 1
2

β t
i, j,k

(
x0i+ j−2t,0 − xt

i, j

)
)n−k

i, j=k

(3)

are positive semidefinite. Schrijver also showed that xt
i, j satisfy the following constraints.

Proposition 3 [32] Let C be a code with length n and minimum distance at least d. Then
xt

i, j ’s corresponding to C satisfy the following constraints:

(i) x00,0 = 1;
(ii) 0 ≤ xt

i, j ≤ x0i,0;
(iii) x0i,0 + x0j,0 ≤ 1 + xt

i, j ;
(iv) xt

i, j = xt ′
i ′, j ′ if (i, j, i + j − 2t) is a permutation of (i ′, j ′, i ′ + j ′ − 2t ′);

(v) xt
i, j = 0 if {i, j, i + j − 2t} ∩ {1, . . . , d − 1} = ∅;

(4)

Also, we have

|C | =
∑

i

(
n

i

)

x0i,0.

Note that

{(
n
i

)

x0i,0

}

is the distance distribution of C . Constraints (i) and (iv) are from the

definition directly. Consider |X | = i and |Y | = j and then we have

(R)X ,X = xi
i,i = x0i,0, (R)X ,Y = xt

i, j .
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The first inequality of Constraint (ii) follows because of the non-negativity of λt
i, j and the

second inequality is because R is positive semidefinite and a diagonal element of a positive
semidefinite matrix would dominate its row entries. Constraint (iii) can be similarly derived
from (R)′X ,X ≥ (R)′X ,Y and (iv). To see this, we consider |X | = i and |Y | = j ′ = i + j − 2t
at t ′ = i − t . Then

(R′)X ,X = x00,0 − x0i,0,

(R′)X ,Y = x0i+ j ′−2t ′,0 − xt ′
i, j ′ = x0j,0 − xi−t

i,i+ j−2t = x0j,0 − xt
i, j ,

where xi−t
i,i+ j−2t = xt

i, j is because of (iv). Constraint (v) is the requirement from theminimum
distance of the code. To sum up, Schrijver’s SDP is as follows with variables xt

i, j ∈ R:

maximize
∑

i

(
n

i

)

x0i,0

subject to positive semidefiniteness of (2) and (3)

(4).

3 Split Terwilliger algebra of the Hamming scheme

In this section, we consider split distance distribution on a partition of {1, . . . , n} with two
subsets T1 and T2 such that T1 ∩ T2 = ∅, |T1| = n1, |T2| = n2, and n1 + n2 = n.

Let Gu be the group of all distance-preserving automorphisms of the power set of Tu , for
u = 1, 2. We consider the group G1 × G2 acting on P by

(g, h) · X = g(X ∩ T1) ∪ h(X ∩ T2)

for (g, h) ∈ G1 × G2 and X ∈ P . Observe that an orbit of G1 × G2 on P × P can be
similarly represented by (i, j, t, i ′, j ′, t ′) with i, j, t ∈ {0, . . . , n1}, i ′, j ′, t ′ ∈ {0, . . . , n2},
i + j − 2t ∈ {0, . . . , n1} and i ′ + j ′ − 2t ′ ∈ {0, . . . , n2} and we define |P| × |P| matrices
Mt,t ′

i, j,i ′, j ′ by

(
Mt,t ′

i, j,i ′, j ′
)

X ,Y
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1,

if |X ∩ T1| = i, |X ∩ T2| = i ′,
|Y ∩ T1| = j, |Y ∩ T2| = j ′,
and |X ∩ Y ∩ T1| = t, |X ∩ Y ∩ T2| = t ′;

0, otherwise.

Let An1,n2 be the collection of all linear combinations of
{

Mt,t ′
i, j,i ′, j ′

}
over the complex field

C. One can verify that An1,n2 is closed under matrix multiplication and adjoint, and An1,n2
forms a C

∗-algebra, which we call a 2-split Terwilliger algebra of the Hamming scheme. By
definition, we have the following lemma.

Lemma 4 The algebra An1,n2 is isomorphic to the algebra An1 ⊗An2 , where ⊗ is the matrix
tensor product.

Proof Wedenote Mn1,t
i, j ’s and Mn2,t ′

i ′, j ′ ’s as the generators ofAn1 ,An2 , respectively, for i, j, t ∈
{0, . . . , n1}, i ′, j ′, t ′ ∈ {0, . . . , n2}. For X , Y ∈ P ,

(
Mt,t ′

i, j,i ′, j ′
)

X ,Y
= 1 (5)
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if and only if |X ∩ T1| = i , |Y ∩ T1| = j , |X ∩ Y ∩ T1| = t and |X ∩ T2| = i ′, |Y ∩ T2| = j ′,
|X ∩ Y ∩ T2| = t ′.
Suppose that the generators of An1 and An2 are indexed by the power sets P1, P2 of T1 and
T2, respectively. We observe that (5) is equivalent to

(
Mn1,t

i, j

)

X∩T1,Y∩T1
= 1 and

(
Mn2,t ′

i ′, j ′
)

X∩T2,Y∩T2
= 1.

Also, the size of the matrix Mn1,t
i, j ⊗ Mn2,t ′

i ′, j ′ is equal to 2n1+n2 × 2n1+n2 . Immediately, we
have

Mt,t ′
i, j,i ′, j ′ = Mn1,t

i, j ⊗ Mn2,t ′
i ′, j ′ , (6)

since the right (left) hand side of (6) forms a set of generators for An1,n2 (An1 ⊗ An2 ). ��

As a consequence, we have a block-diagonal formula for the 2-split Terwilliger algebra of the
Hamming scheme, which is an extension of the block-diagonal formula for the Terwilliger
algebra of the Hamming scheme with the definition of tensor product. As in Schrijver’s
decomposition of the Terwilliger algebra, this split decomposition is irreducible. By certain
basic results from representation theory, An1,n2 will be mapped to a direct sum of simple
An1,n2 -modules. Thus we have the following corollary.

Corollary 5 [32, equation (56)] There is an isomorphism from An1,n2 to

⌊ n1
2

⌋

⊕

k=0

⌊ n2
2

⌋

⊕

k′=0

C
Nk,k′×Nk.k′ ,

with Nk,k′ = (n1 − 2k + 1)(n2 − 2k′ + 1) that maps A = ∑
i, j,i ′, j ′,t,t ′ xt,t ′

i, j,i ′, j ′ M
t,t ′
i, j,i ′, j ′ to

	 n1
2 
⊕

k=0

	 n2
2 
⊕

k′=0

Bk,k′ ,

where

Bk,k′ =
⎛

⎝
∑

t,t ′
α

k,n1,n2
i, j,i ′, j ′β

n1,t
i, j,kβ

n2,t ′
i ′, j ′,k′ x

t,t ′
i, j,i ′, j ′

⎞

⎠

((n1−k,n2−k′),(n1−k,n2−k′))

((i,i ′),( j, j ′))=((k,k′),(k,k′))

with

β
nl ,t
i, j,k =

nl∑

u=0

(−1)u−t
(

u

t

)(
nl − 2k

u − k

)(
nl − k − u

i − u

)(
nl − k − u

j − u

)

,

for l = 1, 2 and

α
k,n1,n2
i, j,i ′, j ′ =

(
n1 − 2k

i − k

)− 1
2
(

n1 − 2k

j − k

)− 1
2
(

n2 − 2k′

i ′ − k′

)− 1
2
(

n2 − 2k′

j ′ − k′

)− 1
2

.

Remark 6 The formula in Corollary 5 was provided by Schrijver in [32] to provide SDP
constraints for a constant-weight code of weight w by choosing n1 = w and n2 = n − w.
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Now we can derive additional semidefinite constraints on a nontrivial code C ⊂ P from
the 2-split Terwilliger algebra of the Hamming scheme. Define

xt,t ′
i, j,i ′, j ′ = 1

|C |( n1
i−t, j−t,t

)( n2
i ′−t ′, j ′−t ′,t ′

)λt,t ′
i, j,i ′, j ′ , (7)

where

λ
t,t ′
i, j,i ′, j ′ = |{(X , Y , Z) ∈ C3 : |(X�Y ) ∩ T1| = i, |(X�Z) ∩ T1| = j,

|((X�Y ) ∩ (X�Z)) ∩ T1| = t,

|(X�Y ) ∩ T2| = i ′, |(X�Z) ∩ T2| = j ′,
|((X�Y ) ∩ (X�Z)) ∩ T2| = t ′}|,

(8)

for i, j, t ∈ {0, . . . , n1}, i ′, j ′, t ′ ∈ {0, . . . , n2} with i − t ≥ 0, j − t ≥ 0, i + j − 2t ≤ n1,
i ′ − t ′ ≥ 0, j ′ − t ′ ≥ 0 and i ′ + j ′ − 2t ′ ≤ n2. Also, the size of the code is

|C | =
n∑

a=0

∑

i+i ′=a

(
n1

i

)(
n2

i ′

)

x0,0i,0,i ′,0.

Let λc
a,b, xc

a,b and Mc
a,b be defined as in Schrijver’s SDP in the previous section. From the

definitions, we have the following identities:

λc
a,b =

∑

i+i ′=a, j+ j ′=b,t+t ′=c

λ
t,t ′
i, j,i ′, j ′ , (9)

xc
a,b =

∑

i+i ′=a, j+ j ′=b,t+t ′=c

( n1
i−t, j−t,t

)( n2
i ′−t ′, j ′−t ′,t ′

)

( n
a−c,b−c,c

) xt,t ′
i, j,i ′, j ′ , (10)

Mc
a,b =

∑

i+i ′=a, j+ j ′=b,t+t ′=c

Mt,t ′
i, j,i ′, j ′ . (11)

Consider the following two sets of automorphisms:

�s = {(π1, π2) ∈ G1 × G2 | ∅ ∈ (π1, π2)(C)},
�′

s = {(π1, π2) ∈ G1 × G2 | ∅ /∈ (π1, π2)(C)}.

Here the subscript s stands for split. Similarly, we define

Rs = 1

|�s|
∑

(π1,π2)∈�s

χ(π1,π2)(C)(χ(π1,π2)(C))T ,

R′
s = 1

|�′
s|

∑

(π1,π2)∈�′
s

χ(π1,π2)(C)(χ(π1,π2)(C))T .

One can immediately see that Rs and R′
s are positive semidefinite and they only depend on

the action G1 × G2 on C . Moreover, Rs and R′
s are elements of An1,n2 as a consequence of

the following proposition.
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Proposition 7

Rs =
∑

i, j,i ′, j ′,t,t ′
xt,t ′

i, j,i ′, j ′ M
t,t ′
i, j,i ′, j ′ ,

R′
s = |C |

2n − |C |
∑

i, j,i ′, j ′,t,t ′

(
x0,0i+ j−2t,0,i ′+ j ′−2t ′,0 − xt,t ′

i, j,i ′, j ′
)

Mt,t ′
i, j,i ′, j ′ .

Proof Let X ∈ P . We define �X
s = {(π1, π2) ∈ �1 × �2 | (π1, π2)(X) = ∅}. For an ele-

ment (π1, π2) ∈ �X
s , we can see π1 as a permutation of T1 and π2 as a permutation of T2.

Hence, we have
∣
∣�X

s

∣
∣ = n1!n2!. Define

RX
s = 1

|�X
s |

∑

(π1,π2)∈�X
s

χ(π1,π2)(C)
(
χ(π1,π2)(C)

)T
,

λ
t,t ′,X
i, j,i ′, j ′ = |{(Y , Z) ∈ C2 : |(X�Y ) ∩ T1| = i, |(X�Z) ∩ T1| = j,

|((X�Y ) ∩ (X�Z)) ∩ T1| = t,

|(X�Y ) ∩ T2| = i ′, |(X�Z) ∩ T2| = j ′,
|((X�Y ) ∩ (X�Z)) ∩ T2| = t ′}|.

For (π1, π2) ∈ �X
s and fixed i, j, t, i ′, j ′, t ′, observe that the number of 1’s in

(

χ(π1,π2)(C)
(
χ(π1,π2)(C)

)T
)

Y ,Z

such that
(

Mt,t ′
i, j,i ′, j ′

)

Y ,Z
= 1 is λ

t,t ′,X
i, j,i ′, j ′ . There are

( n1
i−t, j−t,t

)( n2
i ′−t ′, j ′−t ′,t ′

)
such (Y , Z).

Thus,

RX
s =

∑

i, j,i ′, j ′,t,t ′

1
( n1

i−t, j−t,t

)( n2
i ′−t ′, j ′−t ′,t ′

)λt,t ′,X
i, j,i ′, j ′ M

t,t ′
i, j,i ′, j ′ .

Next, we see that

Rs =
∑

X∈C

RX
s

|C | , R′
s =

∑

X /∈C

RX
s

|P \ C | ,

and
∑

X∈C

λ
t,t ′,X
i, j,i ′, j ′ = λ

t,t ′
i, j,i ′, j ′ .

Therefore,

Rs =
∑

X∈C

RX
s

|C |

= 1

|C |
∑

i, j,i ′, j ′,t,t ′

1
( n1

i−t, j−t,t

)( n2
i ′−t ′, j ′−t ′,t ′

)

(
∑

X∈C

λ
t,t ′,X
i, j,i ′, j ′

)

Mt,t ′
i, j,i ′, j ′

=
∑

i, j,i ′, j ′,t,t ′

λ
t,t ′
i, j,i ′, j ′

|C |( n1
i−t, j−t,t

)( n2
i ′−t ′, j ′−t ′,t ′

) Mt,t ′
i, j,i ′, j ′

=
∑

i, j,i ′, j ′,t,t ′
xt,t ′

i, j,i ′, j ′ M
t,t ′
i, j,i ′, j ′ .
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For (Y , Z) ∈ C2 with |Y�Z ∩ T1| = i + j − 2t , |Y�Z ∩ T2| = i ′ + j ′ − 2t ′. The
number of X ∈ P such that |(X�Y ) ∩ T1| = i, |(X�Z) ∩ T1| = j, |((X�Y ) ∩ (X�Z)) ∩
T1| = t, |(X�Y ) ∩ T2| = i ′, |(X�Z) ∩ T2| = j ′, |((X�Y ) ∩ (X�Z)) ∩ T2| = t ′ is
(i+ j−2t

i−t

)(n1−t− j+2t
t

)(i ′+ j ′−2t ′
i ′−t ′

)(n2−i ′− j ′+2t ′
t ′

)
.

Thus we have

∑

X∈P
λ

t,t ′,X
i, j,i ′, j ′ =

(
i + j − 2t

i − t

)(
n1 − t − j + 2t

t

)(
i ′ + j ′ − 2t ′

i ′ − t ′
)

·
(

n2 − i ′ − j ′ + 2t ′
t ′

)

λ
0,0
i+ j−2t,0,i ′+ j ′−2t ′,0.

Hence,

R′
s =

∑

X∈P\C

RX
s

2n − |C |

= 1

2n − |C |
∑

i, j,i ′, j ′,t,t ′

1
(

n1
i − t, j − t, t

)(
n2

i ′ − t ′, j ′ − t ′, t ′
)

⎛

⎝
∑

X∈P\C

λ
t,t ′,X
i, j,i ′, j ′

⎞

⎠ Mt,t ′
i, j,i ′, j ′

= |C |
2n − |C |

∑

i, j,i ′, j ′,t,t ′

1

|C |
(

n1
i − t, j − t, t

)(
n2

i ′ − t ′, j ′ − t ′, t ′
)

·
((

i + j − 2t
i − t

)(
n1 − t − j + 2t

t

) (
i ′ + j ′ − 2t ′

i ′ − t ′
)

·
(

n2 − i ′ − j ′ + 2t ′
t ′

)

λ
0,0
i+ j−2t,0,i ′+ j ′−2t ′,0 − λ

t,t ′
i, j ,i ′, j ′

)
Mt,t ′

i, j,i ′, j ′

= |C |
2n − |C |

∑

i, j,i ′, j ′,t,t ′

⎛

⎜
⎜
⎝

(
i + j − 2t

i − t

)(
n1 − t − j + 2t

t

)(
i ′ + j ′ − 2t ′

i ′ − t ′
)(

n2 − i ′ − j ′ + 2t ′
t ′

)

|C |
(

n1
i − t, j − t, t

)(
n2

i ′ − t ′, j ′ − t ′, t ′
)

·λ0,0i+ j−2t,0,i ′+ j ′−2t ′,0 − xt,t ′
i, j ,i ′, j ′

⎞

⎟
⎟
⎠ Mt,t ′

i, j ,i ′, j ′ .

Using the identities

(
n1

i − t, j − t, t

)−1(i + j − 2t

i − t

)(
n1 − i − j + 2t

t

)

=
(

n1

i + j − 2t

)−1

and

(
n2

i ′ − t ′, j ′ − t ′, t ′

)−1(i ′ + j ′ − 2t ′

i ′ − t ′

)(
n2 − i ′ − j ′ + 2t ′

t ′

)

=
(

n2

i ′ + j ′ − 2t ′

)−1

,
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we have

R′
s = |C |

2n − |C |
∑

i, j,i ′, j ′,t,t ′

⎛

⎜
⎜
⎝

1

|C |
(

n1
i + j − 2t

)(
n2

i ′ + j ′ − 2t ′
)λ

0,0
i+ j−2t,0,i ′+ j ′−2t ′,0 − xt,t ′

i, j,i ′, j ′

⎞

⎟
⎟
⎠Mt,t ′

i, j,i ′, j ′

= |C |
2n − |C |

∑

i, j,i ′, j ′,t,t ′

(
x0,0i+ j−2t,0,i ′+ j ′−2t ′,0 − xt,t ′

i, j ,i ′, j ′
)

Mt,t ′
i, j,i ′, j ′ .

��
Using Theorem 5 and the positive semidefiniteness of Rs and R′

s, we have the following
semidefinite constraints. For each k = 0, . . . ,

⌊ n1
2

⌋
and k′ = 0, . . . ,

⌊ n2
2

⌋
, the following

matrices are positive semidefinite:

⎛

⎝
∑

t,t ′
α

k,n1,n2
i, j,i ′, j ′β

n1,t
i, j,kβ

n2,t ′
i ′, j ′,k′ x

t,t ′
i, j,i ′, j ′

⎞

⎠

((n1−k,n2−k′),(n1−k,n2−k′))

((i,i ′),( j, j ′))=((k,k′),(k,k′))

, (12)

⎛

⎝
∑

t,t ′
α

k,n1,n2
i, j,i ′, j ′β

n1,t
i, j,kβ

n2,t ′
i ′, j ′,k′(x0,0i+ j−2t,0,i ′+ j ′−2t ′,0 − xt,t ′

i, j,i ′, j ′)

⎞

⎠

((n1−k,n2−k′),(n1−k,n2−k′))

((i,i ′),( j, j ′))=((k,k′),(k,k′))

.

(13)

Proposition 8 Let C be a code with length n and minimum distance at least d. Then xt,t ′
i, j,i ′, j ′

corresponding to C satisfy the following linear constraints: for i, j, t, a, b, c ∈ {0, . . . , n1}
and i ′, j ′, t ′, a′, b′, c′ ∈ {0, . . . , n2},
(i) x0,00,0,0,0 = 1;
(ii) 0 ≤ xt,t ′

i, j,i ′, j ′ ≤ x0,0i,0,i ′,0;
(iii) x0,0i,0,i ′,0 + x0,00, j,0, j ′ ≤ 1 + xt,t ′

i, j,i ′, j ′ ;
((iv)) xt,t ′

i, j,i ′, j ′ = xc,c′
a,b,a′,b′ if ((i, i ′), ( j, j ′), (i + j − 2t, i ′ + j ′ − 2t ′));

is a permutation of ((a, a′), (b, b′), (a + b − 2c, a′ + b′ − 2c′)),
((v)) xt,t ′

i, j,i ′, j ′ = 0 if {i + i ′, j + j ′, (i + i ′) + ( j + j ′) − 2(t + t ′)} ∩ {1, . . . , d − 1} = ∅.

(14)

Constraints (i) and (iv) come from the definition of xt,t ′
i, j,i ′, j ′ . Constraints (ii) and (iii) are

because of the positive semidefiniteness of R and R′. Constraint (iv) is the requirement of
the minimum distance.

The split distance distribution of C with respect to the partition {T1, T2} is
{

Ai, j
}
, where

Ai, j = 1

|C | |{(a, b) ∈ C × C | |a�b ∩ T1| = i, |a�b ∩ T2| = j}|.

It has been shown that generalized Delsarte’s inequalities on
{

Ai, j
}
hold [33].

Corollary 9 [33, Generalized Delsarte’s inequalities]
∑

i, j

Ai, j K n1
p (i)K n2

q ( j) ≥ 0, (15)
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for p = 0, . . . , n1 and q = 0, . . . , n2, where

K n
k (x) =

k∑

y=0

(−1)y
(

x

y

)(
n − x

k − y

)

is the binary Krawchuk polynomial.

We can show that the generalized Delsarte’s inequalities on {Ai, j } can be derived from
the positive semidefiniteness of Rs and R′

s in Proposition 7.

Lemma 10 If Rs and R′
s are positive semidefinite, then (15) holds.

Proof Define a matrix

Ds = Rs + 2n − |C |
|C | R′

s =
∑

i, j,i ′, j ′,t,t ′
x0,0i+ j−2t,0,i ′+ j ′−2t ′,0Mt,t ′

i, j,i ′, j ′ ,

which is a nonnegative linear combination of positive semidefinite matrices Rs and R′
s , and

hence is positive semidefinite. We can rewrite Ds as

Ds =
∑

k,k′
x0,0k,0,k′,0Mk,k′ ,

where

(
Mk,k′

)
X ,Y =

{
1, if |X�Y ∩ T1| = k, |X�Y ∩ T2| = k′;
0, otherwise.

Define matrices Dm
a for 0 ≤ a, m ≤ n with entries

(
Dm

a

)
X ,Y =

{
1, if |X�Y | = a;
0, otherwise,

for indexes X , Y in the power set of {1, . . . , m}. Notice that
{

Dm
a

}
forms a basis for the

Bose–Mesner algebra of the Hamming scheme with length m. Using the isomorphism in
Lemma 4, one finds that Mk,k′ is isomorphic to Dn1

k ⊗ Dn2
k′ . By [11], we learn that Krawchuk

polynomials K m
a (p) are eigenvalues of the matrices {Dm

a } for 0 ≤ p ≤ m and, moreover,
the matrices {Mk,k′ } are commutative. Consequently, to diagonalize Ds , we simply have to
diagonalize Mk,k′ and the semidefinite conditions become

∑

k,k′
x0,0k,0,k′,0K n1

k (p)K n2
k′ (q) ≥ 0, (16)

for p ∈ {0, . . . , n1} and q ∈ {0, . . . , n2}. Recall that the Krawchuk polynomial obeys the
following symmetric relation [27]:

(
m

a

)

K m
b (a) =

(
m

b

)

K m
a (b).

Thus the inequality (16) becomes

∑

k,k′

(
n1

k

)(
n2

k′

)

x0,0k,0,k′,0

(
n1

p

)(
n2

q

)

K n1
k (p)K n2

k′ (q) ≥ 0,

which implies the result. ��
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Let Nk be the collection of codes S ⊂ P with minimum distance at least d and |S| ≤ k.
Schrijver’s SDP can be generalized by considering the k-points relation of codewords. The
generalized version is as follows [16].

Proposition 11 [16, Generalized SDP bound] For S ∈ Nk , define

N (S) = {S′ ⊂ P : S ⊂ S′, |S| + 2|S′ \ S| ≤ k}.
Let x = {xi }i∈Nk ⊂ R be a set of non-negative numbers. Define the |N (S)| × |N (S)| matrix
indexed by N (S) as

(MS(x))S′,S′′ =
{

xS′∪S′′ , if S′ ∪ S′′ has minimum distance at least d;
0, otherwise,

for S′, S′′ ∈ N (S). Then,

A(n, d) ≤ Ak(n, d)

= max

{
∑

i∈P
x{i} : x∅ = 1, xS ≥ 0 and MS(x) is positive semidefinite for each S ∈ Nk

}

.

(17)

It can be shown that the generalized Schrijver’s SDP constraints with k = 4 induce our
positive semidefinite constraint on Rs .

Proposition 12 The positive semidefinite constraints in the quadruple semidefinite program
in (17) imply the positive semidefiniteness of Rs .

Proof Let C be a code of length n and minimum distance d . Consider S = {∅, u} ∈ N4,
where u has 1 in the first n1 positions and 0 in the other n2 positions, which is a subset of C .
Let x be defined as xi = 1 if i ⊂ C and xi = 0 for the other cases. Observe that there is an
one-to-one correspondence between N (S) = {S ∪ {v} : v ∈ P} and P by sending S ∪ {v} to
v. Thus, MS(x) can be indexed by P and

(MS(x))v,w =
{
1, if {v,w} ⊂ C;
0, otherwise.

Notice that MS(x) = χC
(
χC

)T
is positive semidefinite and

Ru
s = 1

|�u
s |

∑

(π1,π2)∈�u
s

χ(π1,π2)(C)
(
χ(π1,π2)(C)

)T
.

Weobserve that eachχ(π1,π2)(C)
(
χ(π1,π2)(C)

)T
is similar to MS(x) = χC

(
χC

)T
by changing

the order of the basis. Thus, Ru
s is semidefinite. ��

4 Semidefinite program

In this section, we provide an SDP that gives an upper bound on the size of an (n, d) code
C ⊂ P . We include the known linear constraints in the literature, which are critical in the
SDP.We observe that an SDPwith semidefinite constraints based on quadruple distances [16]
does not improve the upper bounds of A(18, 4) and A(19, 4). In fact, the bounds obtained
with only Schrijver’s semidefinite constraints are even worse than the bounds with linear
constraints [5, 11] in some cases. For instance, A(18, 4) ≤ 6552 can be obtained by certain
linear constraints, while the SDP gives us an upper bound of 6553.
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4.1 Linear constraints

The distance distribution A j of C in (1) can be represented in terms of xt,t ′
i,i ′, j, j ′ as

A j =
∑

i+i ′= j

(
n1

i

)(
n2

i ′

)

x0,0i,0,i ′,0.

Furthermore, the propagation rule A(n − 1, 2e − 1) = A(n, 2e) [27] implies that we need to
consider only even distance j .

Lemma 13 [5, Lemma 7]
n∑

i=0

(
n − i

k

)

Ai ≤
(

n

k

)

A(n − k, d). (18)

Lemma 14 [25, Theorem 9]

An− d
2

+
⌊
2n

d

⌋ ∑

i<	 d
2 


An−i ≤
⌊
2n

d

⌋

. (19)

Our SDP also benefits from bounds on A(n, d, w), the maximum size of a length-n code
with minimum distance d and constant weight w.

Lemma 15 [5, Lemma 5] Let P = A(n − 1, d, 1
2d + 1), Q = A(n − 1

2d, d, 1
2d + 1),

R = A(n − 1
2d + 2, d, 1

2d + 2), then
(
1

2
d + 2

)

An− 1
2 d−2 + 1

2
d(P − Q)An− 1

2 d

+
(

n P −
(
1

2
d + 2

)

R

)

An− 1
2 d+2 + n P

n∑

i=n− 1
2 d+3

Ai ≤ n P. (20)

Lemma 16 [25, Theorem 10] For i = 1, . . . , d
2 − 1,

An− d
2 −i +

(

A(n, d,
d

2
+ i) − A(n − d

2
+ i, d,

d

2
+ i)

)

An− d
2 +i

+ A(n, d,
d

2
+ i)

∑

j>i

An− d
2 + j ≤ A(n, d,

d

2
+ i). (21)

Lemma 17 [32, (25)] For i = 0, . . . , n,

Ai ≤ A(n, d, i). (22)

We also have additional linear constraints from doubly constant-weight codes. Let
T (w1, t1, w2, t2, d) be the maximum possible size of a doubly constant-weight code, which
is a (t1 + t2, d, w1 +w2) constant-weight code such that every codeword has exactly w1 and
w2 ones on the first t1 and next t2 coordinates, respectively.

Lemma 18 [19, Theorem 3] For i, j, t ∈ {0, . . . , n}, we have

xt
i, j ≤ T (t, i, j − t, n − i, d)

(i
t

)(n−i
j−t

) x0i,0. (23)
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4.2 Semidefinite program for binary codes

Collecting all the mentioned linear and semidefinite constraints, we have the following SDP

on A(n, d) with variables xt,t ′
i, j,i ′, j ′ ∈ C:

maximize
n∑

a=0

∑

i+i ′=a

(
n1

i

)(
n2

i ′

)

x0,0i,0,i ′,0.

subject to positive semidefiniteness of (2), (3), (12), (13)

(4), (9), (10), (14)

(18), (19), (20), (21), (22), (23). (24)

As mentioned in the previous section, the generalized Delsarte’s inequalities (15) are
implicitly included in the SDP.

4.3 The correctness of computer computational results

Since numerical methods will be used to approximate the optimal solution to an SDP, when
we have a large number of variables, the accuracy of computer simulations may not be
sufficient. In [14], Gijswijt used the weak duality of the optimization program to verify the
SDP bounds. We describe his method here.

Consider an SDP of the following form:

maximize
m∑

i=1

xi ci

subject to
m∑

i=1

xi Fi + F0 is positive semidefinite

with variables x1, . . . , xm ∈ R, constants c1, . . . , cm ∈ R and symmetric matrices
F0, . . . , Fm ∈ R

n×n . Its dual problem is as follows:

minimize tr(F0Y )

subject to tr(Fi Y ) + ci = 0 for i = 1, . . . , m

Y is positive semidefinite.

Every feasible Y in the dual problem gives an upper bound of the primal problem.
In a numerical computation, a dual solution Y may not exactly satisfy the constraints, but

tr (Fi Y ) + ci = εi

for some small numbers ε1, . . . , εm due to the computer accuracy. Similarly, a primal
solution may not be reliable. However, we can estimate the computation error as fol-
lows. Let x


1, . . . , x

m be an optimal solution for the primal problem with objective value

P = ∑m
i=1 x


i ci . Let X = ∑m
i=1 x


i Fi + F0, which is positive semidefinite since x

i are

feasible. Then

tr (F0Y ) = tr

((

−
m∑

i=1

x

i Fi + X

)

Y

)
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≥ tr

(

−
m∑

i=1

x

i Fi Y

)

= −
m∑

i=1

x

i tr (Fi Y )

= −
m∑

i=1

x

i (−ci + εi )

= P −
m∑

i=1

x

i εi .

In our SDP (24), the variables xt,t ′
i, j,i ′, j ′ are negative and no larger than one by (14). For

our purpose, we can have an upper bound on the optimal value P that

P ≤ tr (F0Y ) +
m∑

i=1

x∗
i εi ≤ tr (F0Y ) +

m∑

i=1

max{0, εi }.

Therefore, we may use the dual optimal value and error terms to estimate an upper bound in
our computational results.

4.4 Computational results

We use the CVX toolbox [13], [12] in MATLAB with the MOSEK solver to run our SDP.
Our main results are as follows. In our SDP, we have tested all possible values of splits
n1 and n2. The computational results give us two improvements A(18, 4) ≤ 6551 and
A(19, 4) ≤ 13087. However, using Gijswijt’s method in the previous subsection, we are
only able to ensure one of them is improved.

Theorem 19 A(18, 4) ≤ 6551.

Proof Using n1 = 2, we obtain A(18, 4) ≤ 6551.93 with an error term less than 10−16. Thus
A(18, 4) ≤ 6551. ��

Remark 20 A(18, 4) ≤ 6551 can be obtained by the split SDP with n1 = 2 and only the
constraints (12), (13), (18) and (20). Then, we have A(18, 4) ≤ 6551.98 with an error term
less than 10−16. All the above mentioned constraints are necessary in this case.

5 Generalization

In this section, we consider anm-split distance distribution defined on a partition of {1, . . . , n}
with arbitrary m subsets, say T1, . . . , Tm , each of size |Tp| = n p for p ∈ {1, . . . , m}. Our
method can be generalized in this case to introduce more semidefinite constraints. Proofs to
these generalizations are similar to the 2-split case and will be omitted. Finally, we discuss
the underlying association scheme structure.
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5.1 Semidefinite constraints fromm-split Terwilliger algebras

Consider a group G = ∏m
p=1 G p , where G p is the isometry group on the power set of Tp .

Let σ1, . . . , σq be the orbits of G acting on P for some q . Then we define |P|× |P|matrices,
indexed by P ,

(
Mσk

)
X ,Y =

{
1, if X , Y ∈ σk,

0, otherwise

for all k. Observe that (X , Y ) and (U , V ) belong to the same orbit if and only if |X ∩
Tk | = |U ∩ Tk |, |Y ∩ Tk | = |V ∩ Tk | and |X�Y ∩ Tk | = |U�V ∩ Tk | for each k. Let
i = (i1, . . . , im), j = ( j1, . . . , jm), and t = (t1, . . . , tm) for ik, jk, tk ∈ {0, . . . , nk} with
ik + jk − 2tk ∈ {0, . . . , nk}, for all k ∈ {1, . . . , m}. Then the orbits of G can be indexed by
(i, j , t) and we may rewrite Mσk as

(M t
i, j )X ,Y =

{
1, if |X ∩ Tk | = ik, |Y ∩ Tk | = jk, |X ∩ Y ∩ Tk | = tk for all k;
0, otherwise.

For n = (n1, . . . , nm), we denote the algebra generated by {M t
i, j } over C, defined as above,

by An, which is called an m-split Terwilliger algebra of the Hamming scheme.

Lemma 21 An is isomorphic to
⊗m

i=1 Ani .

Corollary 22 There is an isomorphism from An to

⌊ n1
2

⌋

⊕

k1=0

· · ·
	 nm

2 
⊕

km=0

C
Nk×Nk ,

with Nk = ∏m
a=1(na − 2ka + 1), that maps A = ∑

i, j ,t x t
i, j M

t
i, j to

⌊ n1
2

⌋

⊕

k1=0

· · ·
	 nm

2 
⊕

km=0

Bk,

where

Bk =
(
∑

t

m∏

a=1

(
na − 2ka

ia − ka

)− 1
2
(

na − 2ka

ja − ka

)− 1
2

β
na ,ta
ia , ja ,ka

x t
i, j

)(n−k,n−k)

(i, j)=(k,k)

Next we derive additional semidefinite constraints for an (n, d) code C from the m-split
Terwilliger algebra. Define

x t
i, j = 1

|C |∏m
k=1

( nk
ik−tk , jk−tk ,tk

)λt
i, j , (25)

where

λt
i, j = |{(X , Y , Z) ∈ C3 : |(X�Y ) ∩ Tk | = ik, |(X�Z) ∩ Tk | = jk,

|((X�Y ) ∩ (X�Z)) ∩ Tk | = tk, for k = 1, . . . , m}|. (26)
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Now, the size of the code C is

|C | =
n∑

a=0

∑

i ·1=a

m∏

k=1

(
nk

ik

)

x0i,0,

where 1 denotes the all-one vector and 0 denotes the zero vector. Then the group G acts on
C as follows:

(g1, . . . , gm) · (c) =
m⋃

k=1

gk(c ∩ Tk),

for gi ∈ Gi , i = 1, . . . , m and c ∈ C . We define the sets

�s = {g ∈ G | ∅ ∈ g(C)},
�′

s = {g ∈ G | ∅ /∈ g(C)},
and consider the semidefinite matrices

Rs = 1

|�s|
∑

g∈�s

χ g(C)
(
χ g(C)

)T
,

R′
s = 1

|�′
s|

∑

g∈�′
s

χ g(C)
(
χ g(C)

)T
,

which are elements of An. In fact, we have the following proposition.

Proposition 23

Rs =
∑

i, j ,t

x t
i, j M

t
i, j ,

R′
s = |C |

2n − |C |
∑

i, j ,t

(
x0i+ j−2t,0 − x t

i, j

)
M t

i, j .

From Proposition 23, we can also obtain the m-split generalized Delsarte’s inequalities
[33]. Consider the generalized distance distribution {Ai } of C , where

Ai = 1

|C | |{(a, b) ∈ C × C | |a�b ∩ Tk | = ik for k = 1, . . . , m}|.

Corollary 24 If Rs and R′
s are positive semidefinite, then

∑

i

Ai

m∏

k=1

K nk
pk

(ik) ≥ 0, (27)

for p = (p1, . . . , pm) with 0 ≤ pk ≤ nk for all k.

It can be showed that the generalized Schrijver’s SDP constraints with k = m + 2 induce
our positive semidefinite constraint on Rs .

Proposition 25 The positive semidefinite constraints in the generalized Schrijver’s SDP with
k = m + 2 implies the positive semidefiniteness of Rs .
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By the block diagonal form for An, we have additional semidefinite constraints. For
k = (k1, . . . , km) with ka ∈ {0, . . . , 	 na

2 
} and a ∈ {1, . . . , m}, the matrices

(
∑

t

m∏

a=1

(
na − 2ka

ia − ka

)− 1
2
(

na − 2ka

ja − ka

)− 1
2

β
na ,ta
ia , ja ,ka

x t
i, j

)(n−k,n−k)

(i, j)=(k,k)

, (28)

(
∑

t

m∏

a=1

(
na − 2ka

ia − ka

)− 1
2
(

na − 2ka

ja − ka

)− 1
2

β
na ,ta
ia , ja ,ka

(x0i+k−2t,0 − x t
i, j )

)(n−k,n−k)

(i, j)=(k,k)

(29)

are semidefinite.

Proposition 26 Let C be a code with length n and minimum distance at least d. Then we
have the following linear constraints on x t

i, j corresponding to C: for proper i, j , t ,

(i) x00,0 = 1
(ii) 0 ≤ x t

i, j ≤ x0i,0
(iii) x0i,0 + x00, j ≤ 1 + x t

i, j
(iv) x t

i, j = x c
a,b if (i, j , i + j − 2t)

is a permutation of (a, b, a + b − 2c),
(v) x t

i, j = 0 if {i, j , i + j − 2t} ∩ {1, . . . , d − 1} = ∅.

(30)

To sum up, we have an SDP for A(n, d) with variables x t
i, j ∈ C:

maximize
n∑

a=0

∑

i ·1=a

m∏

k=1

(
nk

ik

)

x0i,0.

subject to positive semidefiniteness of (28) and (29)(30)

This SDP is called an m-split SDP, which corresponds to an m-split Terwilliger algebra An.

5.2 Underlying structure

Herein we describe a special structure for an association scheme, which is inspired by the
split method used in this paper.

Definition 27 (m-split property) Let S = (X , {Ri }k
i=0) be an association scheme. We

say that S is m-split for some 1 ≤ m ≤ |X | if there exist m association schemes
S1 = (X1, {R(1)

i }k1
i=0), . . . , Sm = (Xm, {R(m)

i }km
i=0) and a collection of maps { fi } such that

fi : X −→ Xi is surjective for each i and for (x, y) ∈ X × X , (x, y) ∈ R j if and only if
∑m

i=1 di = j , where ( fi (x), fi (y)) ∈ R(i)
di

for each i .

Clearly, we have the following lemma.

Lemma 28 Every association scheme is 1-split.

For an m-split association scheme S, we can define an m-split Bose–Mesner algebra by⊗m
i=1 B(Si ) and an m-split Terwilliger algebra by

⊗m
i=1 T (Si ), where B(Si ) is the Bose–

Mesner algebra of Si and T (Si ) is the Terwilliger algebra of Si .
In our case of binary codes, S = H(n, 2) is the Hamming scheme of length n over

F2 and each Si is H(ni , 2). Clearly, S is m-split for 1 ≤ m ≤ n. We may observe that
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m-split Bose–Mesner algebras induce the m-split generalized Delsarte’s inequalities and m-
split Terwilliger algebras induce m-split triple distances SDP. Moreover, there are ascending
chains for algebras.

B1 ≤ B2 ≤ · · · ≤ Bn, (31)

T1 ≤ T2 ≤ · · · ≤ Tn . (32)

In here, Bm is an m-split Bose–Mesner algebra of S, and Tm is an m-split Terwilliger algebra
of S for m = 1, . . . , n. The chain (31) allows us to combine an l-split generalized Delsarte’s
inequalities to an m-split generalized Delsarte’s inequalities for l ≤ m by merging some
partitions as the one. On the other hand, the chain (32) allows us to add constraints in an
l-split triple distances SDP to an m-split triple distances SDP for some l ≤ m without
increasing the number of variables.

6 Conclusion

In conclusion, we have derived generalized Schrijver semidefinite constraints by considering
the split of Terwilliger algebra. Our split semidefinite constraints are a natural generalization
of Schrijver’s constraints since they also implied the generalized Delsarte inequalities.

By implementing a 2-split SDP, we have improved the upper bounds for A(18, 4) and
A(19, 4). The MATLAB programs of the SDPs in this paper can be found at:

https://github.com/PinChiehTseng/Split_SDP_solution

We have confirmed that A(18, 4) ≤ 6551 by showing that an upper bound on the numerical
error is small enough. As for A(19, 4), we obtain A(19, 4) ≤ 13087.5 using n1 = 9. The
currently best known bound for A(19, 4) is 13104. As for the error estimate, we obtained
an upper bound on the numerical error as large as 215.7376. Since this estimate is over
pessimistic, it provides no information about out result. Since the solver normally returned
without any warning, we believed this figure is correct. More accurate solvers could be
considered.

Our split approach can be extended to other related problems. For example, one may
consider an arbitrary finite field or k-distance SDP for arbitrary k. Notice that the method
described in [16] with |S| = 2 has been applied to improve upper bounds for constant weight
codes. Moreover, the algebra considered in [30] is of the form

⊗
i Ani with

∑
i ni = n. The

constraint Rs for constant weight codes has been studied. We can have a similar application
by adding the constraint R′

s , which potentially opens a way to strengthen the upper bounds
for constant weight codes. As for the upper bounds on the size of a set with few distances or
intersecting families of subsets [6, 26], we may directly apply our method to those problems.
Moreover, as Schrijver’s SDP has been extended to the maximum size problem of a code in
the fold of n-cube by Hou et al. [18], we might have a similar extension. The idea of isometry
groups might be applied to spherical codes as well.

As an example of association schemes, our method corresponds to a special case of
the m-split property of the Hamming scheme. Thus, our method may be extended to other
association schemes, which share this m-split property. It is an interesting research direction.

Finally, it has been shown that certain polynomial symmetric properties can be exploited
to obtain additional matrix inequalities and hence improve the semidefinite programming
bounds for the kissing number problem [24]. It is unknown whether a similar ideas could be
applied to the case of binary codes to obtain better bounds for A(n, d).
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