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Abstract
In this paper, we introduce codes equippedwith pomset blockmetric. A Singleton type bound
for pomset block codes is obtained. Code achieving the Singleton bound, called a maximum
distance separable code (for short, MDS (P, π )-code) is also investigated. We extend the
concept of I -perfect codes and r -perfect codes to pomset block metric. The relation between
I -perfect codes and MDS (P, π)-codes is also considered. When all blocks have the same
dimension, we prove the duality theorem for codes and study the weight distribution of MDS
pomset block codes when the pomset is a chain.
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1 Introduction

The codes equippedwith ametric differ from the Hammingmetric has been studied for years.
Poset metric was introduced by Brualdi (see [2]) in 1995. The concept of poset metric was
motivated by Niederreiter’s generalization of a classical problem on coding theory (see [10]
and [11]). In [7], Hyun and Kim introduced the concept of I -perfect codes and described
the MDS poset codes in terms of I -perfect codes. They also studied the weight distribution
of an MDS poset code and proved the duality theorem. Feng et al. (see [4]) introduced the
block metric, by partitioning the set of coordinate positions of F

n
q into families of blocks.

Later, Alves et al. introduced poset block metric (see [1]) and studied NRT block metric
(see [12]). By extending their observations, Dass et al. studied poset block codes and defined
a maximum distance separable poset block code. Moreover, they extended the concept of
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I -balls to poset block metric and described r -perfect and MDS (P, π)-codes (see [3]). When
all the blocks have the same dimension, they showed that MDS (P, π)-codes are the same
as I -perfect codes for some ideals I .

Recently, Irrinki and Selvaraj (see [8]) introduced pomsetmetric and enhanced the concept
of order ideals. Construction of pomset codes are obtained and their metric properties like
minimum distance and covering radius are determined. In [9], Irrinki and Selvaraj studied
I -perfect codes under pomset metric by extending the concept of I -balls in poset metric.
Moreover, they established a Singleton type bound for codes with pomset metric and investi-
gated the connection between MDS codes and I -perfect codes. When the pomset is a chain,
they proved the duality theorem and determined the weight distribution of MDS pomset
codes.

A linear error-block code is a natural generalization of the classical error-correcting code
and has applications in experimental design, high-dimensional numerical integration and
cryptography. The construction of linear error-block codes with the largest rate, k/n, and
the minimum distance d is an important problem in coding theory. The support of x ∈ F

n
q

given by supp(x) = {i : xi �= 0} is a set. The poset weight wp(x) of x is defined as
wp(x) = | < supp(x) > | and dp(x, y) = wp(x − y) is a well defined metric on F

n
q . One

can get different metric on F
n
q by varying posets such as Rosenbloom–Tsfasman (RT)-metric

if P is a chain, Hamming metric if P is an antichain and so on. In 2008, Firer et al. ([1])
presented the family of metrics called poset-block metric that generalizes all the previous
ones. But the poset metric does not accodomate Lee metric for any particular poset. For an
element l ∈ Zm , theLeeweight of l is defined aswL(l) = min{l,m−l}whereas theHamming
weight of any l �= 0 is 1. Moreover, the Hamming weight of x = (x1, x2, . . . , xn) ∈ Z

n
m is

sum of the Hamming weights of the non-zero coordinates, so that it counts the number of
non-zero positions whereas Lee weight adds Lee weight of non-zero coordinates in x . Thus,
the support of x ∈ Z

n
m with respect to Lee weight is to be defined as suppL (x) = {k/i :

k = wL(xi ), k �= 0} which is a multiset. The pomset metric is a generalization to Lee metric
when the pomset is an antichain. In this paper, we combine the pomset and block structure to
obtain a further generalization called the pomset block metric. Pomset block codes reduces
to the pomset codes with π = [1]n and thus reduces to Lee metric with chain pomset. In
some sense, it is a generalization to poset-block metric. By researching pomset-block codes,
we give a much general method to handle Lee metric and error-block codes over Zm . This
paper aims to introduce pomset block codes and extend the concept of I -perfect codes to the
case of pomset block metric. A Singleton type bound for pomset block codes is established
and the relationship between MDS codes and I -perfect codes is investigated. We also prove
the duality result for I -perfect code when all the blocks have the same dimension. When
the pomset is a chain and all the blocks have the same dimension, we determine the weight
distribution of an MDS (P, π)-code.

2 Preliminaries

In this section, we introduce some basic notations and useful results of a pomset blockmetric.
A collection of elements which may contain duplicates is called a multiset (in short,

mset). Girish and John defined a multiset relation and explored some of basic properties
(see [5] and [6]). They also defined a partially ordered multiset as a multiset relation being
reflexive, antisymmetric and transitive, chains and antichains of a partially ordered multiset.
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Block codes in pomset metric 3265

Formally, if X is a set of elements, a mset M drawn from the set X is represented by a
function count CM : X → Z+ where Z+ represents the set of non-negative integers. For
each a ∈ X , CM (a) indicates the number of occurrences of the element a in M .

An element a ∈ X appearing p times in M is denoted by p/a ∈ M and thus CM (a) = p.
If we consider k/a ∈ M , the value of k satisfies k ≤ p. The mset drawn from the set
X = {a1, a2, . . . , an} is represented as M = {p1/a1, p2/a2, . . . , pn/an}. An mset is called
regular if all its objects occur with the same multiplicity and the common multiplicity is
called its height. The cardinality of an mset M drawn from X is |M | = ∑

a∈X CM (a). The
root set of M denoted by M∗ is defined as M∗ = {a ∈ X : CM (a) > 0}.

LetM1 andM2 be twomsets drawn from a set X .We callM1 a submset ofM2 (M1 ⊆ M2)
if CM1(a) ≤ CM2(a) for all a ∈ X . We call M1 a proper submset of M2 (M1 ⊂ M2) if
there exists at least one a ∈ M∗

2 such that CM1(a) < CM2(a). Two msets M1 and M2 are
equal (M1 = M2) if M1 ⊆ M2 and M2 ⊆ M1.

LetM ′ be a submset ofM . An elementa ∈ M ′∗ is said to have full countwith respect toM
ifCM ′(a) = CM (a).M ′ is said to have full count if for alla ∈ M ′∗, one hasCM ′(a) = CM (a);
otherwise, M ′ is said to be with partial count.

Let M1 and M2 be two msets drawn from a set X . Addition (sum) of M1 and M2

denoted by M = M1 ⊕ M2 is defined as CM (a) = CM1(a) + CM2(a) for all a ∈ X .
Subtraction (difference) of M2 from M1 denoted by M = M1 � M2 is defined as CM (a) =
max

{
CM1(a) − CM2(a), 0

}
for all a ∈ X . The union of M1 and M2 is an mset denoted by

M = M1 ∪ M2 such that for all a ∈ X , CM (a) = max{CM1(a),CM2(a)}.
Themset space [X ]l is the set of all msets drawn from X such that no element in an mset

occurs more than l times. If M1, M2 ∈ [X ]l , the mset sum would be modified as

CM1⊕M2(a) = min
{
l,CM1(a) + CM2(a)

}
for all a ∈ X .

Let M ∈ [X ]l be an mset, the complement Mc is an element of [X ]l such that CMc (a) =
l − CM (a) for all a ∈ X .

Let M1 and M2 be two msets drawn from X , the Cartesian product of M1 and M2 is
also an mset defined as

M1 × M2 = {pq/(p/a, q/b) : p/a ∈ M1, q/b ∈ M2}.
Denote byC1(a, b) the count of the first coordinate in the ordered pair (a, b) and byC2(a, b)
the count of the second coordinate in the ordered pair (a, b).

A submset R of M × M is said to be anmset relation on M if every member (p/a, q/b)
of R has count C1(a, b) ·C2(a, b). An mset relation R on an mset M is said to be reflexive if
m/a R m/a for allm/a ∈ M ; antisymmetric ifm/a R n/b and n/b R m/a implym = n and
a = b; transitive ifm/a R n/b and n/b R k/c implym/a R k/c. Anmset relation R is called
a partially ordered mset relation (or pomset relation) if it is reflexive, antisymmetric and
transitive. The pair (M, R) is known as a partially ordered multiset (pomset) denoted by
P.

Let P = (M, R) and m/a ∈ M . Then m/a is a maximal element of P if there exists
no n/b ∈ M (b �= a) such that m/a R n/b; m/a is a minimal element if there exists no
n/b ∈ M (b �= a) such that n/b R m/a. P is called a chain if every distinct pair of points
from M is comparable in P. P is called an antichain if n/b R m/a implies a = b.

A submset I of M is called an order ideal (or simply an ideal) of P if k/a ∈ I and
q/b R k/a (b �= a) imply q/b ∈ I . An ideal generated by an element k/a ∈ M is defined
as

〈k/a〉 = {k/a} ∪ {q/b ∈ M : q/b R k/a and b �= a}.
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An ideal generated by a submset S of M is defined by 〈S〉 = ⋃

k/a∈S
〈k/a〉. We use I(P)

(resp. Ir (P)) to denote the set of all ideals of P (resp. of cardinality r ). An ideal I is said to
be an ideal with full count if CI (a) = CM (a) for all a ∈ I ∗, otherwise, I is said to be an
ideal with partial count. We denote the set of all maximal elements in an ideal I by M(I ).

Example 2.1 Let us consider the case M = {2/1, 2/2, 2/3} and R be a V -shape poset i.e.,
1 < 2, 1 < 3 and 2, 3 are incomparable. Then the maximal elements of pomset P = (M, R)

are 2/2 and 2/3 and the minimal element is 2/1. The ideals of P with cardinality 1 is
I1 = {1/1}, with cardinality 2 is I2 = {2/1}, with cardinality 3 are I3 = {2/1, 1/2} and I4 =
{2/1, 1/3}, with cardinality 4 are I5 = {2/1, 2/2}, I6 = {2/1, 2/3} and I7 = {2/1, 1/2, 1/3},
with cardinality 5 are I8 = {2/1, 2/2, 1/3} and I9 = {2/1, 1/2, 2/3}, with cardinality 6 is
I10 = {2/1, 2/2, 2/3} respectively.
Proposition 2.1 ([8]) Let P = (M, R) be a pomset. Then

(1) for any I ∈ Ir (P) and 0 ≤ s ≤ r ≤ |M |, there exists J ∈ Is(P) such that J ⊆ I .
(2) for any I ∈ Ir (P) and 0 ≤ r ≤ s ≤ |M |, there exists J ∈ Is(P) such that I ⊆ J .

For a given pomset P = (M, R), we define the dual pomset P̃ = (M, R̃) as follows:

P and P̃ have the same underlying set M and p/a R q/b in P if and only if q/b R̃ p/a in P̃.

Proposition 2.2 ([9]) Let M ∈ [X ]l be a regular mset with height l. Let P be a pomset on
M and P̃ be its dual pomset. Then the order ideals of P̃ are precisely the complements of the
order ideals of P, that is, I (̃P) = {I c : I ∈ I(P)}.

Consider Zm = {0, 1, . . . ,m − 1}, the ring of integers modulo m for m ≥ 4. We consider
a pomset P defined on an mset M = {⌊m

2

⌋
/1,

⌊m
2

⌋
/2, . . . ,

⌊m
2

⌋
/s
} ∈ [X ]�m

2 � where
X = [s].

Let π : [s] → N be a map such that n =
s∑

i=1
π(i). The map π is said to be a labeling of

the pomset P, and the pair (P, π) is called a pomset block structure over [s]. Denote π(i)
by ki and take Vi as free Zm-module Z

ki
m for all 1 ≤ i ≤ s. Define V as

V = V1 ⊕ V2 ⊕ · · · ⊕ Vs

which is isomorphic to Z
n
m . Each u ∈ Z

n
m can be written as u = (u1, u2, . . . , us) where

ui ∈ Z
ki
m , 1 ≤ i ≤ s. The Lee block support of u ∈ Z

n
m is defined as

supp(L,π)(u) = {
si/i : si = w(L,π)(ui ), si �= 0

}
,

where

w(L,π)(ui ) = max
{
min

{
uit ,m − uit

} : 1 ≤ t ≤ π(i)
}
.

The (P, π)-weight of u ∈ Z
n
m is defined to be the cardinality of the ideal generated by

supp(L,π)(u), that is

w(P,π)(u) = ∣
∣〈supp(L,π)(u)〉∣∣ .

The pomset block distance between two vectors u, v ∈ Z
n
m is defined as

d(P,π)(u, v) = w(P,π)(u − v).

Now we prove that the above pomset block distance is a metric on Z
n
m .
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Theorem 1 Let P be a pomset on a regular mset M = {⌊m
2

⌋
/1,

⌊m
2

⌋
/2, . . . ,

⌊m
2

⌋
/s
}
, and

π : [s] → N such that n =
s∑

i=1
π(i) be a labeling of P. Then the pomset block distance

d(P,π)(., .) is a metric on Z
n
m.

Proof It is obvious that d(P,π)(u, v) ≥ 0 and d(P,π)(u, v) = 0 if and only if u = v. Let
u, v, w ∈ Z

n
m . Since supp(L,π)(u − v) = supp(L,π)(v − u), we have d(P,π)(v, u) =

d(P,π)(u, v). It remains to show that d(P,π)(u, v) ≤ d(P,π)(u, w) + d(P,π)(w, v). Since
d(P,π)(u, v) = w(P,π)(u − v) = w(P,π)(u − w + w − v), it suffices to show that the (P, π)-
weight satisfies the inequality w(P,π)(x + y) ≤ w(P,π)(x)+w(P,π)(y) for all x, y ∈ Z

n
m . We

only need to prove that w(L,π)(xi + yi ) ≤ w(L,π)(xi ) + w(L,π)(yi ) for all i ∈ [s]. Note that

w(L,π)(xi + yi ) = max
{
min{xit + yit ,m − xit − yit } : 1 ≤ t ≤ π(i)

}
.

Suppose that w(L,π)(xi + yi ) = min{xi1 + yi1 ,m − xi1 − yi1}.

• Case 1Assume xi1 , yi1 ≤ ⌊m
2

⌋
and xi1 +yi1 ≤ ⌊m

2

⌋
.We havew(L,π)(xi +yi ) = xi1 +yi1 .

On the other hand, one hasmin{xi1 ,m−xi1} = xi1 ≤ w(L,π)(xi ) andmin{yi1 ,m−yi1} =
yi1 ≤ w(L,π)(yi ). Therefore, w(L,π)(xi + yi ) = xi1 + yi1 ≤ w(L,π)(xi ) + w(L,π)(yi ).

• Case 2 Assume xi1 , yi1 ≤ ⌊m
2

⌋
and xi1 + yi1 >

⌊m
2

⌋
. Then w(L,π)(xi + yi ) = m − xi1 −

yi1 ≤ xi1 + yi1 ≤ w(L,π)(xi ) + w(L,π)(yi ).
• Case 3 Assume xi1 , yi1 >

⌊m
2

⌋
and xi1 + yi1 ≤ ⌊m

2

⌋
. We have w(L,π)(xi + yi ) =

xi1+yi1−m ≤ ⌊m
2

⌋
. On the other hand, one hasmin{xi1 ,m−xi1} = m−xi1 ≤ w(L,π)(xi )

and min{yi1 ,m − yi1} = m − yi1 ≤ w(L,π)(yi ). So, w(L,π)(xi ) + w(L,π)(yi ) ≥ m −
xi1 + m − yi1 ≥ ⌊m

2

⌋
and hence w(L,π)(xi + yi ) ≤ ⌊m

2

⌋ = w(L,π)(xi ) + w(L,π)(yi ).
• Case 4 Assume xi1 , yi1 >

⌊m
2

⌋
and xi1 + yi1 >

⌊m
2

⌋
. Then w(L,π)(xi + yi ) = 2m −

xi1 − yi1 ≤ w(L,π)(xi ) + w(L,π)(yi ).
• Case 5Assume xi1 ≤ ⌊m

2

⌋
, yi1 >

⌊m
2

⌋
and xi1 + yi1 >

⌊m
2

⌋
. We havew(L,π)(xi + yi ) =

m − xi1 − yi1 . On the other hand, one has min{xi1 ,m − xi1} = xi1 ≤ w(L,π)(xi ) and
min{yi1 ,m−yi1} = m−yi1 ≤ w(L,π)(yi ). So,w(L,π)(xi )+w(L,π)(yi ) ≥ xi1 +m−yi1 ≥
m − xi1 − yi1 = w(L,π)(xi + yi ).

• Case 6 Assume xi1 ≤ ⌊m
2

⌋
, yi1 >

⌊m
2

⌋
and xi1 + yi1 ≤ ⌊m

2

⌋
. Then w(L,π)(xi + yi ) =

xi1 + yi1 − m ≤ xi1 + m − yi1 ≤ w(L,π)(xi ) + w(L,π)(yi ).

This completes our proof. ��

The metric d(P,π)(., .) on Z
n
m is called a pomset block metric. The pair (Zn

m, d(P,π)) is
said to be a pomset block space. A subset C of (Zn

m, d(P,π)) with cardinality K is called an
(n, K , d) (P, π)-code, where Z

n
m is equipped with the pomset block metric d(P,π)(., .) and

d = d(P,π)(C) = min
{
w(P,π)(c − c′) : c, c′ ∈ C}

is the (P, π)-minimum distance of C. If C is a submodule of Z
n
m with cardinality mk , we call

C a linear (n,mk, d) (P, π)-code. The dual of an (n, K , d) (P, π)-code C is defined as

C⊥ = {
v ∈ Z

n
m : c · v = c1v1 + · · · + cnvn = 0 for all c ∈ C} .
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3 Pomset balls andMDS (P,�)-codes

3.1 r-balls

Let P be a pomset on M = {⌊m
2

⌋
/1,

⌊m
2

⌋
/2, . . . ,

⌊m
2

⌋
/s
}
and π be a labeling on P. For

u ∈ Z
n
m and a non-negative integer r , the (P, π)-ball with center u and radius r is the set

Br (u) = {
v ∈ Z

n
m : d(P,π)(u, v) ≤ r

}
.

The (P, π)-sphere with center u ∈ Z
n
m and radius r denoted by Sr (u) is defined as the set of

all those vectors of Z
n
m whose pomset block distance is equal to r , that is,

Sr (u) = {
v ∈ Z

n
m : d(P,π)(u, v) = r

}
.

For simplify, Br (u) and Sr (u) are also called r -ball and r -sphere centered at u respectively.

Definition 1 A (P, π)-code C is said to be an r -error correcting (P, π)-code if the (P, π)-balls
centered at the codewords of C are pairwise disjoint.

Definition 2 A (P, π)-code C is said to be an r -perfect (P, π)-code if the (P, π)-balls of
radius r centered at the codewords of C are pairwise disjoint and their union covers the entire
space Z

n
m .

We now consider the cardinality of an r -ball Br (u) centered at u ∈ Z
n
m . It follows from the

definition that |Br (u)| = 1 +
r∑

i=1
|Si (u)|. Let I be an ideal in the pomset P with cardinality

i having exactly j maximal elements M(I ) = {
CI (a1)/a1,CI (a2)/a2, . . . ,CI (a j )/a j

}
.

Then, the set

AI = {v = (v1, v2, . . . , vs) ∈ Z
n
m : vt = 0̄ if t /∈ I ∗;

vti = ±a,−a ≤ vtl ≤ a, 1 ≤ i �= l ≤ kt if t ∈ M(I )∗, a = CI (t);
vti ∈ Zm, 1 ≤ i ≤ kt , if t ∈ I ∗ \ M(I )∗}

gives all vectors v in Z
n
m such that 〈supp(L,π)(v)〉 = I . By the definition of AI , we have

|AI | = m

∑

t∈I∗\M(I )∗
kt j∏

l=1
Nal where Nal is defined as follows:

• If m is odd, Nal = (2CI (al) + 1)kal − (2CI (al) − 1)kal ;

• If m is even, Nal =
⎧
⎨

⎩

(2CI (al) + 1)kal − (2CI (al) − 1)kal

2
, if CI (al) = ⌊m

2

⌋ ;
(2CI (al) + 1)kal − (2CI (al) − 1)kal , otherwise.

Note that for two distinct ideals I1 and I2, AI1 ∩ AI2 = ∅. Denote by Ii
j the collection of all

ideals in P with cardinality i having exactly j maximal elements, then
min{i,n}⋃

j=1
Ii
j = Ii (P)

and
min{i,n}⋃

j=1

⋃

I∈Ii
j

AI gives all those vectors of (P, π)-weight i . Hence

|Br (u)| = 1 +
r∑

i=1

min{i,n}∑

j=1

∑

I∈Ii
j �=∅

|AI | = 1 +
r∑

i=1

min{i,n}∑

j=1

∑

I∈Ii
j �=∅

m

∑

t∈I∗\M(I )∗
kt j∏

l=1

Nal .
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3.2 I-balls

Let (P, π) be a pomset block structure on Z
n
m and let I be a submset of M . For u ∈ Z

n
m , the

I -ball centered at u is defined as

BI (u) = {
v ∈ Z

n
m : supp(L,π)(u − v) ⊆ I

}
.

For I ∈ I(P), the I -ball centered at u is equal to the set

BI (u) = {
v ∈ Z

n
m : 〈supp(L,π)(u − v)〉 ⊆ I

}
.

Similarly, the I -sphere centered at u is defined as

SI (u) = {
v ∈ Z

n
m : 〈supp(L,π)(u − v)〉 = I

}
.

We denote the I -ball (resp. I -sphere) centered at 0̄ by BI (resp. SI ). Whenever required, we
shall use the notation BI ,(P,π)(u) (resp. SI ,(P,π)(u)) instead of BI (u) (resp. SI (u)).

Definition 3 Let (P, π) be a pomset block structure on Z
n
m and I be an ideal of P. A (P, π)-

code C ⊆ Z
n
m is said to be I -perfect if the I -balls centered at the codewords of C are pairwise

disjoint and their union is Z
n
m , that is,

Z
n
m =

⊔

u∈C
BI (u).

The following proposition is a generalization of [9, Proposition 3] where the metric was
considered as pomset metric. The proof is on similar lines and therefore we omit it.

Proposition 3.1 Let (P, π) be a pomset block structure on Z
n
m. If I is an ideal with full count

in P, then

(1) BI is a submodule of Z
n
m of dimension

∑

i∈I ∗
ki .

(2) For u ∈ Z
n
m, BI (u) is a coset of BI containing u, that is, BI (u) = u + BI .

(3) For u, v ∈ Z
n
m, BI (u) and BI (v) are either disjoint or identical. Moreover

BI (u) = BI (v) if and only if supp(L,π)(u − v) ⊆ I .

(4) BIc ,̃P = B⊥
I ,P where P̃ is the dual pomset of P.

Remark 3.1 (a) The (P, π)-ball centered at u ∈ Z
n
m with radius r is the union of I -balls

centered at u with I ∈ Ir (P), that is,

Br (u) =
⋃

I∈Ir (P)

BI (u).

(b) Let u, v be two vectors in Z
n
m . If u and v belong to the same I -ball for some I ∈ Ir (P)

with full count, then d(P,π)(u, v) ≤ r .
(c) Let u, v be two vectors in Z

n
m and let I be an ideal of P with partial count. If BI (u) ∩

BI (v) = ∅, the inequality d(P,π)(u, v) > |I | is not necessarily true.

The following result can be easily obtained from the definition of I -perfect codes which
is similar to the case of poset block metric (see [3], Lemma 4.1).

Lemma 3.1 Let (P, π) be a pomset block structure on Z
n
m. Let C ⊆ Z

n
m be a linear (n,mk, d)

(P, π)-code and I be an ideal of P with full count. Then the following statements are
equivalent:
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(1) C is an I -perfect code;
(2)

∑

i∈I ∗
ki = n − k and |C ∩ BI | = 1;

(3) |C ∩ BI (u)| = 1 for all u ∈ Z
n
m.

Writing u ∈ Z
n
m as (u1, u2) where u1 ∈ ⊕

j /∈I ∗ Vj and u2 ∈ ⊕
i∈I ∗ Vi , we get the following.

Proposition 3.2 Let (P, π) be a pomset block structure on Z
n
m and I be an ideal of P with

full count. Then, an (n,mk, d) (P, π)-code C is I -perfect if and only if there exists a function

f : ⊕
j /∈I ∗ Vj → ⊕

i∈I ∗ Vi

such that

C =
{

(v, f (v)) : v ∈ ⊕
j /∈I ∗ Vj

}

.

Proof Let C be an I -perfect (n,mk, d)-code. Then for any v ∈ ⊕
j /∈I ∗ Vj there exists c ∈ C such

that (v, 0̄) ∈ BI (c) which implies that c − (v, 0̄) = (0̄, u) and hence c = (v, u). Suppose
that there exists another element c′ = (v,w) ∈ C. Then c − c′ = (0̄, u − w) ∈ BI which
implies that c ∈ BI (c′), a contradiction to the fact that C is I -perfect. Thus, the function
f : ⊕

j /∈I ∗ Vj → ⊕
i∈I ∗ Vi which sends v ∈ ⊕

j /∈I ∗ Vj to the unique u ∈ ⊕
i∈I ∗ Vi such that c = (v, u)

is well-defined. Moreover,

∣
∣
∣
∣ ⊕
j /∈I ∗ Vj

∣
∣
∣
∣ = mk = |C|. We have C =

{

(v, f (v)) : v ∈ ⊕
j /∈I ∗ Vj

}

.

On the other hand, if there exists such a function, then C ∩ BI (v, u) = {(v, f (v)} for any
(u, v) ∈ Z

n
m . We obtain that C is I -perfect by Lemma 3.1. ��

Theorem 2 Let (P, π) be a pomset block structure on Z
n
m and I be an ideal with full count in

P. A linear (n,mk , d) (P, π)-code C is I -perfect if and only if C⊥ is an I c-perfect (̃P, π)-code
where P̃ is the dual pomset of P.

Proof Let C be an I -perfect (P, π)-code. By Lemma 3.1, I c is an ideal in P̃ with full count
and satisfies that

∑

i∈I c∗
ki = k. Consider the I c-ball centered at 0̄ ∈ C⊥. If there exists another

element 0̄ �= c ∈ C⊥ in BIc,(̃P,π), then c ∈ B⊥
I ,(P,π)

by Proposition 3.1. Let v ∈ Z
n
m . Since

C is an I -perfect code, there exists a unique c′ ∈ C such that v ∈ BI ,(P,π)(c′) which implies
that v = c′ + u for some u ∈ BI ,(P,π). So, c · v = c · c′ + c · u = 0. Since v is arbitrary, we

have c = 0̄. Therefore,
∣
∣
∣C⊥ ∩ BIc,(̃P,π)

∣
∣
∣ = 1 and hence C⊥ is I c-perfect by Lemma 3.1. ��

Theorem 3 Let C be an r-error correcting (P, π)-code where r ∈ N is a multiple of
⌊m
2

⌋
.

Then for any c, c′ ∈ C, c �= c′ and I , I ′ ∈ Ir (P) with full count, one has c − c′ /∈ BI⊕I ′ .

Proof Assume that there exist c, c′ ∈ C, c �= c′ and I , I ′ ∈ Ir (P) with full count satisfies
c− c′ ∈ BI⊕I ′ . Denote by pBI∗ the projection of Z

n
m on blocks corresponding to I ∗ and take

u = c − pBI∗ (c − c′) ∈ Z
n
m . Then

d(P,π)(u, c) = w(P,π)(pBI∗ (c − c′)) ≤
⌊m

2

⌋
· |I ∗| = |I | = r .

Analogously, we have

d(P,π)(u, c′) = w(P,π)

(
(c − c′) − pBI∗ (c − c′)

) ≤ w(P,π)

(
pBI ′∗ (c − c′)

)
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≤ |I ′∗| ·
⌊m

2

⌋
= |I ′| = r .

This yields that u ∈ Br (c) ∩ Br (c′), a contradiction to the fact that C is r -error correcting. ��
Theorem 4 Let C be a (P, π)-code. If for any c, c′ ∈ C, c �= c′ and I , I ′ ∈ Ir (P), one has
c − c′ /∈ BI⊕I ′ . Then C is r-error correcting.

Proof Assume that C is not an r -error correcting code. Then there exist c, c′ ∈ C, c �= c′ and
u ∈ Z

n
m such that u ∈ Br (c) ∩ Br (c′). As d(P,π)(u, c) ≤ r and d(P,π)(u, c′) ≤ r , we have

|〈supp(L,π)(u − c)〉| ≤ r and |〈supp(L,π)(u − c′)〉| ≤ r . Therefore, there exist I , I ′ ∈ I r (P)

such that 〈supp(L,π)(u − c)〉 ⊆ I and 〈supp(L,π)(u − c′)〉 ⊆ I ′ by Proposition 2.1. Hence

supp(L,π)(c − c′) = supp(L,π)(c − u + u − c′)
⊆ supp(L,π)(c − u) ⊕ supp(L,π)(u − c′) ⊆ I ⊕ I ′.

This implies that c − c′ ∈ BI⊕I ′ , a contradiction. ��
The following can be easily obtained from the definitions of r -ball and I -ball.

Proposition 3.3 Let P be a pomset on M = {⌊m
2

⌋
/1,

⌊m
2

⌋
/2, . . . ,

⌊m
2

⌋
/s
}
and (P, π) a

pomset block structure on Z
n
m such that Ir (P) = {I }. Let C be a (P, π)-code. Then C is an

r-perfect (P, π)-code if and only if C is an I -perfect (P, π)-code.

In the remainder of this section, we consider an ideal of P with partial count. Before this,
we give some basic facts on the partition of Z

t
m when t is a positive integer.

Let ε ∈ [�m
2 � − 1

]
. Let E = [−ε, ε] and E ′ = {ε + 1, ε + 2, . . . ,m − ε − 1}. Set

S = {
v = (v1, . . . , vt ) ∈ Z

t
m : vi ∈ E for 1 ≤ i ≤ t

}
.

Let u = (u1, . . . , ut ) ∈ S \ {0̄}. Take w = (w1, . . . , wt ) ∈ S satisfying

wi =
⎧
⎨

⎩

0, if ui = 0,
ε − (ui − 1), if 1 ≤ ui ≤ ε,

−ε − (ui + 1), if − ε ≤ ui ≤ −1.

Then there exists at least one j ∈ [t] such that u j + w j ∈ E ′. Thus u + w /∈ S. On the other
hand, we have u + w ∈ u + S and u ∈ u + S. Hence we have the following result.

Proposition 3.4 Let u ∈ S \ {0̄}. Then S ∩ (u + S) �= ∅ and S �= u + S.

Suppose that m is divisible by 2ε + 1. Let

T =
{

v = (v1, . . . , vt ) ∈ Z
t
m : vi = ti (2ε + 1), 0 ≤ ti ≤ m

2ε + 1
− 1 for 1 ≤ i ≤ t

}

.

It is known that i(2ε + 1) + β /∈ E for all β ∈ E whenever 1 ≤ i ≤ m
2ε+1 − 1. It is also

known that i(2ε + 1) + E , j(2ε + 1) + E are disjoint for 0 ≤ i �= j ≤ m
2ε+1 − 1 (see [9]).

Lemma 3.2 Suppose that m is divisible by 2ε + 1. Then we have the followings:

(1) For any v ∈ S and 0̄ �= u ∈ T , we have v + u /∈ S.
(2) Let u �= w ∈ T , we have u + S and w + S are disjoint. Furthermore,

⊔

u∈T
(u + S) = Z

t
m .
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Proof (1) Let v = (v1, . . . , vt ) ∈ S and 0̄ �= u = (u1, . . . , ut ) ∈ T . Then there exists
i ∈ [t] such that ui = ti (2ε + 1) �= 0. Note that 1 ≤ ti ≤ m

2ε+1 − 1. It follows from
vi + ui = vi + ti (2ε + 1) /∈ E that u + v /∈ S.

(2) Let u = (u1, . . . , ut ), w = (w1, . . . , wt ) ∈ T . Suppose that (u+S)∩(w+S) �= ∅. Then
there exist v = (v1, . . . , vt ) ∈ S and v′ = (v′

1, . . . , v
′
t ) ∈ S such that u + v = w + v′.

Since u �= w, there exists i ∈ [t] such that ui �= wi . Thus ui + vi = wi + v′
i , which

contradicts to the fact that ui + E and wi + E are disjoint. The result then follows.

Corollary 3.1 If m is not divisible by 2ε + 1, then the translates of S can not form a partition
of Z

t
m .

We now let I ∈ I(P) be an ideal with partial count. Suppose that Ip = {l1, l2, . . . , lλ} ⊆
I ∗ is the collection of the elements in I ∗ which has partial count in I and suppose that
I f = {r1, r2, . . . , rδ} is the collection of the elements in I ∗ which has full count in I .
Then λ + δ = |I ∗|. Since the pomset block metric is translation invariant, that is, for all
u, v, w ∈ Z

n
m , d(P,π)(u, v) = d(P,π)(u+w, v +w), we have that BI (u) = u+ BI . Note that

BI = {
v = (v1, v2, . . . , vs) ∈ Z

n
m : vt = 0̄ if t /∈ I ∗;

−a ≤ vt j ≤ a, a = CI (t), 1 ≤ j ≤ kt if t ∈ Ip;
vt j ∈ Zm, 1 ≤ j ≤ kt , if t ∈ I f

}
(3.1)

and hence

|BI | = (1 + 2CI (l1))
kl1 (1 + 2CI (l2))

kl2 · · · (1 + 2CI (lλ))
klλ m

∑

j∈I f
k j

.

Remark 3.2 It follows from (3.1) that BI is not a subgroup of Z
n
m .

With the notations given above, we have the following result which can be easily obtained
by counting argument.

Theorem 5 If m is divisible by 2CI (li ) + 1 for all li ∈ Ip then the I -balls centered at the
elements in

D = {
v = (v1, v2, . . . , vs) ∈ Z

n
m : vt = 0̄ if t ∈ I f ;

vti = j(2CI (t) + 1), 0 ≤ j ≤ m

2CI (t) + 1
− 1, 1 ≤ i ≤ kt if t ∈ Ip;

vti ∈ Zm, 1 ≤ i ≤ kt , if t ∈ [s] \ I ∗}

partition the space Z
n
m. Moreover, we have |D| = �

t∈Ip

(
m

2CI (t)+1

)kt
m

∑

i∈[s]\I∗
ki
.

Corollary 3.2 If m is not divisible by 2CI ( j) + 1 for some j ∈ Ip, then no collection of
I -balls will partition Z

n
m.

Remark 3.3 Let C ⊆ Z
n
m be an (n, K , d) (P, π)-code.

(1) If C is an r -perfect code, then for any I ∈ Ir (P), the I -balls centered at the codewords
of C are disjoint.

(2) If a (P, π)-codeC is I -perfect for some I ∈ Ir (P)with partial count,we can not guarantee
that C is r -perfect since theremay exist an ideal I ′ ∈ Ir (P)with partial count and u, v ∈ C
such that BI ′(u) ∩ BI ′(v) �= ∅ (Example 3.1 will illustrate a counterexample).
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(3) Letm be a prime and let I be an ideal of P with partial count, then C can not be I -perfect
(P, π) for any I ∈ I(P) with partial count.

Example 3.1 Let P = (M, R) be a pomset where M = {3/1, 3/2} and
R = {(9/(3/1, 3/1), 9/(3/2, 3/2)}.

Let π be a labeling of the pomset P such that π(1) = 2 and π(2) = 1. For
I = {1/1, 3/2}, by the above discussion, we can find an I -perfect (P, π)-code C =
{(0, 0, 0), (3, 0, 0), (0, 3, 0), (3, 3, 0)} ⊆ Z

2
6. Consider I ′ = {2/1, 2/2} ∈ I4(P). We

observe that (2, 1, 0) ∈ BI ′((3, 0, 0)) ∪ BI ′((0, 3, 0)). Since Br (u) = ⋃

I∈Ir (P)

BI (u), C

is not 4-perfect. If P is a chain pomset with order relation 3/2 R 3/1, then I4(P) = {I } and
C is a 4-perfect (P, π)-code now.

Here is an example for a code being r -perfect but not I -perfect for any I with partial
count.

Example 3.2 Let P = (M, R) be a pomset where M = {2/1, 2/2} and
R = {(4/(2/1, 2/1), 4/(2/2, 2/2)}.

Let π be a labeling of the pomset P such that π(1) = π(2) = 1. Let r = 1. We have I1(P) =
{I1, I2} where I1 = {1/1}, I2 = {1/2}. Then B1(0̄) = {(0, 0), (0, 1), (1, 0), (0, 4), (4, 0)}.
Consider the (P, π)-code C = {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)} ⊆ Z

2
5. It is routine to

verify that C is 1-perfect code. On the other hand, C can not be I -perfect for any I ∈ I(P)

with partial count by the above discussion.

3.3 MDS (P,�)-code

Theorem 6 (Singleton Bound) Let (P, π) be a pomset block structure on Z
n
m and C ⊆ Z

n
m

be an (n, K , d) (P, π)-code. Denote by r =
⌊

d−1�m
2 �
⌋
. Then

n − �logm K � ≥ max
I∈I(P),|I ∗|=r

∑

i∈I ∗
ki . (3.2)

Proof Let I ∈ I(P) be an ideal of P with |I ∗| = r . We may assume that I is full count,
otherwise one can increase the counts of the maximal elements with partial count in I to⌊m
2

⌋
. Take u, v ∈ C. If ui = vi for all i ∈ [s]\I ∗. Then d(P,π)(u, v) ≤ |I | ≤ d − 1,

a contradiction. This means that any two distinct codewords of C will differ in at least one

position outside I ∗. Therefore there exists an injectivemap from C toZ

n− ∑

i∈I∗
ki

m which implies
that logm K ≤ n− ∑

i∈I ∗
ki . Hence �logm K � ≤ n− ∑

i∈I ∗
ki . From this, we get inequality (3.2).

��
Remark 3.4 Note that when ki = 1 for all 1 ≤ i ≤ s, inequality (3.2) would be

n − �logm K � ≥
⌊
d − 1
⌊m
2

⌋

⌋

.

This is the Singleton bound for pomset code, see [9, Theorem 2].
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Definition 4 Let (P, π) be a pomset block structure on Z
n
m . A (P, π)-code C is said to be a

maximum distance separable (MDS) (P, π)-code if it attains the Singleton bound.

Example 3.3 Let P = (M, R) be a pomset on M = {2/1, 2/2, 2/3, 2/4} and
R = {4/(2/1, 2/1), 4/(2/2, 2/2), 4/(2/3, 2/3), 4/(2/4, 2/4), 4/(2/1, 2/2), 4/(2/3, 2/4)}.
Let π be a labeling of the pomset P such that π(1) = π(3) = 1 and π(2) = π(4) = 2.
Consider the (P, π)-code C ⊆ Z

6
5 generated by the following matrix:
(
1 0 2 2 0 1
0 2 4 1 1 0

)

.

Then the code C is a linear (P, π)-code of length 6 with d(P,π)(C) = 7. We have
⌊

d−1�m
2 �
⌋

= 3.

The ideals in P such that |I ∗| = 3 are
{
{2/1, 1/2, 1/3}, {2/1, 1/2, 2/3}, {2/1, 2/2, 1/3}, {2/1, 2/2, 2/3},

{1/1, 2/3, 1/4}, {1/1, 2/3, 2/4}, {2/1, 2/3, 1/4}, {2/1, 2/3, 2/4}
}
.

Thus

max
I∈I(P),|I ∗|=3

∑

i∈I ∗
ki = 4 = n − k.

Therefore C is an MDS code.

Remark 3.5 Let C be an MDS (n, K , d) (P, π)-code. Note that there always exists an ideal

I ∈ I(P)with full count whose cardinality is
⌊m
2

⌋ ·
⌊

d−1�m
2 �
⌋
such that

∑

i∈I ∗
ki = n−�logm K �.

Oterwise, assume that I ∈ I(P) is an idealwith partial count such that
∑

i∈I ∗
ki = n−�logm K �.

By increasing the counts of themaximal elementswith partial counts in I , one can get the ideal

J with full count whose cardinality is
⌊m
2

⌋ ·
⌊

d−1�m
2 �
⌋
and satisfies that

∑

i∈I ∗
ki = n−�logm K �.

Letm be a prime, that is,Zm is a field. Let C be a linear (n,mk, d) (P, π)-code. A generator
matrix G and a parity check matrix H of C are defined as in the classical case. The parity
check matrix H can be viewed as H = [H1 H2 · · · Hs] where Hi is an (n − k) × ki matrix.
The set of blocks Hl1 , Hl2 , . . . , Hlr is called linearly independent if, for αi ∈ Vli ,

Hl1α1 + Hl2α2 + · · · + Hlr αr = 0̄

deduces αi = 0̄ for all i ∈ [r ]. Otherwise the block set Hl1 , Hl2 , . . . , Hlr is called linearly
dependent.

Let P = (M, R) be a pomset defined on the multiset M = {⌊m
2

⌋
/1,

⌊m
2

⌋
/2, . . . ,

⌊m
2

⌋
/s
}
.

We can define a corresponding poset P with the underlying set {1, . . . , s}whose order relation
is given by

a ≤ b in P if and only if p/a R q/b in P.

Given a subset Q ⊆ [s], we denote by < Q >P the smallest ideal of P containing Q. With
these notations, we have the following.
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Theorem 7 Let m be a prime. Let C be a linear (n,mk, d) (P, π)-code and let H be a parity
check matrix of C. Then C has a codeword c such that

∣
∣〈supp(L,π)(c)〉∗

∣
∣ = t if and only if

there exists an ideal I of P with |I ∗| = t satisfying that the blocks of H corresponding to I ∗
are linearly dependent.

Proof Let c = (c1, c2, · · · , cs) ∈ C satisfying
∣
∣〈supp(L,π)(c)〉∗

∣
∣ = t . Let I =

〈supp(L,π)(c)〉. Then ci �= 0̄ for i ∈ M(I )∗ and ci = 0̄ for i /∈ I ∗. It follows from

H1c1 + H2c2 + · · · + Hscs = 0̄

that the blocks of H corresponding to I ∗ are linearly dependent.
On the other hand, we suppose that the set of blocks Hl1 , Hl2 , . . . , Hlλ are linearly

dependent and suppose that there exist 0̄ �= αli ∈ Vli such that

Hl1αl1 + Hl2αl2 + · · · + Hl j αlλ = 0̄.

Let I be an ideal of P whose root set is I ∗ =< {l1, . . . , lλ} >P . Take c = (c1, c2, . . . , cs) ∈
Z
n
m such that

cli =
{

αli , if i ∈ [λ],
0̄, otherwise.

Then Hc = 0̄ which implies that c ∈ C. Furthermore, 〈supp(L,π)(c)〉∗ = I ∗. This completes
the proof. ��
Corollary 3.3 Let m be a prime. Let C be a linear (P, π)-code and let H be a parity check
matrix of C. Then

min
{∣
∣〈supp(L,π)(c)〉∗

∣
∣ , c ∈ C} = t

if and only if

t = min

⎧
⎨

⎩
j : I ∈ I(P) satisfies |I ∗| = {l1, . . . , l j }, rank{Hl1 , . . . , Hl j } <

j∑

i=1

kli

⎫
⎬

⎭
.

Since
⌊

d
⌊m
2

⌋

⌋

≤ min
{∣
∣〈supp(L,π)(c)〉∗

∣
∣ , c ∈ C} ,

we have the following.

Remark 3.6 Let m be a prime. Let C be a linear (P, π)-code and let H be a parity check
matrix of C. Then
⌊

d
⌊m
2

⌋

⌋

≤ min

⎧
⎨

⎩
j : I ∈ I(P) satisfies |I ∗| = {l1, . . . , l j }, rank{Hl1 , . . . , Hl j } <

j∑

i=1

kli

⎫
⎬

⎭

by Corollary 3.3. The equality holds if and only if d is divisible by
⌊m
2

⌋
.

Theorem 8 Let (P, π) be a pomset block structure on Z
n
m and C ⊆ Z

n
m be an (n,mk, d)

(P, π)-code. Then C is an MDS (P, π)-code if and only if C is I -perfect for some ideals

I ∈ I�m
2 �·

⌊
d−1�m
2 �

⌋

with full count.
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Proof Suppose that C is an MDS (P, π)-code. Denote by r =
⌊

d−1�m
2 �
⌋
. Then

n − k = max
I∈I(P),|I ∗|=r

∑

i∈I ∗
ki .

Let I be an ideal of P with full count whose cardinality is r · ⌊m2
⌋
such that n − k = ∑

i∈I ∗
ki .

Assume there exist two codewords c, c′ ∈ C such that the I -balls centered at c and c′ have
nonempty intersection. It follows from Proposition 3.1 that BI (c) = BI (c′). Then c ∈ BI (c′)
which implies that 〈supp(L,π)(c − c′)〉 ⊆ I . Therefore

d(P,π)(c, c
′) ≤ |I | =

⌊m

2

⌋
·
⌊
d − 1
⌊m
2

⌋

⌋

≤
⌊m

2

⌋
· d − 1
⌊m
2

⌋ = d − 1,

a contradiction. Thus, any two I -balls centered at distinct codewords of C must be disjoint.
Hence,

⊔

c∈C
BI (c) is a disjoint union and it contains |C| · |BI | = mn elements which implies

that C is I -perfect.
Conversely, let C be an I -perfect code for some I ∈ Ir ·�m

2 � with full count. It follows
from Lemma 3.1 that

∑

i∈I ∗
ki = n − k and hence

max
I∈I(P),|I ∗|=r

∑

i∈I ∗
ki = n − k

This completes the proof. ��
Remark 3.7 An (n,mk, d) MDS (P, π)-code C is I -perfect for all I ∈ Ir (P) with full count

such that
∑

i∈I ∗
ki = n − k where r = ⌊m

2

⌋ ·
⌊

d−1�m
2 �
⌋
.

Since an ideal of P with partial count is always contained in an ideal of P with full count,
we have the following.

Corollary 3.4 Let C ⊆ Z
n
m be an (n, K , d) (P, π)-code. Let I be an ideal of P such that

|I ∗| =
⌊

d−1�m
2 �
⌋
. Then I -balls centered at the codewords of C are disjoint.

Here we give an example to show the existence of a (P, π)-code which is MDS but not
I -perfect for any I ∈ I(P) with partial count.

Example 3.4 Let P = (M, R) be a pomset where M = {2/1, 2/2} and
R = {(4/(2/1, 2/1), 4/(2/2, 2/2), 4/(2/2, 2/1)}.

Let π be a labeling of the pomset P such that π(1) = 2 and π(2) = 1. Consider the
(P, π)-code C ⊆ Z

3
5 generated by the following matrix:

(
0 1 3
1 2 0

)

.

Then the code C is a linear (P, π)-code over Z5 of length 3 with d(P,π)(C) = 3. We have⌊
d(P,π)(C)−1

�m
2 �

⌋
= 1. The ideals of P such that |I ∗| = 1 are I1 = {1/2} and I2 = {2/2}

which implies that C is an MDS (P, π)-code. The partial count ideal in P is I1 = {(1/2)} and
I2 = {1/1, 2/2}. It is routine to verify that I1-balls centered at the codewords of C are disjoint
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and the union of I1-balls contains 75 elements. Take u = (0, 1, 3) and v = (1, 2, 0) ∈ C. It
is easy to see that BI2(u) ∩ BI2(v) �= φ. Therefore, for any ideal I of P with partial count,
the code C is not I -perfect.

If I is an ideal of P with partial count, then an I -perfect code is not necessarily an MDS
code, as we can see in the next example.

Example 3.5 Let P = (M, R) be a pomset where M = {3/1, 3/2} and
R = {(9/(3/1, 3/1), 9/(3/2, 3/2)}.

Let π be a labeling of the pomset P such that π(1) = 1 and π(2) = 2. Consider the
(P, π)-code C ⊆ Z

3
6 defined by C = {(0, 0, 0), (0, 3, 0), (0, 0, 3), (0, 3, 3)}. Consider an

ideal I = {3/1, 1/2} of P which has partial count. It is routine to verify that C is I -perfect.

On the other hand, we have that d(P,π)(C) = 3. Then
⌊
d(P,π)(C)−1

�m
2 �

⌋
= 0. Therefore C is not

MDS.

Example 3.6 Let P = (M, R) be a pomset where M = {3/1, 3/2} and
R = {(9/(3/1, 3/1), 9/(3/2, 3/2), 9/(3/1, 3/2)}.

Let π be a labeling of the pomset P such that π(1) = π(2) = 1. Consider the (P, π)-code
C ⊆ Z

2
6 defined by C = {(0, 0), (1, 3)}. Consider I = {3/1, 1/2} ofPwhich has partial count.

It is routine to verify that C is I -perfect. Note that d(P,π)(C) = 6. Then
⌊
d(P,π)(C)−1

�m
2 �

⌋
= 1.

The ideals of P such that |I ∗| = 1 are I1 = {1/1} and I2 = {2/1}. Therefore C is an MDS
(P, π)-code.

By comparing Examples 3.5 and 3.6, we speculate that being a chain pomset may be a
necessary condition for an I -perfect code to be an MDS code. We will prove this conjecture
later (Theorem 11).

4 Duality and weight distribution

In this section, we consider the case for an (n, K , d) MDS (P, π)-code when all the blocks
have the same dimension. Let (P, π) be a pomset block structure on Z

n
m such that k1 = k2 =

· · · = ks = t . Then the Singleton bound becomes

n − �logm K � ≥ t ·
⌊
d − 1
⌊m
2

⌋

⌋

. (4.1)

4.1 Duality

In what follows, we characterize (n, K , d) MDS (P, π)-codes when all the blocks have the
same dimension.

Theorem 9 Let P be a pomset on M = {⌊m
2

⌋
/1,

⌊m
2

⌋
/2, . . . ,

⌊m
2

⌋
/s
}
and P̃ be its dual

pomset on M. Let π be a labeling of the pomset P with k1 = k2 = · · · = ks = t and C be a
linear (n,mk, d) (P, π)-code. The the following statements are equivalent:

(1) C is an MDS (P, π)-code;
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(2) C is an I -perfect (P, π)-code for all I ∈ I n−k
t ·�m

2 �(P) with full count;

(3) C⊥ is an I -perfect (̃P, π)-code for all I ∈ I k
t ·�m

2 �(̃P) with full count;
(4) C⊥ is an MDS (̃P, π)-code;
(5) For any ideal I with full count of P and x ∈ Z

n
m,

|BI (x) ∩ C| =

⎧
⎪⎪⎨

⎪⎪⎩

mtl−n+k, if |I | = l · �m
2 � ≥ n−k

t · ⌊m2
⌋

,

1, if |I | = l · ⌊m2
⌋

< n−k
t · ⌊m2

⌋
and x ∈ ⋃

c∈C
BI (c),

0, if |I | = l · ⌊m2
⌋

< n−k
t · ⌊m2

⌋
and x /∈ ⋃

c∈C
BI (c).

(4.2)

Proof (1) ⇔ (2) follows fromTheorem 8, (2) ⇔ (3) follows fromTheorem 2 and (3) ⇔ (4)
follows from Theorem 8. We only need to show that (1) is equivalent to (5).

Assume that C is an MDS (P, π)-code. Let I be an ideal of P with full count such that
|I | = l · ⌊m2

⌋
and x ∈ Z

n
m . There are two cases.

• Case 1 Suppose that l ·⌊m2
⌋

< n−k
t ·⌊m2

⌋
. Note that no two codewords of C belong to the

same I -ball. Otherwise, there exist c, c′ ∈ C, c �= c′ such that c ∈ BI (c′). This implies
that 〈supp(L,π)(c − c′)〉 ⊆ I and thus

d(P,π)(c, c
′) = ∣

∣〈supp(L,π)(c − c′)〉∣∣

≤ |I | = l ·
⌊m

2

⌋
<

n − k

t
·
⌊m

2

⌋
=
⌊
d − 1
⌊m
2

⌋

⌋

·
⌊m

2

⌋
≤ d − 1,

a contradiction. By Proposition 3.1, any two I -balls are either disjoint or identical and
hence

|BI (x) ∩ C| =
⎧
⎨

⎩

1, if x ∈ ⋃

c∈C
BI (c),

0, if x /∈ ⋃

c∈C
BI (c).

• Case 2 Suppose that l · ⌊m2
⌋ ≥ n−k

t · ⌊m2
⌋
. Since I is full count with |I ∗| = l, there

exists an ideal J of P with full count such that |J ∗| = n−k
t and J ⊆ I . It follows from

Theorem 8 that C is J -perfect. Note that BJ is a submodule of BI . The number of cosets
of BJ in BI is mlt−n+k . By Lemma 3.1, every BJ (u) contains exactly one element of C.
Therefore, |BI (x) ∩ C| = mlt−n+k .

Conversely, assume that for any ideal I of P with full count and x ∈ Z
n
m , we have (4.2).

Let I ∈ I n−k
t ·�m

2 �(P) be an ideal of P with full count and u ∈ Z
n
m . By (4.2), we have

|BI (u) ∩ C| = 1 which yields that C is I -perfect by Lemma 3.1. Therefore, C is I -perfect for

all I ∈ I n−k
t ·�m

2 � with full count. It follows from Theorem 8 that C is an MDS (P, π)-code.
��
Example 4.1 Let P = (M, R) be a pomset where M = {2/1, 2/2, 2/3} and

R = {(4/(2/1, 2/1), 4/(2/2, 2/2), 4/(2/3, 2/3), 4/(2/1, 2/2), 4/(2/3, 2/2)}.
Let π be a labeling of the pomset P such that π(1) = π(2) = π(3) = 2. Consider the
(P, π)-code C ⊆ Z

6
5 generated by the following matrix:

(
0 1 1 2 2 3
1 0 0 2 2 3

)
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Then the code C is a linear (P, π)-code over Z5 of length 6 with d(P,π)(C) = 5. We have⌊
d−1�m
2 �
⌋

= 2. The full count ideal in P such that |I ∗| = 2 is I = {2/1, 2/3}. It follows that

max
I∈I(P),|I ∗|=2

∑

i∈I ∗
ki = 4 = n − k.

Hence C is an MDS (P, π)-code. Moreover, C is I -perfect.

Let P = (M, R1) and Q = (M, R2) be two pomsets on M . We say that Q is finer than P

if p/a R1 q/b in P implies that p/a R2 q/b in Q.

Lemma 4.1 Let P1 and P2 be two pomsets on M = {⌊m
2

⌋
/1,

⌊m
2

⌋
/2, . . . ,

⌊m
2

⌋
/s
}
and π

be a labeling of the pomset P1 with k1 = k2 = · · · = ks = t . If P2 is finer than P1, then every
MDS (P1, π)-code is an MDS (P2, π)-code.

Proof Suppose that C is an MDS (n, K , d) (P1, π)-code. Then n − �logm K � = t ·⌊
d(P1,π)(C)−1

�m
2 �

⌋
. Since P2 is finer than P1, we have d(P1,π)(u, v) ≤ d(P2,π)(u, v) for any

u, v ∈ Z
n
m . Therefore d(P1,π)(C) ≤ d(P2,π)(C) and hence

d(P2,π)(C) − 1 ≥ d(P1,π)(C) − 1 ≥ n − �logm K �
t

·
⌊m

2

⌋
.

This implies that
⌊
d(P2,π)(C)−1

�m
2 �

⌋
≥ n−�logm K �

t . By the Singleton bound, C is anMDS (P2, π)-

code. ��
Corollary 4.1 AnMDS block code is also anMDS pomset block code for every pomset defined
on the set of blocks when all blocks have the same dimension.

Proposition 4.1 Let (P, π) be a pomset block structure on Z
n
m with k1 = k2 = · · · = ks = t

and C be an (n,mk, d) (P, π)-code. If C is
( n−k

t · ⌊m2
⌋ )

-perfect (P, π)-code, then C is an
MDS (P, π)-code.

Proof By Theorem 9, it is sufficient to show that C is an I -perfect code for all I ∈ I n−k
t ·�m

2 �
with full count. Let I be an ideal of cardinality n−k

t · ⌊m2
⌋
with full count. Suppose that there

exist c, c′ ∈ C, c �= c′ such that BI (c) = BI (c′). Then 〈(supp(L,π)(c − c′)〉 ⊆ I . Since C
is
( n−k

t · ⌊m2
⌋ )

-perfect, the distance between two codewords of C is at least n−k
t · ⌊m2

⌋+ 1.
Then

n − k

t
·
⌊m

2

⌋
+ 1 ≤ d(P,π)(c, c

′) ≤ |I | = n − k

t
·
⌊m

2

⌋
,

a contradiction. ��
Theorem 10 Let (P, π) be a pomset block structure on Z

n
m with k1 = k2 = · · · = ks = t and

C be an (n, K , d) (P, π)-code. If C is I -perfect for every ideal I ∈ I n−�logm K �
t ·�m

2 �(P), then
C is an MDS (P, π)-code.

Proof Assume that for any ideal I ∈ I n−�logm K �
t ·�m

2 �(P), C is I -perfect. To prove C is an

MDS (P, π)-code, it is sufficient to show that
⌊

d−1�m
2 �
⌋

≥ n−�logm K �
t . Suppose that there

exist two distinct codewords u, v ∈ C such that d(P,π)(u, v) ≤ n−�logm K �
t · ⌊m2

⌋
. Denote by

J = 〈supp(L,π)(u − v)〉. It follows form Proposition 2.1 that there exists an ideal I with
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cardinality n−�logm K �
t · ⌊m2

⌋
such that J ⊆ I . Then u − v ∈ BJ ⊆ BI which implies that

u ∈ BI (v), a contradiction to the fact that C is I -perfect. Therefore d >
n−�logm K �

t · ⌊m2
⌋

and hence
⌊

d−1�m
2 �
⌋

≥ n−�logm K �
t . ��

4.2 Weight distribution

In what follows, we consider a (P, π)-code C whose blocks have the same dimen-
sion t and P is a chain pomset on M = {⌊m

2

⌋
/1,

⌊m
2

⌋
/2, . . . ,

⌊m
2

⌋
/s
}

such that⌊m
2

⌋
/1 R

⌊m
2

⌋
/2 R . . . R

⌊m
2

⌋
/s.

Note that every ideal I in the chain pomset P has the form I ={⌊m
2

⌋
/1,

⌊m
2

⌋
/2, . . . ,

⌊m
2

⌋
/(i − 1), p/i

}
where 1 ≤ p ≤ ⌊m

2

⌋
and p/i is the unique

maximal element in I . Moreover, for any integer 1 ≤ r ≤ s · ⌊m2
⌋
, there is only one ideal I

in P whose cardinality is r , that is, |Ir (P)| = 1 and hence Br (u) = BI (u) for any u ∈ Z
n
m .

Theorem 11 Let (P, π) be a chain pomset block structure on Z
n
m with k1 = k2 = · · · = ks =

t . Then for any K such that �logm K � is divisible by t, every I -perfect (n, K , d) (P, π)-code
C is an MDS (P, π)-code.

Proof Let C ⊆ Z
n
m be an I -perfect (n, K , d) (P, π)-code. Then

⊔

c∈C
BI (c) = Z

n
m and d > |I |.

From this, we have |C| · |BI | = mn .

• Case 1 If I is an ideal with full count, then |I ∗| = n−logm K
t and |I | = n−logm K

t · ⌊m2
⌋
.

It follows from Theorem 10 that C is an MDS (P, π)-code.
• Case 2 If I is an ideal with partial count, then |I | = |J | + l for some ideal J with full

count and 1 ≤ l ≤ ⌊m
2

⌋− 1. Since C is I -perfect, we have

|C| · |BI | = |C| · (2l + 1)t · |BJ | = K · (2l + 1)t · m|J∗|·t = mn,

yielding to

∣
∣J ∗∣∣ = n

t
− logm K

t
− logm(2l + 1).

Since 1 ≤ l ≤ ⌊m
2

⌋−1, we have 0 < logm(2l+1) < 1. Note that logm K
t +logm(2 l+1) ∈

Z. Therefore,

logm K

t
+ logm(2l + 1)

=
⌊
logm K

t
+ logm(2l + 1)

⌋

≤
⌊
logm K

t

⌋

+ ⌊
logm(2l + 1)

⌋+ 1

=
⌈
logm K

t

⌉

.

Hence |J ∗| ≥ n
t −

⌈
logm K

t

⌉

. On the other hand, d > |I | = |J | + l implies that

d−1�m
2 � > |J ∗| + l−1�m

2 � . Thus,
⌊
d − 1
⌊m
2

⌋

⌋

≥ ∣
∣J ∗∣∣ ≥ n

t
−
⌈
logm K

t

⌉

.
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Since �logm K � is divisible by t , we have

t ·
⌊
d − 1
⌊m
2

⌋

⌋

≥ n −
⌈

logm K

⌉

.

By the Singleton bound, C is an MDS code.

��

Remark 4.1 The above theorem holds for any ideal I ∈ I(P) no matter that I has full count
or partial count.

Let I be an ideal of P. We denote by Ip (I f resp.) the collection of the elements in I ∗
which has partial count (full count resp.) in I . From the proof of Theorem 11, we obtain a
corollary.

Corollary 4.2 Let (P, π) be a pomset block structure on Z
n
m with k1 = k2 = · · · = ks = t .

Let I be an ideal of P with partial count. Suppose that Ip = {l1, l2, . . . , lλ} ⊆ I ∗ and

1 <
λ∑

i=1
logm(2CI (li ) + 1) < 1. Let C be an (n, K , d) (P, π)-code such that �logm K � is

divisible by t and
⌊

d−1�m
2 �
⌋

≥ |I f |. If C is I -perfect, then C is MDS.

Let I ∈ I(P) be an ideal with partial count. Here is an example illustrates that an I -perfect
(P, π)-code is not necessarily an MDS code. But when we give some restrictions on I , an
I -perfect code could be an MDS code.

Example 4.2 Let P = (M, R) be a pomset where M = {4/1, 4/2} and
R = {(16/(4/1, 4/1), 16/(4/2, 4/2)}.

Let π be a labeling of the pomset P such that π(1) = π(2) = 1. Consider the (P, π)-code

C ⊆ Z
2
9 defined by C = {(0, 0), (0, 3), (0, 6)}. Then d(P,π)(C) = 3 and

⌊
d(P,π)(C)−1

�m
2 �

⌋
= 0.

Therefore C is not MDS. Let I = {4/1, 1/2} be an ideal of P with partial count. It can be
easily seen that C is I -perfect.

If we define C′ = {(0, 0), (2, 3), (4, 6)}. It is routine to verify that C′ is an I -perfect code.

By Corollary 4.2, C′ is an MDS (P, π)-code. In fact, d(P,π)(C′) = 5 and
⌊
d(P,π)(C′)−1

�m
2 �

⌋
= 1.

The ideal of P such that |I ∗| = 1 has root set {1} or {2}. It follows from k1 = k2 = 1 that C′
is an MDS (P, π)-code.

Furthermore, when P is chain pomset such that 4/1 R 4/2, we can see that both C and C′
are MDS (P, π)-codes.

Denote by Ar ,(P,π)(C) the number of codewords of (P, π)-weight r in C, that is,

Ar ,(P,π)(C) = ∣
∣
{
c ∈ C : w(P,π)(c) = r

}∣
∣ .

Note that an ideal I of P is full count if and only if |I | = l · ⌊m2
⌋
.

Lemma 4.2 Let (P, π) be a pomset block structure on Z
n
m where P is the chain pomset on

M = {⌊m
2

⌋
/1,

⌊m
2

⌋
/2, . . . ,

⌊m
2

⌋
/s
}
and π is a labeling of the pomset P with k1 = k2 =
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· · · = ks = t . Let C be an MDS linear (n,mk, d) (P, π)-code and let I ∈ I(P) be an ideal
of P. Then

|BI ∩ C| =

⎧
⎪⎨

⎪⎩

1, if |I | ≤ (n−k)
t · ⌊m2

⌋
,

mtl−n+k, if |I | = l · ⌊m2
⌋ ≥ (n−k)

t · ⌊m2
⌋

,

(2p + 1)tmtl−n+k, if |I | = l · ⌊m2
⌋+ p >

(n−k)
t · ⌊m2

⌋
, 1 ≤ p ≤ ⌊m

2

⌋− 1.

Proof Let I be an ideal with cardinality l ·⌊m2
⌋+ p >

(n−k)
t ·⌊m2

⌋
where 1 ≤ p ≤ ⌊m

2

⌋−1.
Then I is partial count with |I ∗| = l + 1. By Proposition 2.1, there exists an ideal J with
cardinality n−k

t · ⌊m2
⌋
such that J ⊆ I . It follows from Theorem 9 that C is J -perfect and

|BJ (x)∩C| = 1 for any x ∈ Z
n
m . Let K = I � J . The translates x + BJ , x ∈ BK are disjoint

and their union covers BI . Therefore,

|BI ∩ C|=|BK | = (2p+1)tm(|I ∗|−|J∗|−1)t

= (2p+1)tm(l+1− n−k
t −1)t =(2p+1)tmtl−n+k .

This completes the proof. ��
Theorem 12 Let (P, π) be a chain pomset block structure with k1 = k2 = · · · = ks = t and
C be an MDS linear (n,mk, d) (P, π)-code. Then

Ar ,(P,π)(C) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if r = 0,
0, if 1 ≤ r ≤ d − 1,(
mt − (

2
⌊m
2

⌋− 1
)t
)
mtl−n+k−t , if r = l · ⌊m

2

⌋ ≥ d,

(3t − 1)mtl−n+k , if r = l · ⌊m
2

⌋+ 1 ≥ d,(
(2p + 1)t − (2p − 1)t

)
mtl−n+k , if r = l · ⌊m

2

⌋+ p ≥ d and 2 ≤ p ≤ ⌊m
2

⌋− 1.

Proof If r ≤ d − 1, then the result is trivial. So we assume that r ≥ d . Suppose that
I r (P) = {I } and I r−1(P) = {J }. Then

Ar ,(P,π)(C) = |Br ∩ C| − |Br−1 ∩ C| = |BI ∩ C| − |BJ ∩ C|.
• Case 1 Assume that r = l · ⌊m2

⌋
. Then I has full count, J has partial count and |I ∗| =

|J ∗| = l. By Lemma 4.2,

|BI ∩ C| − |BJ ∩ C| = mtl−n+k −
(
2
⌊m

2

⌋
− 1

)t
mtl−n+k−t

= mtl−n+k−t
(

mt −
(
2
⌊m

2

⌋
− 1

)t
)

.

• Case 2 Assume that r = l · ⌊m2
⌋ + 1. Then I has partial count, J has full count and

|J ∗| = |I ∗| − 1 = l. By Lemma 4.2,

|BI ∩ C| − |BJ ∩ C| = 3tmtl−n+k − mtl−n+k = (3t − 1)mtl−n+k .

• Case 3 Assume that r = l · ⌊m2
⌋+ p where 2 ≤ p ≤ ⌊m

2

⌋− 1. The I and J have partial
count and |I ∗| = |J ∗| = l + 1. By Lemma 4.2,

|BI ∩ C| − |BJ ∩ C| = (2p + 1)tmtl−n+k − (2p − 1)tmtl−n+k

= (
(2p + 1)t − (2p − 1)t

)
mtl−n+k .

��
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Remark 4.2 Note that when pomset block metric is defined on Z2 and Z3, pomset block and
poset block weights coincide. The weight distribution of an MDS (P, π)-code for the case
when all blocks have the same dimension is determined (see [3, Theorem 5.2]). Consider
two special cases of hierarchical pomset. When the hierarchical pomset is a chain pomset,
Theorem 12 gives the weight distribution of anMDS (P, π)-code for the case when all blocks
have the same dimension.When the hierarchical pomset is an antichain pomset and all blocks
have dimension 1, pomset block weight is the traditional Lee weight. As our best knowledge,
the Lee weight distribution of an MDS code has not been obtained for general case.

Remark 4.3 When t = 1, Case 2 and Case 3 in Theorem 12 would coincide which is exactly
Theorem 9 in [9].

5 Conclusion and further consideration

The pomset metric is a generalization of poset metric and gives rise to Lee metric if the
underlying pomset is an antichain. In this paper, we introduce MDS pomset block codes and
extend the concept of I -perfect codes to the case of pomset block metric.

After the introduction of pomset block codes, it would be interesting to construct
Macwilliams type identities for any linear code with chain block pomset and bound for
covering radius of product codes. By carefully checking relevant results on pomset codes
and poset block codes, we may have a chance to explore further properties of pomset block
codes.

Funding Funding was provided by National Natural Science Foundation of China Grant nos. (12171191,
12271199, 61977036), Hubei Provincial Science and Technology Innovation Base(Platform) Speical Project
Grant no. (2020DFH002), Fundamental Research Funds for the Central Universities Grant no. (30106220482).
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