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Abstract
Let S be a finite thick generalized quadrangle, and suppose thatG is an automorphism group
of S. If G acts primitively on both the points and lines of S, then it is known that G must be
almost simple. In this paper, we show that if the socle of G is PSL(2, q) with q ≥ 4, then
q = 9 and S is the unique generalized quadrangle of order 2.

Keywords Generalized quadrangle · Point-primitive · Line-primitive · Projective linear
group · Automorphism group

Mathematics Subject Classification 05B25 · 20B15 · 20B25

1 Introduction

A finite generalized n-gon is a finite point-line incidence geometry whose bipartite incidence
graph has diameter n and girth 2n. It is thick if each line contains at least three points and
each point is on at least three lines. A finite generalized 3-gon is simply a projective plane,
and a finite generalized 4-gon is also called a generalized quadrangle. For a thick generalized
n-gon, there are constants s, t such that each line is incident with s + 1 points and each point
is incident with t + 1 lines by [21, Corollary 1.5.3], and we say that it has order (s, t). The
point-line dual of a thick generalized polygon of order (s, t) is a generalized polygon of order
(t, s). An automorphism of a generalized n-gon S consists of a permutation of the points
and a permutation of the lines which preserve the incidence. An automorphism group of S
is a group of automorphisms, and its full automorphism group is denoted by Aut(S). We
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refer to the monographs [21, 23] for more details on generalized polygons and generalized
quadrangles.

In 1959 Tits [25] introduced the concept of generalized polygons in order to study the
simple groups of Lie type systematically, and his work builds a bridge between geometry and
group theory. The Feit-Higman theorem [13] shows that finite thick generalized n-gons exist
only for n = 3, 4, 6 or 8. The automorphism groups of the classical generalized polygons
are classical or exceptional simple groups of Lie type, and they act primitively on both
points and lines. There are many examples of non-classical projective planes and generalized
quadrangles, while the construction of non-classical generalized hexagons and octagons is
listed as Problem 1 in [21, Appendix E].

There has been extensive work on the classification of finite thick generalized polygons
whose automorphism groups satisfy certain transitivity conditions. Buekenhout and Van
Maldeghem [9] showed that a finite thick generalized polygonwith a point-distance-transitive
automorphism group is either classical, dual classical, or the unique generalized quadrangle
of order (3, 5). Schneider and Van Maldeghem [24] studied the finite thick generalized
hexagons and octagons whose automorphism group G is primitive on both the points and
lines and transitive on flags. A flag is an incident point-line pair. They showed that G must
be an almost simple group of Lie type. In Bamberg et al. [4] strengthened this result by
showing that the same conclusion holds under the single assumption of point-primitivity. In
Morgan and Popiel [22] further classified the generalized hexagons and octagons for which
the socle of G is a Suzuki group, or a Ree group of type 2G2 or 2F4. Recently, Glasby et
al. [16] studied the finite thick generalized hexagons and octagons with a point-primitive
automorphism group whose socle is PSL(n, q), n ≥ 2, and obtained some partial results.

Suppose that S is a finite thick generalized quadrangle with a point-primitive automor-
phism group G. Then G is not of holomorph compound type [6]. By [1], G is not an almost
simple sporadic group. If G is also transitive on the lines, then the action of G on the points
is not of holomorph simple type by Bamberg et al. [5] and the generalized quadrangles for
which G has a point-regular abelian normal subgroup are classified in Bamberg et al. [3]. If
G is primitive on both points and lines, then it is an almost simple group, and if further G
is transitive on flags, then it is almost simple of Lie type, cf. [2]. In this paper, we study the
special case where the automorphism group G is primitive on both points and lines and has
socle PSL(2, q), q ≥ 4. Let W (q) be the generalized quadrangle of order q whose points
and lines are the totally singular points and totally singular lines of the symplectic polar
space W (3, q) respectively. We refer to [23] for more details about classical generalized
quadrangles. The following is our main result.

Theorem 1.1 Suppose that G is an automorphism group of a finite thick generalized quad-
rangle S that is primitive on both points and lines. If G is an almost simple group with socle
PSL(2, q), q ≥ 4, then q = 9 and S is the symplectic quadrangle W (2).

The exampleW (2) in Theorem 1.1 arises due to the isomorphism PSp(4, 2)′ ∼= PSL(2, 9).
This paper is organized as follows. In Sect. 2, we present some preliminary results on general-
ized quadrangles and the maximal subgroups of almost simple groups with socle PSL(2, q),
q ≥ 4. In Sect. 3, we describe a coset geometry model for finite generalized quadrangles with
an automorphism group that is transitive on both points and lines. In Sect. 4, we present the
proof of Theorem 1.1.
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2 Preliminaries

2.1 Generalized quadrangles

Suppose that S is a finite thick generalized quadrangle of order (s, t), where s, t ≥ 2. Then
two distinct points are incident with at most one common line, two distinct lines are incident
with at most one common point, and for each point-line pair (P, �) that is not incident there
is exactly one point on � that is collinear with P . If s = t , S is said to have order s.

Lemma 2.1 Let S be a finite thick generalized quadrangle of order (s, t)with point setP and
line set L. Then |P| = (s + 1)(st + 1), |L| = (t + 1)(st + 1), and the following properties
hold:

(i) (Higman’s inequality) s ≤ t2 and t ≤ s2;
(ii) (Divisibility condition) s + t divides st(s + 1)(t + 1);

(iii)
(
t+1
s+1

)3
< |P|, and

(
s+1
t+1

)3
< |L|.

Proof It suffices to prove (iii), since the other properties are taken from [23, 1.2.1−1.2.3].
By (i), we have t + 1 < (s + 1)2, i.e., t+1

s+1 < s + 1. It follows that

(
t + 1

s + 1

)3

< (s + 1)2 · t + 1

s + 1
= (1 + t)(1 + s) < |P|,

which yields the first inequality of (iii). The other inequality then follows from point-line
duality. ��

A grid with parameters (s1, s2) is a point-line incidence structure (P,L, I) with P ={
Pi, j : 0 ≤ i ≤ s1, 0 ≤ j ≤ s2

}
,L = {

�0, . . . , �s1 , �
′
0, . . . , �

′
s2

}
such that Pi, j I�k if and only

if i = k and Pi, j I�′
k if and only if j = k. A dual grid with parameters (s1, s2) is the point-line

dual of a grid with parameters (s2, s1). A grid with parameters (s, s) is a generalized quad-
rangle of order (s, 1), and a dual grid with parameters (t, t) is also a generalized quadrangle
of order (1, t).

Lemma 2.2 [23, 2.4.1] Let g be an automorphism of a finite generalized quadrangle S =
(P,L) of order (s, t). LetPg andLg be the set of fixed points and fixed lines of g respectively,
and let Sg = (Pg,Lg) be the induced incidence substructure on Pg × Lg. Then one of the
following holds:

(0) Pg = Lg = ∅,
(1) Lg = ∅, Pg is a nonempty set of pairwise noncollinear points,
(1’) Pg = ∅, Lg is a nonempty set of pairwise nonconcurrent lines,
(2) Lg is nonempty, and Pg contains a point P that is collinear with each point of Pg and is

on each line of Lg,
(2’) Pg is nonempty, and Lg contains a line � that is concurrent with each line of Lg and

contains each point of Pg,
(3) Sg is a grid with parameters (s1, s2), s1 < s2,
(3’) Sg is a dual grid with parameters (s1, s2), s1 < s2,
(4) Sg is a generalized quadrangle of order

(
s′, t ′

)
.

Corollary 2.3 With the same notation as in Lemma 2.2, we have the following properties:

(i) If |Pg| ≥ 2, |Lg| ≥ 2 and Sg admits an automorphism group H that is transitive on both
points and lines, then the case (4) of Lemma 2.2 holds.
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(ii) If |Pg| = |Lg| ≥ 2 and Sg admits an automorphism group H that is transitive on its
points, then the case (4) of Lemma 2.2 holds.

Proof For claim (i), both Pg and Lg have at least two elements, so Sg cannot have type (0),
(1) or (1’). By the transitivity assumption, each point in Pg is on the same number of lines
in Lg and each line in Lg contains the same number of points in Pg . This further excludes
the types (2), (2’), (3), (3’) and completes the proof of (i).

It remains to prove (ii). As in the proof of (i), Sg cannot have type (0), (1), (1’) or
(2). Write m := |Pg| = |Lg| ≥ 2. There is a constant r such that there are exactly r
lines in Lg through each point of Pg by the transitivity assumption. If Sg has type (2’),
then m = |Lg| = (r − 1)m + 1, i.e., (2 − r)m = 1. This does not hold for m ≥ 2,
so Sg does not have type (2’). If Sg has type (3), then we deduce from |Pg| = |Lg| that
(s1 + 1)(s2 + 1) = s1 + 1+ s2 + 1. It follows that s1s2 = 1, so s1 = s2 = 1: a contradiction.
Hence Sg does not have type (3). The type (3’) is excluded by the same argument. This
completes the proof. ��
Lemma 2.4 If G is a finite group acting regularly on the points of a finite thick generalized
quadrangle of order s, then it is nonabelian.

Proof This is a consequence of [14, Theorem 3.1], cf. the remark following it in [14]. ��
Lemma 2.5 Let S be a finite thick generalized quadrangle of order (s, t). Then there is no
abelian group that acts transitively on both the points and the lines of S.
Proof Suppose to the contrary that an abelian groupG acts transitively on both the points and
the lines of S. Let P , L be the sets of points and lines of S respectively, and fix a point P and
a line � of S. Take an element g ∈ GP . Since G is abelian and transitive on the points, g fixes
each point of S, i.e., g is in the kernel of the action of G on the points of S. It follows that g
also fixes each line of S. In particular, we have g ∈ G�. It follows that GP ≤ G�. Similarly,
we deduce that G� ≤ GP . We thus have GP = G�, and so |P| = |L| by the orbit-stabilizer
theorem and the transitivity assumption. We deduce that s = t by Lemma 2.1.

By the arguments in the previous paragraph, GP is contained in the kernel of the action
of G on P , so they are equal. Therefore, the induced action of G/GP on P is regular. The
claim then follows from Lemma 2.4. ��

2.2 Maximal subgroups of the almost simple groups with socle PSL(2, q)

ByusingDickson’s classification of the subgroups of PSL(2, q) [12],Giudici [15] determined
all the maximal subgroups of almost simple groups with socle PSL(2, q), q ≥ 4. This is also
available in [8, Table 8.1].

Lemma 2.6 Let G be an almost simple group with socle X = PSL(2, q), where q = p f ≥ 4
for a prime p. Let M be a maximal subgroup of G not containing X, and set M0 := M ∩ X.
Then either (G, M, M0) is as in Table 1, or M0 is a maximal subgroup of X as listed in Table
2.

Proof By [15, Theorem 1.1], either M0 is a maximal subgroup of X = PSL(2, q), or
(G, M, M0) is as listed in Table 1. In the last column of Table 1, we list the index of M
in G. The maximal subgroups of X are enumerated in [15, Theorems 2.1, 2.2], which we
reproduce here in Table 2. In the second column of Table 2 we list the index of M0 in X for
reference. ��
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Table 1 The (G, M, M0) triples with M maximal in G and M0 not maximal in X

G M0 M = NG (M0) [G : M]
PGL(2, 7) D6 D12 28

PGL(2, 7) D8 D16 21

PGL(2, 9) D10 D20 36

PGL(2, 9) D8 D16 45

M10 D10 C5 � C4 36

M10 D8 C8 � C2 45

P0L(2, 9) D10 C10 � C4 36

P0L(2, 9) D8 C8 · Aut (C8) 45

PGL(2, 11) D10 D20 66

PGL(2, q), q = p ≡ ±11,±19 (mod 40) A4 S4
1
24q(q2 − 1)

We shall also need the list of all subgroups of PGL(2, q) with q odd, cf. [11, 12, 17].

Lemma 2.7 ([11, Theorem 2]) The subgroups of PGL(2, q) with q = p f ≥ 5 odd are as
follows:

(i) C2;
(ii) Cd , where d | q ± 1 and d > 2;
(iii) D4;
(iv) D2d , where d | q±1

2 and d > 2;
(v) D2d , where (q ± 1)/d is an odd integer and d > 2;
(vi) A4, S4 and A5 when q ≡ ±1(mod10);
(vii) PSL (2, pm), where m | f ;
(viii) PGL (2, pm), where m | f ;
(ix) an elementary abelian group of order pm, where m ≤ f ;
(x) a semidirect product of an elementary abelian group of order pm and Cd , where m ≤ f

and d | gcd(q − 1, pm − 1).

Lemma 2.8 Let G be a finite transitive permutation group on a set �, and choose α ∈ �.
For g ∈ G, let gG be its conjugacy class in G and let π(g) be its number of fixed points on
�. We have

π(g) = |�| · |gG ∩ Gα|
|gG | .

Proof The claim follows from double counting the set of pairs (x, h) in � × gG such that
h fixes x , cf. [20, Lemma 2.5]. For a character theory version, please refer to [18, Theorem
5.18]. ��

The following results are well-known and can be deduced from [17, pp.191–193] and [10,
Sections 3.1−3.2]. We have included elementary proofs of both results in the arXiv version
of this paper with identifier 2206.06626.

Lemma 2.9 Suppose that X = PSL(2, q), q = p f ≥ 4 with p prime. Then X has a single
conjugacy class C of involutions and

|C | =
{
q2 − 1, if q is even,
1
2q(q + ε), if q ≡ ε (mod 4) with ε ∈ {±1}.

123



2352 T. Feng,J. Lu

Ta
bl
e
2

M
ax
im

al
su
bg

ro
up

s
of

X
=

PS
L
(2

,
q
)
an
d
th
ei
r
in
di
ce
s
in

X

C
as
e

M
0

[X
:M

0
]

C
on

di
tio

n

1
C

f p
�

C
q
−1

gc
d(
2,
q
−1

)

q
+

1

2
PG

L
(2

,
q 0

)
q 0

(q
2 0
+1

)

2
q

=
q
2 0
od

d

3
A
5

q
(q

2
−1

)
12
0

q
=

p
≡

±1
(m

od
10

)
or

q
=

p2
an
d
p

≡
±3

(m
od

10
)

4
A
4

p(
p2

−1
)

24
q

=
p

≡
±3

(m
od

8)
an
d
p

�≡
±1

(m
od

10
)

5
S 4

p(
p2

−1
)

48
q

=
p

≡
±1

(m
od

8)

6
PS

L
(2

,
q 0

)
q
r−

1
0

(q
2r 0

−1
)

q
2 0
−1

q
=

q
r 0
od

d
an
d
r
is
an

od
d
pr
im

e

7
PG

L
(2

,
q 0

)
q
r−

1
0

(q
2r 0

−1
)

q
2 0
−1

q
=

2
f

=
q
r 0
,w

he
re

r
is
pr
im

e
an
d
q 0

�=
2

8
D
2(
q
−1

)/
gc
d(
2,
q
−1

)
q
(q

+1
)

2
q

�=
5,
7,
9,
11

9
D
2(
q
+1

)/
gc
d(
2,
q
−1

)
q
(q

−1
)

2
q

�=
7,
9

123



On finite generalized quadrangles with PSL(2, q)... 2353

Moreover, if g is an involution in X, then

CX (g) =

⎧⎪⎨
⎪⎩

Dq−1, if q ≡ 1 (mod 4),

Dq+1, if q ≡ 3 (mod 4),

C f
2 , if q = 2 f , f ≥ 2.

Lemma 2.10 Suppose that X = PSL(2, q), q = p f with p > 5 prime. Then X has a single
conjugacy class C of elements of order 3 in X and

|C | =
{
q(q − 1), if q ≡ −1 (mod 3);
q(q + 1), if q ≡ 1 (mod 3).

Moreover, if g is an element of order 3 in X, then

CX (g) =
{
C(q−1)/2, if q ≡ 1 (mod 3),

C(q+1)/2, if q ≡ 2 (mod 3).

3 Generalized quadrangles with an automorphism group acting
transitively on both points and lines

Let S be a finite thick generalized quadrangle of order (s, t) with point set P and line set
L, and suppose that it admits an automorphism group G that is transitive on both points and
lines. Fix a point α ∈ P and a line � ∈ L.

Lemma 3.1 With notation as above, we have |Gα |4/3
|G|1/3 < |G�| < |Gα|3/4 · |G|1/4.

Proof Since G is transitive on both P and L, we have |P| = |G|
|Gα | , |L| = |G|

|G�| . It follows
from Lemma 2.1 that t+1

s+1 = |Gα |
|G�| . By Lemma 2.1 (iii), we have

( |Gα|
|Gl |

)3

<
|G|
|Gα| ,

( |G�|
|Gα|

)3

<
|G|
|G�| ,

from which we deduce the desired inequalities. This completes the proof. ��
We define a set D as follows:

D = {g ∈ G : αg is incident with �}.
The points on the line � are αg for g ∈ D, and the lines through the point α are �g

−1
for g ∈ D.

We thus have |D| = (s + 1)|Gα| = (t + 1)|G�|. The set D is a union of (Gα,Gl)-double

cosets inG, so we have a decomposition D =
d⋃

i=1
GαhiGl , where the double cosetsGαhiGl ,

1 ≤ i ≤ d , are pairwise distinct. It follows that

s + 1 = |D|
|Gα| =

d∑
i=1

|Gl |
|Gl ∩ h−1

i Gαhi |
,

t + 1 = |D|
|G�| =

d∑
i=1

|Gα|
|Gα ∩ hiGlh

−1
i | .
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For g, h ∈ G, the point αg is incident with the line �h if and only if αgh−1
is incident with �,

i.e., gh−1 ∈ D.

Lemma 3.2 With notation as above, let g be a nonidentity element in G. Let Pg be the set of
fixed points of g, and suppose that α is in Pg. If [CG(g) : CG(g) ∩Gα] = |Pg|, then CG(g)
acts transitively on Pg.

Proof For β ∈ Pg and x ∈ CG(g), we have (βx )g = (βg)x = βx , i.e., βx is inPg . Therefore,
CG(g) stabilizesPg . The point α is inPg and its stabilizer inCG(g) isCG(g)∩Gα . The orbit
of α under CG(g) is thus contained in Pg , and it has the same size as Pg by the condition
in the lemma. It follows that Pg is exactly the orbit of α under CG(g), which completes the
proof. ��

4 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Let S be a finite think generalized quad-
rangle of order (s, t) with point set P and line set L, and suppose that G is an automorphism
group of S that acts primitively on both P and L. We have s, t ≥ 2. Assume that G is almost
simple with socle X = PSL(2, q), where q = p f ≥ 4 with p prime. Fix a point α and a line
� of S, and set

M0 := Gα ∩ X , M1 := G� ∩ X .

We have Gα = NG(M0), since Gα normalizes M0 and is maximal in G. Similarly, G� =
NG(M1). Since X is normal inG, it is transitive onbothP andLby the primitivity assumption.
We thus have

|P| =(s + 1)(st + 1) = |X |
|M0| , (4.1)

|L| =(t + 1)(st + 1) = |X |
|M1| . (4.2)

Lemma 4.1 Neither of M0, M1 is isomorphic to C f
p � C(q−1)/ gcd(2,q−1).

Proof By the point-line duality, it suffices to prove the claim for M0. Suppose to the contrary
that M0 is isomorphic to C f

p � C(q−1)/ gcd(2,q−1). There is a unique conjugacy class of such
subgroups by Dickson [12], see also [19, Corollary 2.2]. The action of X = PSL(2, q) on
the right cosets of M0 is isomorphic to its natural action on the projective line PG(1, q).
Therefore, the action of X on P is 2-transitive. This is impossible, since X cannot map
collinear points to noncollinear points. This completes the proof. ��
Lemma 4.2 Both M0 and M1 are maximal subgroups of X. In particular, the group X acts
primitively on both points and lines of S.
Proof By the point-line duality, it suffices to prove the claim for M0. Suppose to the contrary
that M0 is not maximal in X . Then (G,Gα, M0) is one of the tuples in Table 1 by Lemma
2.6. By [2, Lemma 5.1], G is not one of PGL(2, 9), P0L(2, 9) or M10. For the three triples
with G = PGL(2, 7) or PGL(2, 11) in Table 1, the numbers of points are |P| = (s+1)(st +
1) = 28, 21, 66 by (4.1), and so (s, t) = (3, 2), (2, 3) and (5, 2) respectively. There are
no generalized quadrangles of such orders, since neither of them satisfies the divisibility
condition in Lemma 2.1.
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It remains to consider the case where (G,Gα, M0) = (PGL(2, q),S4,A4), q = p ≡
±11,±19 (mod 40). We claim that M1 is not maximal in X . Suppose to the contrary that
M1 is maximal in X . Then it is one of the cases in Table 2 by Lemma 2.6. It is not in Case
1 by Lemma 4.1, and can only be in one of Cases 3, 8 or 9 by the condition on q . There are
two conjugacy classes of subgroups isomorphic to A5 in PSL(2, q), and their normalizers
in G = PGL(2, q) are not maximal in G by [19, Corollary 2.3]. This excludes Case 3. For

Case 8 where M1 = Dp−1, we apply Lemma 2.1 (iii) to obtain
(
p−1
12

)3
<

p(p+1)
2 . It holds

only if p < 867, and there are no feasible (s, t) pairs for each such prime p by direct check
with Magma [7]. This excludes Case 8, and we exclude Case 9 in the same way. Therefore,
M1 is not maximal in X .

By the claim in the first paragraph of this proof and the point-line duality, we see that
M1 ∼= A4. It follows from M0 ∼= A4 that s = t , and so |P| = (s+1)(s2 +1) = 1

24 p(p
2 −1)

by (4.1).We claim that p ≡ 1 (mod 4), so that p ≡ −11,−19 (mod 40). If not, then p does
not divide s2+1 and so divides s+1. It follows that s ≥ p−1. Then |P| = (s+1)(s2+1) ≥
p(p2 − 2p + 2) and it is strictly larger than 1

24 p(p
2 − 1): a contradiction.

Take an involution g in X , and let Pg , Lg be the sets of its fixed points and fixed lines
respectively. Then C := gX is the unique conjugacy class of involutions in X by Lemma
2.9. Since M0 ∼= A4 has three involutions which form a single conjugacy class C0 of M0, we
deduce that C ∩ M0 = C0 and |C0| = 3. We apply Lemma 2.8 to the transitive action of X
on P and obtain

|Pg| = |P| · |C ∩ M0|
|C | = 1

4
(p − 1) > 1.

Similarly, we deduce that |Lg| = 1
4 (p − 1) > 1. The involution g fixes more than one

point and one line, so we assume without loss of generality that α, � are chosen from Pg,Lg

respectively, i.e., g is in both M0 and M1. We have |CX (g)| = p − 1 by Lemma 2.9,
|CX (g) ∩ Mi | = |CMi (g)| = 1

3 |A4| = 4 for i = 0, 1. It follows from Lemma 3.2 that CX (g)
is transitive on both Pg and Lg . By Corollary 2.3 (i), the fixed structure Sg = (Pg,Lg) is a
generalized quadrangle of order (s′, t ′). Since p ≡ −11 or −19 (mod 40), p−1

4 is odd and
at least 7. It follows that s′ = t ′ ≥ 2 and Sg is thick. The group CX (g) is a dihedral group
and contains a cyclic subgroup K of order 1

4 (p − 1) by Lemma 2.9. Since K has odd order
and CX (g) ∩ Mi has order 4, we see that K ∩ Mi = 1 for i = 0, 1. It follows that the orbit
αK has size [K : K ∩ M0] = |K | = |Pg|, i.e., K is regular on Pg . This contradicts Lemma
2.4 and completes the proof. ��

In view of Lemma 4.2, we assume without loss of generality that

G = X = PSL(2, q), Gα = M0, G� = M1.

Both of M0, M1 are maximal subgroups of X , so they appear in Table 2. In the next two
subsections, we consider two separate cases according as they have the same case numbering
in Table 2 or not. If they have distinct numberings, we show that there are no integers (s, t)
that satisfy both (4.1), (4.2) and the restrictions in Lemma 2.1. If M0 and M1 have the same
numberings, we make use of the coset geometry model in Sect. 3 and the results on the fixed
substructure of an automorphism in Sect. 2. There is one example that arises in the case
where M0, M1 are both in Case 2 of Table 2, i.e., W (2). Its full automorphism group has
socle PSp(4, 2)′ ∼= PSL(2, 9).
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Table 3 Possible cases for M1 if M0 is in one of Cases 2-5

Case for M0 Possible cases for M1 Condition

2 6 q = q20 = qr1 , r odd prime

3 5 q = p ≡ ±1,±9 (mod 40)

8 q ≡ ±1 (mod 10), 19 ≤ q < 108, 004

9 q ≡ ±1 (mod 10), 19 ≤ q < 107, 996

4 8 q = p ≡ ±3,±27 (mod 40), 37 ≤ p < 867

9 q = p ≡ ±3,±27 (mod 40), 37 ≤ p < 859

5 8 q = p ≡ ±1 (mod 8), 17 ≤ p < 6916

9 q = p ≡ ±1 (mod 8), 17 ≤ p < 6908

4.1 M0,M1 have distinct case numberings in Table 2

In this subsectionwe consider the caseswhereM0, M1 have distinct case numberings in Table
2. By the point-line duality, we assume without loss of generality that the case numbering
of M0 is smaller than that of M1. By Lemma 4.1, M0 is not in Case 1 of Table 2. For each
given M0, the size of M1 should satisfy the bounds in Lemma 3.1. In Table 3, we list the
possible cases for M1 for a given M0 by considering the restrictions on q and the bounds
on |M1| in Lemma 3.1. For instance, if M0, M1 are in Cases 3 and 8 respectively, then the
smallest prime power that satisfies the conditions on q in both cases is 19. The lower bound

on |M1| in Lemma 3.1 is trivial, and the upper bound yields
(
q−1
60

)3
<

q(q+1)
2 which holds

only if q < 108004. If M0 is in one of Cases 6–8, then the bounds on |M1| in Lemma 3.1
hold trivially and M1 can be any of Cases 7–9.

Lemma 4.3 The subgroup M0 is not in Case 2 of Table 2.

Proof Suppose to the contrary that M0 = PGL(2, q0) with q = q20 odd. By Table 3, M1

can only be in Case 6 of Table 2. Suppose that this is the case, i.e., M1 = PSL(2, q1),
where q = qr1 with r an odd prime. In particular, q1 is a square and q0 = qr/21 . We have
t+1
s+1 = |M0||M1| = 2q0(q20−1)

q1(q21−1)
by (4.1) and (4.2), and |P| = [X : M0] = 1

2q0(q
2
0 + 1). By Lemma

2.1(iii), we have
(
t+1
s+1

)3
< |P|. After plugging in the expressions of t+1

s+1 and |P|, we deduce
that

16qr−3
1 (qr1 − 1)3 < (q21 − 1)3(qr1 + 1). (4.3)

We have qr1 − 1 > 1
2 (q

r
1 + 1), since q1 ≥ 9 and r ≥ 3. Therefore,

16qr−3
1 (qr1 − 1)3 > 2qr−3

1 (qr1 + 1)3 > 2q3r−3
1 (qr1 + 1)

≥ 2q61 (q
r
1 + 1) > (q21 − 1)3(qr1 + 1),

which contradicts (4.3). This completes the proof. ��
Lemma 4.4 The subgroup M0 is not in Case 3 of Table 2.

Proof Suppose to the contrary that M0 = A5 for q = p ≡ ±1 (mod 10) or q = p2

with p ≡ ±3 (mod 10). By Table 3, M1 can be in Cases 5, 8, or 9 of Table 2, and we
have 13 ≤ q < 108004 for Case 8 and 11 ≤ q < 107, 996 for Case 9. We verify with
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computer that there are no feasible (s, t) pairs that satisfy (4.1) and (4.2) for the latter two
cases. It remains to consider Case 5, i.e., M1 = S4, q = p ≡ ±1 (mod 8). In this case,
t+1
s+1 = |M0||M1| = 5

2 by (4.1) and (4.2). There exist positive integer k such that t + 1 = 5k,
s + 1 = 2k. Since s > 1, we have k > 1. By Lemma 2.1(ii), we have

0 ≡ 74st(s + 1)(t + 1) = 74 · 10k2(2k − 1)(5k − 1) ≡ −360 (mod 7k − 2).

It follows that 7k − 2 divides 360, which holds only if k = 2, 6 or 26. There is no prime
q = p that satisfies (4.1) and (4.2) for such k’s. This completes the proof. ��
Lemma 4.5 The subgroup M0 is not in Case 4 or Case 5 of Table 2.

Proof Suppose to the contrary that M0 = A4, where q = p ≡ ±3 (mod 8) and q �≡ ±1
(mod 10). By Table 3, we have the following candidates for M1: Dp−1 with 13 ≤ p < 867,
or Dp+1 with p < 859. We verify with computer that there are no feasible (s, t) pairs that
satisfy (4.1) and (4.2) in each case. The case where M1 = S4 is excluded in a similar way.
This completes the proof. ��
Lemma 4.6 The subgroup M0 is not in Case 6 of Table 2.

Proof Suppose to the contrary that M0 = PSL(2, q0), where q is odd and q = qr0 with r an
odd prime. We have

(1 + s)(1 + st) = |P| = [X : M0] = q(q2 − 1)

q0(q20 − 1)
(4.4)

which is odd, so s is even. By the restriction on q , M1 can only be Case 8 or Case 9 of Table
2. The two cases are excluded by the same approach, so we only give the details for Case 8
here. In this case, M1 = Dq−1 with q ≥ 13, |L| = [X : M1] = 1

2q(q + 1), and

s + 1

t + 1
= |M1|

|M0| = 2(q − 1)

q0(q20 − 1)
. (4.5)

We plug them into the inequality
(
s+1
t+1

)3
< |L| from Lemma 2.1 (iii) and deduce that

16(q − 1)3 < q(q + 1)q30 (q
2
0 − 1)3. Since (q − 1)3 = q(q + 1)(q − 4)+ (7q − 1), it follows

that 16(q − 4) < q30 (q
2
0 − 1)3. It does not hold when r ≥ 11, so r ≤ 7.

Since q and r are odd, the greatest common divisor of the numerator and denominator of

the right hand side of (4.5) is q0−1. Therefore, there is an integer k such that s+1 = qr0−1
q0−1 ·k

and t+1 = 1
2kq0(q0+1). Since s is even, k is odd. It is then routine to show that k is relatively

prime to 1 + st . We deduce from (4.4) that

k(1 + st) = qr0 + 1

q0 + 1
qr−1
0 , (4.6)

We deduce from 1 + st > 1 + s that k2 <
(qr0+1)(q0−1)
(qr0−1)(q0+1)q

r−1
0 < qr−1

0 , so k < q(r−1)/2
0 . We

deduce from (4.6) that qr−1
0 divides either k or 1 + st . Since k < q(r−1)/2

0 , qr−1
0 divides

1 + st .
There is an integer u such that uk = qr0+1

q0+1 , 1 + st = qr−1
0 u. Write k = b + aq0 with

0 ≤ b ≤ q0 − 1 and a ∈ Z. Taking modulo q20 , we obtain

s + 1 ≡ b + (a + b)q0, 2(t + 1) ≡ bq0, 2 + 2st ≡ 0 (mod q20 ).

123



2358 T. Feng,J. Lu

We determine s, 2t (mod q20 ) from the first two equations and plug them into the third to
obtain 2+ (b−1+ (a+b)q0)(bq0 −2) ≡ 0 (mod q20 ). Taking modulo q0, we obtain b = 2.
The former equation then yields a ≡ −1 (mod q0). We thus have k ≡ 2− q0 (mod q20 ). In

particular, we have k ≥ q20 − q0 + 2. If r = 3, then it contradicts the fact k < q(r−1)/2
0 = q0.

If r = 5, then we deduce from k < q20 that k = q20 − q0 + 2, but k does not divide
q50+1
q0+1 in

this case: a contradiction.
It remains to consider the case r = 7. Write k = 2−q0 + cq20 with c ∈ Z. By considering

1 + s, 1 + t , 2(1 + st) modulo q30 , we obtain c ≡ q0+1
2 (mod q0) by a similar procedure. It

follows from k < q30 that k = q0+1
2 q20 −q0+2.We have

q70+1
q0+1 ≡ 33q20 −49q0+57 (mod k),

and 33q20 − 49q0 + 57 is nonzero and smaller than k if q0 > 61. Hence k does not divide
q70+1
q0+1 when q0 > 61. We check by computer that k does not divide

q70+1
q0+1 when 13 ≤ q0 ≤ 61

either. This completes the proof. ��
Lemma 4.7 The subgroup M0 is not in Case 7 of Table 2.

Proof Suppose to the contrary thatM0 is in Case 7 of Table 2. ThenM0 = PGL(2, q0), where
q = qr0 is even, r is a prime and q0 �= 2. Since we have assumed that M1 has larger case
numbering in Table 2, M1 can only be in Case 8 or Case 9 of Table 2. The case r ≥ 3 are dealt
with in the same way as in the proof of Lemma 4.6, so we omit the details here. Suppose that
r = 2, and we only give the details for Case 8 since the other case is similar. Write q0 = 2n ,
n ≥ 2. We have |P| = (1+ s)(1+ st) = q0(q20 + 1), |L| = (1+ t)(1+ st) = 1

2q
2
0 (q

2
0 + 1),

so t+1
s+1 = 2n−1. Write k = s + 1, so that t + 1 = 2n−1k. By Lemma 2.1 (i) we have

t + 1 < (s + 1)2, so k > 2n−1. It follows that s ≥ 2n−1, t ≥ 22n−2 + 2n−1 − 1. We thus
have

2n(22n + 1) = |P| ≥ (2n−1 + 1)(1 + 2n−1(22n−2 + 2n−1 − 1)).

It holds only if n = 2, 3. We check with computer that there are no (s, t) pairs that satisfy
(4.1) and (4.2) for each such n. This completes the proof. ��
Lemma 4.8 The subgroup M0 is not in Case 8 of Table 2.

Proof Suppose to the contrary that M0 = D2(q−1)/ gcd(2,q−1). Since we have assumed that
M1 has larger case numbering in Table 2, we have M1 = D2(q+1)/ gcd(2,q−1). We have
|P| = (1 + s)(1 + st) = 1

2q(q + 1), |L| = (1 + t)(1 + st) = 1
2q(q − 1) by (4.1) and

(4.2). It follows that (s − t)(st + 1) = q , so s − t and (st + 1) are both powers of p. Write
s − t = ph and st + 1 = p f −h , where q = p f . Since 1 + st > 1, we have h < f . We thus
have 1+ s = 1

2 p
h(q + 1), 1+ t = 1

2 p
h(q − 1), and so s + t = p f +h − 2. By Lemma 2.1(ii)

s + t divides st(st + 1), so p f +h − 2 divides (p f −h − 1)p f −h .

(1) If p is odd, then p f +h −2 is relatively prime to p and so divides p f −h −1. Since h < f ,
p f −h − 1 is positive and so p f −h − 1 ≥ p f +h − 2. This inequality holds only if h = 0,
but then p f − 2 does not divides p f − 1 by the fact p f ≥ 13.

(2) If p = 2, then 2 f +h−1 − 1 divides 2 f −h − 1. The latter is positive by the fact h < f . It
follows that 2 f −h − 1 ≥ 2 f +h−1 − 1, which implies that h = 0. Then 2 f −1 − 1 divides
2 f − 1, and we deduce that 2 f = 4. Then s + t = 2 f − 2 = 2, which contradicts the
fact that s, t ≥ 2.

This completes the proof. ��
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4.2 M0,M1 have the same case numberings in Table 2

In this subsection, we suppose that M0, M1 have the same case numbering in Table 2. We
start by showing that M0 and M1 are isomorphic groups.

Lemma 4.9 The groups M0 and M1 are isomorphic.

Proof Suppose to the contrary that M0 and M1 are not isomorphic. This can happen only
if they are both in Case 6 or Case 7 in Table 2. In both cases, M0 ∼= PSL(2, q0) and
M1 ∼= PSL(2, q1), where q = qr00 = qr11 and r0, r1 are distinct primes. Moreover, if q is odd,
then both r0, r1 are odd; if q is even, then q0, q1 > 2. There exists a prime power m such
that q = mr0r1 , and so q0 = mr1 and q1 = mr0 .

There is a unique conjugacy class of subgroups isomorphic to PSL(2,m) in PSL(2,mu)

by [12] or [19, Theorem 2.1(o)(p)], where u is odd if m is odd. For each i = 0, 1, take a
subgroup Hi isomorphic to PSL(2,m) inMi . There exists h ∈ PSL(2, q) such that H0 = Hh

1 .
The stabilizer of �h in X is Mh

1 which contains H0. By choosing the line �h instead of � in
the first place, we assume without loss of generality that M0, M1 both contain a subgroup
H isomorphic to PSL(2,m). Let g be an involution in H . It is clear that gX ∩ Y = gY for
Y ∈ {M0, M1} since each of M0, M1 has a single conjugacy class of involutions by Lemma
2.9. Let Sg = (Pg,Lg) be the fixed structure of g.

First suppose that q is odd. We only give details for the case m ≡ 3 (mod 4) here, and
the case m ≡ 1 (mod 4) is dealt with similarly. In this case, q, q0, q1 are all congruent to
3 modulo 4. We have CX (g) = Dq+1, CX (g) ∩ M0 = Dq0+1, CX (g) ∩ M1 = Dq1+1 by
Lemma 2.9. We thus have |Pg| = q+1

q0+1 , |Lg| = q+1
q1+1 by Lemma 2.8. By Lemma 3.2, CX (g)

acts transitively on Pg and Lg . By Corollary 2.3, Sg is a generalized quadrangle of order
(s′, t ′). Since both |Pg|, |Lg| are odd integers, s′, t ′ are both even and Sg is thick. Let K be
the unique cyclic subgroup of index 2 in CX (g), so that it intersects Mi in a cyclic subgroup
of order dividing qi+1

2 , i = 0, 1. Since the orbit αK has size [K : K ∩ M0] which is at most

|Pg|, we deduce that |K ∩ M0| = q0+1
2 and K is transitive on Pg . Similarly, we deduce that

K is transitive on Lg . This is impossible by Lemma 2.5.
Next suppose that q is even. Then CX (g), CX (g) ∩ M0, CX (g) ∩ M1 are elementary

abelian 2-groups of order q, q0, q1 respectively by Lemma 2.9. We thus have |Pg| = q/q0,
|Lg| = q/q1 by Lemma 2.8. By Lemma 3.2, CX (g) acts transitively on Pg and Lg . By
Corollary 2.3, Sg is a generalized quadrangle of order (s′, t ′). If t ′ = 1, then 2(s′ + 1) =
mr0(r1−1), (s′ + 1)2 = mr1(r0−1). It follows that m2r0(r1−1) = 4mr1(r0−1). With m = 2e,
we deduce that 2 + r1(r0 − 1)e = 2r0(r1 − 1)e. It follows that e divides 2. If e = 2, then
r0(r1 −2)+ (r1 −1) = 0 which never holds. We thus have e = 1. Then (r1 −2)(r0 +1) = 0,
and so r1 = 2. By Lemma 2.1 (iii), we have |M1|4 < |M0|3 · |X | which simplifies to
q21 (q

2
1 − 1)3 < 603(q21 + 1). It does not hold for q1 = 2r0 > 4. Therefore, t ′ > 1. Dually,

we have s′ > 1, so Sg is thick. This contradicts Lemma 2.5 and completes the proof. ��
By Lemma 4.9, we assume that M0 and M1 are isomorphic in the sequel. In particular,

we have s = t . By the arguments in Sect. 3, there exist elements h1, · · · , hd of X such that
the M0hi M1’s are pairwise distinct and

s + 1 =
d∑

i=1

|M1|
|M1 ∩ h−1

i M0hi |
. (4.7)

Lemma 4.10 If M0 is in Case 2 of Table 2, then q = 9 and S is W (2).
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Proof Suppose that M0 = PGL(2, q0) with q = q20 odd. Write q0 = pn with p prime. By
(4.1), we have

(s + 1)(s2 + 1) = 1

2
q0(q

2
0 + 1). (4.8)

If q0 = 5, there is no integer solution in s. If q0 = 3, then s = 2. By [23, 5.2.3], up to
isomorphism W (2) is the only generalized quadrangle of order 2. The group PSL(2, 9) ∼=
PSp(4, 2)′ acts transitively on the points of W (2), and the stabilizer of a point is a maximal
subgroup isomorphic to PGL(2, 3). We assume that q0 ≥ 7 in the sequel. It follows from
(4.8) that s < q0. Each summand |M1|

|M1∩h−1
i M0hi | in (4.7) is thus no more than q0, i.e., [M1 :

M1 ∩ Mhi
0 ] ≤ q0 for 1 ≤ i ≤ d . We examine the subgroups of M1 ∼= PGL(2, q0) as

listed in Lemma 2.7, and deduce that a subgroup of index at most q0 is either PSL (2, q0) or
PGL (2, q0). If M1 ∩ Mhi

0 = PSL (2, q0), then it has index 2 and is thus normal in both M1

and Mhi
0 . That is, M1 and Mhi

0 are both in NX (PSL(2, q0)) = PGL(2, q0). We deduce that

M1 = Mhi
0 = PGL(2, q0) by comparing sizes: a contradiction to M1 ∩ Mhi

0 = PSL (2, q0).

Therefore, we must have M1 ∩ Mhi
0 = PGL (2, q0), i.e., M1 = Mhi

0 , for each i . It follows
that d = s+1, and hi h

−1
1 is in NX (M0) = M0. Therefore, M0h1 = M0hi , for 1 ≤ i ≤ s+1.

This contradicts the fact that the M0hi M1’s are distinct double cosets. ��
Lemma 4.11 The subgroup M0 is not in Case 7 of Table 2.

Proof Suppose to the contrary that M0 = PGL(2, q0), where q = 2 f = qr0 with r prime and
q0 �= 2. From (4.1), we have

(s + 1)(s2 + 1) = (q2r0 − 1)

q20 − 1
qr−1
0 . (4.9)

The right hand side is even, so s is odd. We have s2 + 1 ≡ 2 (mod 4), so 1
2q

r−1
0 divides

s + 1. There is an odd integer t such that s + 1 = 1
2q

r−1
0 t . The left hand side of (4.9) is

larger than or smaller than the right hand side according as t ≥ 3 or t = 1 upon inspection.
Therefore, (4.9) has no integer solution in s. This completes the proof. ��
Lemma 4.12 The subgroup M0 is not in Case 8 of Table 2.

Proof Suppose to the contrary that M0 = D2(q−1)/ gcd(2,q−1), where q ≥ 13 if q is odd. From
(4.1), we have

(s + 1)(s2 + 1) = 1

2
q(q + 1). (4.10)

First suppose that q is odd. We deduce from (4.10) that s < q − 1. In particular, q does
not divide s + 1. Since gcd(s + 1, s2 + 1) is at most 2, we deduce from (4.10) that q divides
s2 + 1. It then follows that s + 1 divides 1

2 (q + 1). Write 1
2 (q + 1) = k(s + 1) for some

integer k. Then q = 2ks+2k−1, and (4.10) yields s2 +1 = (2ks+2k−1)k. As a quadratic
equation in s, it has an integer solution. Hence its discriminant � := 4k4 + 8k2 − 4k − 4 is
an even square. Since (2k2)2 ≤ � < (2k2 + 2)2, we deduce that � = (2k2)2. This holds
only if k = 1. Solving the quadratic equation in s, we obtain s = 2. It follows that q = 5,
contradicting the condition q ≥ 13.

Next suppose that q is even, and write q = 2 f , f ≥ 2. If q = 4, then (4.10) has no integer
solution in s. Assume that f ≥ 3 in the sequel. The right hand side of (4.10) is even, so s is
odd. Since s2 +1 ≡ 2 (mod 4), we deduce from (4.10) that s+1 = 2 f −2a for some divisor
a of 2 f + 1. Then (4.10) reduces to (22 f −5a2 − 2 f −2a + 1)a = 2 f + 1. It is elementary to
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show that the left hand side is an increasing function in a for a ≥ 1, and is strictly larger than
2 f + 1 when a ≥ 3. Therefore, we must have a = 1. However, 22 f −5 − 2 f −2 + 1 = 2 f + 1
holds for no integer f ≥ 3. This completes the proof. ��
Lemma 4.13 The subgroup M0 is not in Case 9 of Table 2.

Proof Suppose to the contrary that M0 = D2(q+1)/ gcd(2,q−1), q �= 7, 9. From (4.1), we have

(1 + s)(1 + s2) = 1

2
q(q − 1).

By similar arguments to those in the proof of Lemma 4.12, we deduce that s = 9, q = 41.
Then |P| = 820. Let g be an involution in M0, and let Sg = (Pg,Lg) be its fixed structure.
By Lemma 2.9, gX consists of all the involutions of X , |gX | = 861 and |CX (g)| = 40.
The dihedral group D42 has 21 involutions, so |Mi ∩ gX | = 21 for i = 0, 1. We deduce
from Lemma 2.8 that |Pg| = |Lg| = 20. We assume without loss of generality that we have
chosen α, � from Pg,Lg respectively, so that g is in both M0, M1. The centralizer of g in
Mi is CMi (g) = 〈g〉 for i = 0, 1, so we deduce from Lemma 3.2 that CX (g) is transitive
on both Pg and Lg . By Corollary 2.3, Sg is a generalized quadrangle of order (s′, t ′). Since
|Pg| = |Lg| = 20, we have s′ = t ′ and (1+ s′)(1+ s′2) = 20. There is no such integer s′: a
contradiction. This completes the proof. ��

In the sequel, we consider Cases 3, 4, 5, 6 in Table 2 for M0. We shall make use of the
results in Sect. 3 to exclude those cases. This will avoid solving the Diophantine equations
involving (s, q) arising from (4.1). We start with a simple observation.

Lemma 4.14 If M0 = A5 or A4, then p ≡ 1 (mod 4).

Proof If p = 3, then we must have M0 = A5, q = 9. By (4.1), (s + 1)(s2 + 1) = 6 which
has no integer solution in s. Similarly, we have p �= 5. Hence we assume that p ≥ 7 in the
sequel. We prove the claim for M0 = A5, and the other case is similar. By (4.1), we have

(s + 1)(s2 + 1) = 1

120
q(q2 − 1).

It follows that s < q − 1, and so q does not divide s + 1. Since gcd(s + 1, s2 + 1) is at most
2 and p ≥ 7, we see that q divides s2 + 1. This implies that −1 is a square modulo p, so
p ≡ 1 (mod 4) as desired. ��

Suppose that M0 is one of the groups in Table 4 , where the case column refers to its
numbering in Table 2. There is a unique conjugacy class of elements of the specified order
r in the third column in X by Lemma 2.9, and we fix such an element g that is contained
in M0. Let Sg = (Pg,Lg) be the fixed structure of g. The size of gX and the structure of
CX (g) are available in Lemmas 2.9 and 2.10. Then gX ∩ Mi consists of all the elements of
order r in Mi which form a single conjugacy class of Mi , where i = 0, 1. We are thus able
to calculate |gX ∩ Mi | and CMi (g) for i = 0, 1 in each case either by Magma [7] or Lemma
2.9. By Lemma 2.8, we calculate |Pg| and |Lg| which turn out to be equal. The conditions
on q in the last column of Table 4 arise from Lemmas 2.9, 2.10 or 4.14.

The group CX (g) stabilizes both Pg and Lg , and both have sizes greater than 1 by direct
check.We assumewithout loss of generality thatα, � are chosen fromPg,Lg respectively. By
Lemma 3.2, we deduce thatCX (g) is transitive on bothPg andLg in each case. By Corollary
2.3, Sg is a generalized quadrangle of order (s′, t ′). Since Pg and Lg have the same size, we
have s′ = t ′. If p = 23 and M0 ∼= S4, then |Pg| = 4 and |P| = 11 · 23 = (1 + s)(1 + s2)
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Table 5 Information about the cyclic subgroup K

Case CX (g) K K ∩ Mi [K : K ∩ Mi ] Condition

3 Dq−1 C q−1
2

〈g〉 q−1
4 p ≡ 1 (mod 4)

4 Dp−1 C p−1
2

〈g〉 p−1
4 p ≡ 1 (mod 4)

5 C p−1
2

C p−1
2

〈g〉 p−1
6 p ≡ 1 (mod 3)

C p+1
2

C p+1
2

〈g〉 p+1
6 p ≡ 2 (mod 3)

6 Dq+1 C q+1
2

C q0+1
2

q+1
q0+1 q0 ≡ 3 (mod 4)

Dq−1 C q−1
2

C q0−1
2

q−1
q0−1 q0 ≡ 1 (mod 4)

has no integer solution in s. It is routine to check that |Pg| �= 4 in the other cases, so Sg is
thick, i.e., s′ ≥ 2.

Lemma 4.15 The subgroup M0 is not in one of Cases 3, 4, 5, 6 in Table 2.

Proof We continue with the arguments preceding this lemma. Let K be a cyclic subgroup
of CX (g) of the largest possible order, which is unique in each case. We first establish the
facts about K in Table 5. It suffices to determine |K ∩ Mi | for i = 0, 1 in each case, since
the remaining information in Table 5 follows easily. We only give details for K ∩ M0, since
K ∩ M1 is determined similarly. In the Cases 3, 4, 5, K contains g as is clear in the proof
of Lemma 2.9. Since K ∩ M0 is cyclic and CM0(g) is elementary abelian r -group with
r = o(g), we deduce that K ∩ M0 = 〈g〉 as desired in the Cases 3, 4, 5. We observe that a
cyclic subgroup of D4m has order dividing 2m, so for Case 6 the subgroup K ∩ M0 has order
dividing 1

2 |CM0(g)|. Therefore, |αK | is a multiple of 2·|K |
|CM0 (g)| = |Pg|. Since αK is contained

in Pg , we deduce that |αK | = |Pg| and so |K ∩ M0| = 1
2 |CM0(g)| as desired.

We are now ready to establish the claim. From Table 5, we deduce that |αK | = [K :
K ∩ M0] = |Pg|, |�K | = [K : K ∩ M1] = |Lg|, so that K is transitive on both Pg and Lg

in each case. This contradicts Lemma 2.5 and completes the proof. ��
We now summarize the results that we have proved so far in this section. In Lemmas

4.1 and 4.2, we have excluded the cases where M0 := X ∩ Gα or M1 := X ∩ Gl is not
maximal in X = PSL(2, q). Assume that M0 and M1 are both maximal in X , so that X is
also primitive on both points and lines. We assume without loss of generality that G = X . In
Sect. 4.1 we have handled the cases where M0, M1 have different case numbering in Table 2,
and in Sect. 4.2 we have handled the cases where M0 and M1 have the same case numbering
in the table. Putting together, this completes the proof of Theorem 1.1.
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