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Abstract
Card shuffle algorithms have been studied from a cryptographic point of view with appli-
cations to format preserving encryption. In this work, we naturally extend the swap-or-not
shuffle, proposed by Hoang, Morris and Rogaway at Crypto 2012, by replacing a perfect
matching used in each round by a keyed partition with a certain uniform property. The result-
ing construction, dubbed the partition-and-mix (or simply PM) shuffle, is proved to be secure
up to (1 − δ)N queries for any δ > 0 and the domain size N , while the number of rounds is
significantly reduced compared to the swap-or-not. We give concrete examples of the keyed
partitions that provide security as well as allow efficient implementation in practice. Such
uniform keyed partitions seem of independent interest. The partition-and-mix shuffle might
also be viewed as an alternative block cipher structure that extends the domain of a small
block cipher operating on each block of the partition.
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1 Introduction

Format preserving encryption Suppose that we have a database that stores credit card num-
bers for a large number of customers, and for security reason, we would like to encrypt all
of the credit card numbers. If we take a straightforward approach of using any well known
block cipher such as AES, each credit card number, being 16-digits long, should be trans-
formed into a 128-bit plaintext (by adding some dummy information), and then encrypted
as a ciphertext of the same length. In order to accommodate all the ciphertexts as 128-
bit strings, the database should be largely modified, causing a significant amount of extra
cost. With this consideration, it would be desirable to encrypt the credit card numbers into
ciphertexts of the same format, namely 16-digit numbers. This problem, called format pre-
serving encryption, does not allow any solution as straightforward as one might expect. One
should either design a novel mode of operation in order to use a block cipher operating on
large-sized blocks such as AES [2–4], or construct a (dedicated) small block cipher from
scratch.
Card shuffle-based encryption Focusing on the dedicated construction, a (balanced) Feistel
cipher, for example, might not be a satisfactory solution at least from a point of provable
security: no matter how carefully designed, the resulting block cipher provides only n/2-
bit security for the block size n [12, 13]. This level of security might be acceptable for a
large block size n, but not for a small size. Credit card numbers of 16 digits in the above
example can be represented approximately by 54 bits, and 27-bit security level would be
too low. To find an alternative block cipher structure to address this problem, card shuffle
algorithms have begun to attract renewed interest that have a long history in probability
theory. A card shuffle can be viewed as an encryption scheme when we think of the final
position of a card at the end of the shuffle as the ciphertext of the initial position of the
card.

In order for a card shuffle to be a computationally feasible block cipher, it should be
oblivious, namely one should be able to trace the trajectory of a card without attending to lots
of other cards in the deck. The Thorp shuffle is a well-known example of an oblivious card
shuffle, where one first cuts a deck of cards into two equal piles, and then starts dropping
the cards from either the left or right hand with probability 1/2 [16]. Interpreted as a block
cipher, a perfect matching is fixed on the set of positions for each round, and the two cards on
each match is swapped or not according to a random coin of probability 1/2, or equivalently
according to the evaluation of a single-bit random function at the match. A representative of
each match might be defined as the maximum of the two positions of the match. From this
cryptographic point of view, the Thorp shuffle operating on {0, 1}n has been proved to be
secure up to 2n/n queries for O(n2) rounds [10].

Afterwards, a randomized variant of the Thorp shuffle, named swap-or-not, has been
proposed [8]. In this shuffle, a perfect matching is randomly chosen by an additional round
key; a round key K ∈ {0, 1}n defines a perfect matching on {0, 1}n by the difference of
K , namely position x ∈ {0, 1}n is matched with x ⊕ K . Then a single-bit round function is
applied to each pair {x, x⊕K } and the cards at the two positions are swapped or not according
to the round function value. Then the threshold number of queries is significantly improved
up to (1 − ε)2n for any ε > 0 for O(n) rounds. Precisely, the adversarial distinguishing
advantage is upper bounded by

8N 3/2

r + 4

(
q + N

2N

)r/4+1
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for the r -round swap-or-not shuffle, where N and q denote the size of the domain and the
number of queries, respectively.1 However it still requires a large number of rounds to achieve
a sufficient level of security, for example more than 700 rounds for the domain size 232 and
the threshold number of queries q = 231.

1.1 Our results

Partition-and-mix In this work, we naturally extend the swap-or-not shuffle by replacing a
perfect matching used in each round of the swap-or-not by a certain uniform keyed partition.
Formally, fix a domain [N ] = {0, . . . , N−1} for N > 0, the block size D of a keyed partition
such that N is a multiple of D, and a certain key space K. Let (BK )K∈K be a keyed partition
of [N ], where each key K ∈ K defines a partition of [N ]

BK = {BK , B2
K , . . . , B

N
D
K }

such that |Bi
K | = D for i = 1, . . . , N/D and

⋃ N
D
i=1 B

i
K = [N ]. For ε > 0, we will say

the keyed partition (BK )K∈K is ε-almost D-uniform if for every subset U ∈ [N ] such that
|U | = D

Pr
[
K ←$ K : U ∈ BK

] ≤ 1 + ε(N−1
D−1

) .

Remark 1 Fix a subset U ∈ [N ] of size D, and any single element a of U . When a partition
of blocks of size D is chosen uniformly at random from the set of all possible partitions, the
D − 1 other elements of the block containing a are uniformly chosen from the set [N ] \ {a}.
The probability that they are U\{a} is exactly 1/

(N−1
D−1

)
. In other words, when a partition of

blocks of size D is chosen uniformly at random from the set of all possible partitions, the
probability of having U as its block is exactly 1/

(N−1
D−1

)
for any subset U ∈ [N ] of size D.

Given an almost uniform keyed partition (BK )K∈K, the next step is to define an
independent random permutation

σ
i,t
K : Bi

K → Bi
K

for each key K ∈ K, i = 1, . . . , N/D and t = 1, . . . , r . Then the t-th round Ψt of the
partition-and-mix shuffle, t = 1, . . . , r , is defined as

Ψt (a) = σ
i,t
Kt

(a) (1)

for each a ∈ {0, 1}n , where Kt ∈ K is the t-th round key and i ∈ {1, . . . , N/D} is the index
such that a ∈ Bi

Kt
. Finally, the r -round partition-and-mix shuffle is defined as

PMr def= Ψr ◦ · · · ◦ Ψ1.

As the entire domain is partitioned into blocks of a larger size D ≥ 2 compared to the swap-
or-not shuffle, and all the elements in each block are uniformly mixed, it would be natural to
expect a faster mixing time, or a smaller number of rounds for a given level of security. We
remark that the swap-or-not shuffle can be viewed as an instantiation of the partition-and-mix
shuffle with D = 2 and BK = {{x, x + K } : x ∈ {0, 1}n}.
1 The coefficient “4” appearing in the original upper bound in [8] should be corrected as “8”.
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Themain contribution of this work is to prove the security of the partition-and-mix shuffle;
for PMr , we will prove

AdvccaPMr (q) ≤ 4 (1 + ε)
r
4 N

r
4+ 1

2

(r − 4)D
r
4 (N − q)

r
4−1

.

In particular, if q = (1 − δ)N for δ > 0, then we have

AdvccaPMr ((1 − δ)N ) ≤ 4δN
3
2

r − 4

(
1 + ε

δD

) r
4

.

So, for afixednumber of adversarial queries, the number of rounds is reducedby 1
log D−log(1+ε)

compared to the swap-or-not shuffle.
Uniform set partition In practice, the efficiency of the partition-and-mix shufflewould depend
on the instantiation of the keyed partition. It seems of independent interest to find keyed
partitions that allow efficient implementation. In this work, we propose two constructions of
uniform random partitions.

The first construction is to use binary Hamming codes. For each integer s ≥ 2, there is a
binary Hamming code, denoted Cs , with block length 2s − 1 and message length 2s − s − 1.
In other words, Cs is a (2s − s − 1)-dimensional subspace of {0, 1}2s−1. Since a binary
Hamming code is perfect, for any x ∈ {0, 1}2s−1, there is only one codeword c ∈ Cs such
that the Hamming distance of c and x is at most one. So the balls of radius one centered
at the codewords partition the entire set {0, 1}2s−1. With this observation, for n ≥ 2s − 1
and D = 2s , we can construct an almost D-wise uniform keyed partition on {0, 1}n by the
following recipe.

1. Linearly independent keys K1, . . . , KD−1 ∈ {0, 1}n are chosen uniformly at random.
Then for a subspace

V = 〈K1, . . . , KD−1〉
the entire domain {0, 1}n is partitioned into the cosets of V .

2. Each coset can be identified as {0, 1}D−1. For example, one might choose a representative
a for each coset, and define a bijection from {0, 1}D−1 to any coset by mapping

e = (e1, . . . , eD−1) ∈ {0, 1}D−1 �→ a + e1K1 + · · · + eD−1KD−1.

3. A [2s − 1, 2s − s − 1, 3]-Hamming code Cs and an additional round key

b = (b1, . . . , bD−1) ∈ {0, 1}D−1

defines a partition of the set {0, 1}D−1, and hence each coset of {0, 1}n , as follows.
{0, 1}D−1 =

⋃
c∈Cs

{c + b + e : wt(e) ≤ 1}.

This keyed partition is shown to be ε-almost uniform for ε = 2D−n . We will discuss in
detail the properties and the instantiation of the keyed partitions based on Hamming codes
in Sects. 4 and 5.

Our second construction is recursive: for the block size D > 0, one can construct a D-
uniform keyed partition of X × Y using a D-uniform keyed partition of X and a D-wise
independent function family from X to Y . Notice that if a function family ( fK )K∈K2 is D-
wise independent, then for any distinct x1, . . . , xD ∈ X and any (not necessarily distinct)
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Fig. 1 Upper bounds on distinguishing advantages for the swap-or-not shuffle (in a dashed line) and the
partition-and-mix shuffle (in a solid line) for n = 32, q = 231 given as a function of the number of rounds.
The PM shuffle is based on a uniform keyed partition using a binary [7, 4, 3]-Hamming code

y1, . . . , yD ∈ Y , the probability that g(xi ) = yi for all i = 1, . . . , D is the same, namely
1/|Y |D over random choice of the key K ∈ K2.

Let (B′
K )K∈K1 be an ε-almost D-uniform keyed partition of X and let Y be an additive

group. For a pair of keys K = (K1, K2) ∈ K1 × K2, let

BK = {{(x, fK2(x) + c) : x ∈ B} : B ∈ B′
K1

, c ∈ Y
} ⊂ X × Y .

In Sect. 4, we prove that (BK )K∈K is an ε′-almost D-uniform keyed partition of X × Y for

ε′ = ε + D2

|X | + εD2

|X | .

A D-wise independent function family is typically defined as a polynomial of degree at most
D−1 over a finite field. This construction might be particularly useful when the domain size
is not a power of two: for example, if we want to encrypt data (such as credit card numbers)
within the domain {0, . . . , 9}16, thenwe can decompose the domain as {0, . . . , 9}16 = X×Y ,
where X = {0, 1}16 and Y = {0, 1, 2, 3, 4}16. Then wemight use an almost uniform partition
on the set X based on a binary Hamming code and any independent function family from X
to Y to obtain a uniform keyed partition of X × Y .
Comparison Figure1compares the upper bounds on distinguishing advantages for the swap-
or-not shuffle and the partition-and-mix shuffle based on a 8-uniform keyed partition for the
domain size N = 232 and the threshold number of queries q = N/2. In this example, the
partition-and-mix shuffle requires a family of random 3-bit permutations, while it provides
the same level of security with approximately 1/4th of the number of rounds needed for
the swap-or-not shuffle. Details on the instantiation of the partition-and-mix shuffle and its
efficiency is discussed in Sect. 5.

1.2 Related work

The swap-or-not and the partition-and-mix shuffles asymptotically guarantee their security
only up to (1− ε)N queries for any ε > 0, but not all the N possible queries for the domain
size N . In [14], a new approach, called mix-and-cut, has been proposed turning one shuffle
to another, where a deck of cards are randomly separated into two piles, and the shuffle
algorithm is independently applied to each of the two piles. Within this framework, one
obtains a shuffle achieving the full security by repeatedly applying the swap-or-not shuffle
O(log2 N ) times. This approach has been further improved in [11], where they slightly
modified mix-and-cut, and showed application of the underlying shuffle to only one of the
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2242 N.-S. Jho, J. Lee

two piles is enough to achieve the full security. This framework, named sometimes-recurse,
requires only O(log N ) applications of the shuffle on average, significantly improving the
efficiency over mix-and-cut.

As another line of research on block cipher construction, a substitution-permutation net-
work is modeled as an iterated Even-Mansour cipher. The original single-round construction
is shown to be secure only up to the birthday bound [7]. Iteration would naturally enhance
its security, and indeed the r -round Even-Mansour cipher on {0, 1}n has been proved to be
secure up to 2

rn
r+1 queries [5]. However we notice that the security model is incomparable to

ours where the construction is based on independent random permutations whose size is the
same as the entire construction as its underlying primitives, while an adversary is allowed to
make queries to the inner permutations.

The partition-and-mix shuffle might be viewed as a mode of operation that extends the
domain of a small block cipher operating on each block of the partition. The small block
cipher might be constructed from a perfect random number generator, and again the random
number generator constructed from any robust block cipher such as AES [15]. The domain
extension of an ideal cipher has also been studied in [6], where they prove a 3-round Feistel
cipher is a secure domain extender of an ideal cipher within the indifferentiability framework,
while 2 rounds are enough to get a domain extender of a tweakable block cipher in the standard
model.

2 Preliminaries

Notation For a fixed domain size N > 0, the set of all permutations on [N ]will be denotedP .
For a set T and an integer s ≥ 1, T ∗s denotes the set of all sequences that consists of s pairwise
distinct elements of T . For integers 1 ≤ s ≤ t , we will write (t)s = t(t − 1) · · · (t − s + 1).
If |T | = t , then (t)s becomes the size of T ∗s .

For a binary string w, the number of its nonzero components is called the weight of
w, denoted wt(w). For an element x ∈ {0, 1, . . . , 2s − 1}, let 〈x〉s ∈ {0, 1}s denote the
binary representation of x , namely, an s-bit string (a1, . . . , as) ∈ {0, 1}s such that x =
2s−1as +· · ·+2a2+a1, and let e(x) denote a (2s −1)-bit string (b1, . . . , b2s−1) ∈ {0, 1}2s−1

such that bi = 1 if i = x , and bi = 0 otherwise. So we have wt(e(x)) = 0 if x = 0, and
wt(e(x)) = 1 otherwise.
Hamming code An [n, k, d]2e linear error-correcting code C is a k-dimensional subspace of
F
n
2e with the minimum weight d , where F2e denotes a finite field of order 2e. An [n, k, d]2e

code C can be represented by a k × n generator matrix G over F2e where every codeword
of C is expressed as a linear combination of the row vectors of G, namely w · G for some
w ∈ F

k
2e .

Hamming codes are a family of [2s − 1, 2s − k − 1, 3]2 codes, where s ≥ 2. For each
Hamming code, the balls of Hamming radius one centered on the codewords exactly fill out
the entire space {0, 1}n where n = 2s − 1.
D-wise independent function family Let ( fK )K∈K be a family of functions from X to Y with
key space K. For a positive integer D, ( fK )K∈K is called D-wise independent if for any
distinct x1, . . . , xD ∈ X and any (not necessarily distinct) y1, . . . , yD ∈ Y , the probability
that g(xi ) = yi for every i = 1, . . . , D is 1/|Y |D over random choice of the key K ∈ K.
Security definition Let E be a block cipher on [N ] that employs λ-bit keys. So each key
k ∈ {0, 1}λ defines a permutation Ek on [N ]. In the adaptive chosen-ciphertext attack-
indistinguishability (CCA-IND) model, an adversary A adaptively makes forward and
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backward queries to either a permutation P or the blockcipher Ek to tell apart Ek and P ,
where Ek uses a random secret key k and P is chosen uniformly at random from P . Thus
A’s distinguishing advantage is formally defined by

AdvccaE (A) = Pr
[
P ←$ P : AP,P−1 = 1

]
− Pr

[
k ←$ {0, 1}λ : AEk,E−1

k = 1
]
.

In the non-adaptive chosen-plaintext attack (NCPA) model, an adversaryAmakes only non-
adaptive forward queries. The advantage AdvncpaE (A) is similarly defined in this model. For
atk ∈ {cca, ncpa}, and for q > 0, we define

AdvatkE (q) = max
A

AdvatkE (A)

where the maximum is taken over all atk-adversaries making at most q queries. If the
encryption and decryption algorithms are symmetric in their structures, we can lift the
NCPA-security of the block cipher to CCA-security by doubling the number of rounds [9].

Lemma 1 If F and G are block ciphers on the same message space, then for any q > 0,

AdvccaF◦G−1(q) ≤ AdvncpaF (q) + AdvncpaG (q).

Total variation distance Given a finite event space � and two probability distributions μ and
ν defined on �, the total variation distance between μ and ν, denoted ‖μ− ν‖, is defined as

‖μ − ν‖ def= 1

2

∑
x∈�

|μ(x) − ν(x)| = max
S⊂�

{μ(S) − ν(S)} = max
S⊂�

{ν(S) − μ(S)}.

Useful Lemmas. For a finite nonempty set �, let μ and ν be probability distributions
supported on q-tuples of elements of �. If the first l elements u∗

1, . . . , u
∗
l are fixed for

l = 0, . . . , q − 1, then we can consider the distribution of μ restricted to the (l + 1)-th
element, conditioned on (u∗

1, . . . , u
∗
l ), namely

μ(u|u∗
1, . . . , u

∗
l ) = Pr

[
Xl+1 = u|X1 = u∗

1, . . . , Xl = u∗
l

]
where (X1, . . . , Xq) ∼ μ. The distribution ν( · |u∗

1, . . . , u
∗
l ) is similarly defined, and hence

‖μ( · |u∗
1, . . . , u

∗
l ) − ν( · |u∗

1, . . . , u
∗
l )‖.

Using this notation, given a set of random variables (Z1, . . . , Zq), we can define a new
random variable

‖μ( · |Z1, . . . , Zl) − ν( · |Z1, . . . , Zl)‖
for l = 0, . . . , q − 1. Then the total variation distance ‖μ − ν‖ is upper bounded by the sum
of the conditional distances on average as follows.

Lemma 2 Fix a finite nonempty set � and let μ and ν be probability distributions supported
on q-tuples of elements of �, and suppose that (Z1, . . . , Zq) ∼ μ. Then

‖μ − ν‖ ≤
q−1∑
l=0

E (‖μ( · |Z1, . . . , Zl) − ν( · |Z1, . . . , Zl)‖) .

Note that the expectation is taken over the set of random variables (Z1, . . . , Zq).
Using the conventions

(0
0

) = 1 and
(p
q

) = 0 for 0 ≤ p < q , the following lemma on
binomial coefficients will be also useful later.
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Lemma 3 Let a, b, c be positive integers such that b ≤ c. Then

a∑
j=0

(b
j

)(c−b
a− j

)
( j + 1)

(c
a

) ≤ c + 1

(a + 1)(b + 1)
. (2)

Proof By integrating both sides of

(1 + x)b =
b∑
j=0

(
b

j

)
x j

we obtain

1

b + 1

(
(1 + x)b+1 − 1

)
=

b∑
j=0

1

j + 1

(
b

j

)
x j+1.

Therefore the left-hand side of (2) is the coefficient of xa+1 in the polynomial

1(c
a

)
⎛
⎝ b∑

j=0

1

j + 1

(
b

j

)
x j+1

⎞
⎠ c−b∑

i=0

(
c − b

i

)
xi =

(
(1 + x)b+1 − 1

)
(1 + x)c−b

(b + 1)
(c
a

)

= (1 + x)c+1 − (1 + x)c−b

(b + 1)
(c
a

)
which is upper bounded by the coefficient of xa+1 in

(1 + x)c+1

(b + 1)
(c
a

) . (3)

The coefficient of xa+1 in (3) is
(c+1
a+1

)
(b + 1)

(c
a

) ≤ c + 1

(a + 1)(b + 1)
.

��

3 Security of the partition-and-mix shuffle

The security of the r -round partition-and-mix shuffle PMr defined by an ε-almost
D-uniform keyed partition (BK )K∈K and a set of independent random permutations
(σ

i,t
K )

(K ,i,t)∈K×{1,..., ND }×{1,...,t} is summarized as the following theorem.

Theorem 1 Let PMr be the r-round partition-and-mix shuffle defined by a keyed partition
(BK )K∈K and a set ofmixing permutations (σ i,t

K ). If (BK )K∈K is ε-almost D-uniform,σ i,t
K are

all independent random, and round keys K1, . . . , Kt are chosen independently and uniformly
at random from K, then

AdvccaPMr (q) ≤ 4 (1 + ε)
r
4 N

r
4+ 1

2

(r − 4)D
r
4 (N − q)

r
4−1

.
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3.1 Proof of Theorem 1

Fix q distinct elements z1, . . . , zq ∈ [N ]. For j = 1, . . . , q and t = 1, . . . , r , let Xt ( j)
denote the random variable that indicates the position of z j at the end of the t-th round of
PMr , namely,

Xt ( j) = Ψt ◦ · · · ◦ Ψ1(z j )

where Ψ1, . . . , Ψt are as defined in (1). Let τt be the distribution of

(Xt (1), . . . , Xt (q))

and let π be the uniform random distribution on [N ]∗q . So π is the distribution of q samples
without replacement from [N ]. The core of the security proof is to upper bound their statistical
distance ‖τr − π‖ for reasonably small r since this is the distinguishing advantage of an
NCPA-adversary that makes q queries z1, . . . , zq .

Given a set of the first t round keys K = (K1, . . . , Kt ) ∈ Kt for t = 1, . . . , r , we
can consider the distribution of (Xt (1), . . . , Xt (q)) conditioned on a fixed set of partitions
(BK1 , . . . ,BKt ), denoted τ K

t . Then by the definition of the total variance distance and by the
triangle inequality, we have

‖τr − π‖ = 1

2
×

∑
(u1,...,uq )∈[N ]∗q

∣∣∣∣∣
( ∑
K∈Kr

1

|K|r τ K
r (u1, . . . , uq)

)
− π(u1, . . . , uq)

∣∣∣∣∣

= 1

2
×

∑
(u1,...,uq )∈[N ]∗q

∣∣∣∣∣
∑
K∈Kr

1

|K|r
(
τ K
r (u1, . . . , uq) − π(u1, . . . , uq)

)∣∣∣∣∣

≤
∑
K∈Kr

1

|K|r

⎛
⎝1

2
×

∑
(u1,...,uq )∈[N ]∗q

∣∣∣τ K
r (u1, . . . , uq) − π(u1, . . . , uq)

∣∣∣
⎞
⎠

= E
(
‖τ K

r − π‖
)

(4)

where the expectation is taken over random variable K (regarded as defined on Kr with the
uniform distribution). Again, by Lemma 2, we have

E
(
‖τ K

r − π‖
)

≤ E

⎛
⎝q−1∑

l=0

E
(
‖τ K

r ( · |Xr (1), . . . , Xr (l)) − π( · |Xr (1), . . . , Xr (l))‖
)⎞⎠

=
q−1∑
l=0

E
(
‖τ K

r ( · |Xr (1), . . . , Xr (l)) − π( · |Xr (1), . . . , Xr (l))‖
)

=
q−1∑
l=0

E
(

‖τ K
r ( · |Xr (1), . . . , Xr (l)) − 1

m
‖
)

(5)

where the last expectation is taken over random variables Xr (1), . . . , Xr (l) and K , and
m = N − l. For a fixed l = 0, . . . , q − 1, let

pt (a) = τ K
t (a|Xt (1), . . . , Xt (l)).
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Then we have

‖τ K
t ( · |Xt (1), . . . , Xt (l)) − π( · |Xt (1), . . . , Xt (l))‖ = 1

2

∑
a∈St

|pt (a) − 1/m|

where St = [N ] \ {Xt (1), . . . , Xt (l)}. By using the inequality E (X)2 ≤ E
(
X2
)
(that holds

for any random variable X ) and the Cauchy-Schwarz inequality, we have
⎛
⎝E

⎛
⎝∑

a∈St
|pt (a) − 1/m|

⎞
⎠
⎞
⎠

2

≤ N · E
⎛
⎝∑

a∈St
(pt (a) − 1/m)2

⎞
⎠ . (6)

Define st = ∑
a∈St (pt (a)−1/m)2 for t = 0, . . . , r . Since the initial positions of the elements

z1, . . . , zq are deterministic, we have

E (s0) =
(
1 − 1

m

)2

< 1.

Then we will express E (st+1|st ) as a linear equation of st with small coefficients.
As st being a random variable defined by Xt (1), . . . , Xt (l) and K1, . . . , Kt , we fix the

values of these variables, and consider the conditional expectation of st+1. Given a partition
BKt+1 , we only determine the evolution of Xt (1), . . . , Xt (l) (not the other elements) to
determine St+1. Then we can arbitrarily define a permutation

f : St −→ St+1

such that f (B ∩ St ) = B ∩ St+1 for every B ∈ BKt+1 . (This is always possible since
|B ∩ St | = |B ∩ St+1|.) Since

pt+1( f (a)) =
{∑

u∈B∩St
pt (u)

|B∩St | , if a ∈ B ∩ St
pt (a), if a /∈ B ∩ St

for every B ∈ BKt+1 , it follows that

E (st+1|st )

= E

⎛
⎝∑

a∈St
(pt+1( f (a)) − 1/m)2

∣∣∣∣ st
⎞
⎠

=
∑
a∈St

∑
U⊂[N ]where

a∈U and |U |=D

Pr
[
Kt+1 ←$ K : U ∈ BKt+1

]
⎛
⎝ ∑

u∈U∩St

pt (u)

|U ∩ St | − 1

m

⎞
⎠

2

≤ (1 + ε)
∑
a∈St

∑
U⊂[N ]where

a∈U and |U |=D

1(N−1
D−1

)
⎛
⎝ ∑

u∈U∩St

pt (u)

|U ∩ St | − 1

m

⎞
⎠

2

.

For a fixed element a ∈ St , we can choose a set U ⊂ [N ] such that a ∈ U and |U | = D by
the following process.

1. Fix i = |(U ∩ St )|, where 1 ≤ i ≤ D.
2. Choose V = (U ∩ St ) \ {a} = {v1, . . . , vi−1}.
3. Choose W = U \ St such that |W | = D − i .
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4. Define U = V ∪ W ∪ {a}.
Since the number of ways of choosing sets W is

( l
D−i

)
, we have

∑
U⊂[N ]where

a∈U and |U |=D

1(N−1
D−1

)
⎛
⎝ ∑

u∈U∩St

pt (u)

|U ∩ St | − 1

m

⎞
⎠

2

=
D∑
i=1

( l
D−i

)
(N−1
D−1

) ∑
{v1,...,vi−1}⊂St\{a}

(
pt (a) + pt (v1) + · · · + pt (vi−1)

i
− 1

m

)2

=
D∑
i=1

( l
D−i

)
(N−1
D−1

) · 1

i2(i − 1)!

×
∑

(v1,...,vi−1)⊂(St\{a})∗(i−1)

((
pt (a) − 1

m

)
+ · · · +

(
pt (vi−1) − 1

m

))2

.

We expand and simplify the inner summation using the following observations.

1. ∑
(v1,...,vi−1)⊂(St\{a})∗(i−1)

(
pt (a) − 1

m

)2

= (m − 1)i−1

(
pt (a) − 1

m

)2
def= A1.

2. For 1 ≤ j ≤ i − 1, since
∑

v∈St
(
pt (v) − 1

m

) = 0,

∑
(v1,...,vi−1)⊂(St\{a})∗(i−1)

(
pt (a) − 1

m

)(
pt (v j ) − 1

m

)

= (m − 2)i−2

(
pt (a) − 1

m

) ∑
v∈St\{a}

(
pt (v) − 1

m

)

= −(m − 2)i−2

(
pt (a) − 1

m

)2
def= A2

where we assume m, i ≥ 2.
3. For 1 ≤ j ≤ i − 1,

∑
(v1,...,vi−1)⊂(St\{a})∗(i−1)

(
pt (v j ) − 1

m

)2

= (m − 2)i−2

∑
v∈St\{a}

(
pt (v) − 1

m

)2

= (m − 2)i−2

(
st −

(
pt (a) − 1

m

)2
)

def= A3

where we assume m, i ≥ 2.
4. For 1 ≤ j < h ≤ i − 1,

∑
(v1,...,vi−1)⊂(St\{a})∗(i−1)

(
pt (v j ) − 1

m

)(
pt (vh) − 1

m

)
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= (m − 3)i−3

⎛
⎜⎝
⎛
⎝ ∑

v∈St\{a}

(
pt (v) − 1

m

)⎞
⎠

2

−
∑

v∈St\{a}

(
pt (v) − 1

m

)2

⎞
⎟⎠

= (m − 3)i−3

⎛
⎝
(
pt (a) − 1

m

)2

−
∑

v∈St\{a}

(
pt (v) − 1

m

)2
⎞
⎠

= (m − 3)i−3

(
2

(
pt (a) − 1

m

)2

− st

)
def= A4

where we assume m, i ≥ 3.

Since ∑
a∈St

A1 = (m − 1)i−1st ,

∑
a∈St

A2 = −(m − 2)i−2st ,

∑
a∈St

A3 = (m − 2)i−2 (mst − st ) = (m − 1)i−1st ,

∑
a∈St

A4 = (m − 3)i−3 (2st − mst ) = −(m − 2)i−2st ,

we have∑
a∈St

(A1 + 2(i − 1)A2 + (i − 1)A3 + (i − 1)(i − 2)A4) = i(m − i)(m − 2)i−2st ,

and hence

E (st+1|st ) = (1 + ε)

D∑
i=1

( l
D−i

)
(N−1
D−1

) · 1

i2(i − 1)!
×
∑
a∈St

(A1 + 2(i − 1)A2 + (i − 1)A3 + (i − 1)(i − 2)A4)

= (1 + ε)

D∑
i=1

( l
D−i

) · i(m − i)(m − 2)i−2

i2(i − 1)!(N−1
D−1

) st

≤ (1 + ε)

D∑
i=1

( l
D−i

)
(m − 1)i−1

i !(N−1
D−1

) st

≤ (1 + ε) Nst
Dm

(7)

where the last inequality follows since by applying Lemma 3 with a = D − 1, b = m − 1
and c = N − 1,

D∑
i=1

( l
D−i

)
(m − 1)i−1

i !(N−1
D−1

) =
a∑
j=0

(c−b
a− j

)
(b) j

( j + 1)!(ca) =
a∑
j=0

(c−b
a− j

)(b
j

)
( j + 1)

(c
a

)

≤ c + 1

(a + 1)(b + 1)
= N

Dm
.
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By taking expectation on both sides of inequality (7), we have

E (st+1) ≤ (1 + ε) N

Dm
E (st ) .

Since E (s0) < 1, we have

E (sr ) ≤
(

(1 + ε) N

Dm

)r

.

Therefore by (4), (5) and (6), we have

AdvncpaPMr (q) = ‖τr − π‖

≤ 1

2

q−1∑
l=0

(NE (sr ))
1
2

≤ N
1
2

2

q−1∑
l=0

(
(1 + ε) N

Dm

) r
2

≤ N
3
2

2D
r
2

q−1∑
l=0

(
1 + ε

1 − l
N

) r
2

· 1

N

≤ N
3
2

2D
r
2

∫ q
N

0

(
1 + ε

1 − x

) r
2

dx

≤ (1 + ε)
r
2 N

r
2+ 1

2

(r − 2)D
r
2 (N − q)

r
2−1

.

By using Lemma 1, we complete the proof of Theorem 1.

4 Almost uniform partitions

In this section, we will describe in detail how keyed partitions can be defined based on binary
Hamming codes, and efficiently implemented within the PM shuffle. We also analyze the
property of the recursive construction given in Sect. 1.1.

4.1 Almost uniform partitions based on binary hamming codes

For each integer s ≥ 2, let Cs be a binary [2s − 1, 2s − s − 1, 3]-Hamming code. Using the
code Cs , we can define a keyed partition (BK )K∈K of {0, 1}n for any n ≥ 2s − 1 where each
block is of size D = 2s . The key space of this keyed partition is defined as

K = {(K1, . . . , KD−1) ∈ ({0, 1}n)D−1 : K1, . . . , KD−1 are linearly independent}
× {0, 1}D−1.

Given a key (K1, . . . , KD−1,b) ∈ K, it determines a subspace of dimension D − 1

V = 〈K1, . . . , KD−1〉.
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If we arbitrarily fix a set of representatives R for the quotient space {0, 1}n/V , then the entire
set {0, 1}n is partitioned as

{0, 1}n =
⋃
a∈R

(a + V ).

Again, we partition each coset a + V as

a + V =
⋃
c∈Cs

{a + (c1 + b1 + e1)K1 + · · · + (cD−1 + bD−1 + eD−1)KD−1 :

wt(e1, . . . , eD−1) ≤ 1}.
where we write c = (c1, . . . , cD−1), b = (b1, . . . , bD−1). So for each codeword c =
(c1, . . . , cD−1) ∈ Cs and the key b = (b1, . . . , bD−1), the element

a + (c1 + b1)K1 + · · · + (cD−1 + bD−1)KD−1 (8)

becomes the center of the block containing the element itself in a sense that the other elements
of the block are obtained by adding Ki , i = 1, . . . , D − 1, to the center. Given a key
(K1, . . . , KD−1,b), the center of each block is uniquely determined.

Let U = {u1, . . . ,uD} ⊂ {0, 1}n be a subset of size D. Suppose that U is a block in
a partition with key (K1, . . . , KD−1,b). Then ui should be the center of a ball for some
i = 1, . . . , D, which is of the form of (8). In this case, we have

(u1 + ui , . . . ,ui−1 + ui ,ui+1 + ui , . . . ,uD + ui ) = (Kg(1), . . . , Kg(D−1))

for some permutation g on [D − 1]. Once i and g are fixed, then V = 〈K1, . . . , KD−1〉
is determined, and hence a representative a such that U ⊂ a + V . If we arbitrarily choose
any codeword c ∈ Cs , then b is uniquely determined by a, c and the center of the ball
ui = a + (c1 + b1)K1 + · · · + (cD−1 + bD−1)KD−1.Since

|K| = 2D−1 ·
D−2∏
i=0

(N − 2i ),

|Cs | = 2D−s−1,

and D = 2s , we have

Pr
[
K ←$ K : U ∈ BK

] ≤ D · (D − 1)! · |Cs |
|K|

= (D − 1)!∏D−2
i=0 (N − 2i )

=
(
D−2∏
i=0

1

N − 2i

)
· (D − 1)!(N−1

D−1

)
(N−1
D−1

)

≤
(
D−2∏
i=0

N

N − 2i

)
· 1(N−1

D−1

)

=
⎛
⎝ 1∏D−2

i=0

(
1 − 2i

N

)
⎞
⎠ · 1(N−1

D−1

)

≤ 1

1 − 2D−1

N

· 1(N−1
D−1

)
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≤
(
1 + 2D

N

)
1(N−1

D−1

)

if N ≥ 2D . Therefore this keyed partition is ε-almost D-uniform for ε = 2D/N .

4.2 Extension of almost uniform partitions using random functions

Let (B′
K )K∈K1 be an ε-almost D-uniform keyed partition of X , let Y be an additive group,

and let ( fK )K∈K2 be a D-wise independent function family from X to Y . Then we can
construct an ε′-almost D-uniform keyed partition (BK )K∈K of X × Y with the key space
being K = K1 × K2, where

ε′ = ε + D2

|X | + εD2

|X | .

Given a key K = (K1, K2) ∈ K1 × K2, the partition keyed with K is defined as

BK = {{(x, fK2(x) + c) : x ∈ B} : B ∈ BK1 , c ∈ Y
}
.

Let U = {(x1, y1), . . . , (xD, yD)} be a subset of X × Y of size D. If there is a collision
at the first position, namely xi = x j for some 1 ≤ i < j ≤ D, then

Pr
[
K ←$ K : U ∈ BK

] = 0.

Otherwise, for M = |X |, M ′ = |Y | and N = |X × Y | = MM ′, we have

Pr
[
K ←$ K : U ∈ BK

] ≤ (1 + ε)(M−1
D−1

) · 1

(M ′)D−1

= (1 + ε)(N−1
D−1

) ·
(N−1
D−1

)
(M−1
D−1

)
(M ′)D−1

≤ (1 + ε)(N−1
D−1

) · MD−1

(M − 1)D−1

= (1 + ε)(N−1
D−1

)
D−1∏
i=1

1

1 − i
M

≤ (1 + ε)(N−1
D−1

) · 1

1 − D2

2M

≤ (1 + ε)(1 + D2

M )(N−1
D−1

)
if D2 ≤ M .

5 Concrete instantiation of the PM shuffle

In this section, we present a concrete instantiation of an n-bit PM shuffle based on a binary
[2s − 1, 2s − s − 1, 3]-Hamming code Cs . Suppose that n ≥ 2s − 1 and let D = 2s .
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A single round of the resulting PM shuffle Given a key

K = (K1, . . . , KD−1,b) ∈ K
then the (D − 1) × n matrix L with the i-th row being Ki , i = 1, . . . , D − 1, can be
transformed into a reduced row echelon form H = (hi j ), where we can also compute and
record a (D − 1) × (D − 1) invertible matrix M = (mi j ) such that

ML = H .

This computation, using the elementary row operations, would not be costly in general,
and might be precomputed prior to encryption of data. Let j1, . . . , jD−1 denote the column
indices of the leading ones in H . So hα, jα = 1 for α = 1, . . . , D − 1.

Given an input u = (u1, . . . , un) ∈ {0, 1}n , the representative of the coset containing u
is defined by setting the elements at the positions of the leading ones to zero. Namely, the
representative a is computed by

a = u + u j1H1 + · · · + u jD−1HD−1

where Hi denotes the i-th row of H . Since

Hi = mi1K1 + · · · + mi,D−1KD−1

for i = 1, . . . , D − 1, we can also compute p1, . . . , pD−1 ∈ {0, 1} such that
a = u + p1K1 + · · · + pD−1KD−1

or equivalently,

u = a + b + (b1 + p1)K1 + · · · + (bD−1 + pD−1)KD−1.

Precisely, for i = 1, . . . , D − 1,

pi = u j1m1,i + u j2m2,i + · · · + u jD−1mD−1,i .

By decoding the word (b1 + p1, . . . , bD−1 + pD−1) using the Hamming code Cs , we can
obtain a codeword c = (c1, . . . , cD−1) and the corresponding error vector

e = (e1, . . . , eD−1) = (b1 + p1 + c1, . . . , bD−1 + pD−1 + cD−1)

such that wt(e) ≤ 1. This step is essentially to compute the syndrome of the word (b1 +
p1, . . . , bD−1 + pD−1) using the parity check matrix of Cs . Then we have

u = a + (b1 + c1 + e1)K1 + · · · + (bD−1 + cD−1 + eD−1)KD−1

and the block containing u is labeled as (a, c) ∈ {0, 1}n ×{0, 1}D−1. The position of one in e
can be encoded as an element of {0, 1}s , with no error being regarded as (0, . . . , 0) ∈ {0, 1}s .

By applying the round permutation σa,c to e,2 a new error vector e′ = (e′
1, . . . , e

′
D−1)

such that wt(e′) ≤ 1 is obtained, and finally the element u is mapped to

u′ = a + (b1 + c1 + e′
1)K1 + · · · + (bD−1 + cD−1 + e′

D−1)KD−1.

Pseudocode. Suppose that the r -round PMr cipher uses an s-bit tweakable permutation

σ :
(
{0, 1}n × {0, 1}D−1 × {1, . . . , r}

)
× {0, 1}s −→ {0, 1}s

2 When we look at the security proof, the permutation family σ do not need to be independent for every
distinct key K ; they are required to be independent only for every block once a partition is fixed.
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Fig. 2 The r -round PM shuffle based on a binary [2s − 1, 2s − s − 1, 3]-Hamming code

as its underlying primitive. Then PMr encrypts w ∈ {0, 1}n using a set of t round keys

(
Kt,1, . . . , Kt,D−1,bt

)
t∈[r ] ∈

(
({0, 1}n)D−1 × {0, 1}D−1

)r

as described in Fig. 2.
Numerical Example. Let s = 3, n = 32 and r = 512. Then one needs a 3-bit block cipher
using 48-bit tweaks for the underlying primitive σ . This small block cipher can be instantiated
using a tweakable block cipher, e.g., Skinny-128-256 [1]. For each round, one makes a single
call to Skinny-128–256 with a fixed plaintext using a 256-bit tweakey containing the 48-bit
tweak, obtaining a 128-bit randomstring, fromwhich one can construct a randompermutation
on 3 bits. A straightforward way of constructing such a permutation is to parse the 128-bit
string into a sequence of eight 16-bit blocks. If there is no collision between the blocks, then
the sequence defines a permutation on {0, 1}3. The probability of collision is upper bounded
by
(8
2

)
/216, which is smaller than 1

211
.

Lines 3 to 6 in the pseudocode can be precomputed for every round t ∈ [r ] if a sufficient
amount of memory is available. Line 11 can be executed using the syndrome decoding: the
generator matrix of the [7, 4, 3]-Hamming code (for s = 3) is given as

G =

⎡
⎢⎢⎣
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

⎤
⎥⎥⎦
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and its parity-check matrix is defined as

G∗ =
⎡
⎣ 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

⎤
⎦ .

By computing (b+p)(G∗)T , one obtains the 3-bit syndrome of b+p, where (G∗)T denotes
the transpose of G∗. The syndrome of b+p specifies the exact position of the single bit error
in b+ p (if any), allowing one to recover the corresponding codeword c and the error vector
e such that c + e = b + p.
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