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Abstract
Permutation codes have received a great attention due to various applications. For different
applications, one needs permutation codes under different metrics. The generalized Cayley
metric was introduced by Chee and Vu (in: 2014 IEEE international symposium on informa-
tion theory, Honolulu, June 29–July 4, 2014, pp 2959–2963, 2014) and this metric includes
several other metrics as special cases. However, the generalized Cayley metric is not easily
computable in general. Therefore the block permutation metric was introduced by Yang et
al. (IEEE Trans Inf Theory 65(8):4746–4763, 2019) as the generalized Cayley metric and
the block permutation metric have the same magnitude. In this paper, by introducing a novel
metric closely related to the block permutation metric, we build a bridge between some
advanced algebraic methods and codes in the block permutation metric. More specifically,
based on some techniques from algebraic function fields originated in Xing (IEEE Trans Inf
Theory 48(11):2995–2997, 2002), we give an algebraic-geometric construction of codes in
the novel metric with reasonably good parameters. By observing a trivial relation between
the novel metric and block permutation metric, we then produce non-systematic codes in
block permutation metric that improve all known results given in Xu et al. (Des Codes
Cryptogr 87(11):2625–2637, 2019) and Yang et al. (2019). More importantly, based on our
non-systematic codes, we provide an explicit and systematic construction of codes in the
block permutation metric which improves the systematic result shown in Yang et al. (2019).
In the end, we demonstrate that our codes in the novel metric itself have reasonably good
parameters by showing that our construction beats the corresponding Gilbert–Varshamov
bound.
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1 Introduction

In the years of 1977–1978, permutation codes were first introduced as a purely combinatorial
problem (see [6, 9]). Recently, due to several applications, the topic of permutation codes
has attracted much attention from both coding scientists and mathematicians (see [4, 5, 7,
10, 16, 18]). Permutation codes under different metrics such as Kendall’s τ -metric, Ulam
metric and Cayley metric have been extensively studied in clouding storage systems, genome
re-sequencing and the rank modulation scheme of flash memories (see [1, 2, 8, 11, 12]).

Chee and Vu [3] first introduced the generalized Cayley metric which includes the afore-
mentioned metrics as special cases. Furthermore, they gave an explicit construction of such
codes based on the interleaving technique. However, due to the fact that the generalized
Cayley metric is difficult to compute, there is large room for improving the codes given in
the construction of [3].

Recently, Yang et al. [22] introduced the block permutation metric, which could be easily
computed and is of the same magnitude order as the generalized Cayley metric. Via the
metric embedding method, they reduced the problem of constructing codes with generalized
Cayley metric to the problem of constructing codes with block permutation metric. In the
meantime, they first gave a non-explicit and non-systematic construction of codes in block
permutation metric. Based on their non-explicit construction, they then gave an explicit and
systematic1 construction of codes in block permutation metric. Moreover, they proved that
both of their proposed codes above in generalized Cayley metric are more rate efficient than
the one constructed in [3].

Very recently, Xu et al. gave a better non-explicit and non-systematic construction of codes
with block permutation metric through an idea for constructing constant weight binary codes
under Hamming metric, as a part of their results (see [21]).

1.1 Our contributions

From the mathematical point of view, the block permutation metric is not natural as the
last pair (n, 1) is not included in the characteristic set making the characteristic set less
symmetric. As a result, this restricts the use of some potential mathematical tools to study
block permutation codes. On the other hand, if we include (n, 1) in the characteristic set,
then the definition would not yield a valid distance as two distinct permutations could have
distance 0. To solve this problem, we can consider a certain quotient group of the symmetric
group Sn (or equivalently a subset of Sn consisting of those elements that belong to distinct
cosets). We refer the reader to Sect. 2 for more details.

In this paper, by including (n, 1) in the characteristic set, we introduce a new metric
which we call the cyclic block permutation metric. This new metric is defined on a quotient
group Sn/〈ω〉, where ω is the cycle (123 · · · n). Under this new metric, we introduce a class
of codes which we call cyclic block permutation codes. Based on some techniques from
algebraic function fields that originated in [19], we give an algebraic-geometric construction

1 For a permutation σ ∈ Sn , denote σ(k) by the permutation in Sk obtained from σ after deleting all the
elements of {k+1, k+2, . . . , n} in σ . Recall that a permutation code C ⊂ Sn is called (n, k) systematic if for
every α ∈ Sk there exists exactly one codeword σ of C such that σ(k) = α.Otherwise, we call the permutation
codes non-systematic (See [2, Section II]).
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Table 1 Several known constructions of the block permutation codes

Source Systematic? Explicit? Length Distance Code size

See [22] ✕ ✕ n ≥ d �d

(
n!/n4d−6

)

See [21] ✕ ✕ n ≥ d �d

(
n!/n2d−2

)

Theorem 1(i) ✕ ✕ n ≥ d �d

(
n!/nd

)

See [22] ✓ ✓ n ≥ d (n − 28d + 28)!

Theorem 1(ii) ✓ ✓ n ≥ d (n − 3d + 1)!

of cyclic block permutation codes with reasonably good parameters. By observing a trivial
relation between the cyclic block permutation metric and the block permutation metric, we
produce non-systematic codes in the block permutation metric that improve all known results
given in [21, 22]. More importantly, based on our non-systematic construction, we gave an
explicit and systematic construction of codes in the block permutationmetric with parameters
better than those given in [22]. Onemajor novelty of this paper is that we build a new carefully
designed metric on symmetric groups (closely related to block permutation metric) so that
an algebraic-geometric method can be modified to construct better block permutation codes.
We present our main contributions of both non-systematic and systematic constructions by a
summarized theorem below. A table summarizing all related works is presented in Table 1.

Theorem 1 (Main results, informal version) (i) A non-explicit construction of block permu-

tation codes C ⊂ Sn with minimum distance at least d and size at least �d

(
n!
nd

)
is given

in Theorem 5 based on our algebraic-geometric-based construction (see Sect.3.2). (i i) We
provide an explicit construction of systematic block permutation codes of length n, distance
d and size (n − 3d + 1)!, whenever n ≥ 37, d ≥ 4 and n ≥ 9d + 1 (see Corollary 2).

Back to the cyclic block permutation codes, to demonstrate that our construction indeed
has reasonably good parameters, we compare our codes with the Gilbert–Varshamov bound
for cyclic block permutation codes. The comparison shows that our codes beat the Gilbert–
Varshamov bound by a multiplicative factor n for constant distance d . It should be mentioned
that to compare with the Gilbert–Varshamov bound, one needs to estimate the size of a ball
under the cyclic block permutation metric. We managed to obtain a lower bound on the size
of a ball and we believe that this is close to the exact size up to a constant factor.

1.2 Outline of this paper

In Sect. 2, we introduce a new metric called the cyclic block permutation metric and study
some properties that are needed in this paper. In Sect. 3, we provide some background on
function fields and give a construction of cyclic block permutation codes from function fields.
In Sect. 4, via a simple relation between the cyclic block permutation metric and the block
permutation metric, we first produce non-systematic block permutation codes which have
the best-known parameters. Then we gave our explicit systematic block permutation codes,
which also have the best-known parameters. In Sect. 5, we show that our algebraic-geometric
construction beats the Gilbert–Varshamov bound. In the last section, we give several possible
future directions for improving both our methods and results.
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2 A newmetric

This section gives a brief introduction to our novel metric. To be noted, this could be seen as
one of the crucial contributions in this paper since it connects codes in the block permutation
metric with the advanced algebraic-geometric methods shown in Sect. 3. As far as we are
concerned, those tricks can’t be applied directly to the construction of codes in the block
permutation metric.

By abuse of notation, we denote by Zn the set {1, 2, . . . , n}. We define the addition ⊕ in
Zn as follows: for any i, j ∈ Zn , define

i ⊕ j =
{
i + j (mod n) ifn � (i ± j)
n ifn | (i ± j)

We define subtraction� inZn similarly. Our new addition/subtraction will be mainly applied
in the followingof this section aswell as in our construction (3.1). In case there is no confusion,
we still use ± to denote addition and subtraction in Zn . Denote by Sn the set of bijections
from Zn to Zn , i.e., Sn is the symmetric group of order n!. For an element σ ∈ Sn , recall that
the characteristic set of σ is defined as follows (see [22])

A(σ ) := {(σ (i), σ (i + 1)) : i ∈ Zn \ {n}}.
The pair (σ (n), σ (n + 1)) = (σ (n), σ (1)) is missing in the set A(σ ). We complete the
characteristic set A(σ ) by including (σ (n), σ (1)). Thus we define the cyclic characteristic
set of σ by

Ac(σ ) = {(σ (i), σ (i + 1)) : i ∈ Zn}.
It is clear that

Ac(σ ) = {(i, π(i)) : i ∈ Zn}
for some π ∈ Sn .
Lemma 1 If

Ac(σ ) = {(i, π(i)) : i ∈ Zn}
for some π ∈ Sn, then π(i) = σ(σ−1(i) + 1) for all i ∈ Zn, i.e.,

Ac(σ ) = {(i, σ (σ−1(i) + 1)) : i ∈ Zn}.
Proof Let σ( j) = i for some j ∈ Zn . Then we must have π(i) = σ( j + 1). As j = σ−1(i),
we have

π(i) = σ( j + 1) = σ(σ−1(i) + 1).

The proof is completed. 	

Throughout this paper, we denote by ε and ω the identity of Sn and the cycle (12 · · · n),

respectively. Then the block permutation distance between two permutations σ, τ ∈ Sn given
by

dB(σ, τ ) := |A(σ ) \ A(τ )| = n − |A(σ ) ∩ A(τ )|
is indeed a distance on Sn (see [22]). Hence, it induces a metric on Sn given by

‖σ‖B := |A(σ ) \ A(ε)| = n − |A(σ ) ∩ A(ε)|.
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However, a similar definition induced by the cyclic characteristic set does not produce a
distance on Sn , i.e.,

dC (σ, τ ) := |Ac(σ ) \ Ac(τ )| = n − |Ac(σ ) ∩ Ac(τ )|
is not a distance on Sn . This is because dC (ω, ε) = 0, but ω 
= ε. To make dC into a distance,
we consider left cosets of 〈ω〉 in Sn .
Lemma 2 Let σ, τ ∈ Sn be two permutations. Then Ac(σ ) = Ac(τ ) if and only if σ, τ belong
to the same left coset of 〈ω〉.
Proof Assume that σ, τ belong to the same left coset of 〈ω〉. Then τ = σωk for some k ≥ 0.
Hence

τ(τ−1(i) + 1) = σωk((σωk)−1(i) + 1) = σωk(ω−kσ−1(i) + 1)

= σωk(σ−1(i) + 1 − k) = σ(σ−1(i) + 1).

This implies that Ac(σ ) = Ac(τ ) by Lemma 1. Now we assume that Ac(σ ) = Ac(τ ). By
Lemma 1, we have τ(τ−1(i)+1) = σ(σ−1(i)+1) for all i ∈ Zn . Let σ( j) = 1 and τ(	) = 1
for some j, 	 ∈ Zn . Then we have

τ(	 + 1) = τ(τ−1(τ (	)) + 1) = τ(τ−1(1) + 1)

= σ(σ−1(1) + 1) = σ(σ−1(σ ( j)) + 1) = σ( j + 1).

Put u = τ(	 + 1) = σ( j + 1). Then we have

τ(	 + 2) = τ(τ−1(τ (	 + 1)) + 1) = τ(τ−1(u) + 1)

= σ(σ−1(u) + 1) = σ(σ−1(σ ( j + 1)) + 1) = σ( j + 2).

Continuing in this fashion, one can prove that τ(	+ i) = σ( j+ i) for all i ∈ Zn . This implies
that τ = σω	− j , i.e., they belong to the same coset. 	


By abuse of notation, we denote by Sn/〈ω〉 the set of left cosets of 〈ω〉. For σ ∈ Sn , we
denote by σ ∈ Sn/〈ω〉 the coset represented by σ . Due to Lemma 2, we can define a map dC
from (Sn/〈ω〉) × (Sn/〈ω〉) to [0, n] by

dC (σ , τ ) := |Ac(σ ) \ Ac(τ )| = n − |Ac(σ ) ∩ Ac(τ )|. (2.1)

Theorem 2 The map dC given in (2.1) is a distance on Sn/〈ω〉.
Proof By the definition of dC and Lemma 2, one immediately deduces that dC (σ , τ ) ≥ 0
and dC (σ , τ ) = 0 if and only if σ = τ , for any σ, τ ∈ Sn/〈ω〉. From (2.1), one has
dC (σ , τ ) = n − |Ac(σ ) ∩ Ac(τ )| = dC (τ , σ ).

It remains to prove the triangle inequality. To do so, let A, B,C be three sets with |A| =
|B| = |C | = n. Then,

n = |B| ≥ |(A ∩ B) ∪ (C ∩ B)| = |A ∩ B| + |C ∩ B| − |A ∩ B ∩ C |
≥ |A ∩ B| + |C ∩ B| − |A ∩ C |

This gives

n − |A ∩ C | ≤ n − |A ∩ B| + n − |C ∩ B|. (2.2)
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Now put A = Ac(σ ), B = Ac(τ ), C = Ac(θ) for any three permutations σ, τ, θ ∈ Sn . It
follows from (2.2) that

dC (σ , θ) ≤ dC (σ , τ ) + dC (τ , θ).

In conclusion, the dC : (Sn/〈ω〉) × (Sn/〈ω〉) → [0, n] is a distance on Sn/〈ω〉. 	

The distance defined in (2.1) is called the cyclic block permutation distance. Now one can
define the cyclic block permutation metric on Sn/〈ω〉:

||σ ||C := |Ac(σ ) \ Ac(ε)| = n − |Ac(σ ) ∩ Ac(ε)|.
Furthermore, we introduce a new class of codes called the cyclic block permutation codes
under the cyclic block permutation metric. A cyclic block permutation code is a subset of
Sn/〈ω〉 equipped with the cyclic block permutation distance. The minimum distance of a
cyclic block permutation code is defined to be the smallest distance between any pair of two
distinct cosets in the code.

3 Construction via rational function fields

In this section, we first introduce some background on function fields that is needed for
the construction of cyclic block permutation codes. Then we present the details of our
construction of cyclic block permutation codes.

3.1 Background on function fields

This section provides some necessary background on algebraic function fields. The reader
may refer to [17] for details. Let p be a rational prime and let x be a transcendental element
over the finite field Fp . Let us consider the rational function field F := Fp(x). For every
irreducible polynomial P(x) ∈ Fp[x], we define a discrete valuation νP which is a map from
Fp[x] toZ∪{∞} given by νP (0) = ∞ and νP ( f ) = a, where f is a nonzero polynomial and
a is the unique nonnegative integer satisfying Pa | f and Pa+1

� f . This map can be extended
to Fp(x) by defining νP ( f /g) = νP ( f )−νP (g) for any two polynomials f , g ∈ Fp[x]with
g 
= 0. Apart from the above finite discrete valuation νP , we have an infinite valuation ν∞
(or νP∞ ) defined by ν∞( f /g) = deg(g) − deg( f ) for any two polynomials f , g ∈ Fp[x]
with g 
= 0. Note that we define deg(0) = ∞. The set of places of F is denoted by PF .

For each discrete valuation νP (P is either a polynomial or P∞ = ∞), by abuse of notation
we still denote by P the set {y ∈ F : νP (y) > 0}. Then the set P is called a place of F . If
P = x − α, then we denote P by Pα . The degree of the place P is defined to be the degree
of the corresponding polynomial P(x). If P is the infinite place ∞, then the degree of ∞ is
defined to be 1. A place of degree 1 is called rational.

Let F ′/F be a finite separable extension. Then for every place of P ′ of F ′, there is only
one place P of F such that P ⊆ P ′. The ramification of P ′ or P ′/P , denoted by e(P ′|P),
is defined to be the number e satisfying νP ′( f ) = e · νP ( f ) for all f ∈ F . There is a close
relation between the ramification index e(P ′|P) and the different exponent d(P ′|P) (see [17,
Definition 3.4.3] for the definition of different exponent). Precisely speaking, it is given by
the following result (see [17, Theorem 3.5.1]).

Lemma 3 Let F ′/F be a finite separable extension of algebraic function fields having the
same constant field K and P ′ | P, then
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i d(P ′|P) ≥ e(P ′|P) − 1 and equality holds if gcd(e(P ′|P), p) = 1;
ii d(P ′|P) ≥ e(P ′|P) if p|e(P ′|P),

The following results play a very important role in our construction.

Lemma 4 (Separable Extension) Let f1(x), . . . , fr (x) ∈ Fp[x] be pairwise coprime irre-
ducible polynomials. Let ei ∈ Z be integers for 1 ≤ i ≤ r . Let z be the rational function∏r

i=1 fi (x)ei . We assume that ei 
≡ 0 (mod p) for at least one i . Denote by I+ and I− the
set {1 ≤ i ≤ r | ei > 0} and the set {1 ≤ i ≤ r | ei < 0}, respectively. Then
(i) The extension Fp(x)/Fp(z) is a finite separable extension.

(ii) Fp(x)/Fp(z) is a separable extension of degree max
{∑

i∈I+ ei ,−∑
j∈I− e j

}
.

(iii) In the extension Fp(x)/Fp(z), the zero of z splits into those places corresponding to
the irreducible polynomials fi (x) with ramification index ei for i ∈ I+, while the pole
of z splits into those places corresponding to the irreducible polynomials f j (x) with
ramification index e j for i ∈ I−.

(iv) The ramification index of the pole of x is
∣∣∣∣∣

r∑
i=1

ei

∣∣∣∣∣ = max

⎧⎨
⎩
∑
i∈I+

ei ,−
∑
j∈I−

e j

⎫⎬
⎭− min

⎧⎨
⎩
∑
i∈I+

ei ,−
∑
j∈I−

e j

⎫⎬
⎭ .

Proof (i) follows from [17, Proposition 3.10.2(a)]. (i i)–(iv) follows from the fact that the
principal divisor of z is

(z) =
(

r∏
i=1

f eii

)
=

r∑
i=1

Pei
i −

(
r∑

i=1

e j

)
P∞,

where Pi is the place of Fp(x) corresponding to fi (x) and P∞ is the pole of x . 	

The genus g(F) of a function field F is an important invariant. We refer to [17, Section

1.5] for the definition of genus. The rational function field always has genus 0. On the other
hand, every non-rational function field has genus greater than 0. The following result is called
the Hurwitz Genus Formula (see [17, Theorem 3.4.13]).

Theorem 3 (Hurwitz Genus Formula) Let F ′/F be a finite separable extension of algebraic
function fields having the same constant field with genus g(F ′) and g(F), respectively, then

2g(F ′) − 2 = [F ′ : F](2g(F) − 2) +
∑
P∈PF

∑
P ′|P

d(P ′|P) deg P ′,

where PF stands for the set of places of F.

For our construction, we need to consider a residue ring and its multiplicative group. Let
f ∈ Fp[x] be an irreducible polynomial of degree m. Consider the residue group

G := (Fp[x]/( f 2))× = {
h̃ ∈ Fp[x]/( f 2)

∣∣ gcd(h, f ) = 1
}
.

Denote by Gp the p-th power of G, i.e., Gp := {a p | a ∈ G}. Then the group structure of
the quotient group G/Gp can be found in [15, Lemma 4.2.5].

Lemma 5 The quotient group is an elementary abelian group of rank m, i.e.,

G/Gp � F
m
p .
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3.2 Construction

In this section, we provide an algebraic-geometric-based construction of cyclic block per-
mutation codes with reasonable parameters. The main idea of our construction was first used
by Xing in [19, 20] for the construction of classical block codes. Later the same idea was
employed by Jin [13] for the construction of permutation codes with Hamming distance. In
this section, we make use of the same idea to construct our cyclic block permutation codes.
In order to apply Xing’s idea, one of our crucial modifications is the key map (3.1) below.
Our Theorem 4 below is influenced by the Theorem 2 in [13]. However, we consider it by
considering ασ(i) instead of αi as showed in (3.1). Note that this step makes our construction
essentially different from what Jin constructed.

For an integer n ≥ 4, we choose the smallest prime number p such that p ≥ n. Therefore,
we can have n different elements α1, · · · , αn ∈ Fp. Next, we choose an arbitrary irreducible
polynomial f (x) ∈ Fp[x] such that deg f = d − 2 with d ≥ 4. Define the map:

�d : Sn/〈ω〉 → G/Gp; σ �→
⎡
⎣ ˜∏
i∈Zn

(
x − ασ(i)

)σ(i+1)

⎤
⎦ , (3.1)

where the group G := (Fp[x]/ f 2)× and [·] stands for an element of G/Gp . It is easy to see
that the map �d is well defined.

In the rest of this section, we will show that every non-empty fiber of the map �d is a
cyclic block permutation code with minimum distance at least d .

Theorem 4 For any fixed [̃y] ∈ G/Gp, any non-empty set �−1
d ([̃y]) ⊂ Sn/〈ω〉 is a cyclic

block permutation code with minimum distance at least d.

Proof Let σ, τ be two different elements in �−1
d ([̃y]). By definition, one has �d(σ ) =

�d(τ ) = [̃y], i.e.,
[

˜
(∏n

i=1(x−ασ(i))
σ(i+1)

∏n
i=1(x−ατ(i))

τ(i+1)

)]
= [̃1]. Therefore, there are two polynomials

h, g ∈ Fp[x] with gcd(hg, f ) = 1 such that

˜(∏n
i=1

(
x − ασ(i)

)σ(i+1)

∏n
i=1

(
x − ατ(i)

)τ(i+1)

)
=

˜
(
g(x)

h(x)

)p

.

This is equivalent to

h(x)p
∏n

i=1 y
(
x − ασ(i)

)σ(i+1)

g(x)p
∏n

i=1

(
x − ατ(i)

)τ(i+1)
≡ 1 mod f (x)2. (3.2)

We denote by z the function

z := h(x)p
∏n

i=1

(
x − ασ(i)

)σ(i+1)

g(x)p
∏n

i=1

(
x − ατ(i)

)τ(i+1)
.

Assume that Ac(σ ) = {(i, π(i)) | i ∈ Zn} for someπ ∈ Sn and Ac(τ ) = {(i, ψ(i)) | i ∈ Zn}
for some ψ ∈ Sn . Put S = {i ∈ Zn | π(i) > ψ(i)} and T = {i ∈ Zn | ψ(i) > π(i)}. Then
dC (σ , τ ) = |S| + |T | and z can be rewritten as

z =
∏r

k=1 hk(x)
pak

∏r
	=1 g	(x)pb	

×
∏

i∈S(x − αi )
ui

∏
j∈T (x − α j )

v j
, (3.3)

123



Block permutation codes & a newmetric on symmetric groups 2263

where hk(x), g	(x) are irreducible polynomials and ak, bl , ui , v j are positive integers satis-
fying 1 ≤ ui , vi ≤ n−1 ≤ p−1. By Lemma 4, Fp(x)/Fp(z) is separable. Let us summarize
a few facts listed below.

(a) S, T are two disjoint non-empty subsets of Zn;
(b) dC (σ , τ ) = |S| + |T |;
(c)

∑
i∈S ui −∑

j∈T v j = 0;
(d) The extension degree is

[Fp(x) : Fp(z)] = max

{ r∑
k=1

pak deg hk +
∑
i∈S

ui ,
t∑

	=1

pb	 deg g	 +
∑
j∈T

v j

}
.

Without loss of generality, we may assume that
∑r

k=1 pak deg hk + ∑
i∈S ui ≥∑t

	=1 pb	 deg g	 +∑
j∈T v j . In order to apply the Hurwitz Genus Formula, we have to

analyze ramification indices of places. By Lemma 4, we have the following facts:

(e) The ramification index of the pole of x is
∣∣∣∣∣

r∑
k=1

pak deg hk −
t∑

	=1

pb	 deg g	

∣∣∣∣∣ =
r∑

k=1

pak deg hk −
t∑

	=1

pb	 deg g	.

(f) The ramification index of the place corresponding to hk(x) is pak and the ramification
index of the place corresponding to g	(x) is pb	.

(g) The ramification index of x − αi for i ∈ S is ui and the ramification index x − αi for
i ∈ T is vi .

(h) As f (x)2 divides z − 1, the ramification index of the place corresponding to f (x) is
at least 2.

Now we apply the Hurwitz Genus Formula for the extension as well as Lemma 3.

−2 = 2g(Fp(x)) − 2 = (2g(Fp(z)) − 2)[Fp(x) : Fp(z)] +
∑

P∈PFp (z)

∑
P ′|P

d(P ′|P) deg P ′

≥ −2

(
r∑

k=1

pak deg hk +
∑
i∈S

ui

)
+
(

r∑
k=1

pak deg hk −
t∑

	=1

pb	 deg g	

)

+
r∑

k=1

pak deg hk +
t∑

	=1

pb	 deg g	 +
∑
i∈S

(ui − 1) +
∑
j∈T

(v j − 1) + deg( f )

= −|S| − |T | + d − 2 = −dC (σ , τ ) + d − 2.

This gives dC (σ , τ ) ≥ d and the proof is completed. 	

Let MC (n, d) denote the maximum size of a cyclic block permutation code in Sn/〈ω〉 of
minimum distance at least d .

Corollary 1 For any n, d ≥ 4, we have

MC (n, d) ≥ (n − 1)!
pd−2 .

Proof By the Pigeonhole Principle and Theorem 4, there exists an element [ỹ0] ∈ G/Gp

such that the size �−1
d ([ỹ0]) is at least

|Sn/〈ω〉|
|G/Gp| = (n − 1)!

pd−2 .
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By Theorem 4,�−1
d ([ỹ0]) is a cyclic block permutation code in Sn/〈ω〉 of minimum distance

at least d . 	


4 Applications to block permutation codes

In this section, we first show that our cyclic block permutation codes constructed in Subsect.
3.2 can be easily converted into a class of non-systematic block permutation codes. Fur-
thermore, block permutation codes obtained from our construction improve the best-known
non-systematic construction.

Secondly, we provide an explicit systematic construction of block permutation codes
based on our improved non-systematic construction. The main idea of our construction came
from [22]. Moreover, our explicit systematic construction largely improves the best-known
parameters.

4.1 Non-systematic construction

In this paper, if we can partition Sn into disjoint sets, each is a block permutation code with
distance at least d , we call this a non-systematic construction and codes obtained in this way
are called non-systematic block permutation codes.

In this section, via our construction given in Subsect. 3.2, we provide a construction of
non-systematic block permutation codes by partitioning Sn into disjoint block permutation
codes, each with minimum distance at least d .

Theorem 5 For any n, d ≥ 4 and a prime p ∈ [n, 2n), there exists a map

∇(p,d) : Sn → F
d−1
p × Zn,

where we can partition Sn into at most n × pd−1 disjoint block permutation codes by

{∇−1
(p,d) ((α, s)) | (α, s) ∈ F

d−1
p × Zn,∇−1

(p,d) ((α, s)) 
= ∅}, (4.1)

each with minimum distance at least d.

Proof In Subsect. 3.2, we replace d by d + 1. Recall our key map �d+1 defined in (3.1).
Now we define

�̃d+1 : Sn/〈ω〉 → F
d−1
p ; �̃d+1 := φ ◦ �d+1,

where φ : G/Gp → F
d−1
p is a natural group isomorphism given by Lemma 5. Then, one

immediately obtains a partition of Sn/〈ω〉 given by

{�̃d+1
−1

(α) | α ∈ F
d−1
p , �̃d+1

−1
(α) 
= ∅}.

Theorem 4 shows that every non-empty subset �̃d+1
−1

(α) ⊂ Sn/〈ω〉 is a cyclic block
permutation code with minimum distance at least d + 1.

Now we collect only one element from each coset in Sn/〈ω〉 to form an embedding map
from Sn/〈ω〉 to Sn . Repeating this process n times, one can easily find n embedding maps
{is}ns=1 from Sn/〈ω〉 to Sn , which exactly partition off Sn into n parts by {is(Sn/〈ω〉) ⊂ Sn |
1 ≤ s ≤ n}.
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The definition of {is}ns=1 implies that for any σ ∈ Sn , there’s a unique sσ with 1 ≤ sσ ≤ n
such that isσ (σ ) = σ . Therefore, we can define our desire map ∇(p,d) by

∇(p,d) : Sn → F
d−1
p × Zn; ∇(p,d)(σ ) �→ (�̃d+1(σ ), sσ ).

It is easy to see that the above map is well defined.
Finally, to finish the proof, we only need to show that any non-empty subset∇−1

(p,d) ((α, s))

⊂ Sn is a blockpermutation codewithminimumdistance at leastd ,where (α, s) ∈ F
d−1
p ×Zn .

Recalling the definition of dB and dC , we have the following relation between two distances:

dB(σ, τ ) + 1 ≥ dC (σ , τ ) ≥ dB(σ, τ ) − 1, (4.2)

for any σ, τ ∈ Sn . In the meantime, by definition, we can conclude ∇−1
(p,d) ((α, s)) =

is
(
�̃d+1

−1
(α)

)
. Therefore, combining the inequality (4.2) and the fact that �̃d+1

−1
(α)

has minimum distance at least d + 1, we deduce that any non-empty subset ∇−1
(p,d) ((α, s))

is a block permutation code with minimum distance at least d , which completes the proof. 	

Remark 1 By the Pigeonhole Principle and Theorem 5, there exists at least one element
(α0, s0) ∈ F

d−1
p ×Zn, such that the size of our block permutation code∇−1

(p,d) ((α0, s0)) ⊂ Sn
is at least

|Sn |
|Fd−1

p × Zn |
= (n − 1)!

pd−1 = �d

(
n!
nd

)
,

where ∇−1
(p,d) ((α0, s0)) has minimum distance at least d .

Remark 2 Recall in [22], Yang et al. first gave a non-explicit and non-systematic construction

of a block permutation code of distance d and size n!
q2d−3 = �d

(
n!

n4d−6

)
, where n(n − 1) ≤

q ≤ 2n(n − 1) is a prime number. Xu et al. [21] improved this result by showing the

existence of a block permutation code of distance d and size n!
qd−1 = �d

(
n!

n2d−2

)
, where

n(n−1)/2 ≤ q ≤ n(n−1) is a prime. As shown in Remark 1, the size of our construction is

�d

(
n!
nd

)
, which improves the parameters of the above two non-systematic block permutation

codes.

4.2 Systematic construction

Unfortunately, the use of the Pigeonhole Principle is inevitable in all known constructions
of non-systematic block permutation codes including ours, which makes the codes non-
explicit. However, Yang et al. [22] gave an explicit systematic construction based on their
non-systematic codes. In fact, as demonstrated in [22], once we have a partition of block
permutation codes, there is a way of constructing explicit systematic block permutation
codes.

In this section, using the same idea, we propose an explicit systematic construction of
block permutation codes with parameters better than the best-known ones. To demonstrate
our construction, we need to give some necessary definitions and lemmas which can be found
in [22]. By abuse of notation, in this section we denote a permutation σ ∈ Sn by the vector
(σ (1), σ (2), . . . , σ (n)) (note that this is not a cycle).
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Definition 1 For any permutation σ ∈ Sn and an integer 1 ≤ s ≤ n, we define the extended
permutation E(σ, s) ∈ S(n+1) by

E(σ, s) := (σ (1), . . . , σ (k), n + 1, σ (k + 1), . . . , σ (n)),

where k = σ−1(s).Furthermore, consider a sequence S = (s1, s2, . . . , sK ) ,where 1 ≤ sm ≤
n for all 1 ≤ m ≤ K . Similarly, we define the extension E(σ, S) to be the permutation in
S(n+K ) derived from inserting the elements n+1, . . . , n+ K sequentially after the elements
s1, · · · , sK in σ, i.e.,

E(σ, S) := E
(
E
(· · · E (E (σ, s1) , s2) · · · , s(K−1)

)
, sK

)
.

Remark 3 The elements s1, · · · , sK in the sequence S are not necessarily distinct. If different
symbols are sequentially inserted after the same element, then they are all placed right after
this element in descending order, as shown in the example below.

Example 1 Suppose σ = (3, 2, 5, 4, 1, 8, 7, 6) ∈ S8 and S = (8, 2, 4, 4, 4), then

E(σ, S) = (3, 2, 10, 5, 4, 13, 12, 11, 1, 8, 9, 7, 6) ∈ S13.

Lemma 6 (See [22, Lemma 10]) For any two permutations σ, τ ∈ Sn and a sequence S =
(s1, s2, · · · , sK ), where 1 ≤ sm ≤ n for all 1 ≤ m ≤ K , we have

dB(E(σ, S), E(τ, S)) = dB(σ, τ ).

Definition 2 For any two sequences S1, S2 of integers with length K , where Si :=
(si,1, · · · , si,K ) for i = 1, 2, we define the Hamming set of S1 with respect to S2 by

H(S1, S2) := {s1,m | s1,m 
= s2,m, 1 ≤ m ≤ K }.
Lemma 7 (See [22, Lemma 11]) Let σ, τ ∈ Sn and sequences Si = (si,1, si,2, · · · , si,K ),

where 1 ≤ si,m ≤ n for all 1 ≤ m ≤ K and i = 1, 2, then we have

dB(E(σ, S1), E(τ, S2)) ≥ |H(S1, S2)|.
Definition 3 A subset A(n, K , d) ⊂ Z

K
n is called a d-auxiliary set of length K and range n

if for any two different elements S1, S2 ∈ A(n, K , d), |H(S1, S2)| ≥ d holds.

Remark 4 In [22], their definitionA(n, K , t) refers to the set A(n, K , 2t+1) in our definition
above.

Combining the above definitions and lemmas, we then demonstrate how a partition of block
permutation codes transforms into systematic block permutation codes below.

Lemma 8 For any n, d ≥ 4 and a prime p ∈ [n, 2n), we consider the map ∇(p,d) : Sn →
F
d−1
p ×Zn shown in Theorem 5. Let A(n, K , d) be a d-auxiliary set of length K and range n

such that |A(n, K , d)| ≥ npd−1 and we define an arbitrary injection mapψ : F
d−1
p ×Zn ↪→

A(n, K , d). Set N = n + K, then the set

Bsys(N , d) := {E (σ,ψ ◦ ∇(p,d)(σ )
) | σ ∈ Sn} ⊂ SN

is a systematic block permutation code of distance d and size (N − K )!.
Proof By the choice of E(σ, S), it is clear thatBsys(N , d) is systematic. For any two different
permutations σ, τ ∈ Sn , set α1 := ∇(p,d)(σ ) and α2 := ∇(p,d)(τ ). Consider the following
two cases:
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(1) α1 = α2, Then by Theorem 5 and Lemma 6,

dB(E(σ, ψ(α1)), E(τ, ψ(α2)) = dB(σ, τ ) ≥ d.

(2) α1 
= α2, i.e., ψ(α1) 
= ψ(α2), Then by Lemma 7 and Definition 3,

dB(E(σ, ψ(α1)), E(τ, ψ(α2)) ≥ |H(ψ(α1), ψ(α2))| ≥ d.

In conclusion, Bsys(N , d) is indeed a systematic block permutation code of distance d and
|Bsys(N , d)| = n! = (N − K )!. 	


Finally, to explicitly construct systematic block permutation codes, by Lemma 8, we only
need to give an explicit construction of d-auxiliary sets A(n, K , d). Recall in [22], setting d as
2t+1, they gave an explicit construction of d-auxiliary sets A(n, 28d−28, d) = A(n, 56t, t)
with cardinality q2d−3, when q is a prime number satisfying n(n − 1) ≤ q ≤ 2n(n − 1).

We nowprovide an explicit construction of A(n, K , d) usingReed–Solomon codes,whose
parameters are better than those codes used in [22].

Theorem 6 Set n ≥ 12, d ≥ 4 with n ≥ 6d and two primes p ∈ [n, 2n), q ∈ [� n
2 �, n]. We

view elements in F
3d−1
q naturally as elements in Z

3d−1
n and RSq [a, b, c] ⊂ F

a
q as a q-ary

Reed–Solomon code of length a, dimension b and minimum Hamming distance c. Then, the
set

A(n, 3d − 1, d) := RSq [3d − 1, 2d, d] ⊂ Z
3d−1
n

is an explicit d-auxiliary set of length 3d − 1, range n and size at least npd−1.

Proof By definition, we have dH (c1, c2) = |H(c1, c2)|, where dH is the Hamming distance
of linear codes and ci = (ci,1, · · · , ci,(3d−1)) (i = 1, 2), where 1 ≤ ci,m ≤ q for all
1 ≤ m ≤ 3d − 1. Since q ≥ n

2 − 1 ≥ 3d − 1 and Reed–Solomon codes are MDS codes, we
can guarantee the explicit existence of RSq [3d − 1, 2d, d]. Combining the above two facts,
we may conclude A(n, 3d − 1, d) as a d-auxiliary set of length 3d − 1 and range n. Finally,
since n ≥ 12 and 4q + 4 ≥ p, we have

|A(n, 3d − 1, d)| = |RSq [3d − 1, 2d, d]| = q2d ≥ (4q + 4)d ≥ pd ≥ npd−1.

	


Corollary 2 There exists a class of explicit systematic block permutation codes of length N,
distance d and size (N − 3d + 1)!, whenever N ≥ 37, d ≥ 4 and N ≥ 9d + 1.

Proof Put K = 3d − 1. Combining Lemma 8 and Theorem 6, one immediately obtains this
result. 	


Remark 5 Recall in [22], setting d as 2t + 1, Yang et al. gave an explicit construction of
CsysB (N − 56t, 56t, t) for some suitable N , d as one of their main results, which yields
systematic block permutation codes of length N , distance d and size (N − 28d + 28)!.
Apparently our result in Corollary 2 improves the one given in [22]. Moreover, via a metric
embedding method, our result implies an explicit construction of codes in the generalized
Cayley metric better than the results given in [3, 22].
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5 The Gilbert–Varshamov bound

The Gilbert–Varshamov bound is one of the most important bounds in coding theory and
in the geometry of numbers. It usually serves as the benchmark for a good code. Namely, a
good code should achieve or almost achieve the Gilbert–Varshamov bound.

Generally speaking, as long as there is a distance, one can deduce the Gilbert–Varshamov
bound with respect to this distance. To have a precise statement on the Gilbert–Varshamov
bound for a distance, let us assume that S is a finite set. Assume that we have a distance d
on S. Define the ball of center u and radius r by

BS(u, r) := {v ∈ S : d(u, v) ≤ r}.
Assume that the size V (r) of BS(u, r) is independent of the center u and only dependent on
the radius r , then the Gilbert–Varshamov bound says that there is a subset C ⊆ S of size at
least M such that d(a, b) ≥ d for all a 
= b ∈ C , where

M =
⌈ |S|
V (d − 1)

⌉
. (5.1)

Now we return to our cyclic block permutation distance dC on Sn/〈ω〉. We define the
sphere

SPc(σ , r) := {τ ∈ Sn/〈ω〉 : dC (σ , τ ) = r}.

Lemma 9 For σ ∈ Sn, themap�: SPc(σ , r) → SPc(ε, r) given by τ �→ σ−1τ is a bijection.

Proof τ ∈ SPc(σ , r) if and only if n − |Ac(σ ) ∩ Ac(τ )| = r , i.e., |Ac(σ ) ∩ Ac(τ )| = n − r .
By Lemma 1, we have

|Ac(σ ) ∩ Ac(τ )| = |{i ∈ Zn : σ(σ−1(i) + 1) = τ(τ−1(i) + 1)}|
= |{i ∈ Zn : σ−1(i) + 1 = σ−1τ(τ−1(σ (σ−1(i)) + 1))}|
= |{i ∈ Zn : σ−1(i) + 1 = σ−1τ((σ−1τ)−1(σ−1(i)) + 1)}|
= |{ j ∈ Zn : j + 1 = σ−1τ((σ−1τ)−1( j) + 1)}| (replace σ−1(i) by j)

= |Ac(σ
−1τ) ∩ Ac(ε)| = n − r .

This implies that σ−1τ belongs to SPc(ε, r). Hence, the map � is well defined. It is clear
that � is injective. For any δ ∈ SPc(ε, r), we have |Ac(ε) ∩ Ac(δ)| = n − r . In the same
manner, we can show that |Ac(σ )∩ Ac(σδ)| = n− r , i.e., σδ ∈ SPc(σ , r). This implies that
� is surjective. 	

By Lemma 9, we know that the size of a sphere is independent of the center. Thus, the size
of the ball Bc(σ , r) = ⋃r

i=0 SPc(σ , i) is also independent of the center σ . By the above
Gilbert–Varshamov bound, one immediately obtains the following result.

Corollary 3 One has

MC (n, d) ≥ MGV (n, d) := (n − 1)!
|Bc(σ , d − 1)| . (5.2)

The inequality (5.2) is called the Gilbert–Varshamov lower bound for cyclic block permuta-
tion codes. In the rest of this section,we show that our algebraic-geometric-based construction
given in Sect. 3 breaks the Gilbert–Varshamov bound for constant distance d . One way to
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achieve this goal is to determine the exact size of the ball Bc(σ , d − 1). We note that the
exact size of a ball under block permutation distance was well-studied in [14]. Nevertheless,
calculating the exact volume of Bc(σ , d−1) is interesting for further study. For our purpose,
it is sufficient to give a good lower bound on the size of the ball Bc(σ , d − 1).

Lemma 10 For d ≥ 3, one has

|SPc(ε, d)| ≥
(
n

d

)
.

Proof To prove this lemma, it is sufficient to show that (i) for any d positive numbers 1 ≤
j1 < j2 < · · · < jd ≤ n with J := { j1, j2, . . . , jd} ⊂ {1, 2, 3, . . . , n}, one can find at least
one permutation σ such that Ac(ε)\Ac(σ ) = DJ := {( js, js + 1) : 1 ≤ s ≤ d}; (ii) these
permutations belong to the pairwise distinct left cosets of 〈ω〉.

Let us call an element in {1, 2, . . . , n} a point. Given DJ , we characterize points into the
following four types

• Type I: Point i is called Type I if (i − 1, i), (i, i + 1) /∈ Ac(ε) \ DJ ;
• Type II: Point i is called Type II if (i − 1, i), (i, i + 1) ∈ Ac(ε) \ DJ ;
• Type III: Point i is called Type III if (i − 1, i) ∈ Ac(ε)\DJ and (i, i + 1) /∈ Ac(ε)\DJ ;
• Type IV: Point i is called Type IV if (i, i + 1) ∈ Ac(ε)\DJ and (i − 1, i) /∈ Ac(ε)\DJ .

It is not hard to see that points js (1 ≤ s ≤ n) is either Type I or Type III.
For a point js of Type III, we observe that one always has a unique point is of Type IV

such that

H(is , js ) := {(is, is + 1), (is + 1, is + 2), · · · , ( js − 1, js)} ⊂ Ac(ε) \ DJ .

Define an ordered set

Fjs =
{ { js}, js is Type I ;

{is, is + 1, · · · , js − 1, js}, js is type III.

It is clear that the sets {Fjs }ds=1 form a partition of {1, 2, . . . , n}. We further define a set of
pairs

G js , jt :=

⎧
⎪⎪⎨
⎪⎪⎩

{( js, jt )}, js, jt are both Type I;
{( js, it )} ∪ H(it , jt ), js is Type I , jt is Type III;
H(is , js ) ∪ {( js, jt )}, js is Type III, jt is Type I;
H(is , js ) ∪ {( js, it )} ∪ H(it , jt ), js, jt are both Type III.

Define σ to be the permutation
(
Fj1 , Fjd , Fj(d−1) , · · · , Fj2

) ∈ Sn , i.e, 1 is mapped to the
first element of Fj1 (note that Fj1 is an ordered set), 2 is mapped to the second element of
Fj1 , and so on. Then we have

Ac(σ ) = G j1, jd ∪ G jd , j(d−1) ∪ G j(d−1), j(d−2) ∪ G j(d−2), j(d−3) ∪ · · · ∪ G j2, j1 . (5.3)

Since Ac(σ ) does not contain G js , j(s+1) for all 1 ≤ s ≤ d , we have Ac(ε)\Ac(σ ) = DJ .
Finally, let J ′ be a subset of d elements that is different from J . Assume that σ ′ is obtained

in the same way from J ′. As Ac(σ )\Ac(ε) = DJ 
= DJ ′ = Ac(σ
′)\Ac(ε), we must have

Ac(σ ) 
= Ac(σ
′), i.e., σ ′ 
= σ . This completes the proof. 	


Using the lower bound given in Lemma 10, we can show that our cyclic block permutation
codes given in Sect. 3 break the Gilbert–Varshamov bound for constant number d .
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Corollary 4 For a constant number d ≥ 4, we have

MC (n, d)

MGV (n, d)
= �d(n).

Proof By Corollary 1 and Lemma 10, we have

MC (n, d)

MGV (n, d)
= V (d − 1)

pd−2 = |⋃d−1
i=0 SPc(ε, i)|

pd−2 ≥ |SPc(ε, d − 1)|
pd−2 ≥

( n
d−1

)

(2n)d−2 = �d(n),

where p is the minimum prime number larger than n. Note that we applied the famous
Bertrand–Chebyshev theorem2 here, since p above is the least prime no less than n and there
must exist at least one prime number between n and 2n. 	


6 Future directions

In this section, we give some possible future directions of improving the constructions of
permutation codes under several related metrics. For the block permutation metric dB , we
have already known that our new metric dC (cyclic block permutation metic) satisfies that
dB(σ, τ )+1 ≥ dC (σ , τ ) ≥ dB(σ, τ )−1. However, we have not studied the exact relationship
between these two metrics. A further study for this relationship is meaningful since it may
directly help us to gain an even better constructions of block permutation codes using our
modified algebraic-geometric method. Also, we still curious about whether our methods in
this paper can be transferred into constructing better permutation codes under other related
metrics (e.g. Generalized Kendall’s τ -metric). Last but not least, in Sect. 5, a rough estima-
tion of a related combinatorial problem is given in Lemma 10. However, can we solve this
combinatorial problem with an exact formula?
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