
Designs, Codes and Cryptography (2023) 91:2201–2212
https://doi.org/10.1007/s10623-023-01195-8

Unconditionally secure short key ciphers based on data
compression and randomization

Boris Ryabko1

Received: 30 July 2022 / Revised: 2 February 2023 / Accepted: 3 February 2023 /
Published online: 27 February 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
We consider the problem of constructing an unconditionally secure cipher for the case when
the key length is less than the length of the encryptedmessage. (Unconditional securitymeans
that a computationally unbounded adversary cannot obtain information about the encrypted
message without the key). In this article, we propose a cipher based on data compression
and randomisation in combination with entropically-secure encryption and apply it to the
following two cases: (i) the statistics of encrypted messages are known; and (ii) statistics are
unknown, but messages are generated by a Markov chain with known memory (or connec-
tivity). In both cases, the length of the secret key is negligible compared to the length of the
message.

Keywords Information theory · Cryptography · Perfect security · Entropic security ·
Entropically-secure symmetric encryption scheme · Indistinguishability · Data
compression · Randomisation · Shannon code · Fitingof code

Mathematics Subject Classification 94A60

1 Introduction

The concept of unconditional secrecy was presented in the seminal article by Shannon,
where he also showed that a one-time pad (or Vernam cipher) is unconditionally secure
[23]. In particular, unconditional secrecy means that a computationally unbounded adversary
cannot obtain any information about an encrypted message without a key. It is clear that
this property is highly desirable, but if the one-time pad is used to encrypt a message, the
length of the key used must be at least the length of the message (or, more precisely, its
Shannon entropy). This requirement is too strict for many applications, and there are many
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approaches for creating secure ciphers with short or low entropy keys, see [3, 5, 6, 11, 12, 15,
17, 18]. One such approach was suggested by Shannon in [23], who described ideal cipher
systems where a computationally unbounded adversary “does not obtain a unique solution to
the cipher but is left with many alternatives, all of reasonable probability”. He built a theory
of ideal ciphers and described some of them for the case when the probability distribution of
encrypted messages is known. Later, ideal systems were proposed for the case of unknown
statistics, see [17].

An interesting newway of building secure systemswith short keys is the so-called entropic
security, proposed by Russell and Wang [15] and developed by Dodis and Smith [5]. This
cipher uses the entropy of the original message in such a way that the key length should be
roughly the difference between the message length and its min-entropy (the exact definition
will be given below). (Note that the use of the entropy message to improve the strength of
the cipher was also used in [17, 18].)

The notion of an entropically-secure symmetric encryption scheme is extremely important
for cryptography because one can construct this scheme with a key shorter than the length
of the input. In a sense, this circumventins Shannon’s lower bound on the key length.

Another way to construct a short key cipher is the so-called honey cipher, proposed by
Juels and Ristenpart [12] and developed by Jaeger et al. [11]. In some ways, the honey cipher
is like the ideal cipher: a computationally unlimited adversary has many possible highly
probable decryptions. Li et al. [14] developed and combined the ideas of the honey cipher
and the entropically-secure ciphers to create a new class of easily implementable short key
codes. In a sense, the idea of preprocessing an originalmessage in order to increase its entropy
is being developed and widely used in their methods.

Data compression and randomization are two methods of preprocessing the original mes-
sage that have been used for centuries in cryptography [10, 23]. Moreover, homophonic
coding can be used to compress and randomize together [10, 20]. The goal of both trans-
formations is to make the probability distribution of the original messages closer to the
uniform one (see an overview in [1]). Interestingly, both transformations have been success-
fully applied to some cryptographic problems: they were used to extract randomness [7, 21,
24] and to build an ideal steganographic system [22].

In this article, we combine entropically-secure encryptionwith the suggested compression
and data randomization techniques and apply it to the following two cases: (i) the statistics of
encrypted messages are known; and (ii) statistics are unknown, but messages are generated
by a Markov chain with known memory (or connectivity). In the first case the key length is
a constant, whereas in the second case it is O(log n), where n is the length of the message.
(But in both cases, the length of the secret key depends on the required security level). This
makes it possible to apply an entropically-secure cipher so that the key length is independent
of the entropy or the length of the message.

2 Definitions and preliminaries

We consider the problem of symmetric encryption, when there are two parties Alice and
Bob and Alice wants to securely transmit a message M to Bob, where M ∈ {0, 1}n , n ≥ 1,
obeys a certain probability distribution p defined on the set {0, 1}n . Alice and Bob have a
shared secret key K = K1 . . . Kk , which can be much shorter than the length of M , that
is k � n. Alice encrypts M with K and possibly some random bits, and obtains the word
cipher(M, K ). Then she sends it to Bob, who decrypts the received message and obtains
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M . In addition, there is a computationally unlimited adversary Eve who does not know M
and K , but knows the probability distribution p and wants to find some information about
M based on the encrypted message.

Let � be a finite alphabet and P be a set of probability distributions defined on A = �n

where n ≥ 1. By definition, the min-entropy of p ∈ P is as follows

hmin(p) = − log max
a∈A

p(a) . (1)

(Here and below log = log2 .)
In this article we will consider ciphers that can be applied to messages obeying not just

one particular distribution, but any distribution from some family. We will therefore define
the following two families of probability distributions: Pmin(h) = {p : hmin(p) ≥ h}, and
Pmarkov(m) which contains stationary ergodic Markov chains with memory, or connectivity,
m,m ≥ 0. (The definition can be found in [2, 19] and Appendix).

Russell and Wang [15] suggested a definition of the entropic security which was gener-
alised by Dodis and Smith [5] and can be formulated as follows: A probabilistic map Y is
said to hide all functions on �n with leakage ε if, for every adversary B, there exists some
adversary B̂ (who does not know Y (M)) such that for any distribution from P, all functions
f , and any M ∈ �n

| Pr{B(Y (M)) = f (M)} − Pr{B̂( ) = f (M)} | ≤ ε. (2)

(note that B̂ does notknow Y (M) and, in fact, she guesses the meaning of the function
f (M).) In what follows the probabilistic map Y will be cipher(M, K ) and f is a map
f : �n → {0, 1}∗.
Definition 1 The map Y () is called ε-entropically secure for some family of probability
distributions P if Y () hides all functions on �n with leakage of ε for any p ∈ P.

Note, that in a sense the Definition 1 is a generalisation of the Shannon notation of the
perfect security. Namely, if we take ε = 0 and Y = cipher(M, K ) and f (x) = x , we obtain
that for any M

|Pr{B(cipher(M, K )) = M} − Pr{B̂( ) = M} | = 0

(So, B and B̂ obtained the same result, but B estimates the probability based on
cipher(M, K ), whereas B̂ does it without knowledge of cipher(M, K )). So, the entropic
security (2) can be considered as a generalisation of the Shannon’s perfect secrecy.

The following theorem of Dodis and Smith [5] is a generalisation of the results of Russell
and Wang [15].

Theorem 1 [5] Let there be an alphabet {0, 1}n, n > 0, with a probability distribution p
whose min-entropy is not less then h (that is, p ∈ Pmin (h) with � = {0, 1}). Then there
exists an efficient ε-entropically secure cipher with the k-bit key where

k = n − h + 2log(1/ε) + 2. (3)

Let’s denote this cipher as cipherrw−ds ( A description of one of these ciphers from [5] is
given in the Appendix). It is important to note that one cipher is applied for any distribution
whose min-entropy is not greater than h.

Another important notion is that of indistinguishability:
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Definition 2 [5] A randomised map Y : {0, 1}n → {0, 1}n, n ≥ 1, is ε-indistinguishable for
some family of destributions P if there is a probability distribution G on {0, 1}n such that for
every probability distribution p ∈ P we have

SD(Y (M),G) ≤ ε,

where for two distributions A, B

SD(A, B) = 1

2

∑

M∈M
|Pr{A = M} − Pr{B = M}| .

Dodis and Smith [5] showed that entropic security and indistinguishability are deeply
connected for distributions with bounded min-entropy:

Theorem 2 [5] Let Y be a randomised map with inputs of length n bits. Then

1. ε-entropic security for Pmin (t) implies 4ε-indistinguishability for Pmin (t − 1) and
2. ε-indistinguishability for Pmin (t − 2) implies ε/8 -entropic security for Pmin (t − 2),

when 2 log(1/ε) + 1 ≥ t .

It is worth noting that the same cipher (or random map Y ) is ε-entropically secure and ε-
indistinguishable, and both concepts are equivalent up to small parameter changes.Moreover,
one cipher (and one Y ) fits all distributions from Pmin(t).

3 Suggested cipher: general construction

Suppose there is a setM of n-letter messages from� and a family of probability distributions
P on M. We can see from Theorem 1 that the choice of the length k of the key K depends
significantly on the min-entropy of the probability distribution; specifically, k = n − hmin +
2 log(1/ε) + 2.

So, the following observation seems to be natural: transform the setM into a larger set of
longer messagesM∗ in such a way that the minimum entropy of the transformed distribution
becomes closer to the message length in M∗. Then, apply the entropically-secure cipher
cipherrw−ds to messages from M∗. It turns out that the resulting cipher for the original set
M is also entropy-secure with a short key.

The proposed cipher is based on this observation and is described as follows. Suppose
that there is a setM of n-letter messages with a probability distribution p ∈ P.

Preliminary stage Alice and Bob build such a random map φ of �n → {0, 1}n∗
, n∗ ≥ n,

that

i. there exists such a map φ−1 : {0, 1}n∗ → �n that φ−1(φ(m)) = m for any m ∈ M, and
ii. for any p ∈ P the min-entropy of the corresponding probability distribution πp on M∗

is n∗ − �, where � is significantly less than n∗. (That is, φ converts p to πp . Formally,
for v ∈ M∗, πp(v) = Pr{φ(u) = v}, u ∈ M, and u obeys the distribution p).

Message encryption Suppose that Alice wants to cipher a message m ∈ M with a leakage
ε. She calculates z = cipherrw−ds (φ(m)) with key length � + 2 log(1/ε) + 2 and sends z
to Bob. To decrypt, Bob computes φ−1 (decipherrw−ds(z)).

The randommapφ uses data compression and randomisation, so that we denote this cipher
as cipherc&r .
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Theorem 3 Let there be a set of messagesM ⊂ �n, n > 0, and a probability distribution p
onM, p ∈ P. Let ε > 0 and assume that the described cipher cipherc&r applies to messages
fromM with a secret key of length � + 2 log(1/ε) + 2 and properties (i) and (ii) are valid.

Then this cipher is ε-entropically secure, that is, for any function A : {0, 1}∗ → {0, 1}∗,
any f : �n → {0, 1}∗ and M ∈ M

|Pr{A(cipherc&r (M) = f (M)} − Pr{ Â( ) = f (M)}| ≤ ε,

where Â does not use the value cipherc&r (M).

Proof Taking into account that the min-entropy of πp, p ∈ P, equals n∗ − �, we see from
Theorem 1 that for any function g

|Pr{A(cipherrw−ds(v) = g(v)} − Pr{ Â( ) = g(v)}| ≤ ε,

where v is a random variable with distribution πp on {0, 1}n∗
, g is any function defined on

{0, 1}n∗
(g : {0, 1}n∗ → {0, 1}∗) and Â( ) does not depend on cipherrw−ds(v). For any

function f : �n → {0, 1}∗, any u ∈ M and any v = φ(u) define the function g(v) =
f (φ−1(v))(= f (u)) (so, g(v) is defined if πp(v) > 0). The last inequality is valid for this
function g, hence

|Pr{A(cipherrw−ds(φ(u)) = f (u)} − Pr{ Â( ) = f (u)}| ≤ ε.

Taking into account that cipherc&r (u) = cipherrw−ds(φ(u)) and f (φ−1(v)) = f (u), we
can see from the last inequality that

|Pr{A(cipherc&r (u)) = f (u)} − Pr{ Â( ) = f (u)}| ≤ ε .

The theorem is proven. 	

We can see from Theorem 2 that the cipher cipherc&r is 2ε indistinguishable. Below we

prove directly that cipherc&r is ε indistinguishable with k = � + 2log(1/ε) + 6 .
From Theorem 2 we know that, in fact, the indistinguishability is equal to the entropic

security, and it holds for cipherrw−ds , but we are interested in the indistinguishability of the
cipherc&r . The following theorem establishes this.

Theorem 4 Let there be set of messagesM ⊂ �n, n > 0, and a probability distribution p on
M, p ∈ P. Let ε > 0 and assume that the described cipher cipherc&r applies to messages
fromM with a secret key of length � + 2 log(1/ε) + 6 and properties (i) and (ii) are valid.

Then this cipher is ε-indistinguishable.

Proof In order to prove it suppose that cipherwr−ds is applied to the words from the set
φ(M) ⊂ {0, 1}n∗

in such a way that it is (1, ε/4) entropically secure, where the length of
the key equals � + 2 log(1/(ε/4)) + 2 = 2 log(1/ε) + 6. From Theorem 2 we can see that
this cipher is ε indistinguishable, that is, SD(cipherrw−ds,G) ≤ ε, where G is a random
variable on {0, 1}n∗

which is independent on cipherrw−ds .
Define Ua = {cipherrw−ds(φ(a))}} and let G ′(v) be defined as follows:

Pr{G ′ = v} =
∑

w∈Uv

Pr{G = w}.

The following chain of equalities and inequalities is based on these definitions and the triangle
inequality for L1:
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SD(cipherc&r ,G
′) =

1

2

∑

u∈�n

|Pr{cipherc&r = u} − Pr{G ′ = u}| =

1

2

∑

v∈�n

|
∑

w∈Uv

Pr{cipherrw−ds = w} − Pr{G = w}| ≤

1

2

∑

v∈�n

∑

w∈Uv

|Pr{cipherrw−ds = w} − Pr{G = w} | =

1

2

∑

w∈{0,1}n∗
|Pr{cipherrw−ds = w} − Pr{G = w} | =

SD(cipherrw−ds,G) ≤ ε .

So, SD(cipherc&r ,G ′) ≤ ε.
Theorem is proven. 	


4 Applying cipherc&r to messages generated by a source with known
statistics

In this part we apply cipherc&r to messages from a set {0, 1}n which obey a distribution
p, whereas p is known to Alice, Bob and Eve. Let A ⊂ {0, 1}n be a set of messages with
non-zero probabilities. In this part, it will be convenient to call A = {a1, . . . , aL } alphabet
and ai letters, since we will consider letter-wise codes. Clearly,

log L ≤ n . (4)

We first describe the preliminary stage in which we use the Shannon code [4] to compress
the messages and then randomisation.

4.1 Lossless codes

4.1.1 Shannon code and its generalisations

Suppose, a1, . . . , aL ∈ A are ordered in such a way that p(a1) ≥ p(a2) ≥ · · · ≥ p(aL ) > 0.
Define Q1 = 0, Qt = ∑t−1

i=1 p(ai ), t = 2, . . . , L , and let Q̂i , t = 1, . . . , L , be a presentation
of Qi in binary system as an infinite {0, 1} word and without the initial 0. (if there are
two such presentations then the presentation with finite number of ones is used). That is,
1/2 = 100000 . . . , 1/3 = 010101 . . .. The codeword λ̂(ai ) for symbol ai is chosen to be the
first �log(1/p(ai ) binary digits in Q̂i , i = 1, . . . , L . It is clear that,

|λ̂(ai )| = �log(1/p(ai )) . (5)

For example, let A = {a1, a2, a3} and p(a1) = 13/16, p(a2) = 1/8, p(a3) = 1/16. Then,
λ̂(a1) = 0, λ̂(a2) = 110, λ̂(a3) = 1111. Clearly, these codewords can be made shorter as
follows: λ(a1) = 0, λ(a2) = 10, λ(a3) = 11. This procedure for removing extra digits can
be described using binary trees. It is known that the Shannon code can be represented as
a binary tree, the branches of which correspond to codewords. In this tree, the left child is
marked with 0, and the right child is 1. If some node has one child, it is removed, and the
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corresponding digit from the corresponding codeword is also removed. The obtained code
we denote as λSh and derive from (5) the following:

|λSh(ai )| ≤ �log(1/p(ai )) ≤ log(1/p(ai )) + 1. (6)

Also, it is known that the set of codewords λSh(a1), . . . , λSh(aL) is prefix-free. (Recall that,
by definition, a set of words U is prefix-free if for any u, v ∈ U neither u is a prefix of v nor
v is a prefix of u.)

Note that, for any a prefix-free code λ′ and any sequence x1x2 . . . xn from A, n ≥ 1, the
encoded sequence λ′(x1)λ′(x2) . . . λ′(xn) can be decoded to x1x2 . . . xn without errors. Such
a code λ′ is called lossless code. Hence, any prefix-free code is a lossless one.

Note the the “initial” code λ̂(ai ) has the same properties as a modified λSh , that is, it is
the prefix-free and (6) is valid. (That is why we do not describe the transformation of λ̂ to
λSh in detail and do not estimate its complexity.)

4.1.2 Trimmed codes

Let λ be a lossless code for elements from A. Consider the following probability distribution
p(a1) = 1/2, p(a2) = 1/4, . . . , p(aL−1) = p(aL) = 2−(L−1). From the description of the
Shannon code we can see that |λSh(aL))| = L − 1.

In applications, the complexity of the cipher will largely depend on the lengths of the
codewords. Thus, it will be convenient to use codes for which the length of the code of any
letter does not exceed �log L + 1 for any probability distribution (instead of L − 1 as in the
previous example). It is also worth noting that it will be shown later that one extra bit of the
length of the codeword can add at most 1 extra bit of the length of the encryption key. We
call such codes as trimmed and define one of them as follows: if λ is a code then

λtr (ai ) =
{
0 λ(ai ) if |λ(ai )| ≤ �log L
1 bin�log L(i) if |λ(ai )| > �log L ,

(7)

where bin�log L(i) is a binary presentation of i whose length is �log L. (For example,
bin3(3) = 011). We see that the maximal codeword length is not greater than �log L + 1.
Also, note that for any prefix-free code the maximal codeword length is not less than �log L.

Let us explain how to decode. First, the decoder reads the first binary letter. If it is 0, the
decoder uses the codeword of the code λ in order to find the encoded letter. If the first letter
is 1, the next �log L letters contain the binary decomposition of i , i.e. the letter is ai .

If the trimmed code is built based on the Shannon code, from (7) and (6) we obtain

|λtrSh(ai )| ≤ �log(1/p(ai )) + 1 < log(1/p(ai )) + 2. (8)

4.2 Randomised prefix-free codes

Let λ be a prefix-free code for the alphabet A and

n∗ = max
i=1,...,L

|λ(ai )| .

The randomised code φλ maps letters from the alphabet A to the set {0, 1}n∗
defined as

follows.

φλ(ai ) = λ(ai ) r
i
|λ(ai )|+1r

i
|λ(ai )|+2 . . . r in∗ , (9)
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where r i|λ(ai )|+1, r
i
|λ(ai )|+2, . . . , r

i
n∗ uniformly distributed and independent random bits (for

all i). Let us define a probability distribution πλ on {0, 1}n∗
as follows:

πλ(y1y2 . . . yn∗) = p(ai )2
−(n∗−|λ(ai )|)

if y1y2 . . . y|λ(ai )| = λ(ai ). (10)

If for some y = y1 . . . yn∗ any λ(ai ) is not a prefix of y, then πλ(y) = 0.

Claim 1 hmin(πλ) = n∗ − maxi=1,...,L(|λ(ai )| − log(1/p(ai )). In particular,

hmin(πλSh ) > n∗ − 1, hmin(πλtrSh
) > n∗ − 2. (11)

Here the first equation follows from the definition of the min-entropy and (10), whereas (11)
follows from (6) and (8).

4.3 The cipher for known statistics

Now we can apply the cipher from the part 4 (see message encryption) with φ = φtr
Sh and

π = πλtrSh
. From (11) we can see that� = 2 and applying Theorems 3 and 4 and the estimate

we obtain

Claim 2 Let there be set of messages from {0, 1}n, n > 0, obey a known probability
distribution p and ε > 0. Let the cipher cipherc&r be applied

(i) with a secret key of the length 4 + 2 log(1/ε)+ bits. Then this cipher is ε-entropically
secure.

(ii) If the key length k equals k = 8 + 2log(1/ε) bits, the cipher is ε-indistinguishable.

Comment In this section, we described the Shannon code, for which the letters of the
alphabet must be arranged in descending order of probabilities. Sometimes it can be a time
consuming operation. In such a case, one can use the Gilbert-Moore code [9], which can be
used for unordered probabilities, but its code length is one bit longer than the Shannon code,
i.e. the code length of ai can be log(1/p(ai )) + 2. For this code, we can also use a trimmed
version. In both cases, the use of the Gilbert–Moore code may add one extra bit to the key
length.

5 Messages generated byMarkov chains with unknown statistics

As in the previous part, we perform encryption in three steps: compress, randomise, and
apply cipherrw−ds . For compression, we apply the so-called universal codes, which are used
for unknown statistics.

5.1 Universal coding

First, we consider the simplest case where the alphabet is {0, 1}n, n ≥ 1, and letters are
generated by some i.i.d. sourceμ andμ(0),μ(1) are unknown. The goal is to build a lossless
code which “compresses” n-letter sequences in such a way that the average length (per letter)
of the compressed sequence is close to the Shannon entropy h(μ), which is the lower limit
of the codeword length (lossless code is such that the encoded messages can be decoded
without errors and h(μ) = −(μ(0) logμ(0) + (1 − μ(0)) log(1 − μ(0)) ).
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The first universal code was invented by Fitingof [8] and we use this code as a part of the
suggested entropically secure cipher. In order to describe this code we consider any word
v ∈ {0, 1}n and denote by ν the number of ones in v and let Sν be the set of n-length words
with ν ones. Fitingof proposed to encode the word v by two subwords u (prefix) and w

(suffix), where u is the binary notation of an integer ν and w is the index of the word v in the
subset Sν . It is assumed that thewords in Sν are ordered 0 to (|Sν |−1) (say, lexicographically)
and the lengths of u andw are equal to �log(n+1) and �log |Sn |, respectively. For example,
for n = 3, v = 100 we obtain ν = 1, u = 01, w = 10. Clearly, this code is prefix-free.

If we denote the Fitingof code by codeF we obtain from its description

|codeF (v)| = �log(n + 1) + �log |Sν | . (12)

For this code the ability to compress messages is based on the simple observation that prob-
abilities of all messages from Sν are equal for any distribution μ and, hence, μ(v) ≤ 1/|Sν |
for μ and any word v ∈ Sν . From this inequality and (12) we obtain

|codeF (v)| ≤ log(n + 1) + 2 + log(1/μ(v)) . (13)

(Let’s explain the name “universal code.”Clearly, the average code-length Eμ(|codeF |) is not
greater than log(n+1)+2+nh(μ) and, hence, the average length per letter Eμ(|codeF |)/n
is not grater than h(μ) + (log(n + 1) + 2)/n). We can see that Eμ(|codeF |)/n → h(μ)

if n → ∞. So, one code compresses sequences generated by any μ, that is, the code is
universal).

The Fitingof code described generalizes to i.i.d. processes with any finite alphabet �, as
well as to Markov chains with memory or connectivity m, based on the same method as for
binary i.i.d. [13]. Namely, the set of all n-letter words is divided into subsets of equiprobable
words, and the code of any word is represented by a prefix and a suffix, where the prefix
contains the number of the set with equiprobable words which contains the encoded one, and
the prefix is the number in this set. It can be shown that the number of sets with equiprobable
words is bounded above by (|�| − 1)|�|m [8, 13], and similarly (13) we can deduce that

|codeF (v)| ≤ log((|�| − 1)|�|m) + 2 + log(1/μ(v)) . (14)

It is important to note that there exists an algorithm to find the codewords which is based
on method of fast calculation of numbers in Sν , see [16]. The complexity of this algorithm
is O(n log3 n log log n).

5.2 Randomisation

As with known statistics, we randomise compressed messages to construct random maps
of φ and φ−1 for which φ−1(φ(u)) = u for any message u (see "preliminary stage"). This
method is similar from the part from 4.2.

Let n∗ = maxw∈�n {|codeF (w)|} . The randomized code φF maps elements from �n to
the set {0, 1}n∗

defined as follows:

φF (w) = codeF (w) r i|codeF (w)|+1r
i
|codeF (w)|+2...r

i
n∗ , (15)

where r i|codeF (w)|+1, r
i
|codeF (w)|+2, ..., r

i
n∗ are uniformly distributed and independent random

bits (for all i).
Let us define the probability distribution πF,μ on {0, 1}n∗

as follows:

πF,μ(y1y2...yn∗) = μ(v)2−(n∗−|codeF (v)|) if y1y2...y|codeF (v)| = codeF (v). (16)
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If for some y = y1 . . . yn∗ any v ∈ �n , codeF (v) is not a prefix of y, then πF,μ(y) = 0.
Let us estimate the min-entropy of the distribution πF,μ. From this equation and the

definition of the min-entropy we obtain the following:

hmin(πF,μ) = n∗ − max
u∈�n

(|codeF (u)| − log(1/μ(u)) . (17)

Now we consider the Fitingof code applied to n-letter sequences generated by a Markov
chainμ of memorym over some alphabet�. The Fitigof code is prefix-free and, hence, from
(14) and (17) we obtain the following

Claim 3 For any distribution μ

hmin(πF,μ) > n∗ − (|�|m(|�| − 1) log n + 2) . (18)

In particular, for an i.i.d. source with binary alphabet

hmin(πF,μ) > n∗ − (log n + 2) .

5.3 Description of the cipher for Markov chains

Now we can apply the cipher cipherrw−ds from the part 3 with φ = φF and π = πF,μ.
(Recall that this cipher is one for all distributions with equal min-entropy and, hence, it does
not depend on unknown distribution μ.)

From (18) we can see that � = |�|m(|�| − 1) log n + 2 and applying theorem 3 and 4
and this estimate we obtain

Claim 4 Let there be set of messages from �n, n > 0, generated by Markov chain of order
m,m ≥ 0, and ε > 0. Let the cipher cipherc&r be applied.

(i) If the key length k equals (|�|m(|�| − 1) log n + 5 + 2 log(1/ε)+ bits, then the cipher
is ε- entropically secure.

(ii) If the key length k equals k = (|�|m(|�| − 1) log n + 9) + 2log(1/ε) bits, the cipher
is ε- indistinguishable.

Data availability All data generated or analysed during this study are included in this published article.

Appendix

The definition of a stationary ergodic Markov chain withmemory, or connection,m

First we give a definition of stationary ergodic processes. The time shift T on �∞ is defined
as T (x1, x2, x3, . . . ) = (x2, x3, . . . ). A process P is called stationary if it is T -invariant:
P(T−1B) = P(B) for every Borel set B ⊂ �∞. A stationary process is called ergodic if
every T -invariant set has probability 0 or 1: P(B) = 0 or 1 whenever T−1B = B [2, 19].

We denote by M∞(�) the set of all stationary and ergodic sources and let M0(�) ⊂
M∞(�) be the set of all i.i.d. processes. We denote by Mm(�) ⊂ M∞(�) the set of Markov
sources of order (or with memory, or connectivity) not larger than m, m ≥ 0. By definition
μ ∈ Mm(�) if
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μ(xt+1 = ai1 |xt = ai2 , xt−1 = ai3 , . . . , xt−m+1 = aim+1 , . . .)

= μ(xt+1 = ai1 |xt = ai2 , xt−1 = ai3 , . . . , xt−m+1 = aim+1)

for all t ≥ m and ai1 , ai2 , . . . ∈ �.

Entropically secure ciphers

In this part we describe one entropically secure cipher from [5], part 3.2.
Let {hi }i∈I be some family of functions hi : {0, 1}k → {0, 1}n , indexed over the set I =

{0, 1}r . By definition, a collection of functions from n-bit words to n-bits is XOR-universal
if:

∀a, x, y ∈ {0, 1}n, x �= y, Pr{hi (x) ⊕ hi (y) = a} ≤ 1

2n−1 ,

if i is randomly chosen from I according to the uniform distribution (⊕ is symbol-by-symbol
modulo 2 summation). Also, suppose that there is a XOR-universal collection of functions
whose description is public and, hence, it is known to Alice, Bob and Eve.

Dodis and Smith consider an encryption scheme of the form

E(m, K , i) = (i;m ⊕ hi (K ))

where i is randomly chosen from I according to the uniform distribution, and K is a k-
bit secret key. Note that m is a ciphered message of length n, i is the number of hi in the
set I and |i | = log |I | = r . (Dodis and Smith notice that this scheme is a special low-
entropy, probabilistic one-time pad). Decryption is obviously possible, since the description
of the function hi is public. It is shown [5] that this cipher is ε-entropically secure for
|k| ≥ n − hmin + 2 log(1/ε) + 2 if the function family {hi }i∈I is XOR-universal.

An example of XOR-universal family is as follows [5]: View {0, 1}n asF = GF(2n), and
embed the key set {0, 1}k as a subset ofF . For any i ∈ F , let hi (K ) = i K , withmultiplication
inF . This yields a family of linearmaps {hi }with 2n members. For this family the complexity
of ciphering and deciphering is O(n log n log log n) [5].

It is important to note that the length of the secret key (k) depends only on the min-entropy
of the probability distribution and does not depend on other parameters of the distribution.
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