
Designs, Codes and Cryptography (2023) 91:1453–1474
https://doi.org/10.1007/s10623-022-01157-6

Self-dual bent sequences for complex Hadamard matrices

Minjia Shi1 · Yaya Li1 ·Wei Cheng2 · Dean Crnković3 · Denis Krotov4 ·
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Abstract
A new notion of bent sequence related to Hadamard matrices was introduced recently, moti-
vated by a security application (Solé et al. 2021). In this paper we introduce the analogous
notion for complex Hadamard matrices, and we study the self-dual class in length at most
90. We use three competing methods of generation: Brute force, Linear Algebra and Groeb-
ner bases. Regular complex Hadamard matrices and Bush-type complex Hadamard matrices
providemany examples.We introduce the strong automorphism group of complexHadamard
matrices, which acts on their associated self-dual bent sequences. We give an efficient algo-
rithm to compute that group.We also answer the questionwhich complexHadamardmatrices
can be uniquely reconstructed from the off-diagonal elements, define a related concept of
mixed-skew Hadamard matrix, and show the existence of mixed-skew Hadamard matrices
of small orders.
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1 Introduction

Complex Hadamard matrices are matrices C of order v with entries in the fourth roots of
unity �4 = {±1,±i} satisfying

CC∗ = v I ,

where ∗ denotes the transpose conjugate, and I is the identity matrix of order v. They were
introduced by Turyn and studied by Seberry [25], and Kharaghani [13, 14], among others.
A more general notion of complex Hadamard matrices where �4 is replaced by the set of
complex numbers of modulus one exists , but will not be considered in this paper. A survey
of that more general notion is [22]. A related webpage is [3]. Complex Hadamard matrices
are conjectured to exist for all even v [25]. This is the complex analogue of the celebrated
Hadamard conjecture.

Recently, a notion of bent sequences attached to Hadamard matrices was introduced
in [21] from a motivation of security. In a companion paper [18] the self-dual subclass of
bent sequences for Hadamard matrices is studied. Three competing methods are used to
construct such sequences: Brute force, Linear Algebra and Groebner bases. The first and the
last are easier to program but only work for matrices of small orders (resp. medium orders).
The Linear Algebra method requires some complex programming, but performs well even
in large orders if the dimension of the relevant eigenspace is small enough.

In the present paper we conduct the analogous study by the same methods for complex
Hadamardmatrices. Themain hurdle in this generalization was in the definition, as explained
in the Preliminaries section, Sect. 2. A self-dual bent sequence is defined here as an eigen-
vector of a complex Hadamard matrix with values in the complex fourth roots of unity. This
can exist only if the related eigenvalue is a Gaussian integer, which implies in turn that v is
either a perfect square or the sum of two squares (Proposition 1).

We have a hierarchy of definitions of bent sequences from the special to the general

(1) classical bent sequences and Sylvester type Hadamard matrices [4],
(2) bent sequences attached to general Hadamard matrices [18, 21],
(3) complex bent sequences attached to Sylvester type Hadamard matrices [20],
(4) complex bent sequences attached to complex Hadamard matrices: the present paper.

Like in [18], the regular complex Hadamard matrices [13] and the Bush-type complex
Hadamard matrices have proved especially useful. As is known since the seminal paper of
Turyn [23], conference matrices can be used in the creation of complex Hadamard matrices.
Their spectrum can be determined exactly (Proposition 9).Williamson type constructions are
also very useful and lead to concomitant constructions of self-dual bent sequences (Theo-
rem 3). In general, equivalent Hadamard matrices do not have corresponding sets of self-dual
bent sequences. The notion of strong equivalence of Hadamard matrices remedies to this
problem at the price of smaller groups. An effective algorithm for computing the strong
automorphism group of complex Hadamard matrices based on graphical interpretation, is
derived.

The material is organized as follows. The next section collects basic facts and definitions
needed for the other sections. In Sect. 3, we discuss how to compute the automorphism group
of a complex Hadamard matrix and which complex Hadamard matrices can be uniquely
reconstructed from the off-diagonal part. Section 4 documents the constructions of complex
Hadamard matrices we have used to construct self-dual bent sequences. Section 5 develops
an interesting connection withZ4-codes [8]. Section 6 contains the searchmethods employed
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Self-dual bent sequences for complex Hadamard matrices 1455

to obtain the numerical results of 7. Sections 8 concludes the article. An appendix contains
detailed information on some complex Hadamard matrices of various orders.

2 Preliminaries

Definition 1 If C is a complex Hadamard matrix of order v a bent sequence of length v

attached to C is any vector X ∈ �v
4, such that

CX = λY ,

where λ is an eigenvalue of C and Y ∈ �v
4. We will say that X is a self-dual bent sequence

attached to C if Y = X .

Proposition 1 If there exists at least one self-dual bent sequence of length v, then v is a
square or the sum of two squares.

Proof By the Hadamard property we see that |λ|2 = v. By eigenvalue definition, we see that

λ =
⎛
⎝

v∑
j=1

c1 j x j

⎞
⎠ x−1

1 = a + ib ∈ Z[i].

Taking squared norms we get v = a2 + b2. If one of a, b is zero then v is a square. If both
are non zero then v is a sum of two squares. ��

An equivalent definition is thus: let v = a2+b2,with a, b ≥ 0.A self-dual bent sequence
attached to C is defined as X ∈ �v

4 such that

CX = (±a + ±ib)X ,

where (±a + ±ib) are eigenvalues of C . Note that b+ ia = i(a − bi) = i(a + bi)∗, so that
swapping a and b amounts to simple changes in C and X .

In the case v = 22m = (2m)2, and H the Sylvester Hadamard matrix of order v such
sequences were studied in [20]. The case of v a square and H an arbitrary real Hadamard
matrix is treated in [18].

The even integers ≤ 90 and sum of at most two squares are

{2, 4, 8, 10, 16, 18, 20, 26, 32, 34, 36, 40, 50, 52, 58, 64, 68, 72, 74, 80, 82, 90}.

3 Finding automorphism groups and reconstructing thematrix from its
off-diagonal elements

The class of complex Hadamard matrices of order v is preserved by the three following
operations:

• row permutation,
• column permutation,
• multiplication of a row or column by an element of �4,

which form a group G(v) with structure (Sv � C4)
2, where Sm denotes the symmetric group

on m letters, and Cm the cyclic group of order m. We denote by S(v) the group of diagonal
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matrices of order v with diagonal elements in �4, and by M(v) the matrix group generated
by P(v), the group of permutation matrices of order v, and S(v). Note that M(v) consists
of unitary matrices so that QQ∗ = I for every Q in M(v). The action of G(v) on a complex
Hadamard matrix C is of the form

C 	→ PCQ,

with P, Q ∈ M(v). The cases when this action is 2-transitive are classified in [17]. To work
on the symmetries of bent sequences we will require the notion of strong automorphism
group SAut(C) of C defined as the set of P ∈ M(v) such that PC = CP. Then we can state
the following result.

Proposition 2 If X is a self-dual bent sequence for C, and if P ∈ M(v) is a strong automor-
phism of C, then PX is also a self-dual bent sequence for C.

Proof By hypothesis CX = λX . Multiplying the left hand side of this equation by P we get

λPX = PCX = CPX .

Letting Y = PX , we see that CY = λY . The result follows upon noticing that Y ∈ �v
4. ��

3.1 Finding Aut and SAut

There are six kinds of natural transformations that send a complex Hadamard matrix to a
complex Hadamard matrix:

(I) permuting rows,
(II) permuting columns,
(III) multiplying rows by constants from �4,
(IV) multiplying columns by constants from �4,
(V) transposition,
(VI) conjugation, applied to all elements of the matrix.

A combination of (I)–(IV) (of (I)–(VI)) is called an automorphism (semi-automorphism) of
a complex Hadamard matrix C if it sends C to itself. The group of all automorphisms of a
complex Hadamard matrix is denoted Aut(C).

Let C be a complex Hadamard matrix of order n. Define the di-graph G(C) of order 8n
in the following way:

• for each t ∈ {0, . . . , n− 1}, the t th row corresponds to 4 row vertices rt,x and 4 row arcs
(rt,x , rt,i x ), x ∈ �4;

• for each s ∈ {0, . . . , n − 1}, the sth column corresponds to 4 column vertices cs,x and 4
column arcs (cs,x , cs,i x ), x ∈ �4;

• each cell (t, s) corresponds to four cell arcs (rt,x , cs,Ct,s x ), x ∈ �4.

The following four lemmas are straightforward.

Lemma 1 If the matrix C ′ is obtained from C by multiplying the t th row by y, y ∈ �4, then
G(C ′) is obtained from G(C) by the following permutation of four row vertices: rt,x →
rt,y−1x , x ∈ �4.

Lemma 2 If the matrix C ′ is obtained from C by multiplying the sth column by y, y ∈ �4,
then G(C ′) is obtained from G(C) by the following permutation of four column vertices:
cs,x → cs,yx , x ∈ �4.
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Lemma 3 If the matrix C ′ is obtained from C by permuting the rows with a permutation π ,
π ∈ Sym(n):

C ′
π(t),s = Ct,s,

then G(C ′) is obtained from G(C) by the following permutation of four row vertices: rt,x →
rπ(t),x , t ∈ {0, ..., n − 1}, x ∈ �4.

Lemma 4 If the matrix C ′ is obtained from C by permuting the columns with a permutation
π , π ∈ Sym(n):

C ′
t,π(s) = Ct,π(s),

then G(C ′) is obtained from G(C) by the following permutation of four column vertices:
cs,x → cπ(s),x , s ∈ {0, . . . , n − 1}, x ∈ �4.

Proposition 3 Every automorphism of G(C) is the composition of transformations consid-
ered in the four lemmas above.

Proof We first note that the in-degree and the out-degree of a row vertex are 1 and n + 1,
respectively, while for a column vertex these values are n + 1 and 1. So, any automorphism
stabilizes the set of row (column) vertices.

Next, the arcs between the row vertices form n vertex-disjoint directed cycles of length
four, and every automorphism permutes the cycles (corresponding transformations are con-
sidered in Lemma 3) and cyclically permutes the vertices in each cycle (corresponding
transformations are considered in Lemma 1). Similarly, for the column vertices. ��
Corollary 1 The automorphism group of the graph G(C) is isomorphic to the automorphism
group of C.

Remark 1 Similarly, to check if two complex Hadamard matrices are isomorphic, one can
check the isomorphism between the corresponding graphs. In particular, to find the group of
semi-automorphisms of C , one can extend Aut(C) by isomorphisms (if any) between C and
C t , C and C , between C and C∗.

3.2 SAut

An automorphism is strong if the columns and the rows are permuted by the same permutation
and multiplied by conjugate constants. In other words, the action of a strong automorphism
corresponds to the following action of a complex-signed permutation matrix S: C → SCS∗.
Strong automorphisms of a complex Hadamard matrix C correspond to automorphisms of
the graph G(C) that do not break the pairs {rs,x , cs,x }. To avoid the other automorphisms
we can connect the paired vertices rs,x and cs,x of G(C) by a length-2 path, say rs,x ls,x cs,x
where ls,x are some additional vertices. Denote the new graph by G̃(C). From Corollary 1,
we have

Corollary 2 The automorphism group of the graph G̃(C) is isomorphic to the automorphism
group of C.

Another way is to identify the vertices rs,x and cs,x (we call the merged vertex ms,x )
s ∈ {0, . . . , n − 1}, x ∈ �4. In this way, we should resolve one problem: there is no way
to distinguish the row-column arcs between the vertices ms,1, ms,i , ms,−1, ms,−i and the
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cell arcs between the same four vertices (i.e., corresponding to the diagonal cell Cs,s of
the matrix). To resolve this, we, at first, delete the diagonal cell arcs, and, at second, add
special vertices ms with four arcs (ms,ms,1), (ms,ms,i ), (ms,ms,−1), (ms,ms,−i ) for each
s. We denote the new digraph by Ĝ(C). Deleting the diagonal cell arcs can be regarded
as replacing the diagonal elements of the matrix by zeros. If the diagonal of the matrix is
uniquely reconstructed from its off-diagonal elements, then the strong automorphism group
of the matrix does not change after such replacement.

Corollary 3 If the diagonal of a complex Hadamard matrix C is uniquely reconstructed
from its off-diagonal elements, then the strong automorphism group of the graph Ĝ(C) is
isomorphic to the automorphism group of C.

Of course, such a statement is not useful without saying for whichmatrices it is applicable.
In Sect. 3.5, we characterize the matrices whose diagonal is not uniquely reconstructed. The
interesting theory related with these matrices is actually one of motivations for us to consider
the second way of finding the strong automorphism group of a complex Hadamard matrix.

3.3 Equivalent self-dual bent sequences

Two self-dual bent sequences f and g with respect to a complex Hadamard matrix C are
equivalent if there is a complex-signed permutation matrix S such that SCS∗ = C (i.e.,
SCS∗ → C is a strong automorphism of C) and S f = Sg. To recognise the equivalence
of self-dual bent sequences, one can, for each such sequence f , color the graph Ĝ(C) in
the following way: the vertices ms,x such that f (s) = x are black, and the other vertices
(including ms) are white. Such colored graphs will be denoted Ĝ f (C).

Corollary 4 Assume that the diagonal of a complex Hadamard matrix C is uniquely recon-
structed from its off-diagonal elements. Two self-dual bent sequences f and g are equivalent
if and only if there is an automorphism of Ĝ(C) that sends the black vertices of Ĝ f (C) to
the black vertices of Ĝg(C).

IfC does not satisfy the hypothesis of Corollary 4 (see Theorem 1 for the characterization
of such matrices), then we can similarly color the graph G̃(C). To find the automorphism
group of a self-dual bent sequence, it is sufficient to find the group of the automorphisms of
the graph that preserve the corresponding coloring. Note that the modern graph-isomorphism
software can deal with colored graphs as well.

3.4 Regular matrices

A complex Hadamard matrix C of order v is regular if it has constant row and column sum.
Let us denote this constant by σ . Regular complex Hadamard matrices are studied in [13],
where it is observed that |σ |2 = v, which in turn implies that v is the sum of two squares. A
direct connection between self-dual bent sequences and regular complex Hadamard matrices
is as follows.

Proposition 4 If C is a regular complex Hadamard matrix of order v, then j the all-one
vector of length v, is a self-dual bent sequence for C .

Proof Denote by σ the sum of elements of any row. By definition of regular complex
Hadamard matrices C j = σ j . ��
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Example 1 Some regular complex Hadamard matrices are as follows:

(1) For order v = 2 we have the matrix

(
1 i
i 1

)
where σ = 1 + i,

(2) For orders v = 18 and v = 34 we have σ = 3 + 3i and σ = 5 + 3i, respectively, both
from Lemma 6 of [13],

(3) For order v = 90, we have σ = 9 + 3i by Corollary 9 (ii) of [13].

3.5 Reconstructing diagonal

Definition 2 Let A be a square matrix with diag(A) = I (the identity matrix), and let U :=
A − I , then A is called skew if U∗ = −U . We will say that a matrix A is i-skew (−i-skew)
if U∗ = iU (respectively, U∗ = −iU ).

We will say that a matrix A is mixed-skew if there is a subset J of indices such that

(a) the submatrix of A restricted by the elements with both indices in J is −i-skew,
(b) the submatrix of A restricted by the elements with indices not in J is i-skew,
(c) As,t = −At,s for every s in J and t not in J .

In other words, A is mixed-skew if for some complex-signed permutationmatrix P thematrix
PAP∗ has the form (

A′ U
−U∗ A′′

)
,

where A′ is −i-skew and A′′ is i-skew. Note that i-skew and −i-skew matrices are special
cases of mixed-skew matrices, where A′ or A′′ has size 0.

Theorem 1 Assume that two different complex Hadamard matrices C and C ′ of order n
coincide in all off-diagonal elements. Then for the complex sign matrix D := diag(C), the
matrices G := CD∗ and G ′ := C ′D∗ satisfy one of the following:

(i) G is skew and G ′ = G − 2I ;
(ii) there is a subset J of indices from {0, . . . , n − 1} such that
(ii.a) the submatrix of G restricted by the elements with both indices in J is −i -skew,
(ii.b) the submatrix of G restricted by the elements with indices not in J is i-skew,
(ii.c) Gs,t = −Gt,s for every s in J and t not in J ,
(ii.d) G ′

s,s = i for every s in J ,
(ii.e) G ′

t,t = −i for every t not in J .

Proof GivenC andC ′ as in the theorem,we choose a complex signmatrix D := diag(C) such
that the diagonal elements of CD∗ are all equal to 1. Denote G := CD∗ and G ′ := C ′D∗.
So, G and G ′ are two different complex Hadamard matrices coinciding in the off-diagonal
elements, and Gs,s = 1, s = 0, . . . , n − 1.

Since for different s and t the t th and sth rows of a complex Hadamard matrix are orthog-
onal and the t th (sth) row of G coincides with the t th (sth) row of G ′ in all positions except
the t th (sth) one, we find

G ′
s,sG

′
t,s + G ′

t,tG
′
s,t = Gs,sGt,s + Gt,tGs,t = G ′

t,s + G ′
s,t . (1)

In particular, G ′
s,s and G ′

t,t are either both real or both imaginary. We conclude that the
diagonal elements of G ′ are either all real or all imaginary. Consider these two cases.
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(i) If all diagonal elements of G ′ are real, then at least one of them, say G ′
s,s , equals −1.

From (1), we see that for every t different from s, G ′
t,t cannot be 1. Hence, all diagonal

elements equal −1. For arbitrary different s and t , substituting G ′
s,s = −1, G ′

s,s = −1

to (1), we find G ′
s,t = −G ′

t,s . Hence, G is skew, and assertion (i) of the theorem takes
place.

(ii) Assume that all diagonal elements ofG ′ are imaginary. Denote J := {s ∈ {0, . . . , n−1} :
G ′

s,s = i}. Consider different s and t from J . With G ′
s,s = G ′

t,t = i , Eq. (1) turns to

iG ′
t,s−iG ′

s,t = G ′
t,s+G ′

s,t ,which implies (i−1)G ′
t,s = (i+1)G ′

s,t , andG
′
t,s = −iG ′

s,t .
This proves assertion (ii.a) in the claim of the theorem. Assertions (ii.b) and (ii.c) are
proved similarly, while (ii.d) and (ii.e) hold by the definition of J .

��
It is easy to see that for n > 2, the same matrix G cannot satisfy both (i) and (ii.a–c). So,

we can conclude the following:

Corollary 5 For every complex Hadamard matrix C of order at least 4, there is at most one
other complexHadamardmatrix C ′ coincidingwithC in all off-diagonal elements.Moreover,
the existence of such C ′ implies that CD∗ is skew or mixed-skew, where D := diag(C).

Example 2 Case (i) of Theorem 1 is illustrated by the following matrices:

C =

⎛
⎜⎜⎝

1 i i 1
−1 i i −1
−i 1 −1 i
−1 i −i 1

⎞
⎟⎟⎠ , C ′ =

⎛
⎜⎜⎝

−1 i i 1
−1 −i i −1
−i 1 1 i
−1 i −i −1

⎞
⎟⎟⎠ ,

D =

⎛
⎜⎜⎝
1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ ,

G =

⎛
⎜⎜⎝

1 1 −i 1
−1 1 −i −1
−i −i 1 i
−1 1 i 1

⎞
⎟⎟⎠ , G ′ =

⎛
⎜⎜⎝

−1 1 −i 1
−1 −1 −i −1
−i −i −1 i
−1 1 i −1

⎞
⎟⎟⎠ .

Example 3 Case (ii) of Theorem 1 is illustrated by the matrices C and C ′ below:

C =

⎛
⎜⎜⎝
1 i −i −i
1 1 i 1
1 −1 i −1
1 −i −i i

⎞
⎟⎟⎠ , C ′ =

⎛
⎜⎜⎝

i i −i −i
1 i i 1
1 −1 1 −1
1 −i −i 1

⎞
⎟⎟⎠ .

Multiplying the last two columns of C by −i makes it mixed-skew. It can be checked that
C ′ = PCP∗, where

P =

⎛
⎜⎜⎝
0 0 0 1
0 0 −1 0
i 0 0 0
0 1 0 0

⎞
⎟⎟⎠ ,

which shows that the strong automorphism groups of C and of the off-diagonal part of C do
not coincide.
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Example 4 Some other examples of mixed-skew matrices are (of order 8 and of orders 6, 10,
14, 22, 26 in a special bi-cyclic form)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
i 1 1 −i i −1 −1 −i
i i 1 −1 −i 1 −i −1
i −1 −i 1 1 −1 −i i

−1 i −i −1 1 −i i 1
−1 1 −1 1 1 1 −1 −1
−1 1 −i −i −1 i 1 i
−1 −i 1 i −i i −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(
A B

−B∗ A∗
)

, A = circ(a), B = circ(b); (2)

• a = (1, 1, i), b = (1, 1,−1), or
• a = (1, 1,−1,−i, i), b = (1, i, i,−1, i), or
• a = (1,−1,−1,−i,−1,−i,−i), b = (1, 1,−1, 1,−1,−1, i), or
• a = (1, 1,−1,−i,−1,−1,−i,−i,−1,−i, i),

b = (1, 1, i,−1,−1, 1,−1, i, i, 1,−1), or
• a = (1,−i, 1,−i,−1, 1, 1, i, i,−i,−1, i,−1),

b = (1,−i,−i,−1,−i,−i,−i, i,−1, 1,−1,−i, 1),

where circ(. . .) is the matrix whose rows are all cyclic shifts of the corresponding sequence.

Remark 2 A matrix in the form (2) is complex Hadamard if and only if
〈
a, σ s(a)

〉 + 〈
b, σ s(b)

〉 = 0, s = 1, . . . , n − 1, (3)

where σ is the cyclic shift: σ((a0, a1, . . . , an−1)) = (an−1, a1, . . . , an−2). Such pairs (a, b)
are called complex periodic Golay pairs. Additionally, the matrix is mixed-skew if a =
(a0, a1, . . . , an−1) satisfies ak = ia−1

n−k , k = 1, . . . , n − 1.

Remark 3 Pairs of sequences satisfying (3) for the non-cyclic shift

σ((a0, a1, . . . , an−1)) = (0, a1, . . . , an−2)

are called (complex) Golay pairs. A Golay pair is obviously a periodic Golay pair, but the
inverse is not true.Golay pairswere firstly introduced in [7]. Periodic correlation is considered
in [2]. Complex Golay pairs were firstly considered in [6, 19].

Remark 4 The bi-cyclic matrices of orders 10 and 26 from Example 4 admit self-dual bent
sequences (1, . . . , 1,−1, . . . ,−1) and (1, . . . , 1, 1, . . . , 1). In particular, these two matrices
are regular complex Hadamard matrices.

Problem 1 Is there an i-skew complex Hadamard matrix of order more than 1?

Problem 2 Is there an infinite series of mixed-skew complex Hadamard matrices?

4 Constructions of complex Hadamardmatrices

4.1 Kronecker products

A very simple construction of complex Hadamard matrices from Hadamard matrices is as
follows.
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Proposition 5 If there exists a Hadamard matrix H of order v, then there exists a complex
Hadamard matrix C of order 2v. In particular, if H is regular, so is C .

Proof Taking the Kronecker product of H with

(
1 i
i 1

)
, yields the block matrix

C =
(

H iH
iH H

)
,

which satisfies CC∗ = 2v I by taking block product of C with

C∗ =
(

Ht −i H t

−i H t Ht

)
.

If the row sum of H is σ, then C is regular of constant row sum (1 + i)σ . ��
Remark 5 The matrix C in Proposition 5 has an order 4 or a multiple of 8. This is a special
case of Theorem 1 of [25]: The Kronecker product of a Hadamard matrix of order n by a
complexHadamardmatrix of order h is a complexHadamardmatrix of order hn.TheMagma
command is KroneckerProduct (A, B) for the Kronecker product of A by B.

Example 5 The following program constructs 5 complex Hadamard matrices of order 32
from the 5 non-equivalent Hadamard matrices of order 16.

R<i>:= CyclotomicField (4);
C2:= Matrix(R,2,2,[1,i,i,1]);
D:= HadamardDatabase ();Q:= RationalField ();
for j:=1 to 5 do

H:= Matrix(D,16,j);H:= ChangeRing(H,R);
C32:= KroneckerProduct(C2 ,H);
Eigenvalues(C32);

end for;

Note that the eigenvalues of these matrices all have squared norm 32. So there are more
eigenspaces to consider.

4.2 Bush type

A complex Hadamard matrix C of order v = 4u2 is said to be Bush-type if it is blocked
into 2u blocks of side 2u say Ci j such that the diagonal blocks Cii are all-ones and that
the off-diagonal blocks have row and column sums zero. They have many self-dual bent
sequences attached to C as the next result shows.

Proposition 6 If C is a Bush-type complex Hadamard matrix of order 4u2, then it has at
least 42u self-dual bent sequences attached to C.

Proof From the definition, we see that the sequence X defined by Xt = (u1 j, . . . , u2u j),
where j is the all-one vector of length 2u, and the uk’s are arbitrary in �4, is a self-dual bent
sequence. ��

A complex analogue of the Bush-type Hadamard matrix is the following result, inspired
by [12, Theorem 1]. Similar constructions appear in [13, Sect. 5].

Theorem 2 If there exists a complex Hadamard matrix of order 2v. Then there exists a Bush-
type complex Hadamard matrix of order 4v2. This matrix is regular of row sum 2v.
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Proof Let K be a normalized complex Hadamard matrix of order 2v and J2v be a all-one
matrix of order 2v, and let r1, r2, . . . , r2v be the row vectors of K . Let Ci = r ti ri , for
i = 1, 2, . . . , 2v. Then the following properties are easy to check:

(1) Ct
i = Ci , for i = 1, 2, . . . , 2v.

(2) C1 = J2v, Ci J2v = J2vCi = 0, for i = 2, 3, . . . , 2v.

(3) CiC∗
j = 0, for i �= j, 1 ≤ i, j ≤ 2v.

(4) C1C∗
1 + C2C∗

2 + · · · + C2vC∗
2v = 4v2 I2v.

Let C = circ(C1,C2, . . . ,C2v), the block circulant matrix with the first row
C1,C2, . . . ,C2v. Then C is a Bush-type complex Hadamard matrix of order 4v2. The regu-
larity follows by the property (2). ��
Example 6 The following matrix K is a complex Hadamard matrix of order 4:

K =

⎛
⎜⎜⎝
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠ ,

The matrix C1 = J4. The matrices C2,C3 and C4 are

C2 =

⎛
⎜⎜⎝

1 i −1 −i
i −1 −i 1

−1 −i 1 i
−i 1 i −1

⎞
⎟⎟⎠ , C3 =

⎛
⎜⎜⎝

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

⎞
⎟⎟⎠ ,

C4 =

⎛
⎜⎜⎝

1 −i −1 i
−i −1 i 1
−1 i 1 −i
i 1 −i −1

⎞
⎟⎟⎠ .

The matrix C = circ(C1,C2,C3,C4) is a Bush-type complex Hadamard matrix of order
16.

Another construction of a Bush-type complex Hadamard matrix is as follows.

Proposition 7 If there exists a Bush-type Hadamard matrix of order v2. Then there exists a
Bush-type complex Hadamard matrix of order v2 having the entries belonging to the set �4.

Proof Let H = [Hi j ] be a Bush-type Hadamardmatrix of order v2,where Hi j , 1 ≤ i, j ≤ v,

are blocks of order v. By multiplying the off-diagonal blocks with i, we obtain a Bush-type
complex Hadamard matrix. ��

4.3 Conferencematrices

A construction indicated in [9, p. 67] and in [25, Theorem3] is connected to Paley II. The
Jacobsthal matrix is the matrix Cq defined in [16, Chap.2, Sect. 3] by Cq(x, y) = χ(y − x),
for x, y ∈ Fq . Here χ denotes the quadratic character defined by the three followingmutually
exclusive cases:

χ(z) =

⎧⎪⎨
⎪⎩

0 if z = 0,

1 if z = �,

−1 if z �= �.
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where � denotes an arbitrary quadratic residue of Fq . Note that Cq is symmetric if q ≡ 1
(mod 4), since then −1 is a quadratic residue. Its extended version Sq is obtained by adding
a border of ones according to the rule in [21, 24].

Sq =
(

0 j
j t Cq

)
,

with j being an all-one row vector of length q .

Proposition 8 If q is a prime power and q ≡ 1 (mod 4), and Sq denotes the extended
Jacobsthal matrix, then i I + Sq is a complex Hadamard matrix of order q + 1.

Proof It is known that Sq is a so-called conference matrix [16, Chap.2, (16)], and therefore
satisfies Sq Stq = q I . Hence

(i I + Sq)(i I + Sq)
∗ = (i I + Sq)(−i I + Sq) = (q + 1)I ,

where the second equality follows by Sq = Stq = S∗
q . ��

The calculation in the proof extends to the situation when we replace Sq by conference
matrices with zero diagonal [1]. In particular this constructs complex Hadamard matrices of
orders {10, 18, 26, 50, 74, 82, 90}.

Unfortunately, the spectrum of a matrix in that family is not favorable to the existence of
self-dual bent sequences.

Proposition 9 Let q be a prime power andq ≡ 1 (mod 4), andwith Sq denoting the extended
Jacobsthal matrix , write C = i I + Sq . The minimal polynomial of C is x2 − 2i x − (q + 1).

Proof Since Sq is real and symmetric, we get C∗ = −i I + Sq = C − 2i I . The Hadamard
relation entails then C(C − 2i I ) = (q + 1)I , then the result follows. ��

Given that the roots of the quadratic are i ± √
q, they belong to Q(i) iff q is a perfect

square. That leaves the following orders to test for that construction:{10, 26, 50, 82}.

4.4 Williamson type

A Hadamard matrix H of order 4m is said to be quaternionic if there are four matrices
A, B,C, D of order m such that

H = A ⊗ I + B ⊗ i + C ⊗ j + D ⊗ k,

where⊗ stands for the Kronecker product of matrices and i, j, k are quaternionic units given
by

i =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ , j =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , k = i j .

If, furthermore, we assume A, B,C, D to be symmetric and circulant, we shall say that H
is Williamson type.

By Lemma 3 of [14], we know that the existence of such a matrix entails that of a complex

Hadamard matrix of the form

(
S T

−T S

)
where the overline denotes complex conjugation.
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One may take S = X + iY and T = V + iW , where X = (A+ B)/2, and Y = (A− B)/2.
Similarly V = (C − D)/2, and W = (C + D)/2.

Lemma 6 of [13] exploits this correspondence to construct regular complex Hadamard
matrices. In the next result, we use a similar construction.

Theorem 3 If there is a Hadamard matrix H of order 4t2 with structure

(
R S

−S R

)
then the

matrix E given by 2E = (R+ S)− i(R− S) is a complex Hadamard matrix. If, furthermore,(
X
Y

)
is a self-dual bent sequence for H ′ =

(
S −R
R S

)
then U + iV is a self-dual bent

sequence for E with U = X + Y and V = X − Y .

Proof The first assertion is Lemma 4 in [13]. The second assertion is a simple calculation
starting from

E(U + iV ) = (1 + i)t(U + iV ),

and replacing E by its value. Separating real and imaginary parts we get the system

RX + SY = 2tY ,

SX − RY = 2t X ,

upon letting X = (U + V )/2, Y = (U − V )/2. ��
Remark 6 By [23], we know that the matrix H in Theorem 3 can be constructed in relation
with Williamson matrices.

5 Coding theoretic interpretation

Let C be a quaternary code of length n over the alphabet�4.LetZ be theZ4-code determined
by iZ = C. We need to recall some connections between C and Z already present in [8, Sect.
II.C].

The distance properties of C for the squared Euclidean distance dE are equivalent to the
distance properties of Z for the Lee distance dL because of the following identity, easily
verified by induction on n :

dE (x, y) = 2dL(u, v),

where x = iu and y = iv with u, v ∈ Z
n
4 . Thus u 	→ iu is an isometry from Z

n
4 onto

�n
4 . A Hadamard code H is a code of length n over �4 with |H| = n codewords that are

pairwise orthogonal for the standard Hermitian inner product 〈, 〉 in dimension n, given by
〈x, y〉 = xy∗. Thus we can think of its codewords as the rows of a complex Hadamard matrix
of size n. The deviation θ(C, x) of an arbitrary vector x ∈ �n

4 from C is defined as

θ(C, x) = max{|〈x, y〉| | y ∈ C}.
It can be seen by expanding 〈x − y, x − y〉 that

R(〈x, y〉) = n − dL(u, v), (4)

for all x, y ∈ �n
4 . This relation can be exploited to derive weight distributions of Z.

Proposition 10 (1) If C consists of the n rows of a complex Hadamard matrix, then Z is an
equidistant code for the Lee metric of parameters (n, n, n).
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(2) If C consists of the n rows of a complex Hadamard matrix, multiplied by the four scalars
of �4, then Z is a code for the Lee metric of parameters (n, 4n, n).

Proof (1) The possible values of 〈x, y〉 for x, y two rows of a complex Hadamard matrix are
n if x = y and 0 otherwise. The result follows by the above relation (4).

(2) The possible values of R〈x, y〉 for x, y two proportional rows of a complex Hadamard
matrix are n if x = y and −n if x = −y. The result follows by the above relation (4).
This completes the proof. ��

Remark 7 A similar construction as (2) above is in [26, p. 77] with real Hadamard matrices
of order 2n.

Remark 8 The Gray map image of Z in F
2n
2 is an Hadamard code, that is to say a binary

code of parameters (2n, 4n, n). This gives a one to many correspondence between a complex
Hadamard matrix of order n and a Hadamard code of order 2n.

Problem 3 Is there any relation with the doubling process of Turyn [23]?

This doubling associates to a complex Hadamard matrix X + iY with X , Y real matrices the

Hadamard matrix X ⊗ S2 + Y ⊗ T2, where S2 =
(
1 1
1 −1

)
, and T2 =

(−1 1
1 1

)
.

The total deviation of the code C is then

θ(C) = min{θ(C, x) | x ∈ �n
4}.

Proposition 11 If there is a bent sequence for a complex Hadamard matrix C of order n,

then its corresponding Hadamard code C has deviation θ(C) = √
n.

Proof See [21, Theorem 1] for Euclidean inner product version. ��
Recall that the covering radius of a code Z ⊆ Z

n
4 is given by

rL(Z) = max
u∈Zn

4

min
v∈Z dL(u, v).

The simple inequality R(〈x, y〉) ≤ |〈x, y〉| shows that
rL(Z) ≥ n − θ(C).

Combining this fact with the above proposition yields the following bound.

Corollary 6 If there is a bent sequence for a complex Hadamard matrix C of order n, then
the covering radius of its attached Z4-code is bounded below as

rL(Z) ≥ n − √
n.

Remark 9 This is less satisfying than that of [18, Lemma 1].

6 Searchmethods

6.1 Brute force

This method is only applicable for small v’s.

(1) ConstructC a complexHadamardmatrix of order v like in [21] by usingMagmadatabase.
(2) For all X ∈ �v

4 compute Y = CX . If Y = (a+ ib)X , then X is a self-dual bent sequence
for C .

Complexity Exponential in v since |�v
4| = 4v.
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6.2 Groebner basis

R<i>:= CyclotomicField (4);
P<[X]>:= PolynomialRing (R, 4);
H:= Matrix(R,4,4,[1, 1, 1, 1,

1, -1, 1, -1,
1, 1, -1, -1,
1, -1, -1, 1]);

sys :=[];
for j:=1 to 4 do

R:=0;
for k:=1 to 4 do

R:=R+H[j,k]*X[k];
end for;
sys:= Append(sys ,R-2*X[j]);sys:= Append(sys ,X[j]^4-1);

end for;
//The ideal of the relations
I := ideal <P | sys >;
// Computation of a Groebner basis (for the

lexicographical order if no other order is
specified)

Groebner(I:Faugere :=true);
//The set of solutions , S
S:= Variety(I);
S;

Complexity As is well-known the complexity of computing Groebner bases can be doubly
exponential in the number of variables, that is v here.

6.3 Linear algebra

(1) Construct C a complex Hadamard matrix of order v by the Appendix, Section 9, or the
database [3].

(2) Compute a basis of the eigenspace associated to the eigenvalue a + ib.
(3) Let B denote a matrix with rows such a basis of size k ≤ v. Pick Bk a k-by-k submatrix

of B that is invertible, by the algorithm given below.
(4) For all Z ∈ �k

4 solve the system in Y given by Z = Y Bk .

(5) Compute the remaining v − k entries of Y B.

(6) If these entries are in �4 declare Y B a self-dual bent sequence attached to C .

To construct Bk we apply a greedy algorithm. We construct the list J of the indices of the
columns of Bk as follows.

(i) Initialize J at J = [1].
(ii) Given a column of index � we compute the ranks over the complex of r and r ′ of

the submatrices of B with k rows and columns defined by the respective lists J and
J ′ = Append(J , �).

(iii) If r < r ′ then update J := J ′.
(iv) Repeat until |J | = rank(B).

Remark 10 If the first column of B is zero, step (i) does not make sense, but then there is no
self-dual bent sequence in that situation, as all eigenvectors have first coordinate zero.

Remark 11 If the eigenspace has a real-valued basis, then every solution is of the form
(R + S) + i(R − S), where R, S are real-valued self-dual bent sequences. So, the number
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Table 1 Complex Hadamard matrices of different orders, along with the corresponding minimum dimensions

v 2 4 8 10 16 18 20 26 32 34 36 40

# of C 1 1 1 1 2 1003 1 1 1 1 3 1

min{dim} 1 2 2 5 {2, 6} {1, 2} 5 13 6 1 {1, 3} 5

v 50 52 58 64 68 72 74 80 82 90

# ofC 8 1 1 3 1 2 2 1 2 1

min{dim} {1, 5, 25} 13 1 {4, 8, 12} 1 2 1 5 {1, 41} 4

of complex self-dual bent sequences is equal to the square of the number of real-valued self-
dual bent sequences. For example, this is so for the matrix Sq + i I where Sq is a conference
matrix: the eigenvalues are i + c, where c is an eigenvalue of Sq , and the (i + c)-eigenspace
coincides with the c-eigenspace of Sq .

Remark 12 A computational improvement is to look at columns of Bk with a small Hamming
weight (much less than k) and determine first the values of X at the indices in the support of
that column.

Complexity Roughly of order v3 + vk2k . In this count v3 is the complexity of computing an
echelonized basis of the eigenspace of C attached to a+bi . The complexity of the invertible
minor finding algorithm is of the same order or less.

7 Numerical examples

The following Table 1 gives the minimum dimensions of the eigenspace attached to the
eigenvalues of complex Hadamard matrices C .

Given howsmall theseminimumdimensions are, themethodofSect. 6.3 is very successful.
By using linear algebra method, we verify that there is no self-dual bent sequence in certain
cases, e.g., for 1002 matrices when v = 18. In Table 2, we investigate the number of self-
dual bent sequences for the above complex Hadamard matrices and their constructions are
detailed in the Appendix.1

8 Conclusion

We have considered self-dual bent sequences attached to complex Hadamard matrices from
the standpoints of generation and symmetry. We considered three generation techniques:
brute force, linear algebra, and Groebner bases. The method based on linear algebra works
especially well when considering eigenvalues of low geometric multiplicity. For some matri-
ces of order 52 this method performs well, while the Groebner basis method cannot finish.
The lack of complex Hadamard matrices of order > 12 in the database [3] has led us to use
the switching method of [5] to generate more matrices. In general, it would be a valuable

1 In Table 2,“—” means that the number of all self-dual bent sequences is unknown, as the dimensions of the
eigenspaces attached to the eigenvalues of C are greater than 16, we are not able to obtain all the self-dual
bent sequences. In Table 2, the positive integer N in N2 is the number of real-valued self-dual bent sequences.
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research project to enrich the known databases, even in the caseswhere complete enumeration
of equivalence classes is not feasible. In the same vein, refining the classification of complex
Hadamard matrices of [3] for v ≤ 12, from equivalence to strong equivalence would be of
interest.

9 Appendix on complex Hadamardmatrices

In this appendix, we indicate how we constructed the matrices used in our computer experi-
ments. The corresponding complex Hadamard matrices are publicly available on Github.2

9.1 Order 8

The matrix is obtained by applying our Proposition 5.

9.2 Order 10

The matrix is obtained by applying our Proposition 8.

9.3 Order 16

One matrix is obtained applying our Theorem 2. The other matrix is obtained from the real
Bush-type Hadamard matrix from a matrix in [12], by multiplying all off-diagonal blocks by
i .

9.4 Order 18

The matrix is constructed from four Williamson type matrices of order 9 obtained from the
database [15] upon using Lemma 6 of [13].

9.5 Order 20

The matrix is obtained by applying our Proposition 5.

9.6 Order 26

The matrix is obtained by applying our Proposition 8.

9.7 Order 32

The matrix is obtained by applying our Proposition 5.

2 https://github.com/Qomo-CHENG/Hadamard_bent_complex.
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9.8 Order 34

The matrix is constructed from four Williamson type matrices of order 17 obtained from the
database [15] upon using Lemma 6 of [13].

9.9 Order 36

One matrix is obtained from the complex Hadamard matrix of order 6 using our Theorem 2.
Two matrices are obtained from the real Bush-type Hadamard matrices of order 36 given
in [10, 11] by multiplying the off-diagonal blocks with i .

9.10 Order 40

The matrix is obtained by applying our Proposition 5.

9.11 Order 50

One matrix is obtained by applying our Proposition 8. The other matrices are constructed
from four Williamson type matrices of order 25 obtained from the database [15] upon using
Lemma 6 of [13].

9.12 Order 52

The matrix is obtained by applying our Proposition 5.

9.13 Order 58

The matrix is constructed from four Williamson type matrices of order 29 obtained from the
database [15] upon using Lemma 6 of [13].

9.14 Order 64

Two matrices are constructed from two complex Hadamard matrices of order 8 obtained
from the database [3] upon using our Theorem 2. Another matrix is obtained from a real
Hadamard matrix of order 8, using the proposition 7.

9.15 Order 68

The matrix is obtained by applying our Proposition 5.

9.16 Order 72

Two matrices are obtained by applying our Proposition 5.
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9.17 Order 74

Two matrices are constructed from four Williamson type matrices of order 37 obtained from
the database [15] upon using Lemma 6 of [13].

9.18 Order 80

The matrix is obtained by applying our Proposition 5.

9.19 Order 82

One matrix is constructed from four Williamson type matrices of order 41 obtained from
the database [15] upon using Lemma 6 of [13]. Another matrix is obtained by applying our
Proposition 8.

9.20 Order 90

The matrix is constructed from four Williamson type matrices of order 45 obtained from the
database [15] upon using Lemma 6 of [13].
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