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Abstract
By a fundamental result by Brickell and Davenport (J Cryptol 4:123–134, 1991), the access
structures of ideal secret sharing schemes are matroid ports. Farràs and Padró (IEEE Trans
Inf Theory 58(5):3273–3286, 2012) presented a characterization of ideal hierarchical access
structures. In this paper, we provide a different characterization. Specifically, we show that
an access structure is ideal and hierarchical if and only if it is a port of a lattice path matroid
at some specific points.

Keywords Ideal secret sharing · Hierarchical access structures · Lattice path matroids ·
Nested matroids

Mathematics Subject Classification Primary 94A62 · Secondary 05B35

1 Introduction

Secret sharing schemes were introduced independently by Shamir [26] and Blakley [3] in
1979.

Initially designed for storing securely highly sensitive data such as numbered bank
accounts, missile launch codes etc., secret sharing has now become an integral part of many
cryptographic protocols, e.g., general protocol for multiparty computation, Byzantine agree-
ment, threshold cryptography, access control, attribute-based encryption, and generalized
oblivious transfer (see a survey [2] for more details).

A secret sharing scheme is a method to distribute a secret among a group of users by
giving each user a piece of information called share, such that only authorized coalitions of
users can recover the secret from their shares. The set of authorized coalitions is called an
access structure. A scheme is perfect if an unauthorized coalition can learn no information
about the secret whatsoever. It has been shown that every access structure admits a perfect
secret sharing scheme [14] and that for the scheme to be perfect the domain of shares of the
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users must be at least as large as the domain of the secrets [15]. In the optimal case, when
for a perfect scheme the sizes of domains of the shares coincide with the size of the domain
of the secrets, the scheme is called ideal.

It is one of the most important and long-standing open problems in secret sharing to
characterise the class of ideal access structures, that is the ones that admit an ideal secret
sharing scheme [2]. A milestone paper by Brickell and Davenport [8] revealed an important
connection between secret sharing schemes and matroids. A consequence of the result by
Brickell and Davenport is that either all ports of a matroid are ideal or none of them is.
The matroid whose ports are ideal is called a secret sharing matroid [19, 25]. Brickell and
Davenport [8] showed that every ideal access structure is a port of a secret sharing matroid.
However, not every matroid is a secret sharing matroid, for example, Seymour [25] showed
that the Vamos matroid is not a secret sharing matroid. A sufficient condition was given
by Brickell and Davenport [8]. They proved every representable matroid is a secret sharing
matroid. This sufficient condition is, however, not necessary. For example, the non-Pappus
matroid is not representable over any field, but it is a secret sharing matroid [27]. Hence,
the problem of characterising ideal access structures is reduced to the problem of classifying
secret sharing matroids. This problem has not yet been solved but some partial progress has
beenmade. A number of authors attempted to classify all ideal access structures in subclasses
of secret sharing schemes. These include access structures defined by graphs [8], weighted
threshold access structures [2, 10, 13], hierarchical access structures [10], bipartite [22, 23]
and tripartite access structures [11].

In a threshold access structure with n participants, the authorized subsets are those with
at least k participants for some k. They are also called k-out-of-n structures. Shamir [26]
and Blakley [3] presented two different methods to construct secret sharing schemes for
threshold access structures and these schemes are ideal. In a threshold access structure all
participants are equally important. However, in a real organization the powers of members
of those organizations are often unequal. As Tassa [29] puts it “it is natural to expect that
the participants are not equal in their privileges or authorities.” As an example he suggests a
bank scenario, when the shares of the vault key may be distributed among bank employees,
and the bank policy could require the presence of, say, three employees in opening the vault,
and at least one of them must be a department manager.

Following [10] we call the access structure hierarchical if all its participants can be
compared and ordered (in a non-strict linear order sense) with respect to their importance.1

Simmons [27] proposed two families of access structures, the multilevel and compart-
mented ones. These access structures were proved by Brickell [7] to be ideal. The multilevel
access structures defined by Simmons are hierarchical and now known as disjunctive
hierarchical access structures. Tassa [29] studied another class of hierarchical access struc-
tures called conjunctive hierarchical access structure and showed that they are also ideal.
Gvozdeva, Hameed and Slinko [12] studied these two types of access structures in the context
of simple game theory.

In [10], Farràs and Padró have given a characterization of ideal hierarchical access struc-
tures. Due to the importance of this class, alternative characterizations are desirable. One
possible way to do this is to characterise the matroids that correspond to these structures. In
this paper, we provide such a characterization. We show that an access structure is ideal and
hierarchical if and only if it is a port of a lattice path matroid at some specific points. The
proof is based on the characterization of ideal hierarchical access structures by Farràs and
Padró [10] and the properties of lattice path matroids by Bonin and deMier [4]. We first show

1 Taking a cue from the concept of Isbel’s desirability relation [30] in game theory.
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Ideal hierarchical secret sharing and lattice path matroids 1337

that there is a “one-to-one" correspondence between lattice path matroids and hierarchical
access structures, and then prove that the hierarchical access structure coincides with the port
of the corresponding lattice path matroid at a specific point. Disjunctive hierarchical access
structures and conjunctive hierarchical access structures are two important subclasses of ideal
hierarchical access structures. We show that they are ports of nested matroids, which are a
subclass of lattice path matroids, at some specific points. These results once again highlight
the usefulness of the strong connection between secret sharing schemes and matroids.

The paper is organized as follows. In Sect. 2, we give some basic definitions of background
materials: in Sect. 2.1 we define hierarchical access structures. In Sect. 2.2, the basic defini-
tions in matroid theory are given. In Sect. 2.3, we define matroid ports. We define lattice path
matroids in Sect. 3, and recall some results regarding lattice pathmatroids.Wewill used some
of these results to prove our main result. In Sect. 4, we prove our main result Theorem 16. In
Sect. 5, we provide characterizations of two subclasses of ideal hierarchical access structures:
disjunctive hierarchical access structures and conjunctive hierarchical access structures.

2 Preliminaries

2.1 Hierarchical access structures

Definition 1 Let P be a finite set. An access structure � on P is a collection of subsets of P
such that the following are satisfied:

(A1) � �= ∅,
(A2) � is monotone, that is, if X ⊆ Y and X ∈ �, then Y ∈ �.

A subset X ⊆ P is authorized if X ∈ �, otherwise it is unauthorized. Due to the monotone
property, an access structure is determined by the set of minimal authorized coalitions,
denoted by min�. An access structure is connected if every participant x ∈ P is contained in
at least one minimal authorized coalition. The dual of �, denoted as �∗, is an access structure
defined as

�∗ = {X ∈ P | E − X /∈ �}.
Definition 2 Let � be an access structure on P and let p, q ∈ P . We say p is at least as
powerful as q , denoted by q �� p (the subindex � is often omitted if the access structure
is clear from the context), if A ∪ {p} ∈ � whenever A ∪ {q} ∈ �, where A is an arbitrary
subset of P − {p, q}. Two participants p, q are equivalent, denoted by p ∼� q , if p � q
and q � p. And p is more powerful than q , denoted as q ≺ p, if q � p but p � q .

Definition 3 The access structure � on P is m-partite if P can be partitioned into m parts
such that elements in the same part are equivalent. It is strictly m-partite if elements in
different parts are not equivalent.

Definition 4 A binary relation ≤ is a total preorder on a set P if it satisfies:

• Reflexivity: a ≤ a for all a ∈ P , and
• Transitivity: if a ≤ b and b ≤ c then a ≤ c for all a, b, c ∈ P , and
• Totality: a ≤ b or b ≤ a for all a, b ∈ P .

Definition 5 An access structure � on P is hierarchical if and only if �� is a total preorder.
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1338 S. Mo

In any hierarchical access structure � on P , as ∼� is an equivalence relation, the set of
participants P can be partitioned into m distinct equivalence classes P1, . . . , Pm , for some
m ∈ Z+, so that � is a strictly m-partite access structure and

P =
m⋃

i=1

Pi ,

where p �� q for any p ∈ Pi and q ∈ Pj with i < j . That is, participants in the first
level are strictly superior to those in the second level, the participants in the second level are
strictly superior to those in the third level and so on.

Definition 6 Suppose that P is the set of participants with partition (P1, . . . , Pm) and let
k1 < k2 < . . . < km be a sequence of positive integers. Let k = (k1, k2, . . . , km). Then we
define a disjunctive hierarchical access structure �∃(P,k) by setting the set of authorized
coalitions to be

�∃(P,k) =
{
X ∈ 2P

∣∣∣∣∃i
(∣∣∣∣X ∩

( i⋃

j=1

Pj

)∣∣∣∣ ≥ ki

)}
,

and conjunctive hierarchical access structure �∀(P,k) by setting the set of authorized
coalitions to be

�∀(P,k) =
{
X ∈ 2P

∣∣∣∣∀i
(∣∣∣∣X ∩

( i⋃

j=1

Pj

)∣∣∣∣ ≥ ki

)}
.

For the disjunctive access structure defined in Definition 6, we assume
∑i

j=1 |Pj | ≥ ki for
all i ∈ [m], otherwise the access structure can be empty or the threshold in level i cannot be
exceeded and the existence of ki is unnecessary. For the conjunctive access structure defined
in Definition 6, |P| ≥ km , otherwise the access structure is empty.

It is well-known that both disjunctive and conjunctive hierarchical access structures are
ideal [7, 29]. For the formal definitions of perfect and ideal secret sharing schemes, the reader
is referred to [2, 28].

In [10], Farràs and Padró introduced the following class of hierarchical access structures
which generalizes the class of conjunctive and disjunctive access structures.

Definition 7 Suppose that P is the set of participants with partition (P1, . . . , Pm). Consider
two integer vectors a = (a1, . . . , am) and b = (b1, . . . , bm) with a1 = 0 and ai ≤ ai+1 ≤
bi ≤ bi+1 for every i ∈ [1,m − 1]. Then an FP access structure �(P, a,b) is an access
structure defined as

⎧
⎨

⎩X ∈ 2P
∣∣∣∣∃i∈[m]

⎛

⎝
∣∣∣∣X ∩

i⋃

k=1

Pk

∣∣∣∣ ≥ bi and ∀ j∈[1,i−1]

⎛

⎝
∣∣∣∣X ∩

j⋃

k=1

Pk

∣∣∣∣ ≥ a j+1

⎞

⎠

⎞

⎠

⎫
⎬

⎭ .

For the definition above, we assume
∑i

j=1 |Pi | ≥ bi for all i ∈ [m] otherwise the access
structure is empty or the threshold of certain level cannot be exceeded. The definition we are
giving here is different from the one by Farràs and Padró [10], however they are equivalent.
For the definition in [10], vectors a and b start from a0 = 1 and b0 = 1, respectively. We
remove a0 and b0 here. Also in their definition, a1 = 1 and we set it to be 0, as a consequence,
all the entries of vectors a and b have been scaled down by 1. They show that the class of FP
access structures is precisely the class of ideal hierarchical access structures.
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Theorem 1 [10] A hierarchical access structure is ideal if and only if it is an FP access
structure.

2.2 Matroids

For general references on matroid theory the reader is referred to [20]. For convenience of
the reader, here we introduce some basic concepts related to matroids.

Definition 8 Amatroid M is an ordered pair (E, I) consisting of a finite set E , known as the
ground set, and a collection I of subsets of E , known as the set of independent sets of M ,
satisfying the following three conditions:

(I1) ∅ ∈ I.
(I2) If X ∈ I and Y ⊆ X , then Y ∈ I.
(I3) If X , Y ∈ I and |X | < |Y |, then there is an element e ∈ Y − X such that X ∪ e ∈ I.
A set is dependent if it is not in I. Aminimal dependent set is called a circuit, that is, X is a

circuit if X is dependent and any proper subset of X is independent. A circuit with cardinality
one is a loop. A maximal independent set is called a basis, that is, if X is independent then
any proper superset of X is dependent. A spanning circuit is a circuit that contains a basis.
The set of bases of matroid M is denoted by B(M).

Let M be a matroid on E . The rank function of M is a function r : 2E → Z defined by

r(X) = max{|A| | A ⊆ X , A ∈ I},
for all X ⊆ E . The rank of the matroid M , denoted by r(M), is the rank of the ground set E .
The difference |X | − r(X) is called the nullity of the subset X , denoted by η(X). The nullity
of E in M is called the nullity of M . The restriction of M to X , written M |X , is the matroid
on the set X whose independent sets are the independent sets of M that are contained in X .
The contraction of M by Y ⊆ E , written M/Y , is the matroid on the underlying set E − Y
with rank function defined as r ′(A) = r(A ∪ Y ) − r(Y ). The matroid obtained from M by
a sequence of restriction and contraction operations is called a minor of M . Given a matroid
M , its dual matroid M∗ is the matroid with ground set E and the set of bases given by

B(M∗) = {E − B | B ∈ B(M)}.
A matroid is connected if for any x, y ∈ E , there exists a circuit that contains both x and y.
The closure cl(X) of a subset X of E is the set

cl(X) = {x ∈ E | r(X ∪ x) = r(X)}.
A subset X ⊆ E is a flat if cl(X) = X . The flat X of a matroid M is connected if the
restriction M |X is connected. A flat is trivial if it is independent; otherwise it is nontrivial.
A flat X is said to be a hyperplane if r(X) = r(M) − 1. A matroid M = (E, I) is say to be
linearly-representable over a field F, if there exists a vector space V over F and a mapping
φ : E → V such that X is independent in M if and only if φ(X) is linearly independent in
V , for all X ⊆ E . A matroid is representable if it is linearly-representable over some field.

Let E be a finite set and A = {A j ⊆ E | j ∈ [m]} be a set system of E . A transversal of
A is a subset {e1, e2, . . . , em} of E such that e j ∈ A j for all j ∈ [m] and all elements of this
subset are distinct. We say X ⊆ E is a partial transversal of A if for some subset K of [m],
X is a transversal of {A j | j ∈ K }. It is well known that the collection of partial transversals
forms a collection of independent sets of a matroid M(see for example [20]). The matroid
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1340 S. Mo

M is called a transversal matroid andA a presentation of M . The incidence function ofA is
given by n(X) = {i | X ∩ Ai �= ∅} for subsets X ⊆ E .

Theorem 2 [24] A transversal matroid is representable over all sufficiently large fields; in
particular, it is representable over all infinite fields.

2.3 Matroid ports

Definition 9 Let M be a matroid with ground set E and let p ∈ E . The set

�p(M) = {A ⊆ E − {p} | r(A ∪ {p}) = r(A)}
is the port of matroid M at point p.

Equivalently, �p(M) = {A ⊆ E − {p} | p ∈ cl(A)}.
Duality in matroids and in access structures nicely relate to each other [18]. More specif-

ically, �∗
p(M) = �p(M∗).

With a slightly different definition of matroid port, Lehman showed in [17] that a matroid
port of a connected matroid determines this matroid uniquely.

Theorem 3 (Lehman, [17]) Let M be a connected matroid with ground set E and e ∈ E. Let
Ce be the collection of circuits of M which contain e. Then M is uniquely determined by Ce.

Theorem 4 (Brickell and Davenport, [8]) Let � be a connected ideal access structure on P.
Then there exists a connected matroid M on P ∪ {p} such that �p(M) = �, where p /∈ P.

The two theorems above together imply that a connected ideal access structure � deter-
mines a connected matroid M uniquely.

Previously, we defined what it means for two participants of an access structure to be
equivalent. Now we define an equivalence relation for elements of a matroid.

Definition 10 Let M be a matroid on E and x, y ∈ E . The elements x and y are equivalent if
for any X ⊆ E −{x, y}, the set X ∪ x is a circuit if and only if X ∪ y is a circuit. The matroid
M is m-partite if E can be partitioned into m disjoint parts such that elements in the same
part are equivalent. It is strictly m-partite if elements in different parts are not equivalent.

The two notions of equivalence are connected by the following result.

Theorem 5 (Farràs, Martí-Farré and Padró, [11]) Let M be a connected matroid with ground
set E and let p ∈ E. Then �p(M) is m-partite with partition (P1, . . . , Pm) if and only if M
is (m + 1)-partite with partition ({p}, P1, . . . Pm).

3 Lattice pathmatroids

Lattice path matroids were introduced by Bonin, de Mier and Noy [6]. In this section, we
briefly recap some of the results about lattice path matroids from Bonin and de Mier [4]; we
will use these results in Sect. 4 to prove our main result which is Theorem 16.

ANorth-East lattice path of length n is a sequence of points v0, v1, . . . , vn ∈ Z2 such that
each consecutive difference vi − vi−1 lies in S = {(0, 1), (1, 0)}. The (0, 1) steps are called
North steps and denoted by N ’s; the (1, 0) steps are called East steps and denoted by E’s.
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Fig. 1 A lattice path presentation
of a rank-4 lattice path matroid
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Paths usually are represented as words in the alphabet {E, N }. All lattice paths we mention
in this paper are North-East lattice paths starting at the point (0, 0) unless otherwise stated.
A lattice path Q has a NE corner at h if step h of Q is North and step h + 1 is East. An EN
corner at h is defined similarly. A corner can also be specified by the coordinates of the point
where the North and East steps meet.

Let m, r be two non-negative integers and letW and Q be two lattice paths from (0, 0) to
(m, r) with W never going above Q. Let P(W , Q) be the set of all lattice paths from (0, 0)
to (m, r) that go neither above Q nor below W . For any i with 1 ≤ i ≤ r , let Ni be the set

Ni := { j | step j is the i-th North step of a path in P(W , Q)}.
It is easy to see that, N1, N2, . . . , Nr is a sequence of intervals in [m + r ], and both the
left endpoints and the right endpoints form strictly increasing sequences; moreover, the left
and right endpoints of Ni correspond to the positions of the i-th North steps in Q and W ,
respectively. The matroid M[W , Q] is the transversal matroid on the ground set [m + r ] that
has (N1, N2, . . . , Nr ) as its presentation.We call (N1, N2, . . . , Nr ) the standard presentation
of M[W , Q].

Let Ni = [ti , si ] for i ∈ [r ]. Since W and Q determine the matroid M[W , Q], we call
(W , Q) the lattice path presentation of M[W , Q]. Note that M[W , Q] has rank r and nullity
m. A lattice path matroid is any matroid isomorphic to M[W , Q]. If we fix one of the path
by setting W = EmNr , then the lattice path matroid is called a nested matroid.

Example 1 Figure 1 depicts the lattice path presentation of the lattice path matroid M[W , Q],
with W = E3NENE2N 2 and Q = N 2ENENE4, whose standard presentation is
([1, 4], [2, 6], [4, 9], [6, 10]).

A lattice path matroid M[W , Q] of rank r and nullitym is connected if and only ifW and
Q intersect only at (0, 0) and (m, r). We refer reader to [4] for more detail. Throughout this
paper, we only consider connected lattice path matroids and connected access structures.

Definition 11 Let X be a connected flat of a connected lattice path matroid M for which
|X | > 1 and r(X) < r(M). We say that X is a fundamental flat of M if for some spanning
circuit C of M the intersection X ∩ C is a basis of M |X .

Fundamental flats were introduced in [4] to study lattice path matroids. Observe that the
set of NE corners of Q determines the path Q and the set of EN corners ofW determines the
path W . It turns out that the corners of the lattice paths W and Q nicely correspond to the
fundamental flats.

Theorem 6 [4] A connected lattice path matroid is determined by the fundamental flats and
their ranks.
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Fig. 2 A 180◦ rotation of a
nested matroid
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Theorem 7 [4, Theorem 5.3] Let M[W , Q] on [n] be connected and has rank r. Let the EN
corners of Q be at i1, i2, . . . , ih , with i1 < i2 < . . . < ih , and the N E corners of W be at
j1 − 1, j2 − 1, . . . , jk − 1, with j1 < j2 < · · · < jk . The fundamental flats of M[W , Q] are
[i1] ⊂ [i2] ⊂ . . . ⊂ [ih] and [ jk,m + r ] ⊂ · · · ⊂ [ j2,m + r ] ⊂ [ j1,m + r ].

These two theorems imply that a lattice path matroid can have at most two chains of
fundamental flats under inclusion, and the lattice path matroid is determined by these two
chains of fundamental flats. It is obvious that when a lattice path matroid has only one chain
of fundamental flats, it is a nested matroid.

Example 2 Consider the lattice path matroid given in Fig. 1. The sets {1, 2, 3}, {4, 5}, [1, 10]
are all flats. The set {1, 2, 3} is a fundamental flat because the circuit C = {1, 2, 4, 6, 7} is a
spanning circuit of M and {1, 2, 3} ∩ C = {1, 2} is a basis of M |{1, 2, 3}. The set {4, 5} is
flat, and it is trivial since it is independent. The set [1, 10] is not a fundamental flat since its
intersection with any spanning circuit C would be C itself, and thus not a basis of M |[1, 10].

The bounding pathsW and Q of a connected lattice pathmatroidM[W , Q] are determined
by the matroid structure [4], up to a 180◦ rotation.

Example 3 The lattice path matroid M presented in Fig. 2 on the left is a nested matroid. The
matroid on the right is obtained by rotating the lattice path presentation of M through 180◦
which is isomorphic to M .

Theorem 8 [4, Theorem 3.1] The class of lattice path matroids is closed under matroid
duality.

The following theorem will be used to prove Lemma 14 in Section 4.

Theorem 9 ([4], Theorem 3.9) Let C = {c0, c1, . . . , ck} ⊆ [m+r ] be a set in the lattice path
matroid M[W , Q] with the standard representation (N1, . . . , Nr ); assume c0 < c1 < · · · <

ck . Let n(C) be {i1, i2, . . . , is}, where i1 < i2 < · · · < is . Then C is a circuit of M[W , Q] if
and only if

(1) s = k,
(2) c0 ∈ Ni1 ,
(3) ck ∈ Nik , and
(4) c j ∈ Ni j ∩ Ni j+1 for all j with 0 < j < k.

Furthermore, if C is a circuit, then ih+1 = ih + 1 for 1 ≤ h < k.
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Example 4 In Fig. 1, C = {1, 2, 4, 5} is a circuit, because n(C) = {1, 2, 3}; s = 3 = k;
c0 = 1 ∈ N1 = [1, 4]; 2 ∈ N2, 4 ∈ N3; and c1 = 2 ∈ N1 ∩ N2, c2 = 4 ∈ N2 ∩ N3. However
D = {1, 2, 4, 6} is not a circuit, because n(D) = {1, 2, 3, 4}, s = 4 �= 3 = k.

Let π1 and π2 be two partitions of a set P . We say that π1 is finer than π2 (and π2 is
coarser than π1) if π1 can be obtained from π2 by splitting some of its parts into smaller
pieces. Themeet of two partitions, denoted by π1 ∧π2, is the coarsest partition which is finer
than both of them.

Consider the notation in Theorem 7, the set of EN corners of Q partitions [n] into h + 1
parts, [1, i1], [i1 + 1, i2], . . . , [ih + 1, n], call this partition π1. The set of NE corners of W
partition [n] into k + 1 parts, [1, j1 − 1], [ j1, j2 − 1], . . . , [ jk, n], call this partition π2. We
call π1 ∧ π2 the natural ordered partition of [n] in M . The part that contains 1 and the part
that contains n are called the head and the tail of the partition, respectively.

The following corollary follows directly from Theorem 9.

Corollary 10 [4, Corollary 3.13] Let C = {c0, c1, . . . , ck} be the circuit of M[W , Q] with
c0 < c1 < · · · < ck . If x is not in C and Z ∪ {x} is a circuit of M[W , Q] for some subset Z
of C, then Z is either {c0, c1, . . . , ci } or {c j , c j+1, . . . , ck}.
Lemma 11 Let M[W , Q] be a connected lattice path matroid on n elements. Then x and y
are equivalent if and only if they are in the same set of fundamental flats.

Proof Suppose x and y are not in the same set of fundamental flats.Without lose of generality,
there is a fundamental flat F such that x ∈ F and y /∈ F . A fundamental flat is a connected
flat, so there is a subset A ⊂ F − {x} such that A ∪ {x} is a circuit. However y /∈ F , so
A ∪ {y} is independent. Therefore x and y are not equivalent.

Suppose x and y are in the same set of fundamental flats.Assume x and y are not equivalent.
There is a subset A ⊆ E −{x, y} such that A∪{x} = {c0, c1, . . . , ck} is a circuit but A∪{y}
is not a circuit. By Theorem 9, n(A ∪ {x}) = {h + 1, . . . , h + k} for some h. We have two
cases to consider. Either there is a proper subset A′ of A such that A′ ∪ {y} is a circuit or
A∪{y} is independent. For the former case, by Corollary 10, either A′ is {c0, c1, . . . , ci }with
i < k or {c j , c j+1, . . . , ck}with j > 1. If A′ = {c0, c1, . . . , ci }, then by Theorem 9, A′ ∪ {y}
is a circuit implies y ∈ Nh+i , y /∈ Nh+i+1 and x > y. Let F1 be the smallest fundamental
flat that contains A′ ∪ {y} and the element 1. The containment relation is proper otherwise
we have a contradiction immediately. We can find a circuit C = B ∪ A′ ∪ {y} − {c0} with
n(C) = {1, . . . , h, h + 1, . . . , h + k} by carefully choosing the elements from F1 so that C
satisfies the properties in Theorem9. It is easy to see that x /∈ Ni for all i ∈ [h], and any circuit
C ′ that contains both x and 1 must have n(C ′) ⊃ n(C). Therefore x /∈ F1. This contradicts
the fact that x and y are in the same set of fundamental flats. If A′ = {c j , c j+1, . . . , ck}, then
the argument is similar, except we have x < y and we find the smallest fundamental flats
that contains A′ ∪ {y} and the element n.

For the case A ∪ {y} is independent, there is a set B ⊃ A such that B ∪ {y} is a circuit
but B ∪ {x} is not a circuit and there is a proper subset A of B such that A ∪ {x} is a circuit.
This is essentially the same case as before except the exchange of x and y. ��
Lemma 12 Let M[W , Q] be a connected lattice path matroid on [n] with elements go in the
natural order. Then M is multipartite with distinct equivalence classes which are the same
as that of the natural ordered partition of [n] in M.

Proof Let π1 ∧ π2 be the natural ordered partition of [n] in M . By Lemma 11, x and y are
equivalent if and only if they are in the same set of fundamental flats. By Theorem 7, x and y
are in the same set of fundamental flats if and only if they are in the same part of π1 ∧ π2. ��
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By Theorem 5 and Lemma 12, the following lemma is straightforward.

Lemma 13 Let M[W , Q] be a connected m-partite lattice matroid M on n elements. Let
(P1, P2, . . . , Pm) be the natural ordered partition of [n], where 1 ∈ P1. Then �1(M) is
m-partite with distinct equivalence classes (P1\{1}, P2, . . . , Pm).

4 Ideal hierarchical access structures

In this section, we prove our main theorem. We first prove the following lemma.

Lemma 14 Let M[W , Q] be a rank-r lattice path matroid on m + r elements. Let X ⊆ E
such that 1 ∈ cl(X). If y ∈ E − X and x ∈ X such that y < x, then 1 ∈ cl(X ∪ y − x).

Proof Let c0 = 1. Since 1 ∈ cl(X), there exists A = {c1, . . . , ck} ⊆ X such thatC = A∪{1}
is a circuit. If x /∈ A, then it is trivial that 1 ∈ cl(X ∪ y − x). We only need to consider the
case that x ∈ A. Let ct−1 < y < ct for some t ∈ [k]. Since C is a circuit, by Theorem 9,
n(C) = [k], and

(i) |C | = |n(C)| + 1,
(ii) 1 ∈ N1,
(iii) ck ∈ Nk ,
(iv) c j ∈ N j ∩ N j+1 for all j with 0 < j < k.

In particular, ct−1 ∈ Nt−1 ∩ Nt , and ct ∈ Nt . Hence y ∈ Nt . There are two cases to consider.

• Suppose y /∈ Nt+1. It is easy to see x > y implies x ∈ {ct , ct+1, . . . , ck}. We show
C ′ = {1, c1, . . . , ct−1, y} is a circuit by showing it satisfies the four properties in Theorem
9. From the above results, it is easy to see n(C ′) = {1, 2, . . . , t−1}. So |C ′| = |n(C ′)|+1,
hence Property (1) holds. By (i i), 1 ∈ N1, hence Property (2) holds. We already know
that y ∈ Nt , that is Property (3) holds. By (iv), c j ∈ N j ∩ N j+1 for all j with 0 < j < t ,
that is Property (4) holds.

• Suppose y ∈ Nt+1. We know that x ∈ {ct , ct−1, . . . , ck}. If x = ct , we will show
C ′ = {1, c1, c2, . . . , ct−1, y, ct+1, . . . , ck} is a circuit. By (i)–(iii), Property (1)-(3) holds.
By (v), Property (4) almost holds except we need to show y ∈ Nt ∩ Nt+1, however we
know y ∈ Nt and by assumption y ∈ Nt+1. So Property (4) holds. Now assume x �= ct ,
then x = cs for some s ∈ [t + 1, k]. If c j ∈ N j+2 for all j ∈ [t, s − 1], we show that
A′ = {1, y}∪ A−{x} = {1, c1, . . . , ct−1, y, ct , ct+1, . . . , cs−1, cs+1, . . . , ck} is a circuit
by checking A′ satisfies the properties in Theorem 9. It is obvious that Property (1) holds,
as |A′| = |n(A′)| + 1 = k + 1. By (i i) and (i i i), Property (2) and (3) hold. By (iv), we
know ci ∈ N j ∩ N j+1 for all j with 0 < j < k. In particular, c j ∈ N j ∩ N j+1 for all j
with 0 < j < t or s < j < k. We also have c j ∈ N j+1 for all j with t ≤ j < s. Together
with the assumption that c j ∈ N j+2 for all j ∈ [t, s−1], obtain c j ∈ N j+1∩N j+2 for all
j with t < j < s. Furthermore, we know y ∈ Nt∩Nt+1. Therefore Property (4) holds. So
A′ is a circuit If c j /∈ N j+2 for some j ∈ [t, s−1], thenwe let g be the smallest number in
[t, s − 1] such that cg /∈ Ng+2. We show that A′ = {1, c1, . . . , ct−1, y, ct , . . . , cg−1, cg}
is a circuit. Property (1) holds, as |A′| = g+1 = n(A′)+1. Property (2) holds, as 1 ∈ N1

by (i i). Property (3) holds, as cg ∈ Ng+1 by (iv). By (iv), we have c j ∈ N j ∩ N j+1 for
all j with 0 < j < t . By assumption, we have y ∈ Nt ∩ Nt+1 and c j ∈ N j+1 ∩ N j+2

for all j with t < j < g. Therefore Property (4) holds. So A′ is a circuit.

So 1 ∈ cl(X ∪ y − x) as required. ��
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Proposition 15 Let M[W , Q] be a lattice path matroid on [n]with elements go in the natural
order. Then �1(M) is ideal and hierarchical with 2 � 3 � · · · � n.

Proof Since a lattice path matroid is transversal, by Theorem 2, it is representable. Therefore
�1(M) is ideal. We know that X is authorized if and only if 1 ∈ cl(X). Hence it follows
directly from Lemma 14 that x � y if x < y. ��
Theorem 16 An access structure � is an ideal hierarchical access structure if and only if
� = �p(M) for some lattice path matroid M where p is in the head (or the tail) of the
natural ordered partition of M.

Proof By Theorem 1, an access structure is ideal and hierarchical if and only if it is
isomorphic to an FP access structure �([2, n], a,b), where a = (a1, a2, . . . , am) and
b = (b1, b2, . . . , bm) such that ai ≤ ai+1 ≤ bi ≤ bi+1 for all i ∈ [m − 1]. Let (P1, . . . , Pm)

be the partition of [2, n] in� such that P1 = [2, n1+1], P2 = [n1+2, n1+n2+1], . . . , Pm =
[2 + ∑m−1

i=1 ni , 1 + ∑m
i=1 ni ]. That is |Pi | = ni for all i ∈ [m]. To complete the proof, we

prove the following two claims. ��
Claim 1 Up to isomorphism, there is a one-to-one correspondence between ideal hierarchical
access structures and lattice path matroids.

By definition of �, ak ≤ ak+1 ≤ bk ≤ bk+1 for all k ∈ [m − 1]. The entries of a can
be partition into c parts such that the entries are the same in the same part and different in
different parts. That is, there exist j1, j2, . . . , jc−1 ∈ [m − 1] such that

a j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s1 if j ∈ [1, j1]
s2 if j ∈ [ j1 + 1, j2]
...

sc if j ∈ [ jc−1 + 1,m]
and s1 < s2 < · · · < sc. Similarly there exist i1, . . . , id−1 ∈ [m − 1] such that

bi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r1 if i ∈ [1, i1]
r2 if i ∈ [i1 + 1, i2]
...

rd if i ∈ [id−1 + 1,m]
and r1 < r2 < · · · < rd .

Construct a lattice path Q with d − 1 EN corners such that the k-th EN corner is at
1 + ∑ik

l=1 nl with height rk for all k ∈ [d − 1]. Construct a lattice path W with c − 1 NE

corners such that the k-th NE corner is at 1 + ∑ jk
l=1 nl with height sk+1 for all k ∈ [c − 1].

Let M be the matroid with lattice path presentation (W , Q). Then by Theorem 7, [ni1 +1] ⊂
[ni1 + ni2 + 1] ⊂ · · · ⊂ [ni1 + · · · + nic−1 + 1] is a chain of fundamental flats with ranks
r1 < r2 < · · · < rd−1, and [n j1 + 2, n] ⊃ [n j2 + 2, n] ⊃ · · · ⊃ [n jc−1 + 2, n] is the other
chain of fundamental flats with nullities s2 < s3 < · · · < sc.

As discussed in Sect. 2.1, bk < 1 + ∑k
j=1 n j for all k ∈ [m]. Since ak+1 ≤ bk <

1 + ∑k
j=1 n j , for all k ∈ [m − 1], the path W never goes above Q. The connected lattice

path matroid M[W , Q] is well-defined (as illustrated in Fig. 3).
Now suppose M[W , Q] is a connected lattice path matroid that has rank r and nullity m.

By Theorem 7, M[W , Q] has two chains of fundamental flats: [i1] ⊂ [i2] ⊂ . . . ⊂ [id−1]
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r1

r2

...
...

rd−1

rd = r

s1=0

s2

s3

...
...

sc

Q

W

Fig. 3 Constructing lattice path matroid M[W , Q] from �([2, n], a,b)

with ranks r1 < r2 < · · · < rd−1 and [ jc−1,m + r ] ⊂ . . . ⊂ [ j2,m + r ] ⊂ [ j1,m + r ]
with nullities sc > sc−1 > · · · > s2. Recall that the two chains of fundamental flats give
us two different partitions of [m + r ]: π1 = {[i1], [i1 + 1, i2], . . . , [id−1 + 1,m + r ]}, and
π2 = {[ j1−1], [ j1, j2−1], . . . , [ jc−1,m+r ]}. The meet π1∧π2 = {[n1+1], [n1+2, n1+
n2], · · · , [n1+· · ·+nm−1+2,m+r ]}. ByLemma13, {[2, n1+1], [n1+2, n1+n2], · · · , [n1+
· · ·+nm−1+2,m+r ]} is the partition of [2, n]with cardinalities n1, n2, . . . , nm respectively.
One reverses the construction given in the first part of the proof, obtain an FP access structure
�([2, n], a,b). Notice that the pathW never goes above Q, so ak+1 ≤ bk for all k ∈ [m−1].

Claim 2 Let M[W , Q] be the lattice path matroid defined as in the proof of Claim 1 and let
�1(M) be the port of M[W , Q] at 1. Then �1(M) ∼= �([2, n], a,b).

Consider the chain of fundamental flats [ni1 + 1] ⊂ [ni1 + ni2 + 1] ⊂ · · · ⊂ [ni1 +
· · · + nic−1 + 1]. For any set X ⊆ [2, n], if 1 ∈ cl(X), then cl(X) must be either one of
the fundamental flats or the ground set [n]. Consider the other chain of fundamental flats
[n j1 + 2, n] ⊃ [n j2 + 2, n] ⊃ · · · ⊃ [n jc−1 + 2, n]. Element 1 is not in any of these flats. So
if X ∩ [n j1 + 2, n] �= ∅, then |X ∩ [n j1 + 1]|≥ s2 as required. Similarly, for each x ∈ [c− 1],
if X ∩ [n jx + 2, n] �= ∅, then |X ∩ [n jx + 2]| ≥ sx+1 as required. When these necessary
conditions apply to the refinement of the partition of [2, n] obtained from Lemma 13, we
have the following statement: if 1 ∈ cl(X), then

∃i∈[m]
(|X ∩ [2, ni + 1]|≥ bi and ∀ j∈[1,i−1]

(|X ∩ [2, n j + 1]|≥ a j+1
))

. (1)

Conversely, suppose X satisfies the condition in (1), we show 1 ∈ cl(X). Let i be the
smallest element in [m] such that X satisfies the condition. That is,

|X ∩ [2, ni + 1]|≥ bi and ∀ j∈[1,i−1]
(|X ∩ [2, n j + 1]|≥ a j+1

)
. (2)

Since bi ∈ {r1, . . . , rd} is the rank of a fundamental flat that contains 1, if X is independent
then X spans the fundamental flat, hence 1 ∈ cl(X).

Let l1, . . . , ls2 be the North steps of W up to the first NE corner. Similarly, let
lsg−1+1, . . . , lsg be the North steps of W between the (g − 2)-th NE-corner (exclusive) and
the (g−1)-th NE-corner (inclusive), for all g ∈ [2, i]. Let lsi+1, . . . , lbi be the North steps of
W with the smallest labels after the (i − 1)-th NE corner and up to the i-th NE corner. Then
A = {l1, . . . , lsi , lsi+1, . . . , lbi } is independent and satisfies condition (1). So 1 ∈ cl(A).
Since X satisfies condition (1), there are at least s2 elements of X , say x1 < · · · < xs2 ,
are in [2, 1 + n1 + · · · + n j2 ], that is x1, . . . , xs2 are between 2 and the first corner. Since
l1, · · · , ls2 are the North steps of W , it is obvious that x1 ≤ l1, x2 ≤ l2, . . . , xs2 ≤ ls2 . Use
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the same argument we can see that there are bi elements of X , say x1 < · · · < xbi , such that
x1 ≤ l1, . . . , xbi ≤ lbi . Applying Lemma 14 repeatedly, obtain 1 ∈ cl({x1, . . . , xbi }), hence
1 ∈ cl(X). ��

5 Conjunctive and disjunctive access structures

5.1 Nestedmatroids

Nested matroids, also known as shifted matroids or generalized Catalan matroids, were first
introduced by Crapo [9] to show that there are at least

(n
r

)
nonisomorphic matroids of rank r

on n elements. Theywere later investigated in [21] as a particular kind of transversalmatroids,
and appeared again in [4] and [6] as a kind of lattice path matroids. They were rediscovered
and related to shifted complexes by Ardila [1] and Klivans [16]. For a more detailed history
of these matroids, we refer the reader to [4].

In this section, we show that a hierarchical access structure is disjunctive (conjunctive
resp.) if and only if it is a matroid port of a nested matroid M at point p, where p is in the
head (tail resp.) of the natural ordered partition of M . The proofs are basically the same as
the one for Theorem 16.

The following two propositions were observed by Farràs and Padró in [10].

Proposition 17 Suppose that the set of participants P is partitioned into m disjoint subsets
P = ⋃m

i=1 Pi and let k1 < k2 < . . . < km be a sequence of positive integers. Let k =
(k1, k2, . . . , km). Then �∃(P,k) = �(P, a,k), where a = (0, 0, . . . , 0).

Proposition 18 Suppose that the set of participants P is partitioned into m disjoint subsets
P = ⋃m

i=1 Pi and let k1 < k2 < . . . < km be a sequence of positive integers. Let k =
(k1, k2, . . . , km). Then �∀(P,k) = �(P, a,b), where a = (0, k1, . . . , km−1) and b =
(km, km, . . . , km).

Corollary 19 An access structure � is disjunctive hierarchical if and only if there is a nested
matroid M on n elements such that � = �p(M) and p is in the head of the partition.

Proof Let �∃(P,k) be a disjunctive hierarchical access structure. By Proposition 17,
�∃(P,k) = �(P, a,k), where a = (0, 0, . . . , 0). Using the same proof in Theorem 16,
we can construct lattice pathsW and Q to obtain a lattice path presentation (W , Q) for a lat-
tice path matroidM . Since a = (0, 0, . . . , 0), obtainW = En−r Nr . Since k = (k1, . . . , km),
for each i ∈ [m − 1], the i-th EN corner of Q is at height ki , that is with ki North steps.
The matroid we constructed is a nested matroid M(EmNr , Q). Claim 1 shows that there is
a one-to-one correspondence between �(P, a,k) and nested matroids. Claim 2 shows that
�(P, a,k) = �1(M). ��
Corollary 20 An access structure � is conjunctive hierarchical if and only if there is a nested
matroid M on n elements such that � = �p(M) and p is in the tail of the partition.

Proof Let �∀(P,k) be a conjunctive hierarchical access structure. By Proposition 18,
�∀(P,k) = �(P, a,b), where a = (0, k1, . . . , km−1) and b = (km, km, . . . , km). Using
the same proof in Theorem 16, we can construct lattice paths W and Q to obtain a lattice
path presentation (W , Q) for a lattice path matroid M . Since b = (km, km, . . . , km), obtain
Q = Nr En−r , where r = km . Since a = (0, a2, . . . , am), for each i ∈ [m − 1], the i-th EN
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corner of W is at height ai + 1. By Claim 1, there is a one-to-one correspondence between
�(P, a,b) and matroid M . By Claim 2, we have �(P, a,b) = �1(M). Note that rotating
the lattice path presentation (W , Q) 180◦ is a lattice path presentation of a nested matroid,
say N . We also know that M and N are isomorphic with the labels reversed. Therefore
�(P, a,b) = �n(N ). ��

6 Conclusion

Farràs and Padró [10] gave a structural characterization of the class of ideal hierarchical
access structures. We give a different characterization of this class in terms of matroid ports.
An interesting feature of our characterization of ideal hierarchical access structures as ports
of lattice path matroids is that these structures only come from the matroid ports at points
that belong to one of the ends (head or tail) of the naturally ordered partition of a lattice
path matroid. The matroid ports at points not belonging to the ends of the partition are not
hierarchical, however, this class of matroid ports corresponds to a more general class of
access structures, which might be worth studying. Another class of access structures which
might be worth studying is the matroid ports that come from multi-path matroids [5], which
are a subclass of transversal matroids that is both minor-closed and duality-closed. This class
of matroids properly contains the class of lattice path matroids.
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