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Abstract
In this paper we first provide two new constructions for Cayley sum graphs, namely, norm-
coset graphs and trace-coset graphs, and determine their second largest eigenvalues using
Gaussian sums. Next, a connection between Cayley sum graphs and complex codebooks is
established. Based on this, infinite families of asymptotically optimal complex codebooks are
explicitly constructed. The derived Cayley sum graphs and codebooks either include some
known constructions as special cases or provide flexible new parameters.

Keywords Cayley sum graph · Eigenvalue · Gaussian sum · codebook · Welch bound

Mathematics Subject Classification 11T71 · 05C50

1 Introduction

The Cayley sum graph, also known as the addition Cayley graph, is a variant of the well-
studied Cayley graph, see [1, 10, 21] for example.

Let Γ = (V (Γ ), E(Γ )) be a graph with n vertices which might contain loops, i.e., edges
that connect a vertex to itself. We say Γ is K-regular if every vertex is incident to exactly
K edges, where each loop is counted only once. The adjacency matrix of Γ , denoted by
A(Γ ), is a square matrix whose columns and rows are indexed by vertices of Γ such that
the (u, v)-entry is equal to the number of edges incident to u and v. Eigenvalues of A(Γ )

are called eigenvalues of Γ as well. It is readily seen that A(Γ ) is a symmetric real matrix
and thus all eigenvalues of Γ are real numbers. By the Perron-Frobenius theorem, it can be
proved that if Γ is a K -regular graph, then all eigenvalue of Γ are in the interval [−K , K ]
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and the largest eigenvalue is exactly K , which is also called the trivial eigenvalue of Γ . For
notation convenience, let K = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −K denote all the eigenvalues of Γ

and let

λ(Γ ) := max
2≤i≤n

|λi |
denote the second largest eigenvalue (in absolute value) of Γ . In what follows, Γ is always
assumed to be a regular graph.

Here we would like to mention that the value λ(Γ ) can be seen as a measure of “random-
ness” of Γ in graph theory. Indeed, if λ(Γ ) is relatively smaller than the largest eigenvalue
of Γ , then Γ has various properties as those of Erdős-Rényi random graphs, which is a
consequence of the well-known expander-mixing lemma. This is a fundamental fact in the
theory of pseudo-random graphs. For further details of pseudo-random graphs, see a survey
paper [26]. On the other hand, if λ(Γ ) is relatively smaller than the largest eigenvalue of Γ ,
then accordingly the Cheeger constant of Γ is large, implying that Γ is highly-connected.
To be precise, the Cheeger constant h(Γ ) of Γ is defined as

h(Γ ) := min
S⊂V (Γ )
0<|S|≤ n

2

|∂S|
|S| ,

where ∂S denotes the set of edges such that one vertex of the edge lies in S and another
vertex in V (Γ ) \ S. A relationship between Cheeger constant and the eigenvalue λ(Γ ) is
established by the following Cheeger inequality (see e.g. [24, Theorem 2.4]).

h(Γ ) ≥ K − λ(Γ )

2
. (1)

This is a significant attribution of expander graphs and has wide applications in coding
theory [45]; cryptography [55]; communication networks [5]; and more. For more details on
expander graphs, see e.g. [24].

Constructing regular graphs with small nontrivial eigenvalues (in absolute value) is one
of the central issues in the study of pseudo-random graphs and expander graphs. It typi-
cally provides important examples (or counterexamples) to various problems in graph theory
and combinatorics [2, 3, 22, 27, 37]. In fact, the Cayley sum graph is a good candidate of
generically constructing such desired regular graphs.

Definition 1 (Cayley sum graphs) Let (G,⊕) be an abelian group and D ⊆ G. Then the
Cayley sum graph CayS(G, D) is a graph with vertex set G such that two vertices x, y are
adjacent if and only if x ⊕ y ∈ D.

Here wewould like to follow the terminology Cayley “sum” graphs as in the literature (see
e.g. [6]). However, as we mentioned before, the operation ⊕ could be specifically expressed
as addition “+”, multiplication “·”, or their combinations.

In this paper,we provide twonewconstructions forCayley sumgraphs, namelynorm-coset
graphs and trace-coset graphs, and determine their second largest eigenvalues using the eval-
uation of the modulus of Gaussian sums. It is also shown that the new constructions include
some existing graphs (e.g. projective norm graph in [3]) as special cases. Furthermore we
establish a connection betweenCayley sumgraphs and themaximumcross-correlation ampli-
tude of complex codebooks. Based on the newly constructed graphs and newly established
connection, infinite families of complex codebooks are derived. The resulted codebooks have
flexible new parameters (see Table 1) and asymptotically achieve the Welch bound or Lev-
enshtein bound accordingly. In addition, the alphabet size of these codebooks is rather small.
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Table 1 The parameters of codebooks, where q is a power of a prime p

Reference (N , K ) Imax Alphabet size

[40, 52] (N , N ) 0 N

[40, 52] (N , N − 1) 1
N−1 N − 1

[58] (ql − ql−1 − 1, ql−1) for l > 2 1
ql−1 ql + 1

[23] ((q − 1)k + m,m) where m = (q−1)k+(−1)k
q , k > 2 q

k−1
2
m q + 1

[23] ((q − 1)k + qk−1, qk−1) for k > 2, q ≥ 4 q
k+1
2

(q−1)k+(−1)k+1 q + 1

Construction 5 (
qt−qt−1

v + qt−1 − 1, qt−1 − 1) where t ≥ 1, v|(q − 1) q
t−1
2

qt−1−1
p q−1

v + 2

Construction 6 (
qt−q
u + qt−1 − 1, qt−1 − 1) where t ≥ 1, u|q q

t−1
2

qt−1−1
p(qt−1 − 1) + 2

Moreover, by virtue of a number-theoretic result, we show that the provided constructions
(as well as many existing constructions) can produce asymptotically optimal codebooks with
almost all possible length.

The remainder of this paper is organized as follows. In Sect. 2, we present preliminary
notations and results in finite fields. Sections 3 and 4 are devoted to explicitly constructing
Cayley sum graphs and estimating their second largest eigenvalues. In Sect. 5, a relationship
between complex codebooks and Cayley sum graphs is establish. Asymptotically optimal
complex codebooks and some discussions are provided in Sect. 6. Finally this paper is
concluded in Sect. 7.

2 Preliminaries

In this section we recall some mathematical foundations which are useful in the subsequent
statements.

Let (G,⊕) be an abelian group of order |G| such that a ⊕ b = b ⊕ a for any a, b ∈ G.
We also simply use G rather than (G,⊕) to denote a group if the operation ⊕ is clear or
not necessarily claimed. A character χ on G is a group homomorphism from G to the
multiplicative group of the complex field C

∗ such that ∀ a, b ∈ G, we have χ(a ⊕ b) =
χ(a)χ(b) and |χ(a)| = 1. For every a ∈ G, let 
a denote the inverse element of a in G
and thus a ⊕ b = c is equivalent to a = c 
 b. Moreover we have χ(
a) = χ(a) for
each character χ . If a character χ such that for any a ∈ G, χ(a) = 1, then χ is called the
principal character of G and denoted by χ0. The set of all characters of G forms an abelian
group, called the character group of G and denoted by ̂G. The inverse of χ in ̂G is χ where
χ(g) := χ(g) for all g ∈ G. It is well-known that |̂G| = |G|. The reader is also referred
to [4] for more details of group theory. We remark that in the sequel the operation ⊕ could
specifically be addition “+", multiplication “·", or their combinations in the corresponding
settings.

Let Fq denote the finite field with q elements, where q is a prime power. Let F
+
q and F

∗
q

be the additive and multiplicative group of Fq respectively, where F
∗
q = Fq\{0} = {gi : 0 ≤

i ≤ q − 2} is a cyclic group of order q − 1 and g is called a primitive element of Fq . For
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1318 S. Satake, Y. Gu

t ≥ 1, let Fqt denote an extension field of Fq , which has the same structure as a linear space
over Fq of dimension t . Let Trqt/q be the trace function from Fqt to Fq defined as

Trqt/q(x) := x + xq + · · · + xq
t−1

for any x ∈ Fqt . This is a linear mapping from Fqt to Fq , that is, for any x, y ∈ Fqt and
α ∈ Fq , we have Trqt/q(x) ∈ Fq , Trqt/q(x + y) = Trqt/q(x) + Trqt/q(y) and Trqt/q(αx) =
αTrqt/q(x). Let Nrqt/q denote the norm function from Fqt to Fq such that

Nrqt/q(x) := x1+q+q2+···+qt−1

for any x ∈ Fqt . This is a group homomorphism from F
∗
qt to F

∗
q , that is, for any x, y ∈ F

∗
qt ,

we have Nrqt/q(x) ∈ F
∗
q and Nrqt/q(xy) = Nrqt/q(x)Nrqt/q(y). Notice that both Trqt/q and

Nrqt/q are surjective.

Definition 2 (1) An additive character ψ of Fq is a homomorphism from F
+
q to C

∗ such
that ψ(x + y) = ψ(x)ψ(y) for any x, y ∈ Fq . Denote the set of all additive characters

of Fq as ̂

F
+
q .

(2) Amultiplicative character χ of Fq is a homomorphism from F
∗
q toC

∗ such that χ(xy) =
χ(x)χ(y) for any x, y ∈ F

∗
q . Denote the set of all multiplicative characters of Fq as ̂F∗

q .

In addition, if ψ(x) = 1 (resp. χ(x) = 1) for all x ∈ Fq , then we call it the principal
additive (resp. multiplicative) character of Fq , denoted by ψ0 (resp. χ0). More generally,
suppose that q = ps where p is a prime and s ≥ 1 is an integer. Let ζn denote a primitive nth
complex root of unity and g denote a primitive element of Fq . Then we have

̂

F
+
q = {ψa(x) =

ζ
Trps /p(ax)
p : a ∈ Fq} and ̂F∗

q = {χb(gi ) = ζ bi
q−1 : 0 ≤ b ≤ q − 2}. Clearly, |̂F+

q | = |F+
q | = q

and |̂F∗
q | = |F∗

q | = q − 1.

Definition 3 Let ψ ∈ ̂

F
+
q and χ ∈ ̂F∗

q . Then the Gaussian sum Gq(ψ, χ) is defined as

Gq(ψ, χ) :=
∑

x∈F∗
q

ψ(x)χ(x). (2)

Lemma 1 [33]

(a) If ψ and χ are principal, then Gq(ψ, χ) = q − 1.
(b) If ψ is principal and χ is non-principal, then Gq(ψ, χ) = 0.
(c) If ψ is non-principal and χ is principal, then Gq(ψ, χ) = −1.
(d) If ψ and χ are non-principal, then |Gq(ψ, χ)| = √

q.

2.1 The second largest eigenvalue of Cayley sum graphs

From Definition 1, it is readily seen that CayS(G, D) is |D|-regular and each vertex is
involved in at most one loop. The following lemma, which is well known in graph theory
(e.g. [1, 6, 29]), shows that λ(CayS(G, D)) could be expressed by character sums over G.
We provide a complete proof of this result below for the reader’s convenience.

Lemma 2 Let (G,⊕) be an abelian group of order n and D ⊆ G. Then

λ(CayS(G, D)) = max
χ∈̂G\{χ0}

|χ(D)|. (3)
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Cayley sum graphs and their applications to codebooks 1319

Proof We first claim that each eigenvalue of CayS(G, D) can be expressed by a charac-
ter sum. Let A = A(CayS(G, D)) be the adjacency matrix of CayS(G, D) and for each
character χ ∈ ̂G, let vχ = (χ(g))Tg∈G . Then we have

Avχ =
(

∑

d∈D
χ(d 
 g)

)T

g∈G
=

(

∑

d∈D
χ(d)χ(g)

)T

g∈G
=

(

∑

d∈D
χ(d)

)

vχ = χ(D)vχ (4)

where vχ =
(

χ(g)
)T

g∈G . Similarly,

Avχ =
(

∑

d∈D
χ(d)

)

vχ = χ(D)vχ . (5)

Now we obtain

A2vχ = A(Avχ )
(4)= χ(D)Avχ

(5)= ∣

∣χ(D)
∣

∣

2vχ ,

which means that |χ(D)|2 is an eigenvalue of A2 and vχ is an eigenvector with respect to
|χ(D)|2. Notice that A2 is symmetric and the set of vectors {vχ }χ∈̂G forms an orthogonal

basis of C
n . This implies that the multiset {|χ(D)|2 : χ ∈ ̂G} comprises all eigenvalues of

A2. Equivalently, every eigenvalue of A (in absolute value) could be expressed in the form of
|χ(D)|. Also notice that χ0(D) = |D| corresponds to the largest eigenvalue, then the lemma
follows. �

As a consequence of the proof of Lemma 2 we can obtain the whole spectrum of
CayS(G, D) (see also [29, Propositions 1 and 2]).

Corollary 1 Let I1 = {χ ∈ ̂G : χ(D) = 0}, I2 = (̂G \ {χ0}) \ I1. Then the multiset of all
eigenvalues of CayS(G, D) are

{χ0(D)} ∪ {χ(D) = 0 : χ ∈ I1} ∪ {±|χ(D)| : χ ∈ I2}.
Here for χ ∈ I1, eigenvectors corresponding to χ(D) are vχ and vχ , and for χ ∈ I2,
eigenvectors corresponding to ±|χ(D)| are u±

χ := |χ(D)|vχ ± χ(D)vχ respectively.

Remark 1 To enumerate all eigenvalues with multiplicity, we shall enumerate characters
consisting of (1) χ0, (2) χ with χ(D) = 0, (3) χ such that χ = χ , (4) one of {χ, χ} with
χ �= χ . In fact, when I2 contains a character χ with χ = χ , then χ(D) is a non-zero real
number and only one of {|χ(D)|,−|χ(D)|} can be an eigenvalue since if χ(D) > 0 (resp.
χ(D) < 0) then −|χ(D)| (resp. |χ(D)|) cannot be an eigenvalue since the corresponding
eigenvector is 0. Also if χ �= χ then u±

χ and u±
χ are in fact linearly dependent since

u+
χ = |χ(D)|vχ + χ(D)vχ = |χ(D)|vχ + χ(D)vχ = |χ(D)|

χ(D)
u+

χ ,

u−
χ = |χ(D)|vχ − χ(D)vχ = |χ(D)|vχ − χ(D)vχ = −|χ(D)|

χ(D)
u−

χ .

3 Norm-coset graphs

In this section, we present our first construction of Cayley sum graphs, namely, norm-coset
graphs, and investigate their second largest eigenvalues.
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1320 S. Satake, Y. Gu

First we define norm-coset graphs and then prove that they are Cayley sum graphs. For
notations, we will use the capital letter to denote an element in the extension field (i.e.
Y ∈ Fqt−1 ) in order to distinguish it with the lowercase letter denoting x ∈ Fq .

Definition 4 Let q be a prime power and t ≥ 2 be an integer. Let v be a divisor of q − 1
and H× be a subgroup of order v of the multiplicative group F

∗
q . Then the norm-coset graph

NΓ ×
q,v,t,H× is a graph with vertex set (F∗

q/H
×)×F

+
qt−1 = {(x, Y ) : x ∈ F

∗
q/H

×, Y ∈ F
+
qt−1}

such that two vertices (x1, Y1), (x2, Y2) are adjacent if and only if Nrqt−1/q(Y1 + Y2) ∈
x1 x2 = x1x2.

We would like to mention that the norm-coset graphs defined above actually include
several known graphs as special cases, as described below.

(1) If the subgroup H× is of order one (i.e., v = 1), the graph NΓ ×
q,v,t,H× turns out to be

the so-called projective norm graph NGq,t , which was introduced by Alon, Ronyai and
Szabó [3] and provides good bounds for Turán numbers and Ramsey numbers [2, 3].

(2) If t = 2, the graph NΓ ×
q,v,t,H× turns out to be the so-called product-coset graph G×,

which was introduced by Lentz and Mubayi and used to prove sharp bounds for multi-
colored Ramsey numbers [27].

(3) If t = 2 and H× is of order one (i.e., v = 1), the graph NΓ ×
q,v,t,H× turns out to be the

so-called sum-product graph SPq , which was defined by Solymosi [46] and employed
to prove Garaev’s theorem [19] in additive combinatorics.

To the best of our knowledge, these known graphs have been independently considered in
graph theory and additive combinatorics,which have not yet been pointed out and investigated
in terms of Cayley sum graphs. In the following Proposition 1 we will show that these
known graphs (as special cases of norm-coset graphs) are in fact Cayley sum graphs over the
corresponding abelian groups, which provides a unified view to compute their eigenvalues
as well. In particular, our result improves upon the existing eigenvalue estimation on λ(SPq)
for sum-product graphs. Precisely, Solymosi proved that λ(SPq) <

√
3q in [46], while the

Proposition 1 below yields that λ(SPq) = √
q .

In the following proposition, we claim that NΓq,v,t,H× is a Cayley sum graph and deter-
mine the exact value of λ(NΓq,v,t,H×) accordingly.

Proposition 1 Suppose that G = (F∗
q/H

×) × F
+
qt−1 and D = {(x, Y ) ∈ (F∗

q/H
×) ×

F
+
qt−1 : Nrqt−1/q(Y ) ∈ x}. Then NΓ ×

q,v,t,H× is a Cayley sum graph CayS(G, D), and

λ(NΓ ×
q,v,t,H×) = q

t−1
2 .

Proof It is easy to see that G = (F∗
q/H

×)×F
+
qt−1 is an abelian group of order q

t−1(q−1)/v
under the operation (x1, Y1)⊕(x2, Y2) = (x1 x2, Y1+Y2) = (x1x2, Y1+Y2). ByDefinition 4,
two vertices (x1, Y1) and (x2, Y2) are adjacent if and only if (x1, Y1)⊕(x2, Y2) = (x1x2, Y1+
Y2) ∈ D, that is, Nrqt−1/q(Y1 + Y2) ∈ x1x2. Thus according to Definition 1, NΓ ×

q,v,t,H× is

a Cayley sum graph CayS(G, D). Now we claim that for each non-zero Y ∈ F
+
qt−1 , there

exists a unique corresponding (x̄, Y ) ∈ D. Indeed, given Y , the value y = Nrqt−1/q(Y ) ∈ F
∗
q

could be first uniquely determined; next, for each y ∈ F
∗
q , there exists a unique coset x̄ = ȳ ∈

F
∗
q/H

× containing y, since all the cosets in F
∗
q/H

× form a partition of F
∗
q . Based on this,

we have |D| = |F+
qt−1 \ {0}| = qt−1 − 1, which is the degree of each vertex in NΓ ×

q,v,t,H× .

Next we are going to determine the value of λ(NΓ ×
q,v,t,H×). Notice that ̂G = {(ν ⊗ ψ) :

ν ∈ F̂∗
q/H

×, ψ ∈ ̂
F

+
qt−1} where (ν ⊗ ψ)(x, Y ) = ν(x)ψ(Y ) for all (x, Y ) ∈ G. According
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Cayley sum graphs and their applications to codebooks 1321

to Lemma 2, we have

λ(NΓ ×
q,v,t,H×)

= max
{∣

∣

∣

∑

(x,Y )∈D
(ν ⊗ ψ)(x, Y )

∣

∣

∣ : ν ∈ F̂∗
q/H

×, ψ ∈ ̂
F

+
qt−1 , ν ⊗ ψ �= ν0 ⊗ ψ0

}

.

By the assumption of D,
∑

(x,Y )∈D
(ν ⊗ ψ)(x, Y ) =

∑

(x,Y )∈D
ν(x)ψ(Y )

=
∑

Y∈F+
qt−1\{0},

y=Nrqt−1/q (Y )

ν(y)ψ(Y )

=
∑

Y∈F∗
qt−1

ν(Nrqt−1/q(Y ))ψ(Y ).

Now we define a new multiplicative character χ ′ of Fq by letting χ ′(x) := ν(x). This

is well-defined since for any x, y ∈ F
∗
q and ν ∈ F̂∗

q/H
×, we have χ ′(xy) = ν(xy) =

ν(x · y) = ν(x)ν(y) = χ ′(x)χ ′(y). It follows by the definition of D that the condition
(x, Y ) ∈ D implies that x = Nrqt−1/q(Y ) in the quotient group F

∗
q/H

×. Then we have
∑

Y∈F∗
qt−1

ν(Nrqt−1/q(Y ))ψ(Y ) =
∑

Y∈F∗
qt−1

χ ′(Nrqt−1/q(Y ))ψ(Y )

=
∑

Y∈F∗
qt−1

(χ ′ ◦ Nrqt−1/q)(Y )ψ(Y )

which is a Gaussian sum Gqt−1(ψ, χ ′ ◦ Nrqt−1/q) since χ ′ ◦ Nrqt−1/q is a multiplicative
character of Fqt−1 as well. Notice that the character χ ′ ◦ Nrqt−1/q is principal if and only if
χ ′ is principal. According to the definition of χ ′, the multiplicative character χ ′ ◦Nrqt−1/q is
non-principal if and only if ν is non-principal. Thus by Lemma 1, we have λ(NΓ ×

q,v,t,H×) =
max{0, 1, q t−1

2 } = q
t−1
2 , as required. �

According to the discussion in the proof, we can determine the whole spectrum of
NΓ ×

q,v,t,H× , which immediately follows from Lemma 1 and Corollary 1 (with Remark 1).

Corollary 2 Let q be an odd prime power. Then the graph NΓ ×
q,v,t,H× has eigenvalues qt−1−1

(with multiplicity 1), ±q
t−1
2 (with multiplicity 1

2 (q
t−1 − 1)( q−1

v
− 1), respectively), 0 (with

multiplicity q−1
v

− 1) and ±1 (with multiplicity 1
2 (q

t−1 − 1), respectively).

ByProposition 1weobtain the followingpropositions regardinggraph-theoretic properties
of norm-coset graphs such as diameter (i.e. the maximum length of the shortest path) and
Cheeger constant.

Proposition 2 The diameter of NΓ ×
q,v,t,H× is 2.
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1322 S. Satake, Y. Gu

Proof Chung [10] proved that if Γ is a K -regular graph with n vertices then the diameter of
Γ is at most log(n − 1)/ log(K/λ(Γ )). Since NΓ ×

q,v,t,H× is a (qt−1 − 1)-regular graph with

qt−1(q − 1)/v vertices and λ(NΓ ×
q,v,t,H×) = q

t−1
2 , the diameter is at most

t − log(v)
t−1
2 + o(1)

= 2 · t − log(v)

t − 1 + o(1)
< 3.

Notice that a graph Γ has diameter 1 if and only if Γ is a complete graph, and hence the
diameter of NΓ ×

q,v,t,H× is 2 since it is not a complete graph. �

The following bound of h(NΓ ×
q,v,t,H×) immediately follows from the Cheeger inequality

(1).

Proposition 3 For the Cheeger constant we have

h(NΓ ×
q,v,t,H×) ≥ qt−1 − q

t−1
2 − 1

2
.

4 Trace-coset graphs

In this section, we present our second construction of Cayley sum graphs, namely, trace-coset
graphs, and determine their second largest eigenvalues.

We first define trace-coset graphs and then show that they are Cayley sum graphs.

Definition 5 Let q be a prime power and t ≥ 2 be an integer. Let u be a divisor of q and H+
be a subgroup of order u of the additive group F

+
q . Then the trace-coset graph TΓ +

q,u,t,H+ is

a graph with vertex set (F+
q /H+)×F

∗
qt−1 = {(x, Y ) : x ∈ F

+
q /H+, y ∈ F

∗
qt−1} such that two

vertices (x1, Y1), (x2, Y2) are adjacent if and only if Trqt−1/q(Y1Y2) ∈ x1 + x2 = x1 + x2.

The trace-coset graph defined above can deduce some known graphs as described below.

(1) If t = 2, the trace-coset graph TΓ +
q,u,t,H+ turns out to be a sum-coset graph G+, which

was introduced by Lentz and Mubayi and used to prove sharp bounds for multicolored
Ramsey numbers [27].

(2) If t = 2 and H+ is trivial (i.e., u = 1), the graph TΓ +
q,v,t,H+ turns out to be the sum-

product graph SPq [46].

In the following, we claim that TΓq,u,t,H+ is a Cayley sum graph and determine the exact
value of λ(TΓq,u,t,H+) as well.

Proposition 4 Suppose that G = (F+
q /H+) × F

∗
qt−1 and D = {(x, Y ) ∈ (F+

q /H+) ×
F

∗
qt−1 : Trqt−1/q(Y ) ∈ x}. Then TΓ +

q,v,t,H+ is a Cayley sum graph CayS(G, D), and

λ(TΓ +
q,u,t,H+) = q

t−1
2 .

Proof It is easy to see that G = (F+
q /H+) × F

∗
qt−1 is an abelian group of order q(qt−1 −

1)/u under the operation (x1, Y1) ⊕ (x2, Y2) = (x1 + x2, Y1Y2) = (x1 + x2, Y1Y2). By
Definition 5, two vertices (x1, y1) and (x2, y2) are adjacent if and only if (x1, y1)⊕(x2, y2) =
(x1 + x2, y1y2) ∈ D, that is, y1y2 ∈ x1 + x2. Thus according to Definition 1, TΓ +

q,u,t,H+ is a
Cayley sum graphCayS(G, D). Next we claim that for each Y ∈ F

∗
qt−1 , there exists a unique
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corresponding (x, Y ) ∈ D. In fact, given Y , the value y = Trqt−1/q(Y ) ∈ F
+
q is uniquely

determined; also for each y ∈ F
+
q , there exists a unique coset x = y = F

+
q /H+ containing y,

since all the cosets in F
+
q /H+ form a partition of F

+
q . This implies |D| = |F∗

qt−1 | = qt−1−1,

which is the degree of each vertex in TΓ +
q,u,t,H+ as well.

Now we would like to determine λ(TΓ +
q,u,t,H+). Notice that ̂G = {(μ ⊗ χ) : μ ∈

̂
F

+
q /H+, χ ∈ F̂

∗
qt−1} where (μ ⊗ χ)(x, Y ) = μ(x)χ(Y ) for all (x, Y ) ∈ G. According to

Lemma 2, we have

λ
(

TΓ +
q,u,t,H+

)

= max

⎧

⎨

⎩

∣

∣

∣

∣

∣

∣

∑

(x,Y )∈D
(μ ⊗ χ)(x, Y )

∣

∣

∣

∣

∣

∣

: μ ∈ ̂
F

+
q /H+, χ ∈ F̂

∗
qt−1 , μ ⊗ χ �= μ0 ⊗ χ0

⎫

⎬

⎭

.

By the assumption of D,
∑

(x,Y )∈D
(μ ⊗ χ)(x, Y ) =

∑

(x,Y )∈D
μ(x)χ(Y )

=
∑

Y∈F∗
qt−1 ,

y=Trqt−1/q (Y )

μ(y)χ(Y )

=
∑

Y∈F∗
qt−1

μ(Trqt−1/q(Y ))χ(Y ).

Defining an additive character ψ ′ of Fq by letting ψ ′(x) = μ(x) we have
∑

Y∈F∗
qt−1

μ
(

Trqt−1/q(Y )
)

χ(Y ) =
∑

Y∈F∗
qt−1

ψ ′(Trqt−1/q(Y ))χ(Y )

=
∑

Y∈F∗
qt−1

(

ψ ′ ◦ Trqt−1/q

)

(Y )χ(Y )

which is a Gaussian sum Gqt−1(ψ ′ ◦ Trqt−1/q , χ) since ψ ′ ◦ Trqt−1/q is in fact an additive
character of Fqt−1 . Notice that the character ψ ′ ◦ Trqt−1/q is principal if and only if ψ ′ is
principal. By the definition of ψ ′, the additive character ψ ′ ◦ Trqt−1/q is non-principal if and

only if μ is non-principal. Thus by Lemma 1, we have λ(TΓ +
q,u,t,H+) = max{0, 1, q t−1

2 } =
q

t−1
2 , as required. �
As in Corollary 2 we can determine the whole spectrum of TΓ +

q,u,t,H+ .

Corollary 3 Let q be an odd prime power. Then the graph TΓ +
q,u,t,H+ has eigenvalues qt−1−1

(with multiplicity 1), ±q
t−1
2 (with multiplicity 1

2 (q
t−1 − 2)( qu − 1), respectively), 0 (with

multiplicity qt−1 − 2) and ±1 (with multiplicity 1
2 (

q
u − 1), respectively).

The following propositions determine the diameter and estimate the Cheeger constant of
TΓ +

q,u,t,H+ .

Proposition 5 The diameter of TΓ +
q,u,t,H+ is 2.
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Proof Since TΓ +
q,u,t,H+ is a (qt−1 − 1)-regular graph with (qt−1 − 1)(q/u) vertices and

λ(TΓ +
q,u,t,H+) = q

t−1
2 , the diameter is at most

t − log(u)
t−1
2 + o(1)

= 2 · t − log(u)

t − 1 + o(1)
< 3.

Notice that a graph G has diameter 1 if and only if G is a complete graph, and hence the
diameter of TΓ +

q,u,t,H+ is 2 since it is not a complete graph. �
According to the Cheeger inequality (1), we have

Proposition 6 For the Cheeger constant we have

h
(

TΓ +
q,u,t,H+

)

≥ qt−1 − q
t−1
2 − 1

2
.

5 A connection between codebooks and Cayley sum graphs

In this section, we recall the basics of codebooks and establish a connection between code-
books and Cayley sum graphs.

5.1 Codebooks

An (N , K ) codebook C = {c1, . . . , cN } ⊆ C
K consists of N complex vectors of length K

over an alphabet such that ‖ci‖2 = 1 for all 1 ≤ i ≤ N , which is also termed as a signal set
or a frame. The alphabet size of C refers to the number of elements in the alphabet. Define
the maximum cross-correlation amplitude Imax (C) of an (N , K ) codebook C as

Imax (C) := max
1≤i< j≤N

|〈ci , c j 〉|, (6)

where 〈ci , c j 〉 denotes the inner product of the complex vectors ci and c j . For a given K , it is
desirable to construct an (N , K ) codebook C with as large N and small Imax (C) as possible
due to the practical applications in a variety of areas such as code-division multiple-access
communication systems [20, 36]; quantum computing [39]; compressed sensing [8, 17, 30–
32, 42, 44, 53]; coding theory [7, 13]; and many more. In the literature, a lower bound on
Imax (C) with respect to N and K was proved in [50], known as the Welch bound.

Theorem 1 ([50], Welch bound) For any (N , K )-codebook C with N ≥ K, we have

Imax (C) ≥ Iwel(N , K ) :=
√

N − K

(N − 1)K
, (7)

where the equality holds if and only if
∣

∣cicHj
∣

∣ =
√

N−K
(N−1)K for all 1 ≤ i �= j ≤ N.

A codebook achieving the Welch bound is usually called a maximum-Welch-bound-equality
(MWBE) codebook [52]. It is also knownas the equiangular tight frame [9] in frame theory and
equivalent to the line packing inGrassmannian spaces [11]. In the literature, certain families of
MWBEcodebookswere deterministically constructed via discrete Fourier transformmatrices
[40, 52]; extended codes from any ideal two-level auto-correlation sequences [20, 52, 54];
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conference matrices [11, 47]; difference sets in groups [14, 15, 25, 52]; Steiner systems [18],
and so on.

As pointed out by Sarwate in [40], it is very hard to explicitly constructMWBE codebooks
in general. Hence there have been a number of attempts to construct codebooks nearly meet-
ing the Welch bound, that is, the maximum cross-correlation amplitude Imax (C) is slightly
higher than the corresponding Welch bound, but asymptotically achieves it when N is large
enough. In this paper, we say an infinite family of (N , KN )-codebooks {CN }N≥1 is asymp-
totically optimal with respect to the Welch bound if limN→∞ Imax (C)/Iwel(N , K ) = 1. In
the literature, asymptotically optimal codebooks have been constructed by using codes and
signal sets [40]; almost difference sets [14–16, 56, 57]; binary sequences [54]; multivariate
polynomials over finite fields [41]; and so forth.

In [47], it was proved that if N > K 2, no complex (N , K )-codebook could achieve the
Welch bound Iwel(N , K ) in (7). Regarding this case, an improved lower bound on Imax (C)

was provided in [28], which is termed as the Levenshtein bound in the literature.

Theorem 2 ([28], Levenshtein bound) For a complex (N , K )-codebook C with N > K 2,

Imax (C) ≥ Ilev(N , K ) :=
√

2N − K 2 − 2K

(N − 1)(K + 1)
. (8)

We say an infinite family of (N , KN ) codebooks {CN }N≥1 is asymptotically optimal with
respect to the Levenshtein bound if limN→∞ Imax (C)/Ilev(N , K ) = 1. In the literature, there
are known constructions of optimal or asymptotically optimal codebooks with respect to the
Levenshtein bound, see [23, 35, 38, 41, 49, 51, 58, 59] for example.

5.2 A generic construction of codebooks from abelian groups

In this subsection we briefly review a constructing method for codebooks proposed by Ding
and Feng in [15] and widely adopted such as in [16, 25, 52, 56, 57]. Define a set of n vectors
in C

K by virtue of an abelian group and its K -element subset described as follows.

Definition 6 ([15]) Suppose thatG is an abelian groupof ordern and ̂G = {χ0, χ1, . . . , χn−1}
is its character group, where χ0 is the principal character. Let D = {d1, d2, . . . , dK } ⊆ G.
Then define the set of n vectors in C

K as

C(G, D) := {c0, c1, . . . , cn−1} (9)

where

ci := 1√
K

(χi (d1), χi (d2), . . . , χi (dK ))T , ∀ 0 ≤ i ≤ n − 1. (10)

It was proved in [15] that Imax (C(G, D)) can be calculated by character sums.

Theorem 3 ([15])

Imax (C(G, D)) = max
0≤i �= j≤n−1

|(χi χ̄ j )(D)|
K

= max
χ∈̂G\{χ0}

|χ(D)|
K

(11)

where for a character χ of G, χ(D) := ∑

d∈D χ(d).
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A slight modification of the construction in Definition 6 was also appeared in the literature
such as [23, 34, 35, 41, 49, 58]. Here we provide a general expression and analysis of it. Let
ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}K denote a unit-norm vector such that the i th coordinate
of ei is 1 and all the other coordinates are 0. Denote EK := {ei : 1 ≤ i ≤ K }, which forms a
standard basis of the K -dimensional Hilbert space.

Lemma 3 The set C(G, D) ∪ EK is an (n + K , K )-codebook such that

Imax (C(G, D) ∪ EK ) = max

{

1√
K

, max
χ∈̂G\{χ0}

|χ(D)|
K

}

. (12)

Proof Let a and b be two distinct vectors in C(G, D) ∪ EK . In terms of |〈a,b〉|, there are
three possible cases as follows.

(1) If a,b ∈ C(G, D), then according to Theorem 3, we have |〈a,b〉| ≤ 1
K max

χ∈̂G\{χ0}
|χ(D)|.

(2) If a,b ∈ EK , it is easy to see that |〈a,b〉| = 0.
(3) If a ∈ C(G, D) and b ∈ EK , without loss of generality, we may assume that

a = ci = (χi (d1), χi (d2), . . . , χi (dK ))T /
√
K

and b = e j , where 0 ≤ i ≤ N − 1 and 1 ≤ j ≤ K . Since χ is a character, we have
|χi (d j )| = 1 and hence |〈a,b〉| = |ci eTj | = |χi (d j )/

√
K | = 1/

√
K .

Thus the lemma follows. �
In terms of this framework, it is required to find appropriate abelian groups G and the

corresponding subsets D such that the value Imax (C(G, D)) or Imax (C(G, D)∪EK ) is small
enough to meet the Welch bound or Levenshtein bound. However it is in general not an easy
task. In the next subsection we provide a feasible way to find such pairs (G, D) from a graph
theoretic perspective.

5.3 A connection between codebooks and Cayley sum graphs

In this subsection we establish a connection between complex codebooks and Cayley sum
graphs in terms of eigenvalues.

According to each Cayley sum graph CayS(G, D) we could exploit the pair G and D to
construct a set C(G, D) of n vectors inC

K by usingDefinition 6. FromLemma2 andTheorem
3 we could see that evaluating the maximum cross-correlation amplitude Imax (C(G, D)) of
the codebook C(G, D) is in fact equivalent to estimating the eigenvalue λ(CayS(G, D)) of
the Cayley sum graph CayS(G, D). Specifically we have

Corollary 4 Let G be an abelian group and D be a K -element subset of G. Then the codebook
C(G, D) ∪ EK satisfies that

Imax (C(G, D) ∪ EK ) = max
{ 1√

K
,

λ(CayS(G, D))

K

}

.

Here we would like to remark that Corollary 4 could also be obtained from Cayley
(directed) graph Cay(G, D), which is a directed graph with vertex set G and edge set
{(x, y) : x 
 y ∈ D}, by using a similar argument of that every eigenvalue of Cay(G, D)

could be expressed by the form of χ(D) for χ ∈ ̂G.
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It is worth noting that Corollary 4 shows an interesting relationship between the maximum
cross-correlation amplitude of a complex codebook and the second largest eigenvalue of a
Cayley sum graph. For a positive integer n, let Gn be an abelian group of order n and Dn be
a Kn-element subset of Gn . It follows by the Welch bound and the Levenshtein bound that
for an infinite family {(Gn, Dn)}n≥1 such that |Dn | = Kn = o(n) as n → ∞, we have

Imax (C
(

Gn, Dn) ∪ EK
) = Ω

( 1√
Kn

)

. (13)

On the other hand, if Kn = o(n), we could have the following bound (see e.g. [26, p. 217]) :
λ(CayS(Gn, Dn)) = Ω(

√

Kn). (14)

By Corollary 4, we could see that in the regime of Kn = o(n) the Cayley sum graph
CayS(Gn, Dn) achieves the optimal order of magnitude with respect to the bound (14) if
and only if the codebook C(

Gn, Dn) attains the optimal order of magnitude with respect to
the bound (13). This implies that

lim inf
n→∞

Imax (C(Gn, Dn) ∪ EK )

Iwel(n + Kn, Kn)
= κ1,

or

lim inf
n→∞

Imax (C(Gn, Dn) ∪ EK )

Ilev(n + Kn, Kn)
= κ2,

where κ1 and κ2 are constants such that κ1 ≥ 1 and κ2 ≥ 1 according to Theorems 1 and 2
respectively. Recall that if κ1 = 1 (resp. κ2 = 1), the codebook C(Gn, Dn)∪ EK is said to be
asymptotically optimal with respect to the Welch bound (resp. Levenshtein bound), which,
however, is not easy to be deterministically constructed in general.

Remark 2 According to Ding and Feng [15], the codebook C(G, D) with a difference set D
of G is optimal with respect to the Welch bound. Hence any Cayley sum graph CayS(G, D)

with difference set D of G gives rise to an optimal codebook. On the other hand there seems
to be no known construction of optimal codebooks with respect to the Levenshtein bound
via specific Cayley sum graphs, which would be an interesting open problem.

6 Explicit codebooks from Cayley sum graphs

In this section we derive asymptotically optimal codebooks based on the newly constructed
Cayley sum graphs in Sects. 3 and 4 as well as the established relationship between Cayley
sum graphs and codebooks in Sect. 5. The derived codebooks include some existing code-
books as special cases. Furthermore, a discussion on the derived codebooks is also provided
based on a number-theoretic result.

6.1 Codebooks from norm-coset graphs

Bymeans of norm-coset graphs, Proposition 1 and Corollary 4 bring forth the Construction 5
below.

Construction 5 Let t ≥ 2 be an integer, q be a power of a prime p and v be a divisor
of q − 1. Let H× be a subgroup of order v of the multiplicative group F

∗
q . Suppose that
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Table 2 Codebooks from
Construction 5 when q = p is a
prime, t = 3 and v = 2

q = p N K Imax Iwel Iwel/Imax

7 195 48 0.145833 0.125643 0.86155

11 725 120 0.0916667 0.0834484 0.910346

13 1182 168 0.077381 0.071489 0.923858

17 2600 288 0.0590278 0.0555769 0.941539

19 3609 360 0.0527778 0.0500139 0.947631

23 6347 528 0.0435606 0.0416732 0.956672

29 12614 840 0.0345238 0.033336 0.965594

31 15375 960 0.0322917 0.031252 0.967805

37 26010 1368 0.0270468 0.0263168 0.97301

41 35300 1680 0.0244048 0.0238102 0.975637

43 40677 1848 0.0232684 0.0227278 0.976768

47 53015 2208 0.0212862 0.0208337 0.978742

53 75842 2808 0.0188746 0.0185188 0.981145

G = (F∗
q/H

×) × F
+
qt−1 and D = {(x, Y ) ∈ (F∗

q/H
×) × F

+
qt−1 : Nrqt−1/q(Y ) ∈ x} ⊆ G.

Then, the codebook C(G, D)∪ EK is an (n+ K , K )-codebook such that n = (qt − qt−1)/v,
K = qt−1 − 1 and

Imax (C(G, D) ∪ EK ) = q
t−1
2

qt−1 − 1
.

The alphabet size of the codebook C(G, D) ∪ EK is p(q − 1)/v + 2.

Remark 3 Concerning n + K = (qt − qt−1)/v + qt−1 − 1 and K = qt−1 − 1, the Welch
bound in Theorem 1 gives

Iwel(n + K , K ) =
√

qt − qt−1

(qt + (v − 1)qt−1 − 2v)(qt−1 − 1)
.

If t ≥ 3 is fixed and v = o(q) as q → ∞, the complex codebooks from Construction 5 are
asymptotically optimal in the sense that

lim
n→∞

Imax (C(G, D) ∪ EK )

Iwel(n + K , K )
= lim

q→∞

q
t−1
2

qt−1−1
√

qt−qt−1

(qt+(v−1)qt−1−2v)(qt−1−1)

= 1.

Table 2 below shows numerical examples of codebooks from Construction 5.

We also remark that by virtue of sum-product graphs (i.e. norm-coset graphs with t = 2
and v = 1), the above Construction 5 can deduce codebooks as obtained in [49], which are
asymptotically optimal with respect to the Levenshtein bound.

6.2 Codebooks from trace-coset graphs

Now we present our second construction for codebooks based on Proposition 4 and Corol-
lary 4.
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Table 3 Codebooks from Construction 6 when q is a square of a prime p and t = 3, u = p

p q N K Imax Iwel Iwel/Imax

7 49 19200 2400 0.0204167 0.0191155 0.936269

11 121 175680 14640 0.00826503 0.00791539 0.957697

13 169 399840 28560 0.005901737 0.00570314 0.963796

17 289 1503360 83520 0.00346025 0.00336304 0.971908

19 361 2606400 130320 0.0027701 0.00270013 0.97474

23 529 6716160 279840 0.00189037 0.00185063 0.97898

29 841 21218400 707280 0.00118906 0.0011691 0.98321

31 961 29552640 923520 0.00104058 0.00102421 0.984266

37 1369 71218080 1874160 0.000730461 0.000720792 0.986763

41 1681 118681920 2825760 0.000594884 0.000587764 0.98803

43 1849 150427200 3418800 0.000540833 0.000534655 0.988577

47 2209 234224640 4879680 0.000452694 0.000447955 0.989533

53 3481 426085920 7890480 0.000355999 0.000352688 0.990701

Construction 6 Let t ≥ 2 be an integer, q be a prime power and u be a divisor of q. Let H+
be a subgroup of order u of the additive group F

+
q . Suppose that G = (F+

q /H+) × F
+
qt−1

and D = {(x, Y ) ∈ (F+
q /H+) × F

∗
qt−1 : Trqt−1/q(Y ) ∈ x} ⊆ G. Then, the codebook

C(G, D) ∪ EK is an (N + K , K )-codebook such that N = (qt − q)/u, K = qt−1 − 1 and

Imax (C(G, D) ∪ EK ) = q
t−1
2

qt−1 − 1
.

The alphabet size of the codebook C(G, D) ∪ EK is p(qt−1 − 1) + 2.

Remark 4 Concerning n = (qt − q)/u and K = qt−1 − 1, the Welch bound in Theorem 1
gives

Iwel(n + K , K ) =
√

qt − q

(qt + uqt−1 − uq − 2u)(qt−1 − 1)
.

If t ≥ 3 is fixed and u < q (equivalently, u = o(q) as q → ∞), the complex codebooks
from Construction 6 are asymptotically optimal in the sense that

lim
n→∞

Imax (C(G, D) ∪ EK )

Iwel(n + K , K )
= lim

q→∞

q
t−1
2

qt−1−1
√

qt−q
(qt+uqt−1−uq−2u)(qt−1−1)

= 1.

Table 3 below presents numerical examples of codebooks derived from Construction 6.

As in the first construction, by virtue of sum-product graphs (i.e. trace-coset graphs with
t = 2 and u = 1), the above Construction 6 can produce asymptotically optimal codebooks
with respect to the Levenshtein bound as in [49].
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6.3 A further discussion

In this section, we shall further discuss the parameters of asymptotically optimal codebooks
derived from Cayley sum graphs (Constructions 5 and 6) with the aid of a number-theoretic
result. Specifically, we have the following result.

Theorem 7 Let pi denote the i th prime (where p1 = 2, p2 = 3, p3 = 5, . . .) and t ≥ 3
be a fixed integer. Suppose that pi − pi−1 = o((pi−1)

l) (i → ∞) for some real number
0 < l < 1/2. Then for sufficiently large i and every K with (pi−1)

t−1−1 < K ≤ (pi )t−1−1,
we have a ((pi )t −1, K ) codebook which is asymptotically optimal with respect to the Welch
bound.

By the following theorem on prime gaps, we see that Theorem 7 provides asymptotically
optimal codebooks for almost all possible length K .

Lemma 4 [12] For each real number 0 < l ≤ 1/2 and sufficiently large x > 0, the number
of primes pi ≤ x such that pi − pi−1 < (pi−1)

l is at least x/(log x)−O(x1−(3/2)l+ε) where
ε > 0 is an arbitrarily small real number.

To prove Theorem 7, we need the following lemma which is a direct consequence of
Lemma 3.

Lemma 5 Let G be an abelian group of order n and D ⊆ G. Let 1 ≤ k ≤ K and D′ ⊆ D
with |D′| = k. Then C(G, D \ D′) ∪ EK−k is an (n + K − k, K − k)-codebook such that

Imax (C(G, D \ D′) ∪ EK−k) ≤ max
{ 1√

K − k
, max

χ∈̂G\{χ0}
|χ(D)| + k

K − k

}

.

Proof of Theorem 7 For simplicity, we shall focus on Construction 5 for the case that v = 1.
According to this construction, there exist asymptotically optimal (ni + Ki , Ki ) codebooks
with

ni = (pi )
t − (pi )

t−1, Ki = (pi )
t−1 − 1.

Let Gi = F
∗
pi × F

+
(pi )t−1 and Di = {(x, Y ) ∈ (F∗

pi ) × F
+
(pi )t−1 : Nr(pi )t−1/pi (Y ) = x}. Let

k be any integer with 1 ≤ k < (pi )t−1 − (pi−1)
t−1 and D′ ⊂ Di with |D′| = k. By the

assumption of pi , we have k = o((pi )
t−1
2 ). It suffices to prove that the (ni + Ki − k, Ki − k)

codebook C(Gi , Di \D′)∪EKi−k is asymptotically optimal with respect to theWelch bound.
In fact, it follows from Lemma 5 that

Imax (C(Gi , Di \ D′) ∪ EKi−k) ≤ (pi )
t−1
2 + o((pi )

t−1
2 )

(pi )t−1 − o((pi )
t−1
2 )

,

where the right-hand side is asymptotically equal to 1/(pi )
t−1
2 as i → ∞. Thus a simple

calculation shows that

lim sup
i→∞

Imax (C(Gi , Di \ D′) ∪ EKi−k)

Iwel(ni + Ki − k, Ki − k)
= 1,

proving the theorem. �
We remark that similarly to the above argument, the desired codebooks in Theorem 7 can

be derived from Construction 6 and many existing constructions as well.
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7 Conclusion

In this paper we constructed two families of Cayley sum graphs and estimated their second
largest eigenvalues based on Gaussian sums. Next we established a connection between com-
plex codebooks and Cayley sum graphs. Accordingly, infinite families of complex codebooks
were derived,which have flexible newparameters, small alphabet size, and are asymptotically
optimal with respect to the Welch bound or the Levenshtein bound. It would be of interest
to explore more on the established relationship between Cayley sum graphs and codebooks,
such as to consider explicitly constructing good Cayley sum graphs in the spirit of complex
codebooks.

Acknowledgements The authors are very grateful to the anonymous reviewers and associated editor for
their insightful and constructive comments and suggestions. The authors would like to thank Professor Ofer
Shayevitz and Professor Rami Zamir for helpful discussions. S. Satake has been supported by Grant-in-Aid
for JSPS Fellows 18J11282 and 20J00469 of the Japan Society for the Promotion of Science and ACT-X
JPMJAX2109 of the Japan Science and Technology Agency. Y. Gu has been supported by Grant-in-Aid for
Early-Career Scientists 21K13830 of the Japan Society for the Promotion of Science. Parts of this work were
presented at [43].

References

1. Alon N.: Large sets in finite fields are sumsets. J. Number Theory 126, 110–118 (2007).
2. Alon N., Rödl V.: Sharp bounds for some multicolor Ramsey numbers. Combinatorica 25, 125–141

(2005).
3. Alon N., Rónyai L., Szabó T.: Norm-graphs: variations and applications. J. Comb. Theory Ser. B 76,

280–290 (1999).
4. Artin M.: Algebra. Prentice Hall Inc, New Jersey (1991).
5. Bien F.: Constructions of telephone networks by group representations. Notices Am. Math. Soc. 36, 5–22

(1989).
6. Brouwer A.E., Haemers W.H.: Spectra of Graphs. Springer, New York (2012).
7. Calderbank A.R., Cameron P.J., Kantor W.M., Seidel J.J.: Z4-kerdock codes, orthogonal spreads, and

extremal Euclidean linesets. Proc. Lond. Math. Soc. 75, 436–480 (1997).
8. Candès E.J., Wakin M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25,

21–30 (2008).
9. Christensen O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003).

10. Chung F.R.K.: Diameters and eigenvalues. J. Am. Math. Soc. 2, 187–196 (1989).
11. Conway J.H., Harding R.H., Sloane N.J.A.: Packing lines, planes, etc.: packings in Grassmannian spaces.

Exp. Math. 5, 139–159 (1996).
12. Crámer H.: On the distribution of primes. Proc. Cam. Philos. Soc. 20, 272–280 (1921).
13. Delsarte P., Goethals J.M., Seidel J.J.: Spherical codes and designs. Geometriae Dedicate 67, 363–388

(1977).
14. DingC.: Complex codebooks fromcombinatorial designs. IEEETrans. Inf. Theory 52, 4229–4235 (2006).
15. Ding C., Feng T.: A generic construction of complex codebooks meeting the Welch bound. IEEE Trans.

Inf. Theory 53, 4245–4250 (2007).
16. Ding C., Feng T.: Codebooks from almost difference sets. Des. Codes Cryptogr. 46, 113–126 (2008).
17. Donoho D.L., Elad M.: Optimally sparse representation in general (nonorthogonal) dictionaries via 1

minimization. Proc. Natl. Acad. Sci. USA 100, 2197–2202 (2003).
18. FickusM., Mixon D.G., Tremain J.C.: Steiner equiangular tight frames. Linear Algebra Appl. 436, 1014–

1027 (2012).
19. Garaev M.Z.: An explicit sum-product estimate in Fq . Int. Math. Res. Not. 2007, 1–11 (2007).
20. GolombS.W.,GongG.: SignalDesign forGoodCorrelation: ForWireless Communication. Cryptography

and Radar. Cambridge University Press, Cambridge (2005).
21. Grynkiewicz D., Lev V.F., Serra O.: The connectivity of addition Cayley graphs. Electron. Notes Discret.

Math. 29, 135–139 (2007).
22. He X., Wigderson Y.: Multicolor Ramsey numbers via pseudorandom graphs. Electron. J. Comb. 27, 32

(2020).

123



1332 S. Satake, Y. Gu

23. Heng Z., Ding C., Yue Q.: New constructions of asymptotically optimal codebooks with multiplicative
characters. IEEE Trans. Inf. Theory 63, 6179–6187 (2017).

24. Hoory S., Linial N., Wigderson A.: Expander graphs and their applications. Bull. Am. Math. Soc. (N.S.)
43, 439–561 (2006).

25. Hu H., Wu J.: New constructions of codebooks nearly meeting the Welch bound with equality. IEEE
Trans. Inf. Theory 60, 1348–1355 (2014).

26. Krivelevich M., Sudakov B.: Pseudo-random graphs. In: Györi E., Katona G.O.H., Lovász L., Fleiner T.
(eds.) More Sets, Graphs and Numbers. Bolyai Society Mathematical Studies, vol. 15. Springer, Berlin
(2006).

27. Lenz J., Mubayi D.: Multicolor Ramsey numbers for complete bipartite versus complete graphs. J. Graph
Theory 77, 19–38 (2014).

28. Levenshtein V.I.: Bounds for packing of metric spaces and some of their applications. Probl. Cybern. 40,
43–110 (1983).

29. Li W.-C.W., Feng K.Q.: Character sums and abelian Ramanujan graphs. J. Number Theory 41, 199–217
(1992).

30. Li S., Ge G.: Deterministic sensing matrices arising from near orthogonal systems. IEEE Trans. Inf.
Theory 60, 2291–2302 (2014).

31. Li S., GeG.: Deterministic construction of sparse sensingmatrices via finite geometry. IEEETrans. Signal
Process. 62, 2850–2859 (2014).

32. Li S., Gao F., Ge G., Zhang S.: Deterministic construction of compressed sensing matrices via algebraic
curves. IEEE Trans. Inf. Theory 58, 5035–5041 (2012).

33. Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1984).
34. LuW., Wu X., Cao X., ChenM.: Six constructions of asymptotically optimal codebooks via the character

sums. Des. Codes Cryptogr. 88, 1139–1158 (2020).
35. Luo G., Cao X.: Two constructions of asymptotically optimal codebooks via the hyper Eisenstein sum.

IEEE Trans. Inf. Theory 64, 6498–6505 (2018).
36. Massey J.L., Mittelholzer T.: Welchs bound and sequence sets for code-division multiple-access systems.

In: Capocelli R., De Santis A., Vaccaro U. (eds.) Sequences II. Springer, New York (1993).
37. Mubayi D., Verstraëte J.: A note on pseudorandom Ramsey graphs. arXiv:1909.01461
38. Qi Y., Mesnager S., Tang C.: Codebooks from generalized bentZ4-valued quadratic forms. Discret. Math.

343, 111736 (2020).
39. Renes J.M., Blume-Kohout R., Scot A., Caves C.: Symmetric informationally complete quantum mea-

surements. J. Math. Phys. 45, 2171–2180 (2004).
40. Sarwate D.V.: Meeting the Welch bound with equality. In: Ding C., Helleseth T., Niederreiter H. (eds.)

Sequences and their Applications. Discrete Mathematics and Theoretical Computer Science. Springer,
London (1999).

41. Satake S.: Certain codebooks and the generalized Erdős–Falconer distance problem (extended abstract).
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