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Abstract
Receiver selective opening (RSO) security requires that in a situation where there are one
sender andmultiple receivers, even if an adversary has access to all ciphertexts and adaptively
corrupts some fraction of the receivers to obtain their secret keys, the (potentially related)
ciphertexts of the uncorrupted receivers remain secure. All of the existing works construct
RSO secure identity-based encryption (IBE) in the single-challenge setting, where each iden-
tity is used only once for encryption. This restriction makes RSO security for IBE unrealistic
in practice. It is preferable to have IBE schemes with RSO security in the multi-challenge
setting in practice, where each identity can be used to encrypt multiple messages. In this
paper, we initiate the study of RSO security in the multi-challenge setting (which we call
RSOk security) for IBE. Concretely, we show that the conclusion of lower bound, proposed
by Yang et al. (in: ASIACRYPT 2020, Springer, 2020), on the secret key size of RSO secure
public-key encryption also holds in the IBE setting (i.e., an IBE scheme cannot be RSOk

secure if the length of its secret key is not k times larger than the length of message). For
construction, we propose a generic construction of IBE achieving RSOk security. Through
our generic construction, we can obtain RSOk secure IBE schemes based on decisional linear
(DLIN) assumption and learning with error (LWE) assumption. Furthermore, we show that
the well-known Fujisaki–Okamoto transformation can be applied to construct a practical IBE
scheme achieving RSOk security.
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1 Introduction

Selective opening attacks, firstly formally considered by Bellare et al. [3] for public key
encryption (PKE), concern some multi-user scenarios, where an adversary is able to break
into a subset of honestly generated ciphertexts and tries to learn information on the messages
of some unopened (but maybe potentially related) ciphertexts. Bellare et al. [3] introduce two
ways to formalize security notions against selective opening attacks (SO security notions),
namely indistinguishability-based (IND-SO) security and simulation-based (SIM-SO) secu-
rity. Generally, IND-SO security requires that the unopened ciphertexts and the ciphertexts
of freshly sampled messages, which are distributed according to the conditional probability
distribution (conditioned on the opened ciphertexts), are computationally indistinguishable;
SIM-SO security requires that anything, which can be computed from all the ciphertexts and
the opened messages together with the corrupted information, can also be computed only
from the opened messages. Compared with SIM-SO security, IND-SO security has a limita-
tion that the message distribution should be “efficiently conditionally re-samplable”, while
SIM-SO security imposes no limitation on the message distributions; it is already known
that under chosen-plaintext attacks (CPA) for PKE, SIM-SO security is strictly stronger than
IND-SO security [2, 6, 15]. Thus, for SO security, it is desirable to consider simulation-based
definitions.

To date, SO security notions are usually considered in two settings: sender corruption [3,
9, 16, 19] and receiver corruption [2, 13, 15, 22]. In the sender corruption setting, part of
the senders may be corrupted (we say that “their ciphertexts are opened”), exposing their
messages and random coins employed during the encryption. In the receiver corruption
setting, part of them may be corrupted, exposing their messages and secret keys. We denote
SO security in the sender corruption setting and in the receiver corruption setting by SSO
security and RSO security, respectively.

Standard RSO security is formalized in the single-challenge setting for PKE, where each
public key is used only once to encrypt a single challenge message. This restriction makes
RSO security unrealistic, since in practice a public key is often used multiple times. More
realistic RSOk security (i.e., RSO security in the multi-challenge setting, where each public
key can be used to encrypt k ≥ 1 challenge messages) is introduced by Yang et al. [42].
They prove that SIM-RSO security is not enough to guarantee SIM-RSOk security (k > 1),
providing a lower bound on the secret key length for any PKE scheme with RSOk security in
the non-programmable random oracle model, and show SIM-RSOk-CPA/CCA secure PKE
constructions with nearly optimal secret key length.
SO security for IBE The study of SO secure identity-based encryption (IBE) is initiated by
Bellare et al. [5]. Compared with PKE, IBE allows a sender to generate ciphertexts using
a receiver’s identity as a public key, and the subtlety of proving security of IBE comes
from the fact that a key generation oracle is provided to an adversary to answer private key
queries with respect to different identities, and the adversary is free to choose the challenge
identities. Bellare et al. [5] firstly formalize a simulation-based notion of SSO security under
CPA attacks for IBE (which we denote as SIM-ID-SSO-CPA security), via adapting the SO
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RSO security for IBE in the multi-challenge setting 1235

framework to IBE in a natural way (i.e., informally, replacing the public keys with the target
receivers’ identities, and allowing the adversary to access to the key generation oracle).
Furthermore, they construct IBE schemes meeting this security requirement. Later, the first
IBE scheme achieving simulation-based SSO security under CCA attacks (which we denote
as SIM-ID-SSO-CCA security) is proposed by Lai et al. [30].

As for the receiver corruption setting, the notion of simulation-based RSO security under
CPA attacks for IBE (which we denote as SIM-ID-RSO-CPA security) is formalized by
Kitagawa and Tanaka [29]. They construct a SIM-ID-RSO-CPA secure IBE scheme from
an IBE scheme with basic security (i.e., IND-ID-CPA security). Recently, Hara et al. [14]
formalize the notion of simulation-based RSO security under CCA attacks for IBE (which
we denote as SIM-ID-RSO-CCA security), and show an IBE construction meeting SIM-ID-
RSO-CCA security via the classical double encryption technique [36, 38].

To the best of our knowledge, currently all the known receiver selective opening security
notions for IBE [14, 29] are considered in the single-challenge setting (i.e., each identity
as used only once to encrypt a single challenge message). However, in practice, usually an
identity (i.e., public key) is used multiple times for encryption. More importantly, no RSO
security notions in the multi-challenge setting for IBE have ever been considered before.

In this paper, we initiate the study of simulation-based RSO security in themulti-challenge
setting for IBE.
Our contributions We firstly formalize the notion of simulation-based RSO security in the
multi-challenge setting (which we denote as SIM-ID-RSOk-CPA/CCA security) for IBE. In
particular, a SIM-ID-RSOk-CPA/CCA adversary is allowed to access to the key generation
oracle, can obtain k challenge ciphertexts for each identity, and can corrupt some of the
receivers and know the secret keys; SIM-ID-RSOk-CPA/CCA security requires that anything,
which can be computed by the adversary, can also be computed by a simulator only from the
opened messages (of the corrupted receivers).

We show that the conclusion (proposed in [42]) of lower bound on the secret key size
of RSOk secure encryption scheme in the PKE setting also holds in the IBE setting. More
specifically, we provide a lower bound on the secret key length for any IBE scheme with
SIM-ID-RSOk security in the non-programmable random oracle model. This result implies
that for any SIM-ID-RSOk secure IBE scheme, assuming that the size of its message space
(resp., secret key space) is 2�m (resp., 2�sk ), we have �sk ≥ �mk. This result also implies that
it is impossible for IBE to achieve SIM-ID-RSOk security without restricting the number of
challenge ciphertexts for each identity (i.e., k).

We stress that this result also suggests that for IBE, RSO security in the single-challenge
setting is not enough to guarantee that in the multi-challenge setting. That’s because for any
IBE scheme with SIM-ID-RSO-CCA security, assuming that the size of its message space
(resp., secret key space) is 2�m (resp., 2�sk ), this IBE scheme is not SIM-ID-RSOk-CPA secure
for any k ≥ �sk+1

�m
.

We provide a generic construction of IBE achieving SIM-ID-RSOk-CCA security. Our
generic IBE scheme is constructed from an IND-ID-CPA secure IBE scheme with message
space {0, 1} and a non-interactive zero-knowledge (NIZK) proof system, via the double
encryption technique [36, 38]. More concretely, to encrypt a single-bit message m with
identity id, the encryption algorithm of our generic IBE scheme proceeds as follows: (i)
firstly uniformly sample k bits m1, . . . ,mk satisfying m1 ⊕ · · · ⊕ mk = m; (ii) for each
η ∈ [k] and each β ∈ {0, 1}, generate cη,β by encrypting mη (with identity (id, η, β)) using
the encryption algorithm of the underlying IND-ID-CPA secure IBE scheme; (iii) generate
a NIZK proof indicating that the 2k ciphertexts (cη,β)η∈[k],β∈{0,1} are created by encrypting
m1, . . . ,mk via (ii). With this method, the SIM-ID-RSOk-CCA security of our generic IBE
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can be implied by the IND-ID-CPA security of the underlying IBE and the security properties
of the NIZK proof system.

In particular, when plugging the DLIN-based (resp., the LWE based) instantiations [12,
40] (resp., [1, 37]) into our generic construction, we obtain a concrete DLIN-based (resp.,
LWE based) SIM-ID-RSOk-CCA secure IBE scheme.

We also provide a practical IBE scheme meeting SIM-ID-RSOk-CCA security in the
random oracle model. Specifically, we show that the well-known Fujisaki–Okamoto trans-
formation [11] can be applied to construct SIM-ID-RSOk-CCA secure IBE from a one-way
secure (under CPA attacks) IBE scheme with high min-entropy of ciphertexts in the random
oracle model. In other words, to encrypt a message m with identity id (and randomness r ),
the encryption algorithm computes as follows:

C := (Enc(pp, id, r; H(r ,m ⊕ G(r))),m ⊕ G(r)),

where Enc is the encryption algorithm of the underlying IBE scheme (pp is the public
parameter), and both G and H are hash functions.
Related works Since formalized by Bellare et al. in [3], PKE with SO security has been
extensively studied. Numerous constructions of SSO (resp., RSO) secure PKE have been
proposed based on various assumptions in previous works [8, 9, 16–19, 24, 25, 32, 33, 35]
(resp., [13, 15, 22, 27–29, 34, 35, 42]). Recently, PKE achieving both SSO security and
RSO security has been proposed in [31]. Relations among SSO/RSO security and standard
security for PKE are also extensively studied in previous works [2, 6, 15, 20, 21, 23, 42].

Bellare et al. [5] initiate the study of SO security in the IBE setting, proposing a general
paradigm to achieve SIM-ID-SSO-CPA security from IND-ID-CPA secure and “One-Sided
Publicly Openable” (1SPO) IBE schemes. The first SIM-ID-SSO-CCA secure IBE scheme
is constructed by Lai et al. [30]. In 2020, Jia et al. [26] present the first SIM-ID-SSO-CCA
secure IBE scheme with tight security.

Kitagawa et al. [29] formalize the notion of SIM-ID-RSO-CPA security for IBE, and show
that a SIM-ID-RSO-CPA secure IBE scheme can be constructed based only on an IND-ID-
CPA secure IBE scheme. Hara et al. [14] formalize SIM-ID-RSO-CCA security for IBE, and
show a generic construction of SIM-ID-RSO-CCA secure IBE from an IND-ID-CPA secure
IBE scheme and a NIZK system satisfying unbounded simulation soundness and unbounded
zero-knowledge property.
RoadmapWefirstly recall some preliminaries in Sect. 2. Then, we present formal definitions
of SIM-ID-RSOk-CPA/CCA security (k ≥ 1) for IBE in Sect. 3. We provide a lower bound
for SIM-ID-RSOk secure IBE scheme in Sect. 4. Next, we show a generic construction
of IBE achieving SIM-ID-RSOk-CCA security in Sect. 5. Finally, we provide a practical
SIM-ID-RSOk-CCA secure IBE scheme in Sect. 6.

2 Preliminaries

Notations Let λ ∈ N denote the security parameter. For any n ∈ N, we use [n] to denote
the set {1, 2, . . . , n}. For a finite set S, we use |S| to denote the size of S, and use s ← S to
denote the process of sampling s uniformly from S. For a distribution Dist, we use x ← Dist
to denote the process of sampling x from Dist.

For a probabilistic algorithm A, let RA denote the randomness space of A. We use
y ← A(x; r) denote the process of runningA on input x and inner randomness r ← RA and
outputting y.Wewrite y ← A(x) for y ← A(x; r)with uniformly chosen r ∈ RA.Wewrite

123



RSO security for IBE in the multi-challenge setting 1237

PPT for probabilistic polynomial-time. For a function f (λ), we write that f (λ) ≤ negl(λ)

if it is negligible.
NIZK proof system Let R be an efficiently computable binary relation, and L := {x |
∃w s.t. (x, w) ∈ R}. A NIZK proof NIZK for L consists of the following three algorithms:

• CRSGen(1λ): On input the security parameter 1λ, the common reference string (CRS)
generation algorithm outputs a CRS crs.

• Prove(crs, x, w): The proving algorithm, taking a CRS crs, a statement x ∈ L and a
witness w for the fact that x ∈ L as input, outputs a proof π .

• Verify(crs, x, π): The verification algorithm, taking a CRS crs, a statement x ∈ L and a
proof π as input, outputs a bit b ∈ {0, 1}.

It also satisfies the following conditions:

– Completeness For all λ ∈ N, all crs generated by CRSGen and all (x, w) ∈ R, we always
have Verify(crs, x,prove(crs, x, w)) = 1.

– Unbounded Zero-knowledge There is a PPT simulator S(zk) = (S(zk)
1 ,S(zk)

2 ) such that
for any PPT adversary A,

AdvzkNIZK,A,S(zk) (λ) := |Pr[Gzk-real
NIZK,A(λ) = 1] − Pr[Gzk-sim

NIZK,A,S(zk) (λ) = 1]|
is negligible, where Gzk-real

NIZK,A(λ) and Gzk-sim
NIZK,A,S(zk) (λ) are shown in Fig. 1.

– Unbounded simulation soundness Let S(zk) = (S(zk)
1 ,S(zk)

2 ) be a PPT simulator for
the unbounded zero-knowledge property of NIZK. For any unbounded adversary A, the
advantage

AdvsoundNIZK,A,S(zk) (λ) := Pr[Gsound
NIZK,A,S(zk) (λ) = 1]

is negligible, where Gsound
NIZK,A,S(zk) (λ) is shown in Fig. 1.

Identity-based encryptionAn identity-based encryption (IBE) scheme consists of four PPT
algorithms (Setup, KGen, Enc,Dec). The setup algorithm Setup(1λ) outputs a public param-
eter pp and amaster secret keymsk. The private key generation algorithmKGen(pp,msk, id)

takes pp,msk and an identity id as input, and outputs a secret key skid for id. The encryption
algorithm Enc(pp, id,m) taking pp, id and amessagem ∈ Msp as input, outputs a ciphertext
c, where Msp is the message space. The decryption algorithm Dec(pp, skid, c), taking pp,
skid and c as input, outputs a message m or ⊥, which indicates that c is invalid. For correct-
ness, we require that for any (pp,msk) generated by Setup, any valid identity id and any
valid message m, Dec(pp, KGen(pp,msk, id), Enc(pp, id,m)) = m with overwhelming
probability.

Nowwe recall notions ofOW-ID-CPAsecurity and IND-ID-CPAsecurity for IBE [7].Note
that the following recalled definition of IND-ID-CPA security considers multiple challenge
identities, like [14]. This security notion is equivalent to the original one proposed in [7]
except for a polynomial reduction loss based on the number of challenge identities.

Definition 1 (OW-ID-CPA) We say that an IBE scheme IBE = (Setup, KGen, Enc,Dec) is
OW-ID-CPA secure, if for any PPT adversary A,

Advow-id-cpaIBE,A (λ) := Pr[Gow-id-cpa
IBE,A (λ) = 1]

is negligible, where Gow-id-cpa
IBE,A (λ) is defined in Fig. 2.
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1238 Z. Huang et al.

Fig. 1 Games for defining zero-knowledge property and simulation-soundness of NIZK

Fig. 2 Games for defining OW-ID-CPA security (in Definition 1) and IND-ID-CPA security (in Definition 2)
of IBE
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Definition 2 (IND-ID-CPA) We say that an IBE scheme IBE = (Setup, KGen, Enc,Dec) is
IND-ID-CPA secure, if for any polynomially bounded n > 0 and any PPT adversary A,

Advind-id-cpaIBE,A,n (λ) := Pr[Gind-id-cpa
IBE,A,n (λ) = 1]

is negligible, where Gind-id-cpa
IBE,A,n (λ) is defined in Fig. 2.

3 RSO security in themulti-challenge setting for IBE

In this section, we introduce simulation-based receiver selective opening security in the
multi-challenge setting for IBE, which we call SIM-ID-RSOk-CPA/CCA security (k ≥ 1).

Definition 3 (SIM-ID-RSOk-CPA/CCA security) We say that an IBE scheme IBE =
(Setup, KGen, Enc,Dec) is SIM-ID-RSOk-ATK secure (ATK ∈ {CPA,CCA}), if for any
polynomially bounded n > 0 and any PPT adversaryA, there exists a PPT simulator S, such
that for any PPT distinguisher D,

Advrsok -atkIBE,A,S,D,n(λ) := |Pr[D(Grsok -atk-real
IBE,A,n (λ)) = 1]

−Pr[D(Grsok -atk-ideal
IBE,S,n (λ)) = 1]|

is negligible, where Grsok -atk-real
IBE,A,n (λ) and Grsok -atk-ideal

IBE,S,n (λ) are both defined in Fig. 3, and
atk ∈ {cpa, cca}.

Fig. 3 Games for defining SIM-ID-RSOk -CPA security and SIM-ID-RSOk -CCA security (in Definition 3)
for IBE, where I ⊂ [n]. Boxed code is only executed in the games specified by the game names in the same
box style
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In game Grsok -atk-real
IBE,A,n (λ) (atk ∈ {cpa, cca}), we use Lid to denote the identities whose

secret keys have been generated, and use L to denote these identities and the corresponding
secret keys.

4 Lower bound for IBE with RSOk security

In this section, we show a lower bound for IBEwith SIM-ID-RSOk (k ≥ 1) security. The idea
is inspired by the work of Yang et al. [42]. Generally speaking, we show that the conclusion
of lower bound (proposed in [42]) on the secret key size of RSOk secure encryption scheme
in the PKE setting also holds in the IBE setting, i.e., assuming that the secret key space is
{0, 1}�sk and the message space is {0, 1}�m for some �sk, �m ∈ N, an IBE scheme cannot be
SIM-ID-RSOk-CPA secure if the length of its secret key is not k times larger than the length
of message.

Formally, we have the following theorem.

Theorem 1 Let IBE = (Setup, KGen, Enc,Dec) be an IBE scheme with secret key space
SKsp and message space Msp, where |SKsp| = 2�sk and |Msp| = 2�m . If �sk ≤ �mk − 1,
then IBE is not SIM-ID-RSOk-CPA secure in the non-programmable random oracle model.

According to Theorem 1, even if IBE is SIM-ID-RSO-CCA secure, when �sk < �mk, it
is not SIM-ID-RSOk-CPA secure in the non-programmable random oracle model. In other
words, in the IBE setting, RSO security in the single-challenge setting is not enough to
guarantee RSO security in the multi-challenge setting.

Next, we turn to the proof of Theorem 1.

Proof Let H : {0, 1}∗ → {0, 1}�h be a hash function, which will be modeled as a non-
programmable random oracle in this proof. We write PPsp, IDsp and Csp to denote the
public parameter space, the identity space and the ciphertext space of IBE respectively. Let
�pp := �log |PPsp|
, and �c := �log |Csp|
, and κ := �pp + �ck + 2. Let n := �h + 1.

Now,we construct a SIM-ID-RSOk-CPA adversaryA = (A1,A2,A3) and a distinguisher
D as shown in Fig. 4. Note that we require thatA should not query oracleOKGen, so we omit
oracle OKGen in Fig. 4.

Correctness of IBE guarantees that

Pr[D(Grsok -cpa-real
IBE,A,n (λ)) = 1] ≤ negl(λ). (1)

For any fixed PPT simulator S = (S1,S2,S3), without loss of generality, we assume that
S2 and S3 are both deterministic, i.e., the random coins are sampled by S1 and then given to
S2 and S3 via states s1 and s2 respectively. Let

δS = Pr[D(Grsok -cpa-ideal
IBE,S,n (λ)) = 1].

Following the idea of [42], if we can show that δS ≥ 1
2κ , then we obtain that

Advrsok -ccaIBE,A,S,D,n(λ)

= |Pr[D(Grsok -cca-real
IBE,A,n (λ)) = 1] − Pr[D(Grsok -cca-ideal

IBE,S,n (λ)) = 1]|
≥ 1

2κ
− negl(λ),

which is non-negligible. So what remains is to prove δS ≥ 1
2κ .
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RSO security for IBE in the multi-challenge setting 1241

Fig. 4 Adversary A and distinguisher D in attacking SIM-ID-RSOk -CPA security of IBE. We omit oracle
OKGen here, since we require that A should not query OKGen. U�mnk denotes a uniform distribution over
{0, 1}�mnk

Fig. 5 The auxiliary game Gaux
IBE,S,D,n,k,κ (λ)

Let rD denote the randomness of D (this randomness is used in the decryption algorithm
of IBE). Consider an auxiliary game Gaux

IBE,S,D,n,k,κ (λ) as shown in Fig. 5.
We postpone the proofs of the following three lemmas.

Lemma 1 Pr[Gaux
IBE,S,D,n,k,κ (λ) = 0] ≤ 1

4 .

Lemma 2 Pr[Gaux
IBE,S,D,n,k,κ (λ) = 1] ≤ κ · δS .

Lemma 3 Pr[Gaux
IBE,S,D,n,k,κ (λ) = 2] ≤ 1

4 .

Combining the three lemmas, we obtain

1 ≤ 1

4
+ κ · δS + 1

4
,
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which implies

δS ≥ 1

2κ
,

finishing the proof of this theorem.
Now, we turn to the proofs of the above three lemmas.

Proof of Lemma 1 Assume that Gaux
IBE,S,D,n,k,κ (λ) = 0. Then,

– we haveM = U�mnk (for simplicity, we denote this event as evt1), which means that for
each θ ∈ [κ], i ∈ [n] and j ∈ [k], m(θ)

i, j is uniformly random sampled from {0, 1}�m;
– we have (pp(θ−1), (c(θ−1)

n, j ) j∈[k]) = (pp(θ), (c(θ)
n, j ) j∈[k]) for all θ ∈ {2, . . . , κ} (we denote

this event as evt2), so we can write pp as pp(θ), and (cn, j ) j∈[k] as (c(θ)
n, j ) j∈[k];

– we havem(θ)
n, j = Dec(pp, sk(θ)

idn
, cn, j ) for all θ ∈ [κ] and all j ∈ [k] (we denote this event

as evt3).

Obviously, we derive

Pr[Gaux
IBE,S,D,n,k,κ (λ) = 0] ≤ Pr[evt1 ∨ evt2 ∨ evt3].

Note that if fixing any tuple (pp, (cn,1, . . . , cn,k), (sk
(1)
idn

, . . . , sk(κ)

idn
)), which is not neces-

sary the output of S3, then we have

Pr[∀ θ ∈ [κ], j ∈ [k], m(θ)
n, j = Dec(pp, sk(θ)

idn
, cn, j )] = 1

2�mkκ
,

where the probability is taken over the random choice of each m(θ)
n, j (θ ∈ [κ], j ∈ [k]).

We also note that total number of possible (pp, (cn,1, . . . , cn,k), (sk
(1)
idn

, . . . , sk(κ)

idn
)) is at

most 2�pp+�ck+�skκ = 2(�sk+1)κ−2. Hence,

Pr[evt1 ∨ evt2 ∨ evt3]
≤ Pr[∃ (pp, (cn,1, . . . , cn,k), (sk

(1)
idn

, . . . , sk(κ)

idn
)) :

∀ θ ∈ [κ], j ∈ [k], m(θ)
n, j = Dec(pp, sk(θ)

idn
, cn, j )]

≤ 2(�sk+1)κ−2

2�mkκ
≤ 2((�mk−1)+1)κ−2

2�mkκ
= 1

4
.

So we obtain

Pr[Gaux
IBE,S,D,n,k,κ (λ) = 0] ≤ Pr[evt1 ∨ evt2 ∨ evt3] ≤ 1

4
.

��

Proof of Lemma 2 Note that the randomness ofGaux
IBE,S,D,n,k,κ (λ) comes from the randomness

of S (i.e., rS ← RS ), rD ← RD and (m(θ)
i, j )i∈[n], j∈[k] ← M. Let

f (rD, rS) := Pr[((idi )i∈[n],M, s1) = S1(1λ; rS); (I, s2) = S2(s1);
(mi, j )i∈[n], j∈[k] ← M; out = S3((mi, j )i∈I, j∈[k], s2) :
D((idi )i∈[n], (mi, j )i∈[n], j∈[k],M, I, out) = 1]

123



RSO security for IBE in the multi-challenge setting 1243

where the probability is taken over the random choice of (mi, j )i∈[n], j∈[k]. Letting
Ex←X (x) := ∑

x Pr[X = x] · x denote the expectation of the random variable X , we
have

Pr[Gaux
IBE,S,D,n,k,κ (λ) = 1] = ErD←RD,rS←RS (1 − (1 − f (rD, rS))κ )

≤ ErD←RD,rS←RS (κ · f (rD, rS))

= κ · ErD←RD,rS←RS ( f (rD, rS))

= κ · δS .

��

Proof of Lemma 3 Denote the number of queries to H by qH . Since H is modeled as a
non-programmable random oracle, the probability that there are two distinct queries x1, x2

satisfying that H(x1) = H(x2) is less than
q2H
2�h

, which is negligible.

If Pr[Gaux
IBE,S,D,n,k,κ (λ) = 2] > 1

4 , then via running this game, one can find θ ∈ {2, . . . , κ}
satisfying that

(1) (pp(θ−1), (c(θ−1)
i, j )i∈[n], j∈[k]) �= (pp(θ), (c(θ)

i, j )i∈[n], j∈[k]);
(2) H(pp(θ−1), (idi , c

(θ−1)
i, j )i∈[n], j∈[k]) = H(pp(θ), (idi , c

(θ)
i, j )i∈[n], j∈[k]) = (t[1], . . . , t[h]),

where t[i] = 1 if and only if i ∈ I,

with probability greater than 1
4 , which is obviously non-negligible, contradicting the collision

resistant property of H . ��

Remark 1 As pointed out in [4] and restated in [42], impossibility result in the non-
programmable random oracle model does not extend to that in the standard model naturally,
since the adversary in the non-programmable random oracle model is allowed to query the
random oracle and thus is stronger than an adversary in the standard model. So Theorem 1
does not rule out the achievability of SIM-RSOk secure IBE when �sk ≤ �mk − 1 in the
standard model.

Similar to [42], the proof of Theorem 1 can be modified to achieve the same lower bound
in the standard model, but only in the auxiliary-input model. More specifically, the modified
proof is the same as the proof of Theorem 1, except that (1) H is a collision-resistant (CR)
hash function, instead of being modeled as a non-programmable random oracle, and (2) the
proof is given in the auxiliary input model, i.e., all participants, includingA,D and S, are all
given some common auxiliary input (a random key of the CR hash function) at the beginning.

5 Generic construction of SIM-ID-RSOk-CCA secure IBE

In this section, we show a generic construction of IBE, achieving SIM-ID-RSOk-CCA secu-
rity, based on an IND-ID-CPA secure IBE scheme and a non-interactive zero-knowledge
(NIZK) proof system, via the double encryption technique [36, 38].
Generic construction Let IBE = (Setup, KGen, Enc,Dec) be an IND-ID-CPA secure IBE
scheme with an identity space ID × [k] × {0, 1} and a message space {0, 1}, for some set
ID. Let NIZK = (CRSGen, Prove,Verify) be a NIZK proof system for language

{(pp, id, (cη,β)η∈[k],β∈{0,1}) | ∃(mη, rη,β)η∈[k],β∈{0,1} s.t.
(cη,β = Enc(pp, (id, η, β),mη; rη,β))η∈[k],β∈{0,1}}.
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Fig. 6 IBE scheme IBE′ = (Setup′, KGen′, Enc′,Dec′)

We construct an IBE scheme IBE′ = (Setup′, KGen′, Enc′,Dec′) with the identity space
ID and the message space {0, 1} as in Fig. 6.

The correctness of IBE′ is straightforward guaranteed by the correctness of IBE and the
completeness ofNIZK. Nowwe turn to the security analysis. Formally, we have the following
theorem.

Theorem 2 If IBE is an IND-ID-CPA secure IBE scheme, and NIZK is a NIZK proof system
satisfying unbounded zero-knowledge property and unbounded simulation soundness, then
IBE′ is SIM-ID-RSOk-CCA secure.

Proof For any polynomial n > 0, any PPT adversary A and any PPT distinguisher D, we
consider the following games G0–G5.
Game G0 : This game is exactly the same as Grsok -cca-real

IBE′,A,n
(λ). Specifically, the challenger

interacts with A as follows.

(1) The challenger firstly computes (pp,msk) ← Setup(1λ) and crs ← CRSGen(1λ), and
sets PP := (pp, crs) and MSK := msk. Then, it prepares five sets Lid := ∅, L := ∅,
L′ := ∅, Lchal := ∅ and C := ∅, and sends PP to A1. The challenger answers A1’s
oracle queries as follows:

• OKGen(id) : Since C = ∅, the challenger directly checks whether id belongs to Lid

or not.
– If id /∈ Lid, then for each η ∈ [k], it samples αη ← {0, 1}, and gen-

erates skid,η,αη
← KGen(pp,msk, (id, η, αη)). Then it sets that SK id :=

((αη, skid,η,αη
)η∈[k], id), appends id (resp., (id, SK id)) to Lid (resp., L), and

returns SK id to A1.
– If id ∈ Lid, which means that there is some (id, SK id) ∈ L, then it returns SK id

to A1.
• ODec(id,C) : The challenger checks whether id belongs to Lid.
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– If id /∈ Lid, then for each η ∈ [k], it samples αη ← {0, 1}, and gen-
erates skid,η,αη

← KGen(pp,msk, (id, η, αη)). Then it sets that SK id :=
((αη, skid,η,αη

)η∈[k], id).
– If id ∈ Lid, which means that there is some (id, SK id) ∈ L, then it retrieves

SK id from L.
The challenger parse SK id = ((αη, skid,η,αη

)η∈[k], id) andC = ((cη,β)η∈[k],β∈{0,1}, π),
and sets that x := (pp, id, (cη,β)η∈[k],β∈{0,1}). If Verify(crs, x, π) = 0, it returns ⊥
to A1; otherwise, it computesmη := Dec(pp, skid,η,αη

, cη,αη ) for each η ∈ [k], and
then returns m := m1 ⊕ · · · ⊕ mk to A1.

(2) Receiving ((idi )i∈[n],M) fromA1, the challenger proceeds as follows. For each i ∈ [n],
it firstly generates SK idi . In particular, for each i ∈ [n] and each η ∈ [k], it samples
αi,η ← {0, 1}, and computes skidi ,η,αi,η ← KGen(pp,msk, (idi , η, αi,η)). Then, for
each i ∈ [n], the challenger sets that SK idi := ((αi,η, skidi ,η,αi,η )η∈[k], idi ), and appends
idi (resp., (idi , SK idi )) to Lid (resp., L). After that, it samples (m∗

i, j )i∈[n], j∈[k] ← M.
For each i ∈ [n] and j ∈ [k], the challenger generates a challenge ciphertext C∗

i, j for
m∗

i, j as follows.

(a) It firstly samples mi, j,η ← {0, 1} for each η ∈ [k] and η �= j , and sets mi, j, j :=
(⊕η∈[k]∧η �= jmi, j,η) ⊕ m∗

i, j .
(b) For each η ∈ [k] and each β ∈ {0, 1}, the challenger samples ri, j,η,β ← REnc, and

computes ci, j,η,β = Enc(pp, (idi , η, β),mi, j,η; ri, j,η,β).
(c) The challenger computes πi, j ← Prove(crs, (pp, idi , (ci, j,η,β)η∈[k],β∈{0,1}),

((mi, j,η, ri, j,η,β)η∈[k],β∈{0,1})).
(d) It sets C∗

i, j := ((ci, j,η,β)η∈[k],β∈{0,1}, πi, j ).

(3) The challenger appends (idi ,C∗
i, j ) to C for each i ∈ [n] and each j ∈ [k], and returns

(C∗
i, j )i∈[n], j∈[k] to A2. Then, it answers A2’s oracle queries as follows:

• OKGen(id) : If id ∈ {idi | i ∈ [n]}, the challenger returns⊥ toA2 directly. Otherwise,
it answers this query as that in Step (1).

• ODec(id,C) : The challenger firstly checks whether (id,C) ∈ C. If so, it returns ⊥
to A2 directly. Otherwise, it checks whether id belongs to Lid or not.
– If id /∈ Lid, then for each η ∈ [k], it samples αη ← {0, 1}, and gen-

erates skid,η,αη
← KGen(pp,msk, (id, η, αη)). Then it sets that SK id :=

((αη, skid,η,αη
)η∈[k], id).

– If id ∈ Lid, which means that there is some (id, SK id) ∈ L, then it retrieves
SK id from L.

The challenger parse SK id = ((αη, skid,η,αη
)η∈[k], id) andC = ((cη,β)η∈[k],β∈{0,1}, π),

and sets that x := (pp, id, (cη,β)η∈[k],β∈{0,1}). If Verify(crs, x, π) = 0, it returns ⊥
to A2; otherwise, it computesmη := Dec(pp, skid,η,αη

, cη,αη ) for each η ∈ [k], and
then returns m := m1 ⊕ · · · ⊕ mk to A2.

(4) Receiving I ⊂ [n] from A2, the challenger returns (SK idi ,m
∗
i, j )i∈[n], j∈[k] to A3, and

answers A3’s oracle queries exactly as in Step (3).
(5) Finally, upon receiving A3’s final output out , the challenger outputs ((idi )i∈[n],

(m∗
i, j )i∈[n], j∈[k],M, I, out).

Game G1 : This game is the same as G0, except that when generating the CRS and the
proofs, the challenger employs the simulator S(zk) = (S(zk)

1 ,S(zk)
2 ) for the unbounded zero-

knowledge property of NIZK, instead of generating them honestly. More specifically, in Step
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(1), the challenger computes (crs, td) ← S(zk)
1 (1λ); for each i ∈ [n] and j ∈ [k], in (c) of

Step (2), the challenger computes πi, j ← S(zk)
2 (crs, td, (pp, idi , (ci, j,η,β)η∈[k],β∈{0,1})).

The unbounded zero-knowledge property of NIZK guarantees that

|Pr[D(G1) = 1] − Pr[D(G0) = 1]| ≤ AdvzkNIZK,Azk,S(zk) (λ) (2)

for some adversary Azk.
Game G2 : This game is the same as G1, except for the generation of the challenge
ciphertexts. More specifically, for each i ∈ [n] and j ∈ [k], the challenger com-
putes ci, j, j,1⊕αi, j ← Enc(pp, (idi , j, 1 ⊕ αi, j ), 1 ⊕ mi, j, j ) instead of ci, j, j,1⊕αi, j ←
Enc(pp, (idi , j, 1 ⊕ αi, j ),mi, j, j ) in (b) of Step (2). Note that this change can be seen
as letting m′

i, j, j := mi, j, j ⊕ αi, j = ((⊕η∈[k]∧η �= jmi, j,η) ⊕ m∗
i, j ) ⊕ αi, j , the challenger

computes

ci, j, j,0 ← Enc(pp, (idi , j, 0),m′
i, j, j )

ci, j, j,1 ← Enc(pp, (idi , j, 1), 1 ⊕ m′
i, j, j )

for each i ∈ [n] and j ∈ [k] in (b) of Step (2).
Now we show that G2 and G1 are computationally indistinguishable. Note that in these

two games, for each i ∈ [n], (i) the challenger only uses SK idi = ((αi,η, skidi ,η,αi,η )η∈[k], idi )
to answerA’s decryption queries and selective opening queries, and (ii) ifA2 orA3 submits
idi to OKGen, the challenger will return ⊥ as a response.1 In other words, skidi ,η,1⊕αi,η for
any i ∈ [n] and any η ∈ [k] will never be used. So for all i ∈ [n] and η ∈ [k], skidi ,η,1⊕αi,η

is hidden from the view of A. Thus, IND-ID-CPA security of IBE guarantees that

|Pr[D(G2) = 1] − Pr[D(G1) = 1]| ≤ Advind-id-cpaIBE,Aibe,nk
(λ) (3)

for some adversary Aibe.
Game G3 : This game is the same asG2, except for the generation of secret keys for the chal-
lenge identities (idi )i∈[n] in Step (2).More specifically, in this game, when generating a secret
key for idi (i ∈ [n]) in Step (2), besides generating SK idi = ((αi,η, skidi ,η,αi,η )η∈[k], idi ), the
challenger additionally proceeds as follows:

(i) Compute skidi ,η,1⊕αi,η ← KGen(pp,msk, (idi , η, 1 ⊕ αi,η)) for each η ∈ [k], set that
SK ′

idi
:= ((1 ⊕ αi,η, skidi ,η,1⊕αi,η )η∈[k], idi ), and append (idi , SK ′

idi
) into L′.

(ii) Append (idi , (skidi ,η,0, skidi ,η,1)η∈[k]) into Lchal.

Note that this change does not affect the view of A. Hence,

Pr[D(G3) = 1] = Pr[D(G2) = 1]. (4)

Game G4 : This game is the same as G3, except for the way to answer A’s key gen-
eration queries. More specifically, upon receiving a key generation query id to OKGen,
besides generating SK id = ((αη, skid,η,αη

)η∈[k], id), the challenger additionally generates
SK ′

id = ((1 ⊕ αη, skid,η,1⊕αη
)η∈[k], id) and appends (id, SK ′

id) into L′. Note that this is a
conceptual change, so it does not affect the view of A. Thus,

Pr[D(G4) = 1] = Pr[D(G3) = 1]. (5)

We also note that in this and subsequent games, for any id and any η ∈ [k], if skid,η,αη
has

been stored in L, and both skid,η,0 and skid,η,1 have been generated and can be retrieved.

1 Note that (idi )i∈[n] are specified by A1, and they are required to satisfy that {idi | i ∈ [n]} ∩ Lid = ∅. So
A1 cannot obtain secret keys for (idi )i∈[n] via queryingOKGen.
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Game G5 :This game is the same asG4, except for theway to answerA’s decryption queries.
More precisely, for any decryption query (id,C), the challenger will use skid,η,0 instead of
skid,η,αη

to answer this query.
The unbounded simulation soundness of NIZK guarantees that

|Pr[D(G5) = 1] − Pr[D(G4) = 1]| ≤ AdvsoundNIZK,A′
zk,S(zk) (λ) (6)

for some adversary A′
zk.

Game G6 : This game is the same as G5, except for the way to generate the challenge
ciphertexts and answer the selective opening query. More specifically,

– When generating the challenge ciphertexts, the challenger samples m′
i, j, j ← {0, 1}

instead of setting m′
i, j, j := ((⊕η∈[k]∧η �= jmi, j,η) ⊕ m∗

i, j ) ⊕ αi, j for each i ∈ [n] and
j ∈ [k] in (a) of Step (2).

– The challenger does not sample αi, j for any i ∈ [n] in Step (2) (note that both skidi , j,0
and skidi , j,1 for all i ∈ [n] and all j ∈ [k] have been generated and stroed in Lchal since
the change introduced in gameG3). Instead, when answering the selective opening query
I ⊂ [n] in Step (4), the challenger sets that αi, j := ((⊕η∈[k]∧η �= jmi, j,η)⊕m∗

i, j )⊕m′
i, j, j

for all i ∈ I and j ∈ [k].
The only difference between G6 : and G5 is the order of generations of m′

i, j, j and αi, j

for some i and some j , and it is easy to see that this difference does not affect A’s view in
these two games. Hence,

Pr[D(G6) = 1] = Pr[D(G5) = 1]. (7)

Now, we construct a simulator S = (S1,S2,S3), which simulates G6 perfectly for A, as
shown in Fig. 7. Obviously,

Grsok -cca-ideal
IBE,S,n (λ) = G6. (8)

Note that Grsok -cca-real
IBE′,A,n

(λ) = G0, so combining Eqs. (2)–(8), we obtain that

Advrsok -cca
IBE′,A,S,D,n

(λ)

= |Pr[D(Grsok -cca-real
IBE′,A,n

(λ)) = 1] − Pr[D(Grsok -cca-ideal
IBE′,S,n

(λ)) = 1]|
= |Pr[D(G0) = 1] − Pr[D(G6) = 1]|
≤ AdvzkNIZK,Azk,S(zk) (λ) + Advind-id-cpaIBE,Aibe,n

(λ) + AdvsoundNIZK,A′
zk,S(zk) (λ),

for some adversaries Azk, Aibe and A′
zk. ��

InstantiationsNote that the NIZK proof system satisfying unbounded zero-knowledge prop-
erty and unbounded simulation soundness can be constructed based on an ordinary NIZK
proof system (i.e., a NIZK proof system satisfying standard zero-knowledge property and
standard soundness) via the transformation of [39]without any additional assumption. Hence,
when plugging a DLIN-based (resp., LWE-based) IND-ID-CPA secure IBE scheme [40]
(resp., [1]) and a DLIN-based (resp., LWE-based) ordinary NIZK proof system [12] (resp.,
[37]) into our generic construction, we can obtain a concrete DLIN-based (resp., LWE-based)
SIM-ID-RSOk-CCA secure IBE scheme.
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Fig. 7 Simulator S = (S1,S2,S3) in the proof of Theorem 2

6 Practical SIM-ID-RSOk-CCA secure IBE scheme

Although we have proposed a generic IBE construction achieving SIM-ID-RSOk-CCA secu-
rity in Sect. 5, it is inefficient in practical applications. In this section, we show a practical
IBE construction achieving SIM-ID-RSOk-CCA security in the random oracle model. More
specifically, as shown in [41], the Fujisaki–Okamoto transformation [10] can be applied to
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Fig. 8 IBE scheme FOIBE = (FOSetup, FOKGen, FOEnc, FODec)

the IBE case, generally converting an IBE scheme with OW-ID-CPA security (and high min-
entropy of ciphertexts) into an IBE scheme with IND-ID-CCA security in the random oracle
model. Now we show that via the Fujisaki–Okamoto transformation [11], the obtained IBE
scheme actually achieves SIM-ID-RSOk-CCA security.

Firstly, we introduce a property of IBE in the following definition, which is extended
directly from γ -spread PKE [10, 11].

Definition 4 (γ -spread) Let IBE = (Setup, KGen, Enc,Dec) be an IBE scheme with identity
space ID, message space Msp, ciphertext space CTsp and randomness space REnc. For any
pp generated by Setup, any id ∈ ID, any m ∈ Msp and any c ∈ CTsp,

Pr[r ← REnc : c = Enc(pp, id,m; r)] ≤ 2−γ .

Let IBE = (Setup, KGen, Enc,Dec) be an IBE scheme with an identity space ID, a
message space Msp and a randomness space REnc. Consider the IBE scheme FOIBE =
(FOSetup, FOKGen, FOEnc, FODec) as shown in Fig. 8, with a message space MFO :=
{0, 1}�, for some � ∈ N, and a randomness space RFOEnc := Msp. Note that the underlying
G : RFOEnc → {0, 1}� and H : RFOEnc × {0, 1}� → REnc in Fig. 8. are both hash functions,
which will be modeled as random oracles in the security proof.

The correctness of FOIBE is obviously guaranteed by the correctness of IBE. For security,
we have the following theorem.

Theorem 3 If IBE is an OW-ID-CPA secure, γ -spread IBE scheme, and both G and H are
modeled as random oracles, then FOIBE is SIM-ID-RSOk-CCA secure in the random oracle
model.

Before going into the formal proof, we firstly show an intuition of why FOIBE achieves
SIM-ID-RSOk-CCA security. For a normally generated ciphertext C = (e, c), we have
c = m ⊕ G(r) and e = Enc(pp, id, r; H(r , c)), where r ← RFOEnc. So in the ciphertext
C , only c contains the information about the message m, and m is concealed by G(r).
Note that as long as r has never been queried to the random oracle OG, the adversary A
has no information about m (since OG(r) is uniformly distributed from A’s point of view).
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Furthermore, note that r is the input “plaintext” of the underlying encryption algorithm Enc, so
the one-wayness of IBE guarantees thatA cannot find out the value of r , which implies that c is
uniformly distributed fromA’s point of view.Hence, if r has never been queried to the random
oracles, then both c and h = H(r , c) are uniformly distributed, and e = Enc(pp, id, r; h) is
independent ofm. In this case, in the proof, the challenge ciphertexts can be generated firstly
without knowing the challenge messages, and then when answering the selective opening
query, the challenge ciphertexts and the corresponding challenge messages are correlated via
programming the random oracles. That’s howwe deal with the selective opening query in the
proof. For the decryption query, via the technique of the Fujisaki–Okamoto transformation
[11], the properties of the random oracles implies that the decryption oracle can be simulated
without the secret keys (i.e., the modification introduced in the following game G1).

The formal proof is as follows.

Proof For any polynomial n > 0, any PPT adversary A and any PPT distinguisher D, let qd
(resp. qr ) denote the total number of decryption queries (resp. random-oracle queries) made
by A. Without loss of generality, we require that the challenger samples the random coins
(ri, j ← RFOEnc)i∈[n], j∈[k] before sending the public parameter PP to A. We also assume
that A will not repeat identical queries to the same oracles.

Since both G and H are modeled as random oracles, we assume that the challenger
maintains lists LG and LH , which are both empty sets at the beginning, and employs them to
keep track of the issued calls (either by the game orA) ofOG(t) andOH (u1, u2), respectively.
Specifically, for a query t submitted to OG , OG returns gt if there is an entry (t, gt ) ∈ LG ,
otherwise it samples gt ← {0, 1}�, adds (t, gt ) to LG , and returns gt ; similarly, for a query
(u1, u2) submitted toOH ,OH returns hu if there is an entry ((u1, u2), hu) ∈ LH , otherwise
it samples hu ← REnc, adds ((u1, u2), hu) to LH , and returns hu .

We proceed in a series of games.
Game G0 : G0 (as shown in Fig. 9) is the real game Grsok -cca-real

FOIBE,A,n (λ), i.e.,

G0 = Grsok -cca-real
FOIBE,A,n (λ). (9)

Game G1 :GameG1 is the same asG0, except thatwe change the procedure of the decryption
oracle such that the decryption queries can be answered without the secret keys. Specifically,
as shown in Fig. 9, for a decryption query (id, (e, c)) inG1, instead of decrypting e with skid
to obtain r̂ and querying (r̂ , c) to OH , the decryption oracle returns ⊥ directly if A did not
subimt some tuple (r̂ , c) to OH such that e = Enc(pp, id, r̂;OH (r̂ , c)).

We note that for any decryption query (id, (e, c)) /∈ C, if there exists ((r̂ , c), ĥ) ∈ LH such
that e = Enc(pp, id, r̂; ĥ), then obviously the decryption oracle in gameG1 and that inG0 will
return the samemessage as a response. Let evt0 denote the event that in gameG0,A submits a
decryption query (id, (e, c)) /∈ C such that (i) “� ((r̂ , c), ĥ) ∈ LH s.t. e = Enc(pp, id, r̂; ĥ)”,
and (ii) the decryption oracle does not return ⊥. Note that G1 is the same as G0, except that
evt0 occurs. Thus, we have |Pr[D(G1) = 1]−Pr[D(G0) = 1]| ≤ Pr[evt0].The fact that evt0
occurs inG0 implies that for r ′ := Dec(pp, skid, e),OH(r ′, c) is uniformly and independently
sampled fromREnc. Since IBE is γ -spread, Pr[e = Enc(pp, id, r ′;OH(r ′, c))] ≤ 2−γ . Hence,
we obtain that

|Pr[D(G1) = 1] − Pr[D(G0) = 1]| ≤ Pr[evt0] ≤ qd · 2−γ . (10)

Game G2 : Game G2 is the same as G1, except that the challenger aborts this game (with
output⊥) as long as AbortEARLY occurs. Concretely, as long asA1 submits a random-oracle
query t to OG such that t ∈ {ri, j | i ∈ [n], j ∈ [k]}, or a a random-oracle query (u1, u2) to
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Fig. 9 Games G0–G3 in the proof of Theorem 3. Boxed code is only executed in the games specified by the
game names in the same box style
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OH such that u1 ∈ {ri, j | i ∈ [n], j ∈ [k]}, then AbortEARLY is set true, which means that
this game is aborted with output ⊥. The details are shown in Fig. 9.

Note that ri, j for all i ∈ [n] and j ∈ [k] is uniformly random distributed from A1’s point
of view when obtaining PP . We also note that whenA1 queries the random oracles, EvtChal
is not set true. Hence,

|Pr[D(G2) = 1] − Pr[D(G1) = 1]|

≤ Pr[AbortEARLY] ≤
qr∑

θ=1

nk

|RFOEnc| − (θ − 1)
≤ nkqr

|RFOEnc| − qr
. (11)

Game G3 :GameG3 is the same asG2, except that (i) during the generation of the challenge
ciphertexts, for all i ∈ [n] and j ∈ [k], the procedures “ci, j = m∗

i, j ⊕ OG(ri, j ), hi, j =
OH(ri, j , ci, j )” are replaced with “ci, j ← {0, 1}�, hi, j ← REnc”, instead of querying OG

and OH, and (ii) OG(ri, j ) = ci, j ⊕ m∗
i, j and OH(ri, j , ci, j ) = hi, j are programmed only

when i ∈ I or ri, j (resp., (ri, j , ci, j )) is submitted to OG (resp., OH). The details are shown
in Fig. 9.

Note that during the generation of the challenge ciphertexts, both ci, j and hi, j are uni-
formly distributed for all i ∈ [n] and j ∈ [k], since the modification introduced in gameG2.
So “ci, j = m∗

i, j ⊕ OG(ri, j ), hi, j = OH(ri, j , ci, j )” can be replaced with “ci, j ← {0, 1}�,
hi, j ← REnc”. The additional procedures for answering A’s random-oracle queries and
opening queries are introduced to ensure that for all i ∈ [n] and j ∈ [k], OG(ri, j ) and
OH(ri, j , ci, j ) are programmed consistently. Hence, fromA’s point of view, these two games
are identical, i.e.,

Pr[D(G3) = 1] − Pr[D(G2) = 1] = 0. (12)

For convenience, we rewrite game G3 in Fig. 10, removing the replaced procedures.
Game G4 : Game G4 is the same as G3, except that the challenger does not generate the
secret keys corresponding to the challenge identities (i.e., (idi )i∈[n]), until the identities are
submitted to OKGen or submitted for the selective opening query. The details are shown in
Fig. 10.

Note that (i) ODec can answer the decryption queries without any secret key because of
the modification introduced in G1, and (ii) in G3, for any id ∈ ID, skid has never been used
or given to A until the identity id is submitted to OKGen or included in I as the selective
opening query. Therefore, from A’s point of view, G4 and G3 are identical, i.e.,

Pr[D(G4) = 1] − Pr[D(G3) = 1] = 0. (13)

Game G5 : In this game, a new abort condition is added (as shown in Fig. 10). Specifically, if
A2 orA3 submits a random-oracle query ri, j (resp., (ri, j , ci, j )) toOG (resp.,OH) satisfying
that (ri, j , ·) /∈ LG ∧ i /∈ I (resp., ((ri, j , ci, j ), ·) /∈ LH ∧ i /∈ I), then AbortHASH is set true,
which means that this game is aborted with output ⊥. We present the following lemma with
a postponed proof. ��
Lemma 4 |Pr[D(G5) = 1] − Pr[D(G4) = 1]| ≤ nkqr · Advow-id-cpa

IBE,Ã (λ) for some PPT

adversary Ã.

Now, we construct a simulator S = (S1,S2,S3), which simulates G5 perfectly for A, as
shown in Fig. 11. Obviously,

Grsok -cca-ideal
FOIBE,S,n (λ) = G5. (14)
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Fig. 10 GamesG3–G5 in the proof of Theorem 3. Boxed code is only executed in the games specified by the
game names in the same box style

Hence, combining Eqs. (9)–(14) and Lemma 4, we obtain that

Advrsok -ccaFOIBE,A,S,D,n(λ)

= |Pr[D(Grsok -cca-real
FOIBE,A,n (λ)) = 1] − Pr[D(Grsok -cca-ideal

FOIBE,S,n (λ)) = 1]|
= |Pr[D(G0) = 1] − Pr[D(G5) = 1]|
≤ qd · 2−γ + nkqr

|RFOEnc| − qr
+ nkqr · Advow-id-cpa

IBE,Ã (λ),

for some adversary Ã.
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Fig. 11 Simulator S = (S1,S2,S3) in the proof of Theorem 3

We catch up with the proof of Lemma 4.

Proof of Lemma 4 We note that G5 and G4 proceed identically until event AbortHASH is set
true. Thus, we have |Pr[D(G5) = 1] − Pr[D(G4) = 1]| ≤ Pr[AbortHASH].

So what remains is to compute Pr[AbortHASH].
Without loss of generality, we assume that for any tuple (r , c), before querying oracle

OH on (r , c), A will query OG on r firstly. With this assumption, to answer A’s decryption
queries, the challenger does not need to “access to” OG, as shown in Fig. 12.
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Fig. 12 Adversary Ã = (Ã1, Ã2) attacking IBE in the proof of Lemma 4. Note that without loss of generality,
we assume that for any tuple (id, r , c), before querying oracle OH on (r , c), A will queryOG on r firstly

Now, we construct an OW-ID-CPA adversary Ã, attacking IBE, from A in Fig. 12. We
introduce a special event Abort-Return (in Fig. 12), and require that when Abort-Return is
set true, Ã immediately terminate the simulation and returns the current m̃ as its final output.
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For any i ′ ∈ [n], let AbortHASHi ′ denote the event that AbortHASH occurs for the first
time for i = i ′. Thus,

Pr[AbortHASH] ≤
n∑

i=1

Pr[AbortHASHi ]. (15)

For any j ′ ∈ [k], let AbortHASHi, j ′ denote the event that AbortHASHi occurs for the
first time at A’s random-oracle query ri, j ′ to OG or random-oracle query (ri, j ′ , ci, j ′) to OH.
Thus,

Pr[AbortHASHi ] ≤
k∑

j=1

Pr[AbortHASHi, j ]. (16)

Furthermore, for any θ ′ ∈ [qr ], let AbortHASH(θ ′)
i, j denote the event that AbortHASHi, j

occurs for the first time at A’s θ̃ -th random oracle query. Thus,

Pr[AbortHASHi, j ] ≤
qr∑

θ=1

Pr[AbortHASH(θ)
i, j ]. (17)

For ĩ ← [n], j̃ ← [k] and θ̃ ← [qr ], we claim that the probability that AbortHASH(θ̃ )

ĩ, j̃

occurs in the game simulated by Ã is equal to Pr[AbortHASH(θ̃)

ĩ, j̃
] (i.e., the probability that

AbortHASH(θ̃)

ĩ, j̃
occurs in G4). The reason is as follows.

(1) When ignoring the oracles OG, OH, ,OKGen and ODec, the game simulated by Ã is
the same as G4, except for the case that Abort-Return-I occurs. Note that in the game
simulated by Ã, Ãwill terminate the simulation with output m̃ as long as Abort-Return-I
occurs. On the other hand,Abort-Return-I occurs if and only if ĩ ∈ I, which suggests that
AbortHASH(θ̃ )

ĩ, j̃
will not occur. So Ã can terminate the simulation when Abort-Return-I

occurs without influencing the probability that AbortHASH(θ̃ )

ĩ, j̃
occurs.

(2) Both oracles OKGen and ODec in the game simulated by Ã are identical with that in G4.
(3) The only differences between the oracleOG simulated by Ã (denoted asOÃ

G ) and the real
OG inG4 are: (i) Ã introduces Abort-Return-II and aborts when Count = θ̃ , and (ii) for a
query t satisfying (t, ·) /∈ LG , Ã checks whether t ∈ {ri, j | (i, j) ∈ ([n]×[k])\{(̃i, j̃)}}
instead of checking whether t ∈ {ri, j | i ∈ [n], j ∈ [k]} in G4.

(a) For (i), Abort-Return-II is set true when Count = θ̃ , suggesting that Ã terminates

the simulation with output m̃ immediately. Note that AbortHASH(θ̃ )

ĩ, j̃
focuses on A’s

θ̃ -th random oracle query. Whatever happens when Count > θ̃ will not affect

AbortHASH(θ̃)

ĩ, j̃
. So introducing Abort-Return-II will not influence the probability

that AbortHASH(θ̃ )

ĩ, j̃
occurs.

(b) Now we analyze the case of (ii). For the θ -th query t satisfying (t, ·) /∈ LG and
θ < θ̃ ,2 if t /∈ {ri, j | i ∈ [n], j ∈ [k]} or t ∈ {ri, j | (i, j) ∈ ([n] × [k]) \ {(̃i, j̃)}},
obviously OÃ

G and OG both generate the response in the same way. On the other

hand, if t = r̃i, j̃ , then AbortHASH
(θ̃ )

ĩ, j̃
will not occur, because the θ -th query t = r̃i, j̃

2 Note that the case of θ ≥ θ̃ has been discussed in (a).
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leads to AbortHASH, where θ < θ̃ , andA are assumed to not repeat identical queries
to the same oracles. So no matter what Ã returns as the response ofOÃ

G , the response

will not affect AbortHASH(θ̃ )

ĩ, j̃
.

Hence, the differences between OÃ
G (in the game simulated by Ã) and OG (in G4) does

not influence the probability that AbortHASH(θ̃)

ĩ, j̃
occurs.

(4) The only differences between the oracle OH simulated by Ã (denoted as OÃ
H ) and the

realOH inG4 are: (i) Ã introduces Abort-Return-II and aborts when Count = θ̃ , and (ii)
for a query (u1, u2) satisfying ((u1, u2), ·) /∈ LH , Ã checks whether u1 ∈ {ri, j | (i, j) ∈
([n] × [k]) \ {(̃i, j̃)}} instead of checking whether u1 ∈ {ri, j | i ∈ [n], j ∈ [k]} in G4.

(a) For (i), Abort-Return-II is set true when Count = θ̃ , suggesting that Ã termi-

nates the simulation with output m̃ immediately. Note that AbortHASH(θ̃ )

ĩ, j̃
focuses

onA’s θ̃ -th random oracle query. Whatever happens when Count > θ̃ will not affect

AbortHASH(θ̃)

ĩ, j̃
. So introducing Abort-Return-IIwill not influence the probability that

AbortHASH(θ̃)

ĩ, j̃
occurs.

(b) Now we analyze the case of (ii). For the θ -th query (u1, u2) satisfying ((u1, u2), ·) /∈
LG and θ < θ̃ , if u1 /∈ {ri, j | i ∈ [n], j ∈ [k]} or u1 ∈ {ri, j | (i, j) ∈ ([n] × [k]) \
{(̃i, j̃)}}, obviously OÃ

H and OH both generate the response in the same way. On the
other hand, if u1 = r̃i, j̃ , then there are two cases:

– Case 1: u2 �= c̃i, j̃ . In this case, both OÃ
H and OH will generate the response in

the same way: sampling hu ← REnc and adding ((u1, u2), hu) to LH .

– Case 2: u2 = c̃i, j̃ . In this case,AbortHASH
(θ̃ )

ĩ, j̃
will not occur since the θ -th query

(u1, u2) = (r̃i, j̃ , c̃i, j̃ ) leads to AbortHASH, where θ < θ̃ , andA are assumed to

not repeat identical queries to the same oracles. So no matter what Ã returns as

the response of OÃ
H , the response will not affect AbortHASH(θ̃)

ĩ, j̃
.

Hence, the differences between OÃ
H (in the game simulated by Ã) and OH (in G4)

does not influence the probability that AbortHASH(θ̃)

ĩ, j̃
occurs.

Note that Ã succeeds if and only if AbortHASH(θ̃ )

ĩ, j̃
occurs. Hence,

Advow-id-cpa
IBE,Ã (λ) = Pr[AbortHASH(θ̃ )

ĩ, j̃
]

= 1

nkqr

n∑

i=1

k∑

j=1

qr∑

θ=1

Pr[AbortHASH(θ)
i, j ]

≥ 1

nkqr
Pr[AbortHASH].
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