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Abstract
A pair (C, D) of group codes in R[G] is called a linear complementary pair (abbreviated
to LCP) if C ⊕ D = R[G], where R is a finite Frobenius ring, and G is a finite group. We
provide a necessary and sufficient condition for a pair (C, D) of group codes in R[G] to be
LCP. Furthermore, we prove that if (C, D) is an LCP of group codes in R[G], then C and
D⊥ are permutation equivalent.

Keywords Finite Frobenius rings · LCP of group codes · Code equivalence

Mathematics Subject Classification 94B15 · 94B60 · 11T71

1 Introduction

Linear complementary pairs of codes over finite fields which are a class of special properties
have been of interest and extensively studied due to their rich algebraic structure and wide
applications in cryptography. LCP of codes were introduced in [15], and then they were
further studied in [3] and [4]. They showed that these pairs of codes can help improve the
security of the information processed by sensitive devices, especially against so-called side-
channel attacks (SCA) and fault injection attacks (FIA). Themost generic and efficient known
protection against SCA is achieved with masking: every sensitive data (that is, every data
processed by the algorithm from which a part of the secret key can be deduced) is bitwise
added with a uniformly distributed random vector of the same length or several ones, called
globally a mask. If the sensitive data and the mask belong respectively to two supplementary
subspacesC and D of a larger vector space, it is possible to deduce the sensitive data from the

Communicated by J.-L. Kim.

B Xiusheng Liu
lxs6682@163.com

Hualu Liu
hwlulu@aliyun.com

1 School of Science and Technology, College of Arts and Science, Hubei Normal University,
Huangshi 435109, Hubei, China

2 School of Science, Hubei University of Technology, Wuhan 430068, Hubei, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-022-01120-5&domain=pdf


696 X. Liu, H. Liu

resulting masked data. And it is shown that the level of resistance against both SCA and FIA
depends on dLCP (C, D) = min{d(C), d(D⊥)} in which is called the security parameter,
where d(C) is the minimum distance of the code C and d(D⊥) is the dual distance of the
code D. This method is called Direct Sum Masking (DSM), and the pair (C, D) is called a
complementary pair of codes. Note that the linear complementary dual (LCD) codes amount
to the special casewhen D = C⊥, inwhich case the security parameter is simply theminimum
distance of C . We refer to [15] for further information on complementary pairs of codes over
finite fields and their uses.

Let Fq be the finite field with q = pm , where p is a prime and m ≥ 1 is an integer.
Carlet et al. [4] showed that if (C, D) is an LCP of codes, where C and D are both cyclic
or 2D cyclic codes of length n over Fq and gcd(n, q) = 1, then C and D⊥ are permutation
equivalent. In [9], Güneri et al. showed that the same result holds if C and D are mD cyclic
codes for m ∈ N. If G is any finite group, a right ideal of Fq [G] is called a group code.
In [2], Borello et al. obtained the most general statement for any finite group (also without
a restriction on the order of the group) by showing that if (C, D) is LCP of group codes
(2-sided ideals) in Fq [G], then C and D⊥ are permutation equivalent. Just recently, Güneri
et al. [8], this result has been extended to finite chain rings. Namely, they proved that for an
LCP of group codes (C, D) in ˜R[G], where ˜R is a finite chain ring and G is any finite group,
C and D⊥ are permutation equivalent. Note in particular that this implies d(C) = d(D⊥).
Hence, there is an LCP of 2-sided group codes over finite chain rings which has as good a
security parameter as the 2-sided group code with the best minimum distance.

The purpose of this paper is to examine LCP of group codes over finite Frobenius rings. In
Sect. 2,we recall the necessary backgroundmaterials onfinite Frobenius rings R, linear codes,
group codes and LCP of codes. Then we give a decomposition of R[G] by using the Chinese
Remainder Theorem. In Sect. 3, we first give two necessary and sufficient conditions for a pair
of linear codes over finite local Frobenius rings to be LCP. Then we give a characterization
of LCP of group codes in R[G], where R is a finite local Frobenius ring and G is any finite
group. In addition, we show that if (C, D) is an LCP of group codes in R[G], then C and
D⊥ are permutation equivalent. By means of the results of the Sect. 3, in Sect. 4, we give a
characterization of LCP of group codes in R[G], where R is a finite Frobenius ring and G is
any finite group. Our main contribution is the extension of the result in [8] to finite Frobenius
rings. Namely, we shown that if (C, D) is an LCP of group codes in R[G], then C and D⊥
are permutation equivalent. Hence the security parameter for an LCP of group codes (C, D)

in R[G] is simply d(C).

2 Preliminaries

Throughout the work we shall assume that all rings are commutative, finite and have a
multiplicative unity.

2.1 Finite Frobenius rings

In this subsection, we first recall definitions and properties of finite Frobenius rings R,
necessary for the development of this work. For more details, we refer to [5, 6, 13, 14, 16].
Then we will give a decomposition of R[G] for a finite group G.

A finite commutative ring R is called a Frobenius ring if the R-module R is injective.
Alternatively, we can say a finite commutative ring is Frobenius if R/J (R) is isomorphic

123



LCP of group codes over finite Frobenius rings 697

to soc(R), where J (R) is the Jacobson radical and soc(R) is the socle of the ring R. Recall
that the Jacobson radical is the intersection of all maximal ideals in the ring and the socle
of the ring is the sum of the minimal R-submodules. A ring is a local ring if it has a unique
maximal ideal.

Throughout this paper, let R denote a Frobenius ring. Then there exist ideals m1, . . . ,ms

are relatively prime in pairs and
∏s

j=1m j = {0}. By the ring version of the Chinese
Remainder Theorem, the canonical ring homomorphism � : R → ⋂s

j=1 R/m j , defined
by r → (r + m1, . . . , r + ms), is an isomorphism. Denote the rings R/m j by R j for
1 ≤ j ≤ s. Then

R = R1 × R2 × · · · × Rs .

By the Chinese Remainder Theorem the inverse map is an isomorphism. We denote the
inverse of this map by CRT. For Frobenius rings we can say more. Namely, we have the
following theorem which can be found in [5].

Theorem 2.1 Let R be a Frobenius ring, then

R ∼= CRT(R1, R2, . . . , Rs),

where R j is a local Frobenius ring for all 1 ≤ j ≤ s.

Let G = {g1, . . . , gn} be a finite group and denote by R[G] (or R j [G]) the group ring of
G over R (or R j ). Hence the elements of R[G] (or R j [G]) are of the form ∑n

i=1 agi gi where

agi ∈ R (or
∑n

i=1 a
( j)
gi gi where a

( j)
gi ∈ R j ). It is clear that the map � : R[G] → Rn , defined

by
∑n

i=1 agi gi → (ag1 , ag2 , . . . , agn ), is a R-module isomorphism.
We define two operations over R1[G] × · · · × Rs[G] as follows:

(

n
∑

i=1

a(1)
gi gi , . . . ,

n
∑

i=1

a(s)
gi gi

)

+
(

n
∑

i=1

b(1)
gi gi , . . . ,

n
∑

i=1

b(s)
gi gi

)

=
(

n
∑

i=1

(a(1)
gi + b(1)

gi )gi , . . . ,
n

∑

i=1

(a(s)
gi + b(s)

gi )gi

)

,

and
(

n
∑

i=1

a(1)
gi gi , . . . ,

n
∑

i=1

a(s)
gi gi

)

·
(

n
∑

i=1

b(1)
gi gi , . . . ,

n
∑

i=1

b(s)
gi gi

)

=
⎛

⎝

n
∑

i=1

⎛

⎝

n
∑

j=1

a(1)
g j

b(1)
g−1
j gi

⎞

⎠ gi , . . . ,
n

∑

i=1

⎛

⎝

n
∑

j=1

a(s)
g j
b(s)
g−1
j gi

⎞

⎠ gi

⎞

⎠ ,

where a( j)
gi , b( j)

gi ∈ R j for all 1 ≤ j ≤ s.
It is easy to prove that the R1[G] × · · · × Rs[G] is an algebra.

Theorem 2.2 Let R = R1 × R2 ×· · ·× Rs is a Frobenius ring where R j is a local Frobenius
ring for 1 ≤ j ≤ s. If G is a finite group, then

R[G] ∼= R1[G] × · · · × Rs[G].
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698 X. Liu, H. Liu

Proof Suppose thatG = {g1, . . . , gn}. Then we define a map� from R[G] to R1[G]×· · ·×
Rs[G] as follows:

� : R[G] −→ R1[G] × · · · × Rs[G]
n

∑

i=1

rgi gi −→
(

n
∑

i=1

r (1)
gi gi , . . . ,

n
∑

i=1

r (s)
gi gi

)

,

where rg j = (r (1)
g j , . . . , r (s)

g j ) ∈ R and r ( j)
gi ∈ R j for 1 ≤ i ≤ n and 1 ≤ j ≤ s.

It is easy to check that � is an isomorphism from R[G] to R1[G] × · · · × Rs[G]. 	

From now on, we denote the inverse of the map � by CRT. The above theorem can be

rewritten in the following form.

Theorem 2.3 Let R = R1 × R2 ×· · ·× Rs is a Frobenius ring where R j is a local Frobenius
ring for 1 ≤ j ≤ s. If G is a finite group, then

R[G] = CRT(R1[G], . . . , Rs[G]).

2.2 Linear codes, group codes and LCP of codes

In this subsection, we recall the definitions and properties of linear codes, group codes, and
LCP of codes (see [1, 2, 8, 17]).

A nonempty subset C ⊆ Rn is called a linear code of length n over a finite Frobenius ring
R if it is a R-submodule of Rn .

For two vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in Rn , we define the
Euclidean inner product as [a,b] to be [a,b] = ∑n

i=1 aibi .
Let C be a linear code over R. We define the Euclidean dual code of C as

C⊥ = {a ∈ Rn | [a,b] = 0 for all b ∈ C}.
Remark 2.4 In [17], it is proved that for any linear code C of length n over a finite Frobenius
ring R,

|C | · |C⊥| = |R|n .
Definition 2.5 Let C and D be two linear codes of length n over R. If C ∩ D = {0} and
C+D = Rn , or equivalentlyC⊕D = Rn , thenwe call such (C, D) an linear complementary
pair (LCP) of codes over R.

Note that the linear complementary dual (LCD) codes amount to the special case when
D = C⊥.

A right ideal of R[G] (or R j [G]) is called a group code in R[G] (or R j [G]) (see [8] for
group codes over finite chain rings). Throughout this paper, ideals will be 2-sided and they
will be referred to as group codes.

In addition, the group ring R[G] (or R j [G]) carries a symmetric non-degenerate G-
invariant bilinear form 〈·, ·〉 which is defined by

〈a, b〉 =
{

1 i f a = b = 0,

0 otherwise.

Here G-invariance means that 〈ug, vg〉 = 〈u, v〉, for all u, v ∈ R[G] and all g ∈ G. Via
the R-module isomorphism R[G] ∼= R|G|, the above form corresponds to the usual Euclidean
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LCP of group codes over finite Frobenius rings 699

inner product. With respect to this form we may define the dual code C⊥ of a group code C
in R[G] as usual. Obviously, the dual code C⊥ of a group code C is also a group code in
R[G].
Definition 2.6 LetC and D be two group codes in R[G]. IfC∩D = {0} andC+D = R[G],
or equivalentlyC⊕D = R[G], thenwe call such (C, D) an linear complementary pair (LCP)
of group codes in R[G].

Two group codes C1 and C2 over R[G] (or R j [G]) are permutation equivalent provided
there is a permutation of coordinates which sendsC1 toC2. Then two group codesC1 andC2

are permutation equivalent if and only if there a permutation matrix P such that C2 = C1P ,
where C1P = {y|y = xP for x ∈ C1}.

3 LCP of group codes over finite local Frobenius rings

In this section, letR be a finite local Frobenius ring with unique maximal idealm. We know
that Fq = R/m is a field. Assume that the characteristic of the field is p with q = pm .
Define

μ : R −→ Fq = R/m, r �→ r + m = μ(r), for any r ∈ R.

This homomorphism fromR onto Fq = R/m can be extended naturally to a homomorphism
from Rn onto F

n
q . For an element c ∈ Rn , let μ(c) be its image under this homomorphism.

Let C be a code of length n over R. We define μ(C) = {μ(c)|c ∈ C}.
We have the following chain of ideals:

R = m0 ⊃ m ⊃ m2 ⊃ · · · ⊃ me = {0}.
The number e is the minimal such that me = {0}. This number is the nilpotency index of
m. See [14, p. 84] for a proof of this fact. The following lemma will be used in the proof of
Proposition 3.13.

Lemma 3.1 Let R be a finite local Frobenius ring and let m be the unique maximal ideal.
Then there exists a δ ∈ m such that δ �= 0, and δα = 0 for any α ∈ m, where e is the
nilpotency index of m.

Proof By the definition of the nilpotency index ofm, we haveme−1 �= {0}. Thus, there exists
a δ ∈ me−1 ⊂ m such that δ �= 0. Again by me = {0}, i.e., me−1m = {0}, we have also
δα = 0 for any α ∈ m. 	


The following result has appeared in [14].

Lemma 3.2 Let R be a finite local Frobenius ring and let m be the unique maximal ideal.
Then m contains all non-units of R.

Consider the free R-module Rn of rank n. Any element u = (u1, . . . , un) of Rn is also
called a vector, and we let 0 denote the zero vector.

Definition 3.3 Let u j = (u j1, . . . , u jn) ∈ Rn , where j = 1, . . . , s and s is a positive integer.
The vectors u1, . . . ,us are said to be linearly dependent if there exist (t1, . . . , ts) in the set
difference Rs \ {0} such that t1u1 + · · · + tsus = 0; otherwise, u1, . . . ,us are said to be
linearly independent.
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If anR-submodule ofRn is generated by vectors u1, . . . ,us which are linearly indepen-
dent, then it is a free R-submodule of rank s and we say that u1, . . . ,us form a basis of the
free R-submodule.

Let Mm×l(R) be the set of all m × l matrices over R. For A ∈ Mm×l(R), AT denotes
the transpose of the matrix A. We denote the m ×m identity matrix by Im , or simply I if the
size is clear from the context.

Let A = (ai j )m×l be a matrix over R. If the rows of A are linearly independent, then we
say that A is a full-row-rank (FRR) matrix. If there is an l × m matrix B over R such that
AB = I , then we say that A is right-invertible and B is a right inverse of A. If m = l and
the determinant detA is a unit of R, then we say that A is nonsingular.

The following two results about full-row-rank matrices over R appear in [7].

Lemma 3.4 A ∈ Mm×l(R) is FRR if and only if A is right-invertible.

Lemma 3.5 Let A be in Mm×m(R). The following statements are equivalent:

(1) A is invertible.
(2) A is nonsingular.
(3) A is FRR.

The next corollary follows from a typical linear algebra argument.

Corollary 3.6 Let A ∈ Mm×m(R) and let x = (x1, . . . , xm), where x ′
i s are variables. Then the

linear system of equations AxT = 0 has only the zero solution if and only if A is nonsingular.

Let C be a linear code of length n overR. Define a generator matrix of C as a matrix GC

with rows being a generating set of C with the smallest size. In particular, when C is a free
code, then the rows of any generator matrix GC are a group of basis elements of C , and so
the number of rows of any generator matrix of a free code C is uniquely determined.

Definition 3.7 We define the rank of a code C over R, denoted by rankR(C), to be the
minimum number of generators of C .

LetC be a linear code overRwith a generator matrix GC . We denote by k(C) the number
of rows of the generator matrix GC . Clearly, rankR(C) = k(C).

The following definition and remark can be found in [1].

Definition 3.8 An R-module A of rank l is projective if there is an R-module B such that
Rl and A ⊕ B are isomorphic (as R-modules).

Remark 3.9 Let P and Q be twoR-modules. If P ⊕ Q is free, then P and Q are projective.

Lemma 3.10 [11, Theorem 2] Any projective module over a local ring is free.

Lemma 3.11 Let C and D be linear codes of length n overR. If (C, D) is an LCP of codes,
then C and D are free.

Proof Since (C, D) is an LCP of codes over R, we have C ⊕ D = Rn by Definition 2.5.
Therefore, theR-moduleC⊕D is free. By Remark 3.9, we know thatC and D are projective.
Since R is a finite local Frobenius ring, by Lemma 3.10, C and D are free. 	


In the following, we first give characterization of LCP of codes over R, and will play an
important role in this section.

Before stating our result about LCP of codes over R, we need the following lemma to
appear in [10].
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LCP of group codes over finite Frobenius rings 701

Lemma 3.12 [10, Theorem 2.10] Let C be a free code of length n over R with generator
matrix GC , and let D be a free code of length n over R with parity-check matrix HD. Then
(C, D) is LCP if and only if rankR(C)+rankR(D) = n and thematrix GC HT

D is nonsingular.

Proposition 3.13

(1) Let C and D be free codes of length n over R. Then (C, D) is an LCP of codes over R
if and only if (μ(C), μ(D)) is an LCP of codes over Fq .

(2) (C, D) is an LCP of group codes inR[G] if and only if (μ(C), μ(D)) is an LCP of group
codes in Fq [G].

Proof (1)Let a ∈ μ(C)∩μ(D). Then there are c ∈ C andd ∈ D such that a = μ(c) = μ(d).
This means that μ(c − d) = 0. Thus (c − d) ∈ m × · · · × m. Therefore, there exists a
u = (u1, . . . , un) ∈ m × · · · × m such that c − d = u. By Lemma 3.1, there exists a δ ∈ m

such that δ �= 0 and δα = 0 for any α ∈ m. Thus, we have

δc − δd = 0,

which implies that δc = δd ∈ C∩D. Since (C, D) is anLCPof codes overR,wehave δc = 0.
Thus, c ∈ m × · · · × m. Otherwise, let c = (c1, c2, . . . , cn). Without loss of generality, we
assume that c1 /∈ m. Then, by Lemma 3.2, there exists a v ∈ R such that c1v = 1. It follows
that vδc = (δ, vδc2, . . . , vδcn) �= 0, which leads a contradiction. Therefore, a = μ(c) = 0,
i.e., μ(C) ∩ μ(D) = {0}.

Next, for any a ∈ F
n
q , by C + D = Rn , and μ is surjective, there are c ∈ C and d ∈ D

such that a = μ(c) + μ(d). Hence, μ(C) + μ(D) = F
n
q .

Summarizing, we have shown that (μ(C), μ(D)) is an LCP of codes over Fq .
Conversely, assume that the GC is a generator matrix of C and the HD is a parity-check

matrix of D, it is easy to see that μ(GCHT
D ) = μ(GC ) · μ(HD)T . Since (μ(C), μ(D))

is an LCP of codes over Fq , dimFq (μ(C)) + dimFq (μ(D)) = n, and μ(GC ) · μ(HD)T

is nonsingular by [12, Theorem 2.6]. Thus, rankR(C) + rankR(D) = n, and GCHT
D is

nonsingular. According to Lemma 3.12, (C, D) is an LCP of codes over R.
(2) Similar to the proof of Proposition 3.2 (i i) in [8], we can easily prove that a ideal

C ⊂ R[G] is mapped to a ideal μ(C) ⊂ Fq [G]. The rest follows by part (1). 	

Remark 3.14 Güneri et al. [8, Proposition 3.2 (i) and (ii)], proved (μ(C), μ(D)) is an LCP
of codes (or LCP of group codes) over Fq (or Fq [G] ) if (C, D) is an LCP of codes (or
LCP of group codes) over chain ring ˜R (or ˜R[G]). In the above Proposition 3.13, we prove
that the former conditions themselves in [8, Proposition 3.2 (i) and (ii)], are sufficient and
necessary for a pairs of linear codes (or group codes) (C, D) to be LCP of codes (or LCP
of group codes) over a finite local Frobenius ring R (or R[G]). Therefore, Proposition 3.13
generalizes and improves their results of [8].

Lemma 3.15 If C and D are two linear codes over R, then

(1) (C + D)⊥ = C⊥ ∩ D⊥.
(2) (C ∩ D)⊥ = C⊥ + D⊥.

Proof Let a ∈ (C + D)⊥. Then, for any b ∈ C + D, we have [a,b] = 0.
Case 1. When b ∈ C ⊂ C + D, we obtain [a,b] = 0, which implies that a ∈ C⊥.
Case 2. When b ∈ D ⊂ C + D, we obtain [a,b] = 0, which implies that a ∈ D⊥.
Combining cases 1 and 2, we have (C + D)⊥ ⊂ C⊥ ∩ D⊥.

123



702 X. Liu, H. Liu

On the other hand, if a ∈ C⊥ ∩ D⊥, then for any b = c + d ∈ C + D with c ∈ C and
d ∈ D, we have [a,b] = [a, c] + [a,d] = 0. This means that (C + D)⊥ ⊃ C⊥ ∩ D⊥.

Summarizing, we have shown that (C + D)⊥ = C⊥ ∩ D⊥.
(2) The proof is similar to (1), so it is omitted here. 	

By means of the above lemma, we obtain the following corollary.

Corollary 3.16 (C, D) is an LCP of codes overR if and only if (C⊥, D⊥) is also an LCP of
codes.

Proof (C, D) is an LCP of codes overR if and only if C + D = Rn and C ∩ D = {0}. Thus,
(C + D)⊥ = (Rn)⊥ and (C ∩ D)⊥ = {0}⊥. According to the Lemma 3.15, we obtain that
C + D = Rn and C ∩ D = {0} if and only if C⊥ ∩ D⊥ = {0} and C⊥ + D⊥ = Rn .

This means that (C, D) is an LCP of codes overR if and only if (C⊥, D⊥) is also an LCP
of codes over R. 	


Now, we give the second characterization of LCP of codes over R by using the bases of
codes C and D.

Theorem 3.17 Let {ai }ki=1 be a basis of the free code C of length n over R, and let {b j }n−k
j=1

be a basis of the free code D of length n over R. Then (C, D) is an LCP of codes over R if
and only if a1, . . . , ak,b1, . . . ,bn−k are linearly independent.

Proof We first prove the sufficiency.
Since a1, . . . , ak,b1, . . . ,bn−k are linearly independent, {ai }ki=1 ∪ {b j }n−k

j=1 is a basis of
the code C + D. Then, we obtain rankR(C + D) = n, which implies that C + D = Rn .

On the other hand, let u ∈ C ∩ D. Then, by u ∈ C , there are λ1, . . . , λk ∈ R such that

u = λ1a1 + · · · + λkak .

Again by u ∈ D, there are μ1, . . . , μn−k ∈ R such that

u = μ1b1 + · · · + μn−kbn−k .

Thus, we have

λ1a1 + · · · + λkak − μ1b1 − · · · − μn−kbn−k = 0,

which implies that λ1 = · · · = λk = 0, i.e., u = 0. So,C∩D = {0}. According to Definition
2.5, (C, D) is an LCP of codes over R.

Next, we prove the necessary by contradiction. Suppose that a1, . . . , ak,b1, . . . ,bn−k are

linearly dependent. Let G =
(

GC

GD

)

where

GC =
⎛

⎜

⎝

a1
...

ak

⎞

⎟

⎠
, and GD =

⎛

⎜

⎝

b1
...

bn−k

⎞

⎟

⎠
.

Then, by Corollary 3.6, there exists a nonzero vector x ∈ Rn such that GxT = 0, i.e.,
(

GC

GD

)

xT = 0. Thus, GCxT = 0 and GDxT = 0. This means that 0 �= x ∈ C⊥ ∩ D⊥.

Since (C, D) is LCP, (C⊥, D⊥) is also LCP by Corollary 3.16, which is a contradiction as
C⊥ ∩ D⊥ = 0. It follows that a1, . . . , ak,b1, . . . ,bn−k are linearly independent. 	
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Proposition 3.18 (1) If (C, D) is an LCP of codes over R, then μ(D⊥) = μ(D)⊥.
(2) If (C, D) is an LCP of group codes in R[G], then μ(C) and μ(D⊥) are equivalent.

Proof (1) Since (C, D) is an LCP of codes over R, we know that (C⊥, D⊥) is also an LCP
of codes by Corollary 3.16. According to the Lemma 3.11, D and D⊥ are free.

Let D ∼= Rt . Then |μ(D)| = |Fq |t . By Remark 2.4, we have |D||D⊥| = |R|n . Thus,
D⊥ ∼= Rn−t , which implies that |μ(D⊥)| = |Fq |n−t .

On the other hand, if a ∈ μ(D⊥), then there is a b ∈ D⊥ such that a = μ(b).
Let μ(d) be any element in μ(D) with d ∈ D. Then

[a, μ(d)] = [μ(b), μ(d)] = μ([b,d]) = 0.

Thus, a ∈ μ(D)⊥, and hence μ(D⊥) ⊂ μ(D)⊥.
Since |μ(D)||μ(D)⊥| = |Fq |n , we have |μ(D)⊥| = |Fq |n−t .
Summarizing, we have shown that μ(D⊥) = μ(D)⊥.
(2) We omit the proof of (2) because it is similar with the proof of Proposition 3.6 (i i) in

[8]. 	

If we restrict the map μ : R[G] → Fq [G] to the (free) group codes C and D⊥, then we

obtain the isomorphisms

C

δC
∼= μ(C) and

D⊥

δD⊥ ∼= μ(D⊥),

where 0 �= δ ∈ m and δm = 0 for any m ∈ m.
By Proposition 3.18 (2), we have |μ(C)| = |μ(D⊥)|. Let s := |μ(C)| and set the elements

of the cosets C
δC and D⊥

δD⊥ as follows:

C

δC
:= {c1 + δC = δC, c2 + δC, . . . , cs + δC},

and

D⊥

δD⊥ := {d1 + δD⊥ = δD⊥, d2 + δD⊥, . . . , ds + δD⊥}.

(i.e. c1 = 0 = d1 in R[G]). Clearly, cosets partition the codes C and D⊥:

C = ∪s
i=1(ci + δC) and D⊥ = ∪s

i=1(di + δD⊥).

By definition of the map μ, we have

μ(C) = {μ(c1) = 0, μ(c2), . . . , μ(cs)},
μ(D⊥) = {μ(d1) = 0, μ(d2), . . . , μ(ds)},

and

μ(C) = ∪s
i=1(τ (ci ) + δτ(C)).

Without loss of generality, we assume that the coset representatives are indexed so that the
permutation τ between the equivalent codes μ(C) and μ(D⊥) satisfies

τ(μ(C)) = μ(τ(ci )) = μ(di ), for all i = 1, 2, . . . , s.

Lemma 3.19 If (C, D) be an LCP of group codes in R[G], then C⊥ ∩ τ(C) = {0}.
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Proof We first prove that C⊥ ∩ τ(C) ⊂ δC⊥. Otherwise, there exists a a ∈ C⊥ ∩ τ(C) such
that a ∈ c′

j + δC⊥ for some 2 ≤ j ≤ l, where we assume that C⊥ = ∪l
i=1(c

′
i + δC⊥)

with c′
1 = 0. Then μ(a) = μ(c′

j ) ∈ μ(C⊥) and μ(a) �= 0. By Corollary 3.16, (C⊥, D⊥) is

also an LCP of group codes in R[G]. Further, (μ(C⊥), μ(D⊥)) is an LCP of group codes
in Fq [G]. Thus, μ(a) /∈ μ(D⊥) = μ(τ(C)). This is a contradiction.

Next, we prove that C⊥ ∩ τ(C) ⊂ δτ(C). Otherwise, there exists a b ∈ C⊥ ∩ τ(C) such
that b ∈ τ(c j ) + δτ(C), where τ(c j ) �= 0. Then μ(b) = μ(τ(ci )) = μ(di ) ∈ μ(D⊥) and
μ(b) �= 0. Note that μ(b) ∈ μ(C⊥) since b ∈ C⊥. Thus, μ(b) ∈ μ(C⊥) ∩ μ(D⊥) = {0}
since (μ(C⊥, μ(D⊥)) is an LCP of group codes in Fq [G]. This is a contradiction.

According to the above facts,we can assume that x = δτ(c) = δc⊥
1 for any x ∈ C⊥∩τ(C),

where c ∈ C and c⊥
1 ∈ C⊥. Then δ(τ (c) − c⊥

1 ) = 0. Let τ(c) − c⊥
1 = ∑

g∈G rgg where
rg ∈ R. Then rg ∈ m for all g ∈ G. Otherwise, if there exists a rg′ /∈ m for some g′ ∈ G, then
r−1
g′ δ(τ (c) − c⊥

1 ) �= 0. This is a contradiction. Thus, τ(c) = c⊥
1 + ∑

g∈G rgg. By Lemma
3.1,

x = δτ(c) = δc⊥
1 +

∑

g∈G
δrgg = δc⊥

1 .

If c⊥
1 ∈ C⊥\δC⊥, then 0 �= μ(τ(c)) = μ(c⊥

1 ) /∈ μ(D⊥) = μ(τ(C)), which is a contradic-
tion. Hence, there exists a c⊥

2 ∈ C⊥ such that c⊥
1 = δc⊥

2 . It follows that

x = δ2τ(c) = δ2c⊥
2 .

Continuing in this manner, by δe = 0, we have x = 0, i.e., C⊥ ∩ τ(C) = {0}. 	

Combining The Propositions 3.13 and 3.18 with Lemma 3.19, we obtain the following

theorem,whose proof is similar to the Theorem3.9 in [8], sowe omit it here for simplification.

Theorem 3.20 Let (C, D) be an LCP of group codes in R[G], where G is a finite group.
Then C and D⊥ are equivalent.

Remark 3.21 Güneri et al. [8, Theorem 3.9], proved C and D⊥ are equivalent if (C, D) is
an LCP of group codes in ˜R[G] where ˜R is a finite chain ring and G is a finite group. It is
well known that a finite chain ring is a finite local Frobenius ring. Therefore, Theorem 3.20
generalizes their results of [8].

4 LCP of group codes over finite Frobenius rings

In this section, let the symbols be the same as in the Sect. 1.
Let C j be a group code in R j [G] for all 1 ≤ j ≤ s, and let

C = CRT(C1,C2, . . . ,Cs) = �−1(C1 × C2 × · · · × Cs)

= {�−1(c1, c2, . . . , cs)|c j ∈ C j }.
We call C the Chinese product of group codes C1,C2, . . . ,Cs .

Theorem 4.1 Let C j be a group code in R j [G] for all 1 ≤ j ≤ s. Then C =
CRT(C1,C2, . . . ,Cs) is a group code over the R[G].
Proof For any a ∈ C , there is an a j ∈ C j such that

a = �−1(a1, . . . , as),
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where a j = ∑n
i=1 a

( j)
gi gi with a

( j)
gi ∈ R j for all 1 ≤ j ≤ s.

Suppose that agi = (a(1)
gi , a(2)

gi , . . . , a(s)
gi ) for 1 ≤ i ≤ n. Then a = ∑n

i=1 agi gi . Therefore,
for any g ∈ G, we have ga = ∑n

i=1 agi ggi = ∑n
i=1 ag−1gi gi .

On the other hand, ga j = ∑n
i=1 a

( j)
gi ggi = ∑n

i=1 a
( j)
g−1gi

gi for all 1 ≤ j ≤ s.

Thus, we have ga = �−1(ga1, . . . , gas). SinceC j is a group code over R j [G], ga j ∈ C j .
Thus, ga ∈ C .

By using a similar technique we can show that ag ∈ C .
Summarizing, we have proved that C is an ideal in R[G], i.e., C is a group code over

R[G]. 	

Now, we give a useful lemma that will be used in later characterization of LCP of group

codes in R[G].
Lemma 4.2 Let C j and D j be two group codes over the R j [G] for all 1 ≤ j ≤ s. If
C = CRT(C1,C2, . . . ,Cs) and D = CRT(D1, D2, . . . , Ds), then

(1) C ∩ D = CRT(C1 ∩ D1,C2 ∩ D2, . . . ,Cs ∩ Ds).
(2) C + D = CRT(C1 + D1,C2 + D2, . . . ,Cs + Ds).

Proof Suppose that a = ∑n
i=1 agi gi where agi = (a(1)

gi , . . . , a(s)
gi ) and a( j)

gi ∈ R j for 1 ≤
j ≤ s. Then a ∈ R[G].

(1) a ∈ C ∩ D if and only if

a = �−1

(

n
∑

i=1

a(1)
gi gi ,

n
∑

i=1

a(2)
gi gi , . . . ,

n
∑

i=1

a(s)
gi gi

)

∈ CRT(C1,C2, . . . ,Cs).

and

a = �−1

(

n
∑

i=1

a(1)
gi gi ,

n
∑

i=1

a(2)
gi gi , . . . ,

n
∑

i=1

a(s)
gi gi

)

∈ CRT(D1, D2, . . . , Ds).

Then, a ∈ C ∩ D if and only if a ∈ CRT(C1 ∩ D1,C2 ∩ D2, . . . ,Cs ∩ Ds).
Therefore, we have

C ∩ D = CRT(C1 ∩ D1,C2 ∩ D2, . . . ,Cs ∩ Ds).

(2) a ∈ C + D if and only if

a = �−1

⎛

⎝

n
∑

i=1

a(1)
gi gi ,

n
∑

i=1

a(2)
gi gi , . . . ,

n
∑

i=1

a(s)
gi gi

⎞

⎠ + �−1

⎛

⎝

n
∑

i=1

b(1)
gi gi ,

n
∑

i=1

b(2)
gi gi , . . . ,

n
∑

i=1

b(s)
gi gi

⎞

⎠

= �−1

⎛

⎝

n
∑

i=1

a(1)
gi gi +

n
∑

i=1

b(1)
gi gi ,

n
∑

i=1

a(2)
gi gi +

n
∑

i=1

b(2)
gi gi , . . . ,

n
∑

i=1

a(s)
gi gi +

n
∑

i=1

b(s)
gi gi

⎞

⎠ ,

where

�−1

(

n
∑

i=1

a(1)
gi gi ,

n
∑

i=1

a(2)
gi gi , . . . ,

n
∑

i=1

a(s)
gi gi

)

∈ C,

and

�−1

(

n
∑

i=1

b(1)
gi gi ,

n
∑

i=1

b(2)
gi gi , . . . ,

n
∑

i=1

b(s)
gi gi

)

∈ D.
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Then, a ∈ C + D if and only if a ∈ CRT(C1 + D1,C2 + D2, . . . ,Cs + Ds).
Therefore, we have

C + D = CRT(C1 + D1,C2 + D2, . . . ,Cs + Ds).

	

The proof of the following lemma is similar with the proofs of Theorems 2.4, 2.7 and

Lemma 2.5 in [5], so we omit it here.

Lemma 4.3 Let C = CRT(C1,C2, . . . ,Cs) be a group code over R[G], where C j is a group
code over the R j [G] for all 1 ≤ j ≤ s. Then

(1) |C | = ∏s
j=1 |C j |.

(2) C⊥ = CRT(C⊥
1 ,C⊥

2 , . . . ,C⊥
s )

The following result gives a necessary and sufficient condition for a pair (C, D) of group
codes over R[G] to be LCP.

Theorem 4.4 Let C j and D j be group codes in R j [G] for all 1 ≤ j ≤ s, and let C =
CRT(C1,C2, . . . ,Cs) and D = CRT(D1, D2, . . . , Ds). Then (C, D) is an LCP of group
codes in R[G] if and only if (C j , Dj ) is an LCP of group codes in R j [G] for all 1 ≤ j ≤ s.

Proof Since (C j , Dj ) is an LCP of group codes in R j [G] for all 1 ≤ j ≤ s, we have
C j ∩ Dj = {0} and C j + Dj = R j [G] or |C j ||Dj | = |R j [G]| for all 1 ≤ j ≤ s. By Lemma
4.2,

C ∩ D = CRT(C1 ∩ D1,C2 ∩ D2, . . . ,Cs ∩ Ds) = CRT(0, 0, . . . , 0) = {0}.
Then, according to the Lemma 4.3 (1),

|C + D| = |C | · |D| =
s

∏

j=1

|C j | ·
s

∏

j=1

|Dj | =
s

∏

j=1

|C j ||Dj | =
s

∏

j=1

|R j [G]| = |R[G]|.

Therefore, (C, D) is an LCP of group codes in R[G].
Conversely, suppose that (C, D) is an LCP of group codes in R[G]. Then C + D = R[G]

and C ∩ D = {0}. By Theorem 2.3 and Lemma 4.2, we have

C ∩ D = CRT(C1 ∩ D1,C2 ∩ D2, . . . ,Cs ∩ Ds) = {0},
and

C + D = CRT(C1 + D1,C2 + D2, . . . ,Cs + Ds) = CRT(R1[G], R2[G], . . . , Rs[G]).
Thus,

C1 ∩ D1 = {0},C2 ∩ D2 = {0}, . . . ,Cs ∩ Ds = {0},
C1 + D1 = R1[G],C2 + D2 = R2[G], . . . ,Cs + Ds = Rs[G].

This proves that (C j , Dj ) is an LCP of group codes in R j [G] for all 1 ≤ j ≤ s. 	

Theorem 4.5 Let R = CRT(R1, R2, . . . , Rs) be a finite Frobenius ring, where R j is a finite
local Frobenius ring for all 1 ≤ j ≤ s, and let G be a finite group. If (C, D) is an LCP of
group codes in R[G], Then C and D⊥ are equivalent. In particular d(D⊥) = d(C).
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Proof Let C = CRT(C1,C2, . . . ,Cs) and D = CRT(D1, D2, . . . , Ds), where C j and Dj

are group codes in R j [G] for all 1 ≤ j ≤ s. Since (C, D) is an LCP of group codes in R[G],
(C j , Dj ) is an LCP group codes in R j [G] for all 1 ≤ j ≤ s by Theorem 4.4.

According to the Theorem 3.20, C j and D⊥
j are equivalent codes for all 1 ≤ j ≤ s. Then

there is a permutation matrix Pj such that C j = D⊥
j Pj for all 1 ≤ j ≤ s.

Set

P =

⎛

⎜

⎜

⎜

⎝

P1 0 · · · 0
0 P2 · · · 0
...

... · · · ...

0 0 · · · Ps

⎞

⎟

⎟

⎟

⎠

.

Then C1 × C2 × · · · × Cs = (D⊥
1 × D⊥

2 × · · · × D⊥
s )P .

SinceC = CRT(C1,C2, . . . ,Cs) ∼= C1×C2×· · ·×Cs andD⊥ = CRT(D⊥
1 , D⊥

2 , . . . , D⊥
s ),

we have

C = CRT(C1,C2, . . . ,Cs) = CRT(D⊥
1 , D⊥

2 , . . . , D⊥
s )P.

Thus, C and D⊥ are equivalent. 	

Remark 4.6 When R is a finite Frobenius ring, we know that (C⊥)⊥ = C for any submodule
C of any free R-module Rn . According to Remark 2.4, we have |C | · |C⊥| = |R|n . This is
one of the reasons why only finite Frobenius rings are suitable for coding alphabets. In this
sense, we believe that Theorem 4.5 solves the equivalence problem of C and D⊥ if (C, D)

is an LCP of group codes.

Acknowledgements This work was supported by Research Funds of Hubei Province, Grant No. D20144401.

References

1. Bhowmick S., Fotue-Tabue A., Martínez-Moro E., Bandi R., Bagchi S.: Do non-free LCD codes over
finite commutative Frobenius rings exist? Des. Codes Cryptogr. 88(5), 825–840 (2020).

2. Borello M., de Cruz J., WillemsW.: A note on linear complementary pairs of group codes. Discret. Math.
343, 111905 (2020).

3. Carlet C., Güneri C., Mesnager S., Özbudak F.: Construction of some codes suitable for both side channel
and fault injection attacks. In: Proceedings of International Workshop on the Arithmetic of Finite Fields
(WAIFI 2018), Bergen (2018).

4. Carlet C., Güneri C., Özbudak F., Özkaya B., Solè P.: On linear complementary pairs of codes. IEEE
Trans. Inf. Theory 64(1), 6583–6588 (2018).

5. Dougherty S.T., Liu H.: Independence of vectors in codes over rings. Des. Codes Cryptogr. 51, 55–68
(2009).

6. Dougherty S.T., Kim J.L., KulosmanH.:MDS codes over finite principal ideal rings. Des. CodesCryptogr.
50, 77–92 (2009).

7. Fan Y., Ling S., Liu H.: Matrix product codes over finite commutative Frobenius rings. Des. Codes
Cryptogr. 71, 201–227 (2014).

8. Güneri C., Martınez-Moro E., Sayıcı S.: Linear complementary pair of group codes over finite chain
rings. Des. Codes Cryptogr. https://doi.org/10.1007/s10623-020-00792-1

9. Güneri C., Özkaya B., Sayıcı S.: On linear complementary pair of nD cyclic codes. IEEE Commun. Lett.
22, 2404–2406 (2018).

10. Hu P., Liu X.S.: Linear complementary pairs of codes over rings. Des. Codes Cryptogr. 89, 2495–2509
(2021).

11. Kaplansky I.: Projective modules. Ann. Math. 68, 372–377 (1958).
12. Liu H., Liu X.S.: LCP of matrix product codes. Linear Multilinear Algebra. https://doi.org/10.1080/

03081087.2021.1999889

123

https://doi.org/10.1007/s10623-020-00792-1
https://doi.org/10.1080/03081087.2021.1999889
https://doi.org/10.1080/03081087.2021.1999889


708 X. Liu, H. Liu

13. Liu X.S., Liu H.: LCD codes over finite chain rings. Finite Field Appl. 15, 1–19 (2015).
14. McDonald D.: Finite Rings with Identity. Marcel Dekker, New York (1974).
15. Ngo X.T., Bhasin S., Danger J.-L., Guilley S., Najm Z.: Linear complementary dual code improvement

to strengthen encoded circuit against hardware Trojan horses. In: Proc. IEEE Int. Symp. Hardw. Oriented
Secur. Trust (HOST), pp. 82–87 (2015).
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