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Abstract
Symbol-pair codes are proposed to guard against pair-errors in symbol-pair read channels.
The minimum symbol-pair distance plays a vital role in determining the error-correcting
capability and the constructions of symbol-pair codeswith largest possibleminimum symbol-
pair distance is of great importance. Maximum distance separable (MDS) symbol-pair codes
are optimal in the sense that such codes can acheive the Singleton bound. In this paper, for
length 5p, two new classes of MDS symbol-pair codes with minimum symbol-pair distance
seven or eight are constructed by utilizing repeated-root cyclic codes over Fp , where p is a
prime. In addition, we derive a class of MDS symbol-pair codes with minimum symbol-pair
distance seven and length 4p.

Keywords MDS symbol-pair codes · Minimum symbol-pair distance · Constacyclic codes ·
Repeated-root cyclic codes

Mathematics Subject Classification 94B15 · 94B05

1 Introduction

With the development of modern high density data storage systems, symbol-pair code was
proposed byCassuto andBlaum to combat against pair-errors over symbol-pair read channels
in [1, 2]. They also showed that a code C with minimum symbol-pair distance dp can correct
up to

⌊
(dp − 1)/2

⌋
symbol-pair errors [1, 2]. Later, Cassuto and Litsyn [3] showed that
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codes for correcting pair-errors exist with strictly higher rates compared to codes for the
Hamming metric with the same relative distance. In [6], Chee, Kiah and Wang established
a Singleton-type bound on symbol-pair codes. Similar to classical codes, symbol-pair codes
meeting the Singleton-type bound are calledMDS symbol-pair codes and the error-correcting
capability of MDS symbol-pair codes is optimal. Later, Ding, Zhang and Ge extended the
Singleton-type bound to the b-symbol case in [9].

Many attempts have been made in the constructions of MDS symbol-pair codes. In [17],
Kai, Zhu and Li provided MDS symbol-pair codes with length q2 + q + 1 through con-
stacyclic codes over Fq . Later, Li and Ge [19] generalized the results in [17] and they also
constructed a number of MDS symbol-pair codes with minimum symbol-pair distance seven
by analyzing certain linear fractional transformations. Shortly afterwards, Chen, Lin and Liu
[7] constructed several MDS symbol-pair codes with length 3p from repeated-root cyclic
codes over Fp . In 2018, Ding et al. [8] obtained some MDS symbol-pair codes over Fq with
larger minimum symbol-pair distance based on elliptic curves and the lengths of these codes
are bounded by q + 2

√
q. In the same year, Kai et al. [18] constructed three classes of MDS

symbol-pair codes using repeated-root constacyclic codes over Fp , see Table 1. Recently,
some new results on constructing symbol-pair codes were presented in [12, 14, 21]. More-
over, some decoding algorithms of symbol-pair codes were proposed by various researchers
in [15, 20, 25, 27, 28] and the symbol-pair weight distributions of some linear codes over
finite fields were studied in [10, 11, 13, 22, 26] and the references therein.

In Table 1, we summarize some knownMDS symbol-pair codes from constacyclic codes.

Table 1 Some known MDS symbol-pair codes from constacyclic codes

Values of (n, dp)q Conditions References

(n, 5)q n |
(
q2 + q + 1

)
[17],[19]

(n, 6)q n |
(
q2 + 1

)
[17],[19]

(n, 6)q n |
(
q2 − 1

)
,n odd or n even andv2 (n) < v2

(
q2 − 1

)
[19]

(n, 6)q q ≥ 3, n ≥ q + 4, n |
(
q2 − 1

)
[7]

(lp, 5)p p ≥ 5, l > 2, gcd (l, p) = 1, l | (p − 1) [7]
(
p2 + p, 6

)

p
p ≥ 3 [18]

(
2p2 − 2p, 6

)

p
p ≥ 3 [18]

(3p, 6)p p ≥ 5 [7]

(3p, 7)p p ≥ 5 [7]

(3p, 8)p 3 | (p − 1) [7]

(3p, 10)p 3 | (p − 1) [21]

(3p, 12)p 3 | (p − 1) [21]

(4p, 7)p p ≡ 3 (mod 4) [18]

(4p, 7)p p ≡ 1 (mod 4) Theorem 3

(5p, 7)p 5 | (p − 1), p �= 41 Theorem 1

(5p, 8)p 5 | (p − 1) Theorem 2

Where q is a power of a prime p.
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MDS symbol pair codes of minimal distance seven and eight 2339

Observe that there exists only one class of codes with length 5p and minimum symbol-
pair distance five in Table 1. The constructions of symbol-pair codes with comparatively
large minimum symbol-pair distance is an interesting topic. This paper focuses on further
constructions of MDS symbol-pair codes with length 5p. Precisely, two new classes of MDS
symbol-pair codes with minimum symbol-pair distance seven or eight are constructed by
utilizing repeated-root cyclic codes over Fp . In addition, for n = 4p, we derive a class of
MDS symbol-pair codes with dp = 7, which generalizes the result in [18].

The remainder of this paper is organized as follows. In Section 2, we introduce some basic
notation and results on symbol-pair codes and constacyclic codes. By exploiting repeated-
root cyclic codes, for length 5p, two new classes of MDS symbol-pair codes with minimum
symbol-pair distance seven or eight are constructed in Section 3.1 and a class of MDS
symbol-pair codes with length 4p is presented in Section 3.2. Section 4 concludes the paper.

2 Preliminaries

In this section, we introduce some notations and auxiliary tools on symbol-pair codes and
constacyclic codes, which will be used to prove our main results in the sequel.

2.1 Symbol-pair codes

Let Fq be the finite field with q elements, where q is a prime power. Let n be a positive
integer and x = (x0, x1, · · · , xn−1) be a vector in F

n
q . Then the symbol-pair read vector of

x is
π(x) = ((x0, x1) , (x1, x2) , · · · , (xn−2, xn−1) , (xn−1, x0)) .

Obviously, each vector x ∈ F
n
q has a unique pair representationπ(x). Recall that theHamming

weight of x is
wH (x) = ∣∣{i ∈ Zn

∣∣ xi �= 0
}∣∣

where Zn denotes the residue class ring Z/nZ. Correspondingly, the symbol-pair weight of
x is

wp(x) = ∣∣{i ∈ Zn
∣∣ (xi , xi+1) �= (0, 0)

}∣∣ .

For any two vectors x, y ∈ F
n
q , the symbol-pair distance from x to y is defined as

dp (x, y) = ∣∣{i ∈ Zn
∣∣ (xi , xi+1) �= (yi , yi+1)

}∣∣ .

A code C overFq of length n is a nonempty subsets ofF
n
q . Elements of C are called codewords

in C. The minimum symbol-pair distance of C is

dp(C) = min
{
dp (x, y)

∣∣ x, y ∈ C, x �= y
}

and we refer such a code as an
(
n, dp(C)

)
q symbol-pair code. A well-known relationship

between dH (C) and dp(C) in [1, 2] states that for any 0 < dH (C) < n,

dH (C) + 1 ≤ dp(C) ≤ 2 · dH (C).

The following lemma reveals a connection between the symbol-pair distance and the
Hamming distance of a code C.
Lemma 1 [1, 2] For any x, y ∈ C with x = (x0, · · · , xn−1) and y = (y0, · · · , yn−1). Define
S = {i ∈ Zn | xi �= yi }. Let S = ⋃L

i=1 Si be a partition of S, which satisfies:
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(1) the elements of each subset Si are consecutive in the sense of modulo n;
(2) for any different i, j ∈ [1, L] and a ∈ Si , b ∈ S j , a and b are not consecutive.

Then
dp (x, y) = dH (x, y) + L.

In contrast to classical error-correcting codes, the size of symbol-pair codes satisfies the
following Singleton bound.

Lemma 2 [5] Let q ≥ 2 and 2 ≤ dp ≤ n. If C is a symbol-pair code with length n and
minimum symbol-pair distance dp, then |C| ≤ qn−dp+2.

The symbol-pair code achieving the Singleton bound is called a maximum distance sep-
arable (MDS) symbol-pair code.

2.2 Constacyclic codes

In this subsection, we introduce some notations of constacyclic codes. For a fixed nonzero
element η in Fq , the η-constacyclic shift τη on F

n
q is

τη (x0, x1, · · · , xn−1) = (η xn−1, x0, · · · , xn−2) .

A linear code C is called an η-constacyclic code if τη (c) ∈ C for any codeword c ∈ C. An
η-constacyclic code is a cyclic code if η = 1 and a negacyclic code if η = −1. It should
be noted that each codeword c = (c0, c1, · · · , cn−1) ∈ C is identical to its polynomial
representation

c(x) = c0 + c1 x + · · · + cn−1 x
n−1.

For convenience, we always regard the codeword c in C as the corresponding polynomial
c(x) in this paper. Notice that a linear code C is an η-constacyclic code if and only if it is
an ideal of the principle ideal ring Fq [x]/〈xn − η〉. As a consequence, there exists a unique
monic divisor g(x) ∈ Fq [x] of xn − η such that

C = 〈g(x)〉 = {
f (x) g(x)

(
mod

(
xn − η

)) ∣∣ f (x) ∈ Fq [x]
}
.

The polynomial g(x) is called the generator polynomial of C and the dimension of C is n−k,
where k is the degree of g(x).

Recall that a q-ary η-constacyclic code of length n is a simple-root constacyclic code if
gcd (n, q) = 1 and a repeated-root constacyclic code if p | n, where p is the characteristic
of Fq . Simple-root constacyclic codes can be characterized by their defining sets [16, 23].
Compared to simple-root cyclic codes, repeated-root cyclic codes are no longer characterized
by its set of zeros. Let C = 〈g(x)〉 be a repeated-root cyclic code of length lpe over Fq , where
l and e are positive integers with gcd (l, p) = 1. It is shown in [4] that the minimum
Hamming distance of C can be derived from dH (Ct ). Here Ct is a simple-root cyclic code
fully determined by C as follows.

More precisely, assume that

g(x) =
r∏

i=1

mi (x)
ei

where eachmi (x) is a monic irreducible polynomial over Fq and ei are positive integers. For
a fixed t with 0 ≤ t ≤ pe − 1, Ct is defined to be a simple-root cyclic code of length l over
Fq with the generator polynomial
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MDS symbol pair codes of minimal distance seven and eight 2341

gt (x) =
∏

1≤i≤r , ei>t

mi (x).

If gt (x) = xl − 1, then Ct contains only the all-zero codeword and we set dH (Ct ) = ∞. If
each ei ≤ t , then gt (x) = 1 and dH (Ct ) = 1.

The following lemma reveals that the minimumHamming distance of repeated-root cyclic
codes can be determined by the polynomial algebra, which will be applied to derive the
minimum Hamming distance of codes in this paper.

Lemma 3 [4] Let C be a repeated-root cyclic code of length lpe over Fq , where l and e are
positive integers with gcd (l, p) = 1. Then

dH (C) = min
{
Pt · dH

(Ct
) ∣

∣ 0 ≤ t ≤ pe − 1
}

(1)

where
Pt = wH

(
(x − 1)t

) =
∏

i

(ti + 1) (2)

with ti ’s being the coefficients of the p-adic expansion of t .

In this paper, we will employ repeated-root cyclic codes to construct new MDS symbol-
pair codes. The following lemmas are very useful.

Lemma 4 [7] Let C be an [n, k, dH (C)] constacyclic code over Fq with 2 ≤ dH (C) < n.
Then we have dp(C) ≥ dH (C)+2 if and only if C is not anMDS code, i.e., k < n−dH (C)+1.

Lemma 5 Let C = 〈g(x)〉 be a repeated-root cyclic code of length lpe over Fq and c(x) =
(
xl − 1

)t
v(x) a codeword in C with Hamming weight dH (C), where l and e are positive

integers with gcd (l, p) = 1, 0 ≤ t ≤ pe − 1 and
(
xl − 1

)
� v(x). Then

wH (c(x)) = Pt · Nv

where Pt is defined as (2) in Lemma 3 and Nv = wH
(
v(x)mod

(
xl − 1

))
.

Proof Denote v (x) = (
v(x)mod

(
xl − 1

))
and

ct (x) =
((

xl − 1
)t · v (x)p

e
mod

(
xlp

e − 1
))

.

Assume that

g(x) =
r∏

i=1

mi (x)
ei

and
gt (x) =

∏

1≤i≤r , ei>t

mi (x).

It follows from xlp
e − 1 = (xl − 1)p

e
,
(
xl − 1

)
� v(x) and g(x) | c(x) that gt (x) | v (x).

Combining with t < pe, one can obtain that for any 1 ≤ i ≤ r ,
i) if ei > t , then mi (x) | v (x) and mi (x) is a factor of ct (x) with multiplicity at least pe;
i i) if ei ≤ t , then mi (x) is a factor of ct (x) with multiplicity at least t .

Hence g(x) | ct (x).
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Meanwhile, due to deg(v (x)) < l, there must exist a root of xl − 1 whose multiplicity in
ct (x) is exactly t . This leads to (xlp

e − 1) � ct (x) and then ct (x) is a nonzero codeword in
C. It can be verified that

wH (ct (x)) = wH

((
xl − 1

)t · v (x)p
e
mod

(
xlp

e − 1
))

≤ wH

((
xl − 1

)t · v (x)p
e
)

≤ wH

((
xl − 1

)t) · wH

(
v (x)p

e
)

= Pt · Nv.

On the other hand, according to Theorem 6.3 in [24], we have

wH (c(x)) ≥ wH

(
(xl − 1)t

)
· wH

(
v(x)mod (xl − 1)

)
= Pt · Nv ≥ wH (ct (x)) .

Since wH (c(x)) = dH (C), one can immediately conclude that

wH (c(x)) = wH (ct (x)) = Pt · Nv.

This completes the proof. ��
The following lemma will be frequently used to prove our results.

Lemma 6 Let p be a prime power with 5 | (p − 1), β be a primitive 5-th root of unity in Fp

and ai ∈ F
∗
p for 1 ≤ i ≤ 3. Then

β2 + 3β + 1 �= 0 (3)

and for (i, j) = (2, 3), (2, 4) or (3, 4), the solution of the Fp-linear system of equations
⎧
⎨

⎩

1 + a1 + a2 + a3 = 0,
1 + a1 β + a2 β i + a3 β j = 0,
1 + a1 β2 + a2 β2i + a3 β2 j = 0

(4)

is given as

Value of (i , j) Corresponding solution (a1, a2, a3)

(2, 3)

(
− β2+β+1

β2 ,
β2+β+1

β3 , − 1
β3

)

(2, 4)
(
− 1

β
, − β

β+1 , 1
β(β+1)

)

(3, 4)

(
β2

β+1 , − 1
β+1 , −β

)
.

Proof Assume that β2 + 3β + 1 = 0. The fact β is a primitive 5-th root of unity indicates

0 = β4 + β3 + β2 + β + 1 = −5 (3β + 1)

which yields β2 = −3β − 1 = 0, a contradiction.
If (i, j) = (2, 3), then (4) can be transformed into

⎧
⎨

⎩

1 + a1 + a2 + a3 = 0,
1 + a1 β + a2 β2 + a3 β3 = 0,
1 + a1 β2 + a2 β4 + a3 β = 0.
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MDS symbol pair codes of minimal distance seven and eight 2343

This leads to

a1 = −β2 + β + 1

β2 , a2 = β2 + β + 1

β3 , a3 = − 1

β3 .

Similarly, we can derive the solutions of (4) for (i, j) = (2, 4) and (3, 4). This completes
the proof. ��

3 Constructions of MDS symbol-pair codes

In this section, we propose three new classes of MDS symbol-pair codes from repeated-
root cyclic codes by analyzing the solutions of certain equations over Fp . Firstly, for length
5p, two classes of MDS symbol-pair codes with minimum symbol-pair distance 7 or 8 are
constructed respectively. In addition, for n = 4p, we derive a class of MDS symbol-pair
codes with dp = 7.

From now on, we denote by c(k)(x) the k-th formal derivative of c(x), where k is a positive
integer and c(x) ∈ Fp[x]. Let � denote an element in F

∗
p and 0 is the zero vector. Due to the

linearity and the cyclic shift property of cyclic codes, we assume that the constant term of
c(x) occurred in this paper is always 1.

3.1 MDS symbol-pair codes for n = 5p

In this subsection, two classes of MDS symbol-pair codes with length 5p are constructed.
Now we present a class of MDS symbol-pair codes with minimum symbol-pair distance

7 for any prime p with 5 | (p − 1) and p �= 41.

Theorem 1 Let p be a primewith 5 | (p − 1) and p �= 41. Then there exists anMDS (5p, 7)p
symbol-pair code.

Proof LetC be a repeated-root cyclic code of length 5p overFp with the generator polynomial

g(x) = (x − 1)3 (x − β)
(
x − β2)

where β is a primitive 5-th root of unity in Fp .
Note that C is a [5p, 5p − 5, 4] cyclic code due to Lemma 3. Indeed, recall that gt (x) is

the generator polynomial of Ct . If t = 0, then

g0(x) = (x − 1) (x − β)
(
x − β2)

and
P0 · dH

(C0
) = 1 · 4 = 4.

If t = 1, then g1(x) = x − 1 and

P1 · dH
(C1

) = 2 · 2 = 4.

If t = 2, then g2(x) = x − 1 and

P2 · dH
(C2

) = 3 · 2 = 6.

If 3 ≤ t ≤ p − 1, then gt (x) = 1 and

Pt · dH
(Ct

) = (t + 1) · 1 = t + 1 ≥ 4.
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With the aid of the equality (1) in Lemma 3, one can immediately get dH (C) = 4.
Since C is not MDS, by Lemma 4, one can obtain that dp(C) ≥ 6. Now we claim that

there does not exist a codeword in C with (wH (c(x)), wp(c(x))) = (5, 6). On the contrary,
without loss of generality, we assume

c(x) = c0 + c1 x + c2 x
2 + c3 x

3 + c4 x
4

where ci ∈ F
∗
p for any 0 ≤ i ≤ 4. This is contradictory with

deg(g(x)) = 5, deg(c(x)) ≥ deg(g(x)).

Thus, there does not exist a codeword in C with (wH (c(x)), wp(c(x))) = (5, 6). To show
that C is an MDS (5p, 7)p symbol-pair code, it is sufficient to verify that there does not exist
a codeword in C with (wH (c(x)), wp(c(x))) = (4, 6).

Let c(x) be a codeword in C with Hamming weight 4. Suppose that c(x) has the factor-
ization c(x) = (

x5 − 1
)t

v(x), where 0 ≤ t ≤ p − 1,
(
x5 − 1

)
� v(x) and

v(x) = v0(x
5) + x v1(x

5) + x2 v2(x
5) + x3 v3(x

5) + x4 v4(x
5).

It follows from Lemma 5 that

4 = wH

((
x5 − 1

)t) · wH

(
v(x)mod

(
x5 − 1

))
= (1 + t) Nv

where Nv = wH
(
v(x)mod

(
x5 − 1

))
. Then one can deduce that (Nv, t) = (1, 3), (2, 1)

or (4, 0).
If (Nv, t) = (1, 3), then it is obvious that the symbol-pair weight of c(x) is greater than

6.
If (Nv, t) = (2, 1) and c(x) has symbol-pair weight 6, then Lemma 1 indicates that its

certain cyclic shift must have the form

(�, �, 0, �, �, 0) .

Let
c(x) = 1 + a1 x + a2 x

5i + a3 x
5i+1

for some positive integer i with 1 ≤ i ≤ p − 1 and a1, a2, a3 ∈ F
∗
p . It follows from

5 | (p − 1) and gcd (i, p) = 1 that p � 5i . The fact c (1) = c (β) = 0 induces that
{
1 + a1 + a2 + a3 = 0,
1 + a1 β + a2 + a3 β = 0

which implies a1 = −a3 and a2 = −1. Then c(1) (1) = c(2) (1) = 0 yields
{
a1 − 5i − (5i + 1) a1 = 0,

−5i (5i − 1) − 5i (5i + 1) a1 = 0.

This indicates a1 = −1 and then 2 = 0, a contradiction.
If (Nv, t) = (4, 0) and c(x) has symbol-pair weight 6, then its corresponding cyclic shift

must have the form
(�, �, 0, �, �, 0)

or
(�, �, �, 0, �, 0) .

In what follows, we discuss the above two cases one by one.
Case I For the case (�, �, 0, �, �, 0), there are two subcases to be considered:
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– For the subcase c(x) = 1 + a1 x + a2 x5i+2 + a3 x5i+3 with 1 ≤ i ≤ p − 1 and
a1, a2, a3 ∈ F

∗
p , it follows from c (1) = c(1) (1) = c(2) (1) = 0 that

⎧
⎨

⎩

1 + a1 + a2 + a3 = 0,
a1 + (5i + 2) a2 + (5i + 3) a3 = 0,
(5i + 2) (5i + 1) a2 + (5i + 3) (5i + 2) a3 = 0.

(5)

If p | (5i + 2), then (5) implies that a1 = −a3 and a2 = −1. Then c (β) = c
(
β2

) = 0
yields {

1 + a1 β − β2 − a1 β3 = 0,
1 + a1 β2 − β4 − a1 β6 = 0.

One can immediately obtain that

a1 = β2 − 1

β − β3 = β4 − 1

β2 − β6 .

This leads to β = 1, a contradiction.
If p � (5i + 2), then (5) yields that a1 = −a2 and a3 = −1. It follows from c (β) =
c
(
β2

) = 0 that {
1 + a1 β − a1 β2 − β3 = 0,
1 + a1 β2 − a1 β4 − β6 = 0.

Then one gets that

a1 = β3 − 1

β − β2 = β6 − 1

β2 − β4

which induces
β3 + 1 = β (β + 1) .

This implies (β − 1)
(
β2 − 1

) = 0, a contradiction.
– Consider the subcase c(x) = 1 + a1 x + a2 x5i+3 + a3 x5i+4 with 0 ≤ i ≤ p − 2 and

a1, a2, a3 ∈ F
∗
p . By arguments similar to the previous subcase of c(x) = 1 + a1 x +

a2 x5i+2 + a3 x5i+3, one can also derive a contradiction and we omit the proof here.

Case II For the remaining case (�, �, �, 0, �, 0), there are also two subcases to be
discussed:

– Consider the subcase c(x) = 1 + a1 x + a2 x2 + a3 x5i+3 with 1 ≤ i ≤ p − 1 and
a1, a2, a3 ∈ F

∗
p . Notice that c (1) = c (β) = c

(
β2

) = 0 and Lemma 6 indicates

a1 = −β2 + β + 1

β2 , a2 = β2 + β + 1

β3 , a3 = − 1

β3 . (6)

It follows from c(1) (1) = c(2) (1) = 0 that
{
a1 + 2 a2 + (5i + 3) a3 = 0,
2 a2 + (5i + 3) (5i + 2) a3 = 0.

(7)

Observe that (7) yields
{
a1 = (5i + 3) (5i + 1) a3,
(5i + 2) a1 + 2 (5i + 1) a2 = 0

(8)
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and the second equality in (7) indicates p � (5i + 2). Let t = 5i + 2. By (6) and (8), one
can immediately have {

t2 = β3 + β2 + β + 1,
t(β − 2) = 2.

(9)

The second equality in (9) indicates β �= 2 and t = − 2
β−2 . By substituting the value of

t into the first equality in (9), one can obtain

4β

(β − 2)2
= (β3 + β2 + β + 1)β.

It follows from β4 + β3 + β2 + β + 1 = 0 that β2 = −4 and

β4 + β3 + β2 + β + 1 = 13 − 3β = 0.

This leads to β = 13
3 and then

β2 = 169

9
= −4

implies 5 · 41 = 0, which is contradictory with 5 | (p − 1) and p �= 41.
– For the subcase c(x) = 1+a1 x +a2 x2 +a3 x5i+4 with 0 ≤ i ≤ p−2 and a1, a2, a3 ∈

F
∗
p , it follows from c (1) = c (β) = c

(
β2

) = 0 and Lemma 6 that

a1 = − 1

β
, a2 = − β

β + 1
, a3 = 1

β (β + 1)
. (10)

On the other hand, c(1) (1) = c(2) (1) = 0 yields that
{
a1 + 2 a2 + (5i + 4) a3 = 0,
2 a2 + (5i + 4) (5i + 3) a3 = 0

which is equivalent to {
a1 + 2 a2 + (5i + 4) a3 = 0,
a1 = (5i + 4) (5i + 2) a3.

Let t = 5i + 3. Together with (10), one can immediately obtain that
{
t = 2 β2 + β,

t2 + β = 0.

Then by substituting the value of t , one has

β2 = 3β + 3 (11)

and
0 = β4 + β3 + β2 + β + 1 = 61β + 49.

If p = 61, then 49 = 0, which is impossible. If p �= 61, then β = − 49
61 . It follows from

(11) that (
49

61

)2

= 3

(
−49

61
+ 1

)
.

This implies 5 · 41 = 0, a contradiction similar as the previous subcase.

Therefore, C is an MDS (5p, 7)p symbol-pair code. This completes the proof. ��
Another class of MDS symbol-pair codes with n = 5p and dp = 8 is proposed as follows.
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Theorem 2 Let p be a primewith 5 | (p − 1). Then there exists anMDS (5p, 8)p symbol-pair
code.

Proof LetC be a repeated-root cyclic code of length 5p overFp with the generator polynomial

g(x) = (x − 1)3 (x − β)
(
x − β2)2

where β is a primitive 5-th root of unity in Fp . It can be verified that C is an MDS (5p, 8)p
symbol-pair code by similar techniques used in the proof of Theorem 1. Since the proof is
lengthy and some cases seem a bit cumbersome, we present it in the Appendix. ��

Now we provide two examples to illustrate the constructions in Theorems 1 and 2.

Example 1 (1) Let C be a repeated-root cyclic code of length 55 over F11 with the generator
polynomial

g(x) = (x − 1)3 (x − 3)
(
x − 32

)
.

MAGMA experiments show that C is a [55, 50, 4] code and the minimum symbol-pair
distance of C is 7, which satisfies our result in Theorem 1.

(2) LetC be a repeated-root cyclic code of length 55 overF11 with the generator polynomial

g(x) = (x − 1)3 (x − 3)
(
x − 32

)2
.

By a MAGMA program, it can be checked that C is a [55, 49, 4] code and the minimum
symbol-pair distance of C is 8, which is consistent with our result in Theorem 2.

3.2 MDS symbol-pair codes for n = 4p

In this subsection, we shall construct a class of MDS symbol-pair codes with dp = 7, which
generalizes Theorem 3.8 in [18].

Theorem 3 Let p be an odd prime. Then there exists an MDS (4p, 7)p symbol-pair code.

Proof The case p ≡ 3 (mod 4) has been settled, see the result of Theorem 3.8 in [18]. For
the case p ≡ 1 (mod 4), let C be a repeated-root cyclic code of length 4p over Fp with the
generator polynomial

g(x) = (x − 1)3 (x − ω) (x + ω)

where ω is a primitive 4-th root of unity in Fp . In the following, we will claim that for
p ≡ 1 (mod 4), the code C is also an MDS (4p, 7)p symbol-pair code.

By Lemma 3, one can derive that the parameter of C is [4p, 4p − 5, 4]. Since C is not
MDS, by Lemma 4, we get dp(C) ≥ 6.With a similar argument as Theorem 1, one can obtain
that there does not exist a codeword c(x) in C with (wH (c(x)), wp(c(x))) = (5, 6). In order
to show that C is an MDS (4p, 7)p symbol-pair code, we need to prove that there does not
exist a codeword in C with (wH (c(x)), wp(c(x))) = (4, 6).

Let c(x) be a codeword in C with (wH (c(x)), wp(c(x))) = (4, 6). Then Lemma 1
indicates that its certain cyclic shift must have the form

(�, �, �, 0, �, 0)

or
(�, �, 0, �, �, 0) .
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For the case (�, �, �, 0, �, 0), we assume that

c(x) = 1 + a1 x + a2 x
2 + a3 x

l

for some positive integer l with 4 ≤ l ≤ 4p − 2 and a1, a2, a3 ∈ F
∗
p . It follows from

c (1) = c(1) (1) = c(2) (1) = 0 that
⎧
⎨

⎩

1 + a1 + a2 + a3 = 0,
a1 + 2 a2 + l a3 = 0,
2 a2 + l (l − 1) a3 = 0.

This yields

a1 = − 2l

l − 1
, a2 = l

l − 2
, a3 = − 2

(l − 1) (l − 2)
. (12)

– If l is even, then we have
{
1 + a1 ω − a2 + a3 ωl = 0,
1 − a1 ω − a2 + a3 ωl = 0

since c (ω) = c (−ω) = 0 and ω2 = −1. It follows that a1 = 0, which is impossible.
– If l is odd, then c (ω) = c (−ω) = 0 induces that

{
1 + a1 ω − a2 + a3 ωl = 0,
1 − a1 ω − a2 − a3 ωl = 0.

This implies that a2 = 1, which contradicts with the result in (12).

For the remaining case (�, �, 0, �, �, 0), we suppose that

c(x) = 1 + a1 x + a2 x
l + a3 x

l+1

for some positive integer l with 3 ≤ l ≤ 4p−3 and a1, a2, a3 ∈ F
∗
p . Then c (1) = c(1) (1) =

c(2) (1) = 0 indicates that
⎧
⎨

⎩

1 + a1 + a2 + a3 = 0,
a1 + l a2 + (l + 1) a3 = 0,
l (l − 1) a2 + l (l + 1) a3 = 0.

(13)

It follows from c (ω) = c (−ω) = 0 that
{
1 + a1 ω + a2 ωl + a3 ωl+1 = 0,
1 − a1 ω + a2 (−ω)l + a3 (−ω)l+1 = 0.

(14)

Now we divide the proof into the following two subcases:

– For the subcase p | l, (13) yields that
a1 + a3 = 0, a2 = −1. (15)

If l is even, then we have l = 2p due to 3 ≤ l ≤ 4p − 3. It follows from (14) and (15)
that

1 = ωl = ω2p = (−1)p

which is impossible. Similarly, if l is odd, one can obtain that ω2l = 1, a contradiction.
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– For the subcase p � l, it follows from (13) that

a1 = − l + 1

l − 1
, a2 = l + 1

l − 1
, a3 = −1. (16)

If l is even, then by (14) and (16), one can deduce that

a1 = ωl , 1 + a2 ωl = 0.

Then one can obtain that

1 = a21 =
(

− l + 1

l − 1

)2

.

This implies 4l = 0, a contradiction. By a similar manner, for odd l, one can derive that
ωl+1 = ωl−1 = 1, which is impossible.

Consequently, C is an MDS (4p, 7)p symbol-pair code. This proves the desired conclu-
sion. ��
Now we give an example to illustrate the construction in Theorem 3.

Example 2 Let C be a repeated-root cyclic code of length 20 over F5 with the generator
polynomial

g(x) = (x − 1)3 (x − 2) (x + 2) .

It can be checked by MAGMA that C is a [20, 15, 4] code and the minimum symbol-pair
distance of C is 7, which coincides with our result in Theorem 3.

4 Conclusions and future work

In this paper, three new classes of MDS symbol-pair codes over Fp with p an odd prime
were constructed from repeated-root cyclic codes. Firstly, for n = 5p, two classes of MDS
symbol-pair codes with minimum symbol-pair distance seven or eight were presented. In
addition, for length n = 4p, we derived a class of MDS symbol-pair codes with dp = 7 and
our construction extends the result in [18]. Note that by utilizing repeated-root cyclic codes,
one can construct MDS symbol-pair codes by transforming the problem into analyzing the
solutions of certain equations over finite fields.

However, it seems impracticable to construct (5q, 7)p , (5q, 8)p and (4q, 7)p MDS
symbol-pair codes with q being a power of p using the techniques in Theorems 1-3. For
instance, for the case q = p2, 5 | (q − 1), let C be a repeated-root cyclic code of length 5q
over Fq with the generator polynomial of the form

g(x) = (x − 1)e1 (x − ω)e2
(
x − ω2)e3 (

x − ω3)e4 (
x − ω4)e5

where ω is a primitive 5-th root of unity in Fq . It can be checked that C is not an MDS
symbol-pair code. It needs further study to construct MDS symbol-pair codes with larger
minimum symbol-pair distance and length lq , where q = pm with m > 1.

Acknowledgements This work was supported by National Natural Science Foundation of China (Nos.
12171191, 11871025, 61977036), in part by Hubei Provincial Science and Technology Innovation Base (Plat-
form) Special Project (No. 2020DFH002) and Application Foundation Frontier Project of Wuhan Science and
Technology Bureau (No. 2020010601012189).
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Appendix Proof of Theorem 2:

Recall that C is a repeated-root cyclic code of length 5p overFp with the generator polynomial

g(x) = (x − 1)3 (x − β)
(
x − β2)2

where β is a primitive 5-th root of unity in Fp . By Lemma 3, one can derive that the
parameter of C is [5p, 5p − 6, 4]. Since C is not MDS, Lemma 4 yields that dp(C) ≥ 6.
Similar as Theorem 1, one can derive that there does not exist a codeword c(x) in C
with (wH (c(x)), wp(c(x))) = (5, 6) or (6, 7). To prove that C is an MDS (5p, 8)p
symbol-pair code, it suffices to determine that there does not exist a codeword in C with
(wH (c(x)), wp(c(x))) = (4, 6), (4, 7) or (5, 7).

Case I (wH (c(x)), wp(c(x))) = (4, 6). Since C is the subcode of the code occurred in
Theorem 1 and the proof of Theorem 1 indicates that there does not exist a codeword c(x)
in C with (wH (c(x)), wp(c(x))) = (4, 6) unless p = 41. Now it is sufficient to show that
for p = 41, there does not exist a codeword c(x) in C with (wH (c(x)), wp(c(x))) = (4, 6).
More precisely, we just need to consider Case II in Theorem 1. There are two subcases to
be discussed:

– Consider the subcase c(x) = 1 + a1 x + a2 x2 + a3 x5i+3 with 1 ≤ i ≤ p − 1 and
a1, a2, a3 ∈ F

∗
p . Notice that c (1) = c (β) = c

(
β2

) = 0 and Lemma 6 induces

a1 = −β2 + β + 1

β2 , a2 = β2 + β + 1

β3 , a3 = − 1

β3 . (17)

It follows from c(1) (1) = c(1)
(
β2

) = 0 that
{
a1 + 2 a2 + (5i + 3) a3 = 0,
a1 + 2 a2 β2 + (5i + 3) a3 β4 = 0

which yields
a1

(
β4 − 1

) + 2 a2
(
β4 − β2) = 0.

Combining with (17), one can get (β − 1)2 = 0, a contradiction.
– For the subcase c(x) = 1+a1 x +a2 x2 +a3 x5i+4 with 0 ≤ i ≤ p−2 and a1, a2, a3 ∈

F
∗
p , by c (1) = c (β) = c

(
β2

) = 0 and Lemma 6, one can obtain that

a1 = − 1

β
, a2 = − β

β + 1
, a3 = 1

β (β + 1)
. (18)

On the other hand, c(1) (1) = c(1)
(
β2

) = 0 that
{
a1 + 2 a2 + (5i + 4) a3 = 0,
a1 + 2 a2 β2 + (5i + 4) a3 β = 0

which induces
a1 (β − 1) = 2 a2

(
β2 − β

)
.

Together with (18), one can immediately obtain that

2 β3 = β + 1.

This leads to
(β − 1)

(
2 β2 + 2 β + 1

) = 0.
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The fact β is a primitive 5-th root of unity implies that 2β2 + 2β + 1 = 0 and then one
has

β2 + β = − (
β2 + β + 1

) = β4 + β3

which is impossible.

Case II (wH (c(x)), wp(c(x))) = (4, 7). For this case, Lemma 1 implies that the cyclic
shift of c(x) must have the form

(�, �, 0, �, 0, �, 0) .

Assume that c(x) = (
x5 − 1

)t
v(x), where 0 ≤ t ≤ p − 1,

(
x5 − 1

)
� v(x) and

v(x) = v0(x
5) + x v1(x

5) + x2 v2(x
5) + x3 v3(x

5) + x4 v4(x
5).

Recall that Nv = wH
(
v(x)mod

(
x5 − 1

))
. Then by Lemma 5, one can deduce that

4 = wH

((
x5 − 1

)t) · wH

(
v(x)mod

(
x5 − 1

))
= (1 + t) Nv.

If (Nv, t) = (1, 3), then it is easily seen that the symbol-pair weight of c(x) is greater
than 7.

If (Nv, t) = (2, 1), then there are three subcases to be discussed:
(1) For the subcase c(x) = 1 + a1 x + a2 x5i + a3 x5 j with 1 ≤ i < j ≤ p − 1 and
a1, a2, a3 ∈ F

∗
p , it can be verified that

{
1 + a1 β + a2 + a3 = 0,
1 + a1 β2 + a2 + a3 = 0

since c (β) = c
(
β2

) = 0. Then one can obtain that a1 = 0, a contradiction.
(2) For the subcase c(x) = 1 + a1 x + a2 x5i+1 + a3 x5 j+1 with 1 ≤ i < j ≤ p − 1 and
a1, a2, a3 ∈ F

∗
p , by c (1) = c (β) = 0, one can get

{
1 + a1 + a2 + a3 = 0,
1 + a1 β + a2 β + a3 β = 0.

This implies that β = 1, which is impossible.
(3) For the subcase c(x) = 1 + a1 x + a2 x5i + a3 x5 j+1 with 1 ≤ i < j ≤ p − 1 and
a1, a2, a3 ∈ F

∗
p , it follows from c(1) (1) = c(1)

(
β2

) = 0 that
{
a1 + 5i a2 + (5 j + 1) a3 = 0,
a1 + 5i a2 β3 + (5 j + 1) a3 = 0.

This leads to β3 = 1, a contradiction.
If (Nv, t) = (4, 0), then there are also three subcases to be considered:

(1) For the subcase c(x) = 1 + a1 x + a2 x5i+2 + a3 x5 j+3 with 1 ≤ i < j ≤ p − 1 and
a1, a2, a3 ∈ F

∗
p , by Lemma 6 and c (1) = c (β) = c

(
β2

) = 0, one can derive that

a1 = −β2 + β + 1

β2 , a2 = β2 + β + 1

β3 , a3 = − 1

β3 . (19)

It follows from c(1) (1) = c(1)
(
β2

) = 0 that
{
a1 + (5i + 2) a2 + (5 j + 3) a3 = 0,
a1 + (5i + 2) a2 β2 + (5 j + 3) a3 β4 = 0
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which indicates
{ (

β4 − 1
)
a1 + (β4 − β2) (5i + 2) a2 = 0,(

β2 − 1
)
(5i + 2) a2 + (5 j + 3)

(
β4 − 1

)
a3 = 0.

Together with (19), one can immediately obtain that
{

β2 + 1 = (5i + 2) β,

(5i + 2)
(
β2 + β + 1

) = (5 j + 3)
(
β2 + 1

)
.

(20)

By substituting the value of β2 + 1 in the first equality into the second equality of (20), we
can get

(5i + 2) (5i + 3) β = (5i + 2) (5 j + 3) β

which yields i = j due to p � (5i + 2). This contradicts with i < j .
(2) Consider the subcase c(x) = 1 + a1 x + a2 x5i+2 + a3 x5 j+4 with 1 ≤ i ≤ j ≤ p − 2
and a1, a2, a3 ∈ F

∗
p . The fact c (1) = c (β) = c

(
β2

) = 0 and Lemma 6 leads to

a1 = − 1

β
, a2 = − β

β + 1
, a3 = 1

β (β + 1)
. (21)

It follows from c(1) (1) = c(1)
(
β2

) = 0 that
{
a1 = β (5i + 2) a2,
(5i + 2) (β + 1) a2 + (5 j + 4) a3 = 0.

By substituting (21), one can immediately derive that
{

β + 1 = (5i + 2) β3,

(5i + 2) β2 (β + 1) = 5 j + 4.
(22)

This leads to (5i + 2)2 = 5 j + 4. Since it can be verified that p � (5i + 2), it follows from
c(2) (1) = 0 that

β2 = (5i + 2) (5i + 3) . (23)

Then (21) and c(1) (1) = 0 indicates that

(5i + 2) β2 + β − (5 j + 3) = 0. (24)

Let t = 5i + 2. Then one has β + 1 = tβ3 and β2 = t (t + 1) due to the first equality of
(22) and (23). It follows from (24) that

t2(t + 1) + β − (t2 − 1) = 0

which implies β + 1 = −t3. Combining with β + 1 = tβ3, we have β3 = −t2. Since β is a
primitive 5-th root of unity, one can derive

0 =β4 + β3 + β2 + β + 1

= (β + 1)
(
β3 + 1

) + β2

= − t3
(−t2 + 1

) + t (t + 1)

= t (t + 1)
(
t3 − t2 + 1

)
.

It follows from t (t + 1) = β2 �= 0 that t3 − t2 + 1 = 0. Then we obtain

β = −t3 − 1 = −t2 = β3
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which yields β2 − 1 = 0, a contradiction.
(3) For the subcase c(x) = 1 + a1 x + a2 x5i+3 + a3 x5 j+4 with 0 ≤ i < j ≤ p − 2 and

a1, a2, a3 ∈ F
∗
p , it follows from c (1) = c (β) = c

(
β2

) = 0 and Lemma 6 that

a1 = β2

β + 1
, a2 = − 1

β + 1
, a3 = −β. (25)

Since c(1) (1) = c(1)
(
β2

) = 0, one can immediately get
{

(5i + 3)
(
β4 − 1

)
a2 + (5 j + 4) (β − 1) a3 = 0,

a1(β − 1) = (5i + 3)
(
β4 − β

)
a2.

Together with (25), one can conclude that
{

(5i + 3)
(
β2 + 1

) + (5 j + 4)β = 0,
(5i + 3)

(
β2 + β + 1

) + β = 0.

which indicates {
(5i + 3) β2 + (5 j + 4)β + 5i + 3 = 0,
(5i + 3) β2 + (5i + 4)β + 5i + 3 = 0.

It follows that 5(i − j) = 0, a contradiction.
Case III (wH (c(x)), wp(c(x))) = (5, 7). In this case, we can assume that c(x) is of the

form
(a, 0, b, 0)

where a, b are row vectors with all entries of a, b being nonzero. Then its certain cyclic shift
must have the form

(�, �, �, �, 0, �, 0)

or
(�, �, �, 0, �, �, 0) .

– For (�, �, �, �, 0, �, 0), there are five subcases to be considered:
(1) Consider the subcase c(x) = 1 + a1 x + a2 x2 + a3 x3 + a4 x5i with 1 ≤ i ≤ p − 1
and a1, a2, a3, a4 ∈ F

∗
p . It can be verified that
⎧
⎨

⎩

1 + a1 + a2 + a3 + a4 = 0,
1 + a1 β + a2 β2 + a3 β3 + a4 = 0,
1 + a1 β2 + a2 β4 + a3 β + a4 = 0

since c (1) = c (β) = c
(
β2

) = 0. Then one can derive that p � (a4 + 1). By Lemma 6,
one can obtain

a1 = −β2 + β + 1

β2 (a4 + 1), a2 = β2 + β + 1

β3 (a4 + 1), a3 = − 1

β3 (a4 + 1). (26)

It follows from c(1) (1) = c(1)
(
β2

) = 0 that
{
a1 + 2 a2 + 3 a3 + 5i a4 = 0,
a1 + 2 a2 β2 + 3 a3 β4 + 5i a4 β3 = 0

which indicates
(
β3 − 1

)
a1 + 2

(
β3 − β2) a2 + 3

(
β3 − β4) a3 = 0.
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Combining with (26), one can derive that

− (
β3 − 1

)
β

(
β2 + β + 1

) + 2β2 (β − 1)
(
β2 + β + 1

) + 3β3 (β − 1) = 0.

Since β is a primitive 5-th root of unity, by expanding the above equality, one can get
β2 + 3β + 1 = 0. This is contradictory with the inequality (3) in Lemma 6.
(2) Consider the subcase c(x) = 1+a1 x +a2 x2 +a3 x3 +a4 x5i+1 with 1 ≤ i ≤ p−1
and a1, a2, a3, a4 ∈ F

∗
p . It follows from c (1) = c (β) = c

(
β2

) = 0 and Lemma 6 that

a1 + a4 = −β2 + β + 1

β2 , a2 = β2 + β + 1

β3 , a3 = − 1

β3 . (27)

Then c(1) (1) = c(1)
(
β2

) = 0 induces that
{
a1 + 2 a2 + 3 a3 + (5i + 1) a4 = 0,
a1 + 2 a2 β2 + 3 a3 β4 + (5i + 1) a4 = 0.

This leads to
2

(
β2 − 1

)
a2 + 3

(
β4 − 1

)
a3 = 0.

Together with (27), one can immediately get (β − 1)2 = 0, which is impossible.
(3) Consider the subcase c(x) = 1+a1 x +a2 x2 +a3 x3 +a4 x5i+2 with 1 ≤ i ≤ p−1
and a1, a2, a3, a4 ∈ F

∗
p . The fact c (1) = c (β) = c

(
β2

) = 0 and Lemma 6 induces

a1 = −β2 + β + 1

β2 , a2 + a4 = β2 + β + 1

β3 , a3 = − 1

β3 . (28)

It follows from c(1) (1) = c(1)
(
β2

) = 0 that
{
a1 + 2 a2 + 3 a3 + (5i + 2) a4 = 0,
a1 + 2 a2 β2 + 3 a3 β4 + (5i + 2) a4 β2 = 0

which implies (
β2 − 1

)
a1 + 3

(
β2 − β4) a3 = 0.

By substituting (28) into the above equality, we have (β − 1)2 = 0, a contradiction.
(4) Consider the subcase c(x) = 1+a1 x +a2 x2 +a3 x3 +a4 x5i+3 with 1 ≤ i ≤ p−1
and a1, a2, a3, a4 ∈ F

∗
p . By c (1) = c (β) = c

(
β2

) = 0 and Lemma 6, one has

a1 = −β2 + β + 1

β2 , a2 = β2 + β + 1

β3 , a3 + a4 = − 1

β3 . (29)

It follows from c(1) (1) = c(1)
(
β2

) = 0 that
{
a1 + 2 a2 + 3 a3 + (5i + 3) a4 = 0,

a1 + 2 a2 β2 + 3 a3 β4 + (5i + 3) a4 β4 = 0.

This yields (
β4 − 1

)
a1 + 2

(
β4 − β2) a2 = 0.

Combining with (29), one can derive that (β − 1)2 = 0, which is impossible.
(5) Consider the subcase c(x) = 1+a1 x +a2 x2 +a3 x3 +a4 x5i+4 with 1 ≤ i ≤ p−2
and a1, a2, a3, a4 ∈ F

∗
p . It can be verified that
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⎧
⎨

⎩

1 + a1 + a2 + a3 + a4 = 0,
1 + a1 β + a2 β2 + a3 β3 + a4 β4 = 0,
1 + a1 β2 + a2 β4 + a3 β + a4 β3 = 0

since c (1) = c (β) = c
(
β2

) = 0. Then one can obtain that
⎧
⎨

⎩

a1 = −β3 a4 + β2 + β,

a2 = − (
β4 + 1

)
a4 − β − 1,

a3 = − (
β2 + β + 1

)
a4 − β2.

(30)

It follows from c(1) (1) = c(1)
(
β2

) = 0 that
{
a1 + 2 a2 + 3 a3 + (5i + 4) a4 = 0,

a1 + 2 a2 β2 + 3 a3 β4 + (5i + 4) a4 β = 0

which implies
(β − 1) a1 + 2

(
β − β2) a2 + 3

(
β − β4) a3 = 0.

This is equivalent to

a1 − 2 β a2 − 3β
(
β2 + β + 1

)
a3 = 0.

Together with (30), one can immediately have

(−β3+2β(β4+1)+3β(β2+β+1)2)a4+β2+β+2 β(β+1)+3β3(β2+β+1) = 0.

Then we get that

−β3 + 2β
(
β4 + 1

) + 3β
(
β2 + β + 1

)2 = 0

due to β4 + β3 + β2 + β + 1 = 0 and a4 ∈ F
∗
p . By a straightforward computation, one

has β2 + 3β + 1 = 0. This contradicts with the inequality (3) in Lemma 6.

– For (�, �, �, 0, �, �, 0), there are also five subcases to be considered:
(1) Consider the subcase c(x) = 1+a1 x +a2 x2 +a3 x5i +a4 x5i+1 with 1 ≤ i ≤ p−1
and a1, a2, a3, a4 ∈ F

∗
p . It follows from c (1) = c (β) = c

(
β2

) = 0 that
⎧
⎨

⎩

1 + a1 + a2 + a3 + a4 = 0,
1 + a1 β + a2 β2 + a3 + a4 β = 0,
1 + a1 β2 + a2 β4 + a3 + a4 β2 = 0

which implies {
(a1 + a4) (β − 1) + a2

(
β2 − 1

) = 0,
(a1 + a4)

(
β2 − β

) + a2
(
β4 − β2

) = 0.

This indicates that β
(
β2 − 1

)
a2 = (

β4 − β2
)
a2. Hence β = 1, a contradiction.

(2) Consider the subcase c(x) = 1+a1 x+a2 x2+a3 x5i+1+a4 x5i+2 with 1 ≤ i ≤ p−1
and a1, a2, a3, a4 ∈ F

∗
p . It can be verified that

⎧
⎨

⎩

1 + a1 + a2 + a3 + a4 = 0,
1 + a1 β + a2 β2 + a3 β + a4 β2 = 0,
1 + a1 β2 + a2 β4 + a3 β2 + a4 β4 = 0

since c (1) = c (β) = c
(
β2

) = 0. Then one can derive that
{

(a2 + a4)
(
β2 − β

) = β − 1,
(a2 + a4)

(
β4 − β3

) = β − 1.
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It follows that β3 = β, which is impossible.
(3) Consider the subcase c(x) = 1+a1 x+a2 x2+a3 x5i+2+a4 x5i+3 with 1 ≤ i ≤ p−1
and a1, a2, a3, a4 ∈ F

∗
p . The fact c (1) = c (β) = c

(
β2

) = 0 and Lemma 6 induces
that

a1 = −β2 + β + 1

β2 , a2 + a3 = β2 + β + 1

β3 , a4 = − 1

β3 . (31)

It follows from c(1) (1) = c(1)
(
β2

) = 0 that
{
a1 + 2 a2 + (5i + 2) a3 + (5i + 3) a4 = 0,
a1 + 2 a2 β2 + (5i + 2) a3 β2 + (5i + 3) a4 β4 = 0.

This yields (
β2 − 1

)
a1 + (5i + 3)

(
β2 − β4) a4 = 0.

By substituting (31), one can deduce that

β2 − (5i + 2) β + 1 = 0.

Let t = 5i + 2. Then β2 = tβ − 1 and

β4 + β3 + β2 + β + 1 = (tβ − 1)(t2 + t − 1) = 0.

It follows that t2 + t = 1. By c(2) (1) = 0 and (31), we get

5i (t + 1) a3 = (t + 2) β + 1.

The fact c(1) (1) = 0 indicates 5i a3 = (2 − t) (β + 1). Hence

(t + 2) β + 1 = (t + 1) (2 − t) (β + 1) .

This leads to t2 β − 2 t = 0 due to t2 + t = 1. It follows from t �= 0 that tβ = 2 and
β2 = tβ − 1 = 1, a contradiction.
(4) Consider the subcase c(x) = 1+a1 x+a2 x2+a3 x5i+3+a4 x5i+4 with 1 ≤ i ≤ p−2
and a1, a2, a3, a4 ∈ F

∗
p . It can be checked that

⎧
⎨

⎩

1 + a1 + a2 + a3 + a4 = 0,
1 + a1 β + a2 β2 + a3 β3 + a4 β4 = 0,
1 + a1 β2 + a2 β4 + a3 β + a4 β3 = 0

since c (1) = c (β) = c
(
β2

) = 0. Then one can derive that
⎧
⎨

⎩

a1 = −β3 a4 + β2 + β,

a2 = − (
β4 + 1

)
a4 − β − 1,

a3 = − (
β2 + β + 1

)
a4 − β2.

(32)

Let t = 5i + 2. By c(1) (1) = c(1)
(
β2

) = 0 and (32), we have
{
tβ2 + β + 2 = (

(t − 1)β4 + tβ3 + t
)
a4,

2β2 + β + t = (
tβ2 + (t − 1)β + t

)
a4.

(33)

Then

(tβ2 + β + 2)
(
tβ2 + (t − 1)β + t

) = (2β2 + β + t)
(
(t − 1)β4 + tβ3 + t

)

which implies
(t2 + t − 1)(β2 − 1) = 0.
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Thus t2 + t = 1. It follows from c(2) (1) = 0 that 2 a2 + a3 + (2t + 3) a4 = 0. Together
with (32), one can immediately get

(−β4 + β3 + 2t + 1
)
a4 = β2 + 2β + 2.

Combining with the second equality in (33), we can obtain
(−β4 + β3 + 2t + 1

) (
2β2 + β + t

) = (
β2 + 2β + 2

) (
tβ2 + (t − 1)β + t

)
.

By expanding the above equality, one can deduce
(
β2 − 1

)
t + 3β2 + 2 = 0

which yields t = 3β2+2
1−β2 . The fact t

2 + t − 1 = 0 induces

(
3β2 + 2

1 − β2

)2

+ 3β2 + 2

1 − β2 − 1 = 0

which is equivalent to
(
3β2 + 2

)2 + (
3β2 + 2

) (
1 − β2) − (

1 − β2)2 = 0.

It follows that
β4 + 3β2 + 1 = 0

which indicates
2 β2 − β3 − β = 0

due to β4 + β3 + β2 + β + 1 = 0. Hence β(β − 1)2 = 0, which is impossible.
(5) Consider the subcase c(x) = 1+a1 x+a2 x2+a3 x5i+4+a4 x5i+5 with 0 ≤ i ≤ p−2
and a1, a2, a3, a4 ∈ F

∗
p . It follows from c (1) = c (β) = c

(
β2

) = 0 that p � (a4 + 1)
and

a1 = − 1

β
(a4 + 1) , a2 = − β

β + 1
(a4 + 1) , a3 = 1

β(β + 1)
(a4 + 1) (34)

due to Lemma 6. The fact c(1) (1) = c(1)
(
β2

) = 0 leads to
{
a1 + 2 a2 + (5i + 4) a3 + (5i + 5) a4 = 0,

a1 + 2 a2 β2 + (5i + 4) a3 β + (5i + 5) a4 β3 = 0

which implies
{(

β3 − 1
)
a1 + 2

(
β3 − β2

)
a2 + (5i + 4)

(
β3 − β

)
a3 = 0,

2 (β + 1) a2 + (5i + 4) a3 + (5i + 5)
(
β2 + β + 1

)
a4 = 0.

By substituting (34), one can obtain that

β4 + (5i + 3) β3 − (5i + 3) β − 1 = 0 (35)

and
(−2β2 (β + 1) + 5i + 4

)
(a4 + 1) + (5i + 5) β (β + 1)

(
β2 + β + 1

)
a4 = 0. (36)

Let t = 5i + 3. It follows from (35) that

β4 − 1 + t
(
β3 − β

) = (
β2 − 1

)
(β2 + 1 + t β) = 0
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which yields β2 = −tβ − 1. Then we have

0 = β4 + β3 + β2 + β + 1 = − (
t2 − t − 1

)
β2

which indicates t2 = t + 1 due to β2 �= 0. It can be verified that

− 2β2 (β + 1) + 5i + 4 + (5i + 5) β (β + 1)
(
β2 + β + 1

)

= −2β3 − 2β2 + t + 1 − (t + 2)
(
β4 + β + 2

)

= −2t (β + 1) + 2 (tβ + 1) + (t + 2) (β + t) − (t + 2) β − t − 3 = 0.

Hence (36) and a4 ∈ F
∗
p induces

0 = −2β2 (β + 1) + 5i + 4 = 3 − t

which means that t = 3 and β2 = −3β − 1, a contradiction with the inequality (3) in
Lemma 6.

As a consequence, C is an MDS (5p, 8)p symbol-pair code. The desired result follows.
��
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