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Abstract
A weak pseudorandom function (weak PRF) is one of the most important cryptographic
primitives for its efficiency although it has lower security than a standard PRF. Recently,
Boneh et al. (in: Theory of cryptography conference, Springer, pp 699–729, 2018) introduced
two types of newweakPRF candidates, which are called a basicMod-2/Mod-3 and alternative
Mod-2/Mod-3 weak PRF. Both use the mixture of linear computations defined on different
small moduli to satisfy conceptual simplicity, low complexity (depth-2 ACC0) and MPC
friendliness. In fact, the new candidates are conjectured to be exponentially secure against
any adversary that allows exponentially many samples, and a basic Mod-2/Mod-3 weak PRF
is the only candidate that satisfies all the features above. However, none of the direct attacks
which focus on basic and alternative Mod-2/Mod-3 weak PRFs use their own structures. In
this paper, we investigate weak PRFs from two perspectives; attacks, fixes. We first propose
direct attacks for an alternative Mod-2/Mod-3 weak PRF and a basic Mod-2/Mod-3 weak
PRF when a circulant matrix is used as a secret key. For an alternative Mod-2/Mod-3 weak
PRF, we prove that the adversary’s advantage is at least 2−0.105n , where n is the size of the
input space of the weak PRF. Similarly, we show that the advantage of our heuristic attack
on the weak PRF with a circulant matrix key is larger than 2−0.21n , which is contrary to the
previous expectation that ‘structured secret key’ does not affect the security of a weak PRF.
Thus, for an optimistic parameter choice n = 2λ for the security parameter λ, parameters
should be increased to preserve λ-bit security when an adversary obtains exponentially many
samples. Next, we suggest a simple method for repairing two weak PRFs affected by our
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attack. Moreover, we provide the first direct algorithm for a basic Mod-2/Mod-3 weak PRF
with a random secret key even though it does not capture the current parameters.

Keywords Cryptanalysis · Weak PRF

Mathematics Subject Classification 68R99 · 68N30

1 Introduction

A pseudorandom function (PRF) proposed by Goldreich et al. [24] is a keyed function which
looks like a true random function. PRFs have beenwidely used as building blocks to construct
several cryptographic primitives such as HMAC, digital signature and indistinguishability
obfuscation [3, 4, 6, 7, 11, 23].

Weak PRFs, which satisfy weaker security and higher efficiency than PRFs, are keyed
functions whose input-output behaviors are indistinguishable from those of random functions
when adversaries are limited to observing outputsmapped by randomly sampled inputs.Many
cryptographic primitives and applications are built from weak PRFs because of its efficiency
[2, 5, 17, 21, 25, 26, 30].

To construct more efficient weak PRFs, simple constructions are emphasized to minimize
the circuit complexity and depth. Akavia et al. proposed a simple construction of weak PRFs
which satisfies depth-3 ACC0[m] circuit complexity with quasi-polynomial security [1].

As a line of work, Boneh et al. (TCC’18) proposed simple weak PRF candidates by
mixing linear computations on different moduli [13]. Inspired by a paper [1], they provided
a weak PRF which satisfies the following properties: conceptually simple structure, low
complexity (depth-2 ACC0[m] circuit complexity) and MPC-friendliness. In particular, the
new candidates are the unique depth-2 weak PRFs conjectured to satisfy the exponential
hardness beyond the polynomial hardness. Moreover, they provided two types of parameters:
optimistic and conservative. A conservative parameter is set to be secure against the attacks
for LPN problem, but it does not seem to be applicable to weak PRFs. Thus, an optimistic
choice was additionally proposed.

We now briefly describe the construction of Mod-2/Mod-3 weak PRFs in [13]. For each
Mod-2/Mod-3 weak PRF, a function F : Zn

2 × Z
m×n
2 → Z3 with an input x ∈ {0, 1}n is

defined as follows. (For details, see the Construction 3.1)

• Basic Mod-2/Mod-3:
For a “random” secret key A ∈ Z

m×n
2 , F(x,A) = map(A · x), where map is a function

from {0, 1}m to Z3 mapping a binary vector y = (y j ) to an integer
∑m

j=1 y j mod 3.1

• Circulant Mod-2/Mod-3:2

Take m = n. Then, it is exactly the same as a basic Mod-2/Mod-3 except A is a circulant
matrix.

• Alternative Mod-2/Mod-3:
Set m = 1. F(x,k) = (〈k, x〉 mod 2 + 〈k, x〉 mod 3) mod 2 for a random secret key
k ∈ {0, 1}n .

1 For well-definedness, A · x is interpreted as a binary vector.
2 In the original paper [13], they used a Toeplitz matrix or a block-circulant matrix as a secret key of weak
PRF for its efficiency. However, in this paper, we only deal with the case that a secret key of weak PRF is
a circulant matrix which is the same as block-circulant matrix in the original paper. Indeed, they said that
block-circulant matrix can be represented by a single vector’.
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Table 1 Changes of concrete
parameters for 128-bit security to
prevent our attacks with m = n

Mod-2/Mod-3 weak PRFs
Parameter Choices Alternative Circulant Key

[13] Optimistic – 256

Conservative 384 384

Ours log(T /ε2)-bit security 610 305

log(T /ε)-bit security 1220 610

However, there is no direct or concrete attack for weak PRFs on their own structures. There-
fore, further cryptanalyses or security proofs are required to break or support their conjectures
and concrete security.

Moreover, subsequent to the initial publication of this work [16], Dinur et al. [20] proposed
new MPC-friendly primitives including a new candidate of weak PRF by mixing different
moduli.

1.1 This work

In this paper, we investigate Mod-2/Mod-3 weak PRFs in two perspectives; attacks and fixes.
Moreover, we provide the first direct attack on a basicMod-2/Mod-3 weak PRFs even though
it does not invalidate the security level of current weak PRFs.
Attacks Our concrete attacks mainly concentrate on two weak PRFs; an alternative and a
circulant Mod-2/Mod-3 weak PRFs. As a result, we show that the advantage of an alternative
Mod-2/Mod-3 weak PRF is 2−0.105n with the size of input space n. It is computed as the
conditional probability of input vectors given that the outputs are ‘zero’. Similarly, we provide
a heuristic attack with an advantage 2−0.21n and experimental results of a circulant weak PRF.
This result is contrary to the previous prediction that the parameters will not be much affected
by the structure of a key. Our attacks are the first attacks using the structure of Mod-2/Mod-3
weak PRFs. Indeed, we first observe interesting features of certain secret keys of weak PRFs
and statistically attack them using these features. As an example, a circulant matrix always
preserves the number of nonzero entries h in each column, so (1, ..., 1) is a left-eigenvector
of a circulant matrix with an eigenvalue h.

As a result,we introduce newconcrete parameters ofweakPRFs inTable 1.As described in
[13],we use two categories; optimistic and conservative parameters. The optimistic parameter
is chosen by the fact that the authors of the paper speculate that themost efficient algorithm for
solvingLPN is not applicable to attackweakPRFcandidates. The conservative one is the same
as a parameter that is secure against LPN attacks, especially BKW attack [10]. Moreover, we
use two types of concrete parameter estimation; λ = log2(T /ε2) and λ = log2(T /ε), with a
cost T and an advantage ε. The latter one is traditionally used tomeasure the concrete security
of symmetric cryptography primitives [22], and the former one is proposed by Micciancio
and Walter [27] for measuring the concrete security of decision primitives. We include both
results in Table 1. However, we mainly deal with the measure λ = log2(T /ε2) in this paper.

Our attacks mainly exploit the conditional probabilities based on structures of weak PRFs
to distinguish weak PRF samples from uniform samples. More specifically, an adversary
model to attack an alternative Mod-2/Mod-3 weak PRF computes Pr[xi = 0 | Fk(x) =
0 mod 2] for input x = (x j ) ∈ {0, 1}n . If the probability for some xi is far from 1/2 by

1
20.105n

, we conclude that pairs of inputs and outputs follow a distribution of an alternative
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weak PRF, not a uniform distribution. As a result, this simple attack satisfies the following
interesting features:

– Support a full parallel computing: when δ processors are given, the total time complexity
decreases from Ttotal to Ttotal/δ + O(δ)

– Require only O(n) memory space because calculating an average does not need to store
samples.

– Simply extend to Mod-p/Mod-q weak PRFs for any primes p and q: For an alternative
Mod-p/Mod-q , we show that the bigger pq is, the more powerful our attack is. For
example, an alternative and a circulant Mod-3/Mod-5 weak PRFs should be set as n =
4000 and n = 2000, respectively, for 128-bit security under the measure T /ε2.

For more details, we refer Sects. 4.1 and 4.2.
Fixes We suggest simple variants of weak PRFs to be secure against our attacks while
preserving a depth of original weak PRFs and circuit class complexity ACC0[m].

For an alternative case, we exploit two independent vectors k1, k2 to construct a new
alternative Mod-2/Mod-3 weak PRF secure against all known attacks in [13] and ours. Since
our attack uses a property that an alternativeweakPRFoutput is represented by the 〈k, x〉 mod
6, such independent vectors can remove this statistical weakness induced by its structure. We
briefly introduce the new alternative weak PRF as follows.

F ′(x,k1,k2) = (〈k1, x〉 mod 2 + 〈k2, x〉 mod 3) mod 2 with k1,k2 ∈ {0, 1}n .
Intuitively, this new weak PRF is secure against our attack because the term 〈k2, x〉 behaves
as uniform random, which directly implies the conditional probability becomes exactly 1

2 .
For more details, we refer Sect. 5.3 Furthermore, our new alternative weak PRF preserves
depth-2 ACC0[m] circuits.

For repairing a circulant Mod-2/Mod-3 weak PRF, we use two different vectors a and b
to construct a secure circulant Mod-2/Mod-3 weak PRF. By exploiting two secret vectors,
we generate a new secret key B such that for 1 ≤ i ≤ n/2, i-th row of B is rotation of
the vector a, and for n/2 < j ≤ n, j-th row vector is rotation of the vector b. Then, the
fixed Mod-2/Mod-3 weak PRF with the secret key B is secure against our attack since a
combination of two vectors can remove the structured weakness of circulant matrix that the
number of nonzero entries in column vector is always the same. In other words, the vector of
ones (1, . . . , 1) is not a left-eigenvector of B anymore. Similarly, the Toeplitz matrix could
be one of candidates of a secret key B to be robust against our statistical attack due to the
same reason.

In addition, we heuristically verify that our revised candidates are secure against our
statistical attack while preserving the size of n. Indeed, the experimental results show that
the advantage of a fixed candidate is larger than 2−0.5n , which means that it achieves 128-bit
security against all known attacks without a parameter blow-up. The size of PRF key of the
fixed candidate is still smaller than that of random key, and it preserves depth-2 ACC0[m]
circuits and current parameter n. For more details, we refer Sect. 5.

New analysis to basic Mod-2/Mod-3 weak PRF We additionally provide another analysis
of a basic Mod-2/Mod-3 weak PRF based on algorithms for solving the k-xor problem that is
already well known for its hardness. However, even though we employ the oracle of solving
k-xor problem, our analysis that relies on the conditional bias output cannot capture the
current security level. For example, we show that the advantage of a basic Mod-2/Mod-3

3 Note that a new scheme still achieves the ad-hoc security, where it is secure against known attacks.
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weak PRF is larger than 2−0.60m if we can find three vectors x, y, z ∈ {0, 1}n such that
x + y + z = 0 ∈ Z

n
2.

However, since they are uniformly sampled from Z
n
2, finding such vectors is the same as

solving the 3-xor problem, well known for the computational hardness problem. Indeed, it
takes exponential time and space O(2n/2).4 Moreover, even if an adversary can access an
oracle to solve the 3-xor problem in polynomial time, our attack still requires exponentially
many samples due to the adversary’s advantage.

Discussion and open questions Both attacks that we propose require exponentially many
samples. However, any of applications such as a secure multiparty computation only requires
a polynomial number of samples of weak PRFs. Thus, it seems unlikely that they will affect
any of the real world applications.

To overcome this situation, we discuss a few further works. Is there an application for
requiring an exponential number of samples? If it exists, the applicationmust consider param-
eters to be secure against our attacks. Moreover, it would be also interesting to extend our
attack given a polynomial/sub-exponential number of samples. Or is there an application to
be possible to amplify the number of samples?

One of the interesting approaches is to use the algebraic property of weak PRFs since
our attack only uses a statistical weakness of weak PRFs. Thus, it still remains as an open
problem to find new algebraic or hybrid attacks against these candidates.

Even though we propose the first direct attack for the basic Mod-2/Mod-3 weak PRF
which uses a random matrix A, a direct attack which breaks current parameters for the basic
Mod-2/Mod-3 weak PRF still remains as an open question. Moreover, our attacks cannot
break the exponential hardness although our attacks for circular Mod-2/Mod-3 weak PRF
and the alternative one break current parameters. We additionally notice that the alternative
weak PRF already fails to provide exponential hardness due to the BKW algorithm.

1.2 Subsequent work

Subsequent to the initial publication of this work [16], new candidates of weak PRF by
mixing different moduli were proposed [20]. They generalized initial construction in [13] to
multiple output bits.

More precisely, in [13],F could be regarded as matrix multiplications between (1, . . . , 1)
and A · x, where A · x is reinterpreted as a binary vector over Z3. Thus, it always outputs a
single bit that seems to be random if A is random. On the other hand, a paper [20] exploits a
random matrix B̃ ∈ Z

t×n
3 since A · x is a vector of length m instead of a vector (1, . . . , 1).

Thus, it could output multiple bits, and it is secure against our attack which heavily depends
on the property of circulant matrix since a random matrix B̃ breaks a structural weakness
induced by the circulant secret key. In other words, (1, . . . , 1) is not an eigenvector anymore
even if A is a circulant matrix.

The paper [20] additionally provided a generalization of the alternative Mod-2/Mod-3
weak PRF by employing a random matrix key K instead of a random vector key k.

Both candidates still satisfy the construction paradigm that easier MPC-friendly designs,
and simpler construction with low nonlinear depth and high algebraic degree. For more
details, we refer a paper [20].
OrganizationWe describe preliminaries about definitions of PRF and weak PRF, and results
of k-xor problem in Sect. 2.We explicitly describe the construction ofweak PRF candidates in

4 If we find roots of k(≥ 5)-xor problem, the advantage induced by them is drastically smaller than 2−m

although time complexity of k-xor problem is reduced to O(2n/(k−1)).
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Sect. 3, and provide cryptanalyses of an alternative Mod-2/Mod-3 weak PRF and a circulant
weak PRF in Sect. 4, respectively. In Sect. 5, we suggest a method to fix the alternative and
circulant Mod-2/Mod-3 weak PRFs.

2 Preliminaries

2.1 Notations

Matrices and vectors are written as bold capital letters, and bold lower-case letters respec-
tively.Moreover,we assume that the vectors are column form in this paper, and i-th component
of xwill be denoted by xi . The transpose of a matrix or vector is denoted byAT or xT . More-
over, we denote an inner product between two vectors x and y by 〈x, y〉.

A square matrix A is called a circulant matrix which has a structure such that (i, j) entry
of A, Ai, j is given by Ai, j = a( j−i mod n)+1 with a dimension n. Thus, the circulant matrix
is generated by a single vector (a1, a2, . . . an).

In is the n-dimensional identity matrix. Also, we denote the n-dimensional vector that all
entries are zero by 0n , and similarly, 1n is a vector that all entries are one. For the convenience
of notation, we sometimes omit the subscript if it does not lead to any confusion.

For any positive integer n, [n] is denoted by the set of integers {1, 2, . . . , n}. All elements
in Zq are represented by integers in range [0, q) for any positive integer q . For a vector x,
we use a notation [x]q to denote an “entrywise” modulo q . i .e, [x]q = ([xi ]q) for x = (xi ).

Let S be a finite set. Then, s
$←− S is denoted that an element s is uniformly sampled from

the set S.

Definition 2.1 (Pseudorandom function (PRF) in [13]) Let λ be the security parameter. A
(t(λ), ε(λ))-pseudorandom function family (PRF) is a collection of functions Fλ : Xλ ×
Kλ → Yλ with a domain Xλ, a key space Kλ and an output space Yλ such that for any
adversary running time in t(λ), it holds that

∣
∣
∣Pr[AFλ(·,k)(1λ) = 1] − Pr[A fλ(·)(1λ) = 1]

∣
∣
∣ ≤ ε(λ),

where k
$←− Kλ,and fλ

$←− Funs[Xλ,Yλ].
In this paper, PRF is sometimes called strong PRF to be distinguished from the weak PRF
in the below. The main difference between strong PRF and weak PRF is that an adversary is
limited to obtaining randomly chosen input vectors.

Definition 2.2 (Weak PRF) Let λ be the security parameter. A function Fλ : Xλ ×Kλ → Yλ

with a domain Xλ, a key space Kλ and an output space Yλ is called (�, t, ε)-weak PRF for
any adversary running time in t(λ), it holds that

{(xi ,Fλ(xi , k))}i∈[�] ≈ε {(xi , yi )}i∈[�]

where a key k
$←− Kλ, xi

$←− Xλ, and yi
$←− Yλ. We denote ≈ε by the advantage of any

adversary is smaller than ε.

2.2 Generalized birthday problem (k-xor Problem)

In this section, we briefly review the results of generalized birthday problem.
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Problem 2.3 (Generalized Birthday Problem (k-xor Problem)) Given k lists L1, . . . , Lk of
elements independently sampled from {0, 1}n , find vectors x1 ∈ L1, x2 ∈ L2, . . . xk ∈ Lk

such that

x1 + x2 + · · · xk = 0 mod 2

If
∏k

i=1 |Li | is much larger than 2n , then there exists a solution of the problem, but it is hard to
efficiently find such a solution.Wagner [32] proposed an algorithm to solve the k-xor problem,
which requires O(k · 2n/(1+�log2 k�)) time and space using lists of size O(2n/(1+�log2 k�)).
Moreover, there exist algorithms for solving k-xor problems [8, 9, 18, 19, 29]. Moreover,
there exists a more efficient algorithm for solving the generalized birthday problem under
the quantum computing [28, 31].

3 Construction of weak PRF candidates

In this section, we briefly review how to construct weak PRF candidates proposed by Boneh
et al. [13]. All constructions consist of linear computations on different moduli, which are
deemed to be simple and efficient.

3.1 Mod-2/Mod-3 weak PRF candidate

In this section, we provide a basic construction of Mod-2/Mod-3 weak PRF candidate. Mod-
2/Mod-3 weak PRFs are easily extended to Mod-p/Mod-q constructions for arbitrary primes
p and q .

Construction 3.1 (A basic Mod-2/Mod-3 weak PRF) For the security parameter λ, a weak
PRF candidate is a collection of functions Fλ : {0, 1}n × {0, 1}m×n → Z3 with a domain
{0, 1}n, a key space {0, 1}m×n and an output space Z3. For a fixed key A ∈ {0, 1}m×n, we
use a notation FA : {0, 1}n → Z3 which defines as follows.

1. Computes y = [A · x]2
2. Outputs map(y), where map is a function from {0, 1}m to Z3 which maps a binary vector

y = (y j ) to an integer
∑m

j=1 y j mod 3.

Thus, we summarize FA(x) = map([A · x]2). This simple construction induced by mixed
linear computations on different moduli might be secure against previous attacks. Moreover,
the authors showed that a low-degree polynomial (rational function) approximation of map
is hard, and standard learning algorithms cannot break these constructions. Furthermore,
Conjecture 3.2 is proposed.

Conjecture 3.2 (Exponential Hardness of Mod-2/Mod-3 weak PRF) Let λ be the security
parameter. Then, there exist constants c1, c2, c3, c4 > 0 such that for n = c1λ,m = c2λ,
� = 2c3λ, and t = 2λ, a function family {Fλ} defined as Mod-2/Mod-3 construction is an
(�, t, ε)-weak PRF for ε = 2−c4λ.

Remark 3.3 For the improved efficiency of Mod-2/Mod-3 weak PRFs in real applications,
a structured key A is used, not a random key from {0, 1}m×n . Thus we expect the key size
can be reduced when A is a block-circulant matrix or Toeplitz matrix.5 Roughly speaking, a

5 In the original paper, the authors mentioned that a ‘block-circulant matrix’ can be represented by a single
vector. Thus, a block-circulant matrix is the same as a circulant matrix in this paper.

123



1742 J. H. Cheon et al.

random key A requires mn key size, but the key size of a structured key A is m + n, much
smaller than mn. A basic Mod-2/Mod-3 weak PRF with a circulant secret key A is called a
circulant Mod-2/Mod-3 weak PRF.

Concrete parameters They proposed two types of parameters; optimized and conservative
choices. The conservative choice, m = n = 384, is set to be robust against the BKW attack
for LPN problem. However, the BKW attack does not seem to be applicable to this candidate,
the optimized parameter, m = n = 2λ = 256, is also suggested to obtain 128-bit security.

3.2 Alternative Mod-2/Mod-3Weak PRF candidate

An alternative weak PRF is additionally proposed to obtain higher efficiency in a two-party
secure computation setting.

Construction 3.4 (Alternative Mod-2/Mod-3 weak PRF) For a secret key k ∈ {0, 1}n, an
alternative Mod-2/Mod-3 weak PRF is defined that for any input x ∈ {0, 1}n,

F(k, x) = 〈k, x〉 mod 2 + 〈k, x〉 mod 3 mod 2.

For simplicity, we use a notation Fk(x) instead of F(k, x) on a key k ∈ {0, 1}n.
Concrete parameters Similar to a basic Mod-2/Mod-3 weak PRF, they consider all known
attacks to claim the security of the alternative candidate. Moreover, it resembles an LPN
instance with a deterministic noise rate 1/3, so the parameters are set as m = n = 384. For
more details, see the original paper [13] or later section.

4 Cryptanalysis of weak PRF candidates

We now introduce our analysis on two weak PRF candidates; the alternative Mod-2/Mod-3
and circulant Mod-2/Mod-3 weak PRFs. These attacks are also applicable to an alternative
and a circulant Mod-p/Mod-q weak PRF for arbitrary primes p and q .

4.1 Cryptanalysis of an alternative Mod-2/Mod-3 weak PRF

We briefly recall the construction of the alternative Mod-2/Mod-3 weak PRF with the secret
key k ∈ {0, 1}n

Fk(x) = (〈k, x〉 mod 2 + 〈k, x〉 mod 3) mod 2.

We simply observe that Fk(x) = 0 mod 2 if and only if 〈k, x〉 = 0, 1, 2 mod 6. In other
words, one can understand that Fk(x) is an operation on the Z6 space.

On the other hand, since the secret key k and input vector x are made up of only 0 and
1, we conjecture that Fk(x) would not cover the whole uniformly. Thus, we can present the
statistical attack for the alternative alternative Mod-2/Mod-3 weak PRF.

Based on the intuition, we obtain the following theorem.

Theorem 1 Let k ∈ {0, 1}n be the secret key of the alternative Mod-2/Mod-3 weak PRF and
Fk a function as defined above. If h is the Hamming weight of k, then we can show that there
exists j ∈ [n] such that

∣
∣
∣
∣Pr[x j = 0 | k j = 1 and Fk(x) = 0 mod 2] − 1

2

∣
∣
∣
∣ ≈ 1

20.21h
for h 
= 2 (mod 6)
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∣
∣
∣
∣Pr[x j , xl = 0 | k j , kl = 1 and Fk(x) = 0 mod 2] − 1

2

∣
∣
∣
∣ ≈ 1

20.21h
for h ≡ 2 (mod 6)

Therefore, if the numberof samples,�, is O(20.21h), one candistinguish {(xi ,Fλ(xi ,k))}i∈[�]
from the uniform samples {(xi , yi )}i∈[�].

As a result, our attack for the alternativeMod-2/Mod-3 weak PRF is very simple. Suppose
that an adversary can collect � = c1 ·20.21n samples for some constant c1 of which the output
is zero. Then, according to the following step, the adversary can break the security of the
alternative Mod-2/Mod-3 weak PRF.

1. Compute the conditional probabilities Pr[x j = 0 | Fk(x) = 0 mod 2] and Pr[x j =
0, xl = 0 | Fk(x) = 0 mod 2] for each index j, l ∈ [n].

2. If there exists an index j or ( j, l) such that it is apart from 1/2 by 1
20.105n

, we conclude that
an adversary has alternative Mod-2/Mod-3 weak PRF samples.

Furthermore, we can recover k by computing all possible conditional probabilities. This is
because the j-th component of k is 1 if the conditional probability related to an index j and
( j, l) is apart from 1/2.

Thus, the remaining part of this section is to compute the conditional probabilities used
in the Theorem 1. For this, we first introduce the following lemma.

Lemma 4.1 Let n be a positive integer. For all 0 ≤ a ≤ 5, the following equation holds.

∑

a+6k≤n

(
n

a + 6k

)

= 1

6

⎛

⎝
5∑

j=0

(w j )6−a · (1 + w j )n

⎞

⎠ .

where w is 6-th root of unity, 1+√
3i

2 .

Proof Since w is 6-th root of unity, the following equations hold.

(1 + w j )n =
n∑

a=0

(
n

a

)

(w j )a, 1 + w + w2 + w3 + w4 + w5 = 0.

Then, the equations imply that
∑5

j=0(w
j )6−a · (1 + w j )n can be rewritten as follows.

5∑

j=0

(w j )6−a · (1 + w j )n =
5∑

j=0

n∑

k=0

(
n

k

)

(w j )k(w j )6−a

=
n∑

k=0

(
n

k

)

{
5∑

j=0

(w j )6−a+k}

=
∑

k≡a (mod 6)

(
n

k

)

· 6

=
∑

a+6k≤n

(
n

a + 6k

)

· 6

��
For the sake of explanation, suppose that the first h elements of k are all 1, and the others

are zero. Then, we observe that

〈k, x〉 = x1 + · · · + xh .
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Note that a value xi with i > h has no effect on the result 〈k, x〉 since ki is zero. Therefore,
we only consider xi for i ∈ [h]. For all j ∈ [h], the conditional probability of x j given by
Fk(x) = 0 mod 2 is that

Pr[x j = 0 | Fk(x) = 0 mod 2] =
∑� h−1

6 �
k=0

(h−1
6k

) + ( h−1
6k+1

) + ( h−1
6k+2

)

∑� h
6 �

k=0

( h
6k

) + ( h
6k+1

) + ( h
6k+2

) . (1)

For events A : [Fk(x) = 0 mod 2], and B : [x j = 0], the left-hand side of the Eq. (1)

equals to Pr[A⋂
B]

Pr[A] . As we mentioned, it holds that Fk(x) = 0 mod 2 if and only if 〈k, x〉 =
0, 1, 2 mod 6.Moreover, for every k ∈ {0, . . . , � h−1

6 �} and a ∈ {0, . . . , 5}, ( h
6k+a

)
if and only

if 〈k, x〉 = a mod 6 because of 〈k, x〉 = ∑h
i=1 xi . Thus, Pr[A] equals to the denominator of

the right-hand side of the Eq. (1).
On the other hand, for some j , A

⋂
B : [x j = 0&Fk(x) = 0 mod 2]. Hence, it holds that

〈k, x〉 = ∑h
i=1,i 
= j xi to satisfy the event A

⋂
B. Similarly, we also show that Pr[A⋂

B] is
the same as the numerator of the right-hand side of the Eq. (1) since the number of possible
variables is h − 1 because of x j = 0. As a result, with the Lemma 4.1 and the properties of
6-th root of unity w, we can calculate the conditional probability that we desired.

Pr[x j = 0 | Fk(x) = 0 mod 2] =
∑� h−1

6 �
k=0

(h−1
6k

) + ( h−1
6k+1

) + ( h−1
6k+2

)

∑� h
6 �

k=0

( h
6k

) + ( h
6k+1

) + ( h
6k+2

)

=
∑5

j=0(1 + (w j )5 + (w j )4) · (1 + w j )h−1

∑5
j=0(1 + (w j )5 + (w j )4) · (1 + w j )h

= 3 · 2h−1 + 2w5 · (1 + w)h−1 + 2w · (1 + w5)h−1

3 · 2h + 2w5 · (1 + w)h + 2w · (1 + w5)h

= 3 · 2h−1 + 2w5 · (w5i
√
3)h−1 + 2w · (−wi

√
3)h−1

3 · 2h + 2w5 · (w5i
√
3)h + 2w · (−wi

√
3)h

= 1

2
+ (w5i

√
3)h−1 · w4 + (−wi

√
3)h−1 · w2

3 · 2h + 2w5 · (w5i
√
3)h + 2w · (−wi

√
3)h

where w is 6-th root of unity, 1+√
3i

2 . Thus, we can obtain the following lemma.

Lemma 4.2 Let h be the Hamming weight of the secret key k. For all i ∈ [h],

Pr[xi = 0 | Fk(x) = 0 mod 2] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 − (i

√
3)h

3·2h+2·(i√3)h
h = 6k

1
2 − (i

√
3)h−1

3·2h+6·(i√3)h−1 h = 6k + 1
1
2 h = 6k + 2
1
2 + 3(i

√
3)h−3

3·2h+18·(i√3)h−3 h = 6k + 3

1
2 + 9(i

√
3)h−4

3·2h+18·(i√3)h−4 h = 6k + 4

1
2 + 18(i

√
3)h−5

3·2h h = 6k + 5

Proof (of Lemma 4.2) The proof only requires straightforward (but tedious) computations,
so we only deal with a case of h = 6k. Computations of the others are almost the same as

123



Adventures in crypto dark matter 1745

the case h = 6k.

Pr[xi = 0 | Fk(x) = 0 mod 2] = 1

2
+ (w5i

√
3)6k−1 · w4 + (−wi

√
3)6k−1 · w2

3 · 26k + 2w5 · (w5i
√
3)6k + 2w · (−wi

√
3)6k

= 1

2
+ (w5 − w) · (i

√
3)6k−1

3 · 26k + 2(w5 + w) · (i
√
3)6k

= 1

2
+ −(i

√
3)6k

3 · 26k + 2(i
√
3)6k

= 1

2
− (i

√
3)h

3 · 2h + 2 · (i
√
3)h

��
Since the simple attack does not work if h ≡ 2 mod 6, another adversary is required. A new
adversary computes a conditional probability of xi = x j = 0with i 
= j given byFk(x) = 0.
Then, through similar computations from Lemma 4.2, we obtain the below lemma.

Lemma 4.3 Let h be theHammingweight of the secret keyk. If i 
= j ∈ [h] and h ≡ 2 mod 6,

Pr[xi = 0, x j = 0 | Fk(x) = 0 mod 2] =
∑� h−2

6 �
k=0

(h−2
6k

) + ( h−2
6k+1

) + ( h−2
6k+2

)

∑� h
6 �

k=0

( h
6k

) + ( h
6k+1

) + ( h
6k+2

)

= 1

4
− (i

√
3)h−2

3 · 2h + 12(i
√
3)h−2

According to Lemmas 4.2, 4.3, the advantage of an alternative Mod-2/Mod-3 weak PRF is

larger than ch ·
(√

3
2

)h ≈ 1
20.21h

. Moreover, since k is chosen uniformly from the set {0, 1}n ,
we assume that h is n

2 without loss of generality. Thus, the advantage is larger than 1
20.105n

.
As a result, to preserve 128-bit security, a parameter n should increase from 384 to 610 or
1220 under the measure log T

ε2
or log T

ε
with a cost T and an advantage ε.

The Theorem 1 is proved by Lemmas 4.2 and 4.3.
Comparison to the BKW algorithm The construction of the alternative Mod-2/Mod-3
weak PRF is quite similar to LPN problem with a noise rate 1/3. Thus, one expects that the
algorithm proposed by Blum, Kalai, and Wasserman [10], one of the current best attacks for
LPN with a constant noise rate, can be applicable to alternative Mod-2/Mod-3 weak PRF.

The difference between conventional LPN instances and pseudo-LPN instances from
alternative Mod-2/Mod-3 weak PRF is that the error terms of pseudo-LPN instances are of
the form

∑
i ki xi mod 3 mod 2, which means that the error terms are always correlated to

the input x, and the secret key k. However, the error terms of conventional LPN instances
are independent to the input, and the independence was implicitly used to analyze the BKW
algorithm.

On the other hand, Bogos, Tramèr and Vaudenay [12] mentioned that BKW algorithm
heuristically works in spite of dependence of the error term. Therefore, BKW attack can be
heuristically applied to analyze the alternative Mod-2/Mod-3 weak PRF. Therefore, it cannot
achieve the exponential hardness conjecture like the basic Mod-2/Mod-3 weak PRF since
the time complexity of BKW is sub-exponential in a dimension n. However, the BKW attack
cannot impact the concrete parameters since the alternative candidate already sets parameters
to be secure against the BKW attack. The original paper already mentioned that a parameter
n = 384 captures 128-bits security.
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Unlike the BKW attack, our attack which exploits statistical properties takes exponential
time in a dimension n, but when exponentially many samples are allowed, our attack can
affect the concrete parameters. To be secure against our attack, the parameter n should be set
at least 610 as in Table 1.

Remark 4.4 Our attack is easily extended to an alternative Mod-p/Mod-q weak PRF for
arbitrary primes p and q . Following our proof, the adversary’s advantage of an alternative

Mod-p/Mod-q weak PRF is larger than ch ·
∣
∣
∣
wpq+1

2

∣
∣
∣
h ≈

(
cos

(
π
pq

))h
where wpq is pq-th

root of unity. Therefore, our attack becomes more efficient as pq gets bigger. For example,
the advantage of an alternative Mod-3/Mod-5 weak PRF is larger than

(
cos

(
π
15

))h ≈ 1
20.032h

,

so n should be increased to 4000 for the 128-bit security under a measure T /ε2 if h = n/2.

Remark 4.5 Since our attack just computes conditional probabilities, there exist interesting
features.

• Full parallel computations are allowed. Hence, if there are δ processors, total time com-
plexity is reduced from O(20.21n) to O(20.21n/δ) + O(δ).

• An adversary does not need to store many weak PRF samples. Thus, Our attack is a
space efficient algorithm. It requires only O(n) space even though our attack needs a lot
of samples.

4.2 Cryptanalysis of the circulant Mod-2/Mod-3 weak PRF

As stated in Remark 3.3, structured keys are widely used to provide higher efficiency. In this
section, we provide a heuristic analysis of a circulant Mod-2/Mod-3 weak PRF candidate.6

We briefly recall a circulant Mod-2/Mod-3 weak PRF. For a circulant matrix A ∈ Z
n×n
2 with

generated by a vector a ∈ Z
n
2,

FA(x) = map(A · x),
where map is a function from {0, 1}n to Z3 mapping a binary vector y = (y j ) to an integer∑n

j=1 y j mod 3.
We first present several observations of a circulant Mod-2/Mod-3 weak PRF under the

secret key A.

• 1T · A = h(1, . . . , 1) where h is the number of 1’s in a vector a
• 1T · A · x = h · hx where hx is the number of 1’s in an input x
• 1T · [A · x]2 ≡ h · hx mod 2
• If hx is even, then the number of 1’s in [A · x]2 is also even.

The key ingredient of the attack for a circulant weak PRF is that [A · x]2 preserves the parity
of x if hx is even. If FA(x) truly behaves a random element, it never keeps the parity even
if hx is even. Similar to Sect. 4.1, by limiting the parity of [A · x]2, we could distinguish
a circulant Mod-2/Mod-3 weak PRF from uniform. Indeed, it might be conjectured that
Pr[FA(x) ≡ 0 mod 3 | hx is even] or Pr[FA(x) ≡ 2 mod 3 | hx is even] is apart from 1/3.

With the intuition, if [A·x]2 is component-wise independent, thenwe can directly compute
values Pr[FA(x) ≡ 0 mod 3 | hx is even] and Pr[FA(x) ≡ 2 mod 3 | hx is even]. Then, we
obtain that an adversary’s advantage is larger than cn ·

(√
3
2

)n ≈ 1
20.21n

for some very small
constant cn .

6 As stated in Sect. 1, a circulant matrix is exactly the same a block-circulant in [13]
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Unfortunately, the components of [A · x]2 are not independent since A is a circulant
matrix. Therefore, we will give experimental results to support that the above conditional
probabilities are almost the same as the results of Lemmas 4.6 and 4.7, where the lemmas are
assumed to be independent of each component. (See experimental results 4.8.) As a result,
we obtain the following theorem.

Theorem 2 Let A ∈ {0, 1}n×n be a circulant matrix used in a Mod-2/Mod-3 weak PRF as
a secret key and hx be the Hamming weights of a vector x. Then, we can heuristically show
that

∣
∣
∣
∣Pr[FA(x) ≡ 0 mod 3 | hx is even] − 1

3

∣
∣
∣
∣ ≈ 1

20.21n
if n 
= 3 mod 6

∣
∣
∣
∣Pr[FA(x) ≡ 2 mod 3 | hx is even] − 1

3

∣
∣
∣
∣ ≈ 1

20.21n
if n = 3 mod 6

Therefore, if the number of samples, � = O(20.42n), one can distinguish {(xi ,FA(xi ))}i∈[�]
from the uniform samples {(xi , yi )}i∈[�].

Now, we give an analysis under the assumption that a vector is component-wise inde-
pendent. For the avoidance of confusion, we newly define a random variable Y as follows.
Let Y be a multivariate random variable that follows a distribution on {0, 1}n that each entry
is independently and uniformly sampled from {0, 1}. Then, the conditional probability of
1T · y = 0 mod 3 given that y is uniformly sampled from Y and hy is even is

Pr[1T · y = 0 mod 3| y $←− Y , hy is even] =
∑� n

6 �
k=0

( n
6k

)

∑� n
6 �

k=0

( n
6k

) + ( n
2+6k

) + ( n
4+6k

) (2)

We first note that hy = 1T · y = 〈1, y〉 since y ∈ {0, 1}n , and will gain use the fact that
( n
6k+a

)
if and only if 〈1, y〉 = a mod 6 for every k ∈ {0, . . . , � n−1

6 �} and a ∈ {0, . . . , 5}.
For events A : [y $←− Y & hy is even], and B : [1T · y = 0 mod 3], we easily observe that
Pr[A] equals to the denominator of the right-hand side of the Eq. (2). Moreover, we easily
verify that the probability Pr[A⋂

B] equals to the numerator of the right-hand side of the
Eq. (2). Therefore, with the Lemma 4.1 and the properties of 6-th root of unity w, we obtain
the following.
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Pr[1T · y = 0 mod 3| y $←− Y , hy is even] =
∑� n

6 �
k=0

( n
6k

)

∑� n
6 �

k=0

( n
6k

) + ( n
2+6k

) + ( n
4+6k

)

=
∑5

k=0(1 + wk)n

6 · 2n−1 = 1

3
+ w2n((−i

√
3)n + (−1)n) + w4n((i

√
3)n + (−1)n)

6 · 2n−1

where w is 6-th root of unity, 1+i
√
3

2 . Similar to the above section, a straightforward compu-
tation leads us the following lemmas.

Lemma 4.6 Let Y be a multivariate random variable that follows a distribution on {0, 1}n
that each entry is independently and uniformly sampled from {0, 1}. Then, the conditional
probability of 1T · y = 0 mod 3 given that y is uniformly sampled from Y and hy is even is
that

Pr[1T · y = 0 mod 3| y $←− Y , hy is even] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3 + 2(i

√
3)n+2

6·2n−1 n = 6k
1
3 + 3(i

√
3)n−1+1

6·2n−1 n = 6k + 1
1
3 − (i

√
3)n+1

6·2n−1 n = 6k + 2
1
3 + −2

6·2n−1 n = 6k + 3
1
3 − (i

√
3)n+1

6·2n−1 n = 6k + 4
1
3 − 3(i

√
3)n−1−1

6·2n−1 n = 6k + 5

Proof (of Lemma 4.6) Repetitive computations are required to prove this lemma. Similar to
the proof of Lemma 4.2, we only leave a proof of a case n = 6k for readability.

Pr[1T · y = 0 mod 3 | y $←− Y , hy is even] =
∑� n

6 �
k=0

( n
6k

)

∑� n
6 �

k=0

( n
6k

) + ( n
6k+2

) + ( n
6k+4

)

= 2n + (1 + w)n + (1 + w2)n + (1 + w4)n + (1 + w5)n

3 · 2n

= 2n + (w5i
√
3)n + (−w4)n + (−w2)n + (−wi

√
3)n

3 · 2n

= 2n + 2(i
√
3)n + 2

3 · 2n = 1

3
+ 2(i

√
3)n + 2

6 · 2n−1

�� ��
If n ≡ 3 mod 6,we require an extra analysis to point out aweakness of circulantMod-2/Mod-
3 weak PRF. However, we easily overcome this situation by computing a new conditional
probability. Indeed, through similar computations of Lemma 4.6, we obtain the below lemma.

Lemma 4.7 Let Y be a random variable defined on Lemma 4.6. If n is 6k + 3, then we have
that

Pr[1T ·y = 2 mod 3| y $←− Y , hy is even] =
∑� n

6 �
k=0

( n
6k+2

)

∑� n
6 �

k=0

( n
6k

) + ( n
2+6k

) + ( n
4+6k

)

= 1

3
+ w2n+4((−i

√
3)n + (−1)n) + w4n+2((i

√
3)n + (−1)n)

6 · 2n−1

= 1

3
− 3(−i

√
3)n−1 + (−1)n

6 · 2n−1

123



Adventures in crypto dark matter 1749

Experiments 4.8 To support our expectation, we implement experiments in accordance with

1. Sample a random vector a from {0, 1}n .
2. Construct a circulant matrix A using the sampled vector a.7

3. Compute FA(x) for sufficiently many x’s.
4. Compute a conditional probability as done in the above two lemmas.
5. Go to 1 again.

Then, we can provide experimental results to support that Pr[FA(x) ≡ 0 mod 3 | hx is even]
and Pr[FA(x) ≡ 2 mod 3 | hx is even] are almost the same as results of Lemmas 4.6 and 4.7.

In Fig. 1, we first regard (logarithms of) the averages of the above conditional probabilities
for several n, as blue points. Then, we draw a trend line from them. The (logarithm) trend
line is −0.2038n − 0.4317 similar to 2−0.21n induced by our computations.

We also conducted several experiments for a fixed n. For case n ≤ 18, we ran experiments
for all possible base vectors to demonstrate that our experiments are not lucky cases. For the
same reason, 128 random base vectors were used to support our heuristic assumptions for
n = 32, 40 and 50.

During experiments, we observed some irregularities outside of our expectations. For
example, under the case n = 218, there are 3.2% = (8422/218) base vectors for which our
assumption is invalid even though the analysis does not depend on the form ofA. Indeed, the
value of red points drawn along the irregular cases in Fig. 2a is much smaller than that of the
green points that follow our prediction. However, for these cases, we gathered x’s with odd
hx. Then, we observe that the maximum value M of {Mα,β}α∈{0,2},β∈{odd, even}, where Mα,β

is defined as (3), is far from 1/3 by at least 1
20.21n

in Fig. 2b, which confirms that our attacks
succeed regardless of the base vector a.

Mα,β :=
∣
∣
∣
∣Pr[FA(x) ≡ α mod 3 | hx is β] − 1

3

∣
∣
∣
∣ (3)

Theorem 2 is proved by Lemma 4.6, Lemma 4.7 and experimental results 4.8.

Remark 4.9 Similar to Remarks 4.4 mentioned above, our attack is easily extended to a
circulant Mod-p/Mod-q weak PRF for arbitrary primes p and q . Following our proof, the

adversary’s advantage of a circulant Mod-p/Mod-q weak PRF is larger than cn ·
∣
∣
∣
wpq+1

2

∣
∣
∣
n ≈

(
cos

(
π
pq

))n
wherewpq is pq-th root of unity. As an example, we observe that the advantage

of a circulant Mod-3/Mod-5 weak PRF is larger than
(
cos

(
π
15

))n ≈ 1
20.032n

from the same
computation, so n should be increased to 2000 for the 128-bit security under a measure
T /ε2 = 2λ.

4.3 Analysis of a basic Mod-2/Mod-3 weak PRF

In this section, we introduce the first direct attack on the Mod-2/Mod-3 weak PRF with a
random key A. Unfortunately, even if we can solve k-xor problem, our analysis based on the
conditional bias outputs does not break the current parameters of the basic Mod-2/Mod-3
weak PRF.

For an analysis, we borrow a polynomial representation of FA(x) in [13]. In this section,
all operations in the polynomial representation ofFA(x) are overZ3.Wewill omit the symbol
mod3 for the ease representation.

7 We call a a base vector.
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Fig. 1 Averages of (logarithm) biases according to n and its trend line

Fig. 2 Experimental results of all base vectors in {0, 1}n with n = 18. The x-axis is the decimal representation
of the all base vectors. Note that every binary vector with the length n can be represented by an integer ≤ 2n

FA(x) =
m∑

i=1

⎛

⎝
n∏

j=1

(1 + x j )
ai, j − 1

⎞

⎠ ,

where a matrix A = (ai, j ) ∈ {0, 1}m×n and a vector x = (xi ) ∈ {0, 1}n . Note that since ai, j
is 0 or 1, the following lemma is trivial.
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Lemma 4.10 Mod-2/Mod-3weakPRF is interpreted as a product ofmatrices.More precisely,
for a key A = (ai, j ) ∈ {0, 1}m×n and a vector x = (xi ) ∈ {0, 1}n,

FA(x) + m =
m∑

i=1

fi (x) = 1T ·
n∏

i=1

(I + diag(xiAi )) · 1

where Ai is the i-th column of A, and fi (x) = ∏n
j=1(1 + ai, j x j ), and diag(xiAi ) is a

diagonal matrix whose j-th diagonal entry is the same as j-th component of a vector xiAi .

Above lemmas provide the closed matrix form of Mod-2/Mod-3 weak PRFs. The closed-
form induces an interesting property that

∏n
i=1(I+ diag(xiAi )) has an input-homomorphic

structure, which is the crucial observation that enables us a new analysis using its structure.
We give the proof in Appendix B.

Lemma 4.11 Let H(x) be a function defined as H(x) := ∏n
i=1(I + diag(xiAi )) where Ai

and xi ’s are the same as the above Lemma 4.10. Then, for arbitrary binary vectors x and y,
it holds that

H([x + y]2) = H(x) · H(y) mod 3

Therefore, FA([x + y]2) + m = ∑m
i=1 fi (x) · fi (y) where FA(x) + m = ∑m

i=1 fi (x) and
FA(y) + m = ∑m

i=1 fi (y). Here fi (x) is 1 or 2.

Our analysis consists of two steps. First, we employ an algorithm for solving k-xor problem
to find vectors x1, . . . , xk such that x1 +· · ·+xk = 0 mod 2 using O(k ·2n/(1+�log2 k�)) time
and space. (See the Sect. 2.2 for results of the k-xor problem.) Then,without loss of generality,
let xk := x1 + · · · + xk−1 mod 2. Then, FA(xk) is written as

∑m
i=1 fi (x1) · · · fi (xk−1) for

fi defined as Lemma 4.11. As a next step, we compute conditional probabilities according
to k for analysis.

Remark 4.12 Our analysis excludes k = 1 and k = 2 cases. We describe the reason as
follows.

• (k = 1 case) In this case, if x = 0, thenFA(x) is also zero. Thus, we can only distinguish
a random sample and a weak PRF sample with probability 1/2.

• (k = 2 case) In this case, finding two vectors x1, x2 such that x1+x2 = 0 mod 2 directly
implies that x1 = x2 in Zn

2. Thus, it is obvious that FA(x1) = FA(x2). Therefore, we can
not distinguish random samples and weak PRF samples.

According to above observation, we omit k = 1, 2 case.

Based on the k-xor problem, we analyze k = 3, 4 and k ≥ 5 cases, respectively.

4.3.1 Case k = 3

Similar to k = 2, we first find vectors x1, x2, x3 such that x1 + x2 + x3 = 0 mod 2 using
O(2n/2) time and space. Since x3 = x1 + x2 mod 2, fi (x3) is equal to fi (x1) · fi (x2) for all
i ∈ [n] from the Lemma 4.11. Then, for such three vectors, we observe that

3∑

i=1

(FA(xi ) + m) =
m∑

i=1

( fi (x1) + fi (x2) + fi (x3)) (4)

=
m∑

i=1

( fi (x1) + fi (x2) + fi (x1) · fi (x2)) (5)
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Now, we compute a conditional probability that
∑3

i=1(FA(xi ) + m) is “zero” given that
xi ’s are uniformly sampled from {0, 1}n such that x1 + x2 + x3 = 0 mod 2. As a result, we
obtain the following Theorem 4.13. We give the proof in Appendix B.

Theorem 4.13 Let λ be the security parameter, and n and m parameters of Mod-2/Mod-3
weak PRF candidate. Then, if � > c1 ·2n/2 for some constant c1, there exist roots of the 3-xor

problem. Then, for a key A
$←− {0, 1}m×n and inputs xi

$←− {0, 1}n for all i ∈ [n], it holds
that

∣
∣
∣
∣
∣
Pr

[
3∑

i=1

(FA(xi ) + m) = 0 mod 3 |
3∑

i=1

xi = 0 mod 2

]

− 1

3

∣
∣
∣
∣
∣
= dm

20.60m

for some constant dm. Therefore, there exists an adversary A in running time c2 · 2n/2 for

some constant c2 such that for any yi
$←− Z3 i ∈ [�],

∣
∣
∣Pr[A(1λ, {(xi ,Fλ(xi ,A)}�i=1] − Pr[A(1λ, {(xi , yi }�i=1)]

∣
∣
∣ ≥ dm

20.60m

4.3.2 Case k = 4

Except for complex computations, almost parts of the attack are the same as the analysis
of k = 3. In this case, We can find vectors x1, . . . , x4 such that x1 + · · · + x4 = 0 mod 2
using O(2n/3) time and space. Let x4 = x1 + x2 + x3 mod 2. Then, fi (x4) is equal to
fi (x1) · fi (x2) · fi (x3) for i ∈ [n]. In a similar way to k = 3, we obtain the following
Theorem 4.14.

Theorem 4.14 Let λ be the security parameter, and n and m parameters of Mod-2/Mod-3
weak PRF candidate. Then, if � > c1 · 2n/3, there exists solutions of 4-xor problems. For a

key A
$←− {0, 1}m×n and inputs xi

$←− {0, 1}n for all i ∈ [�], it holds that
∣
∣
∣
∣
∣
Pr

[
4∑

i=1

(FA(xi ) + m) = 0 mod 3 |
4∑

i=1

xi = 0

]

− 1

3

∣
∣
∣
∣
∣
= 2

3
· 1

20.68m

Therefore, there exists an adversary A in running time c2 · 2n/3 such that for any yi
$←− Z3

with i ∈ [�],
∣
∣
∣Pr[A(1λ, {(xi ,Fλ(xi ,A)}�i=1] − Pr[A(1λ, {(xi , yi }�i=1)]

∣
∣
∣ ≥ 2

3
· 1

20.68m

4.3.3 Case k ≥ 5

Our statistical analysis heavily depends on the bias of a conditional probability of some
polynomial G(x1, . . . , xk) defined on mod 3 given by solutions of the k-xor problem. As k
increases, conditional probabilities of G(x1, . . . , xk) mod 3 being 0, 1, 2 for any G given by
roots of the k-xor problem are close to 1/3, so the advantage of statistical analysis decreases.
Indeed, if k = 5, the advantage is already smaller than 1

2m in our approach.
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5 How to fix a weakness of Mod-2/Mod-3 weak PRFs

In this section, we suggest modified weak PRF candidates to prevent statistical attacks while
preserving low depth and its circuit complexity. Thus, we think that fixed weak PRFs are still
MPC friendly. Since our attacks use the biases of conditional probabilities, if the bias of the
probability becomes smaller, our attacks become weaker.
An alternative Mod-2/Mod-3 weak PRF

The simplest methodology to fix an alternative Mod-2/Mod-3 is to increase the size of n
from 384 to 610. Other simple approach might use large Hamming weights of the secret key
k since the advantage of our attack is roughly 2−0.21h for the Hamming weights h. Thus, this
constraint of h would sometimes mislead when we use big h such that 2−0.21h ≈ 2−λ then
the scheme is secure against our statistical attack.

However, we additionally remark that this modification is still insecure against a variant
of our attack. The key observation of this variant is that every Fk(x) could be converted into
Fk̃(x) with k̃ = (1, . . . , 1) − k with some additional noise (or some penalty noise).

〈k, x〉 = 〈(1, . . . , 1), x〉 − 〈̃k, x〉 = xh − 〈̃k, x〉,
where xh is the hamming weight of an input vector x. We revisit the observation thatFk(x) =
0 mod 2 if and only if 〈k, x〉 = 0, 1, 2 mod 6. When xh = 2 mod 6, the following holds.

〈k, x〉 = 0, 1, 2 mod 6 if and only if 〈̃k, x〉 = 2, 1, 0 mod 6,

〈k, x〉 = 3, 4, 5 mod 6 if and only if 〈̃k, x〉 = 5, 4, 3 mod 6,

Fk̃(x) = Fk(x).

We also conducted experiments for (small) various n to provide the validity of this new
attack on Fk̃. The results are give in Table 2. As a consequence, we conclude that n could
not be smaller than 610 by choosing different types of k.

In order to reduce the size of n, we remove the statistical weakness of an alternative
Mod-2/Mod-3 weak PRF by selecting two independent secret keys k1,k2. A new candidate
Fk1,k2(x) is defined as follows.

Fk1,k2(x) = (〈k1, x〉 mod 2 + 〈k2, x〉 mod 3) mod 2.

Here, 〈k2, x〉 mod 3 acts as an error to preserve the conditional probability 1
2 , which

implies that this revision might be secure against our attack. In addition, unlike conventional
construction, 〈k1, x〉 mod 2 and 〈k2, x〉 mod 3 are close to independence, so they withstand
well in the existing attacks, including the BKW attack. Thus, we can easily fix an alternative
Mod-2/Mod-3 weak PRF against all known attacks including our statistical attack.Moreover,
it preserves the current parameter n and depth-2 ACC0[m] circuits.

To support that the modification is secure against our attack, we conducted experiments
for various n. The results are also presented in Table 2. We observe that if x is randomly
chosen, then the advantage of our attack on the ‘fixed’ candidate is zero. However, when we
collect n-dimensional input vectors such that its hamming weights equals to 2 in Z6, then its
expected bias is approximate to 2−0.59n , extremely smaller than the previous bias 2−0.16n .
Hence, we can heuristically confirm that the fixed scheme is secure against our statistical
attack.
A circulantMod-2/Mod-3weak PRFOur strategy is to break a weak structure of a circulant
Mod-2/Mod-3 weak PRF that preserves a parity of [Ax]2 if hx is even for any circulant matrix
A.
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Table 2 Experiment of an
alternative weak PRF n Type of inputs

xh = 2 mod 6 Random

Fix Fk̃ = Fk Fix Fk

10 − 4.82 − 2.44 – − 2.75

12 − 6.76 − 2.74 – − 2.73

14 − 8.27 − 3.23 – − 3.02

16 − 9.6 − 3 – − 3.22

18 − 10.65 − 3.52 – − 3.68

20 − 11.47 − 3.8 – − 3.72

22 − 12.59 − 3.97 – − 4.21

24 − 14.31 − 4.45 – − 4.45

26 − 15.09 − 4.84 – − 4.79

28 − 16.37 − 5.2 – − 5.16

Expected bias ≈ 2−0.61n ≈ 2−0.15n 0 ≈ 2−0.14na

Averages of (logarithm) biases according to n and type of inputs and
expected biases.
a Here, in our previous computation, the expected bias is also approxi-
mate to O(2−0.105n), but experiments say that the actual bias is roughly
2−0.14n . We speculated that since n is very small, the hidden constant
in big-O notation heavily affected the actual results

To avoid a weakness, we propose two matrices. First, we inject an extra secret vector
and generate a new secret key B with two secret vectors. We name B a semi-circulant key.
Previously, a circulant secret key is generated by a single vector. For explanation, let a and
b be secret vectors. Then, we construct a secret matrix B as follows. For simplicity’s sake,
assume that n is even.

– Set initial vectors such that the first row of B is a and n/2-th row of B is b.
– For each 2 ≤ i ≤ n/2, i-th row of B is ρi (a), where ρi (a) shifts one element to the right

relative to the ρi−1(a) with ρ1(a) = a and ρn+1(a) = a.
– Similarly, for each n/2 < j ≤ n, j-th row of B is ρ j (b).

Then, we observe that each column of a matrix B does not preserve Hamming weights, so a
vector of ones (1, . . . , 1) is not a left-eigenvector of B. Thus, this revision might be secure
against our attack.

As another candidate for the fixed weak PRF, we can use the Toeplitz matrix instead of
a circulant matrix. Then, (1, . . . , 1) will not be an eigenvector any longer. Furthermore, the
base vector of Toeplitz matrix is also simple, which yields that one can efficiently generate
weak PRF samples.

Thus, we can easily fix a circulant Mod-2/Mod-3 weak PRF against all known attacks
including our statistical attack. Moreover, the size of PRF key is still smaller than that of
random key, and it preserves the current parameter n and depth-2 ACC0[m] circuits.

To support that the simple modification to a semi-circulant key B and the Toeplitz matrix
are secure against our attack, we conducted experiments for several n and types of secret key;
randomA, semi-circulant B and Toeplitz matrix. To construct a semi-circulant key B and the
Toeplitz matrix, we randomly choose two vectors from {0, 1}n and a vector from {0, 1}2n−1,
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Fig. 3 Averages of (logarithm) biases according to n and types of secret keys and their trend lines

Table 3 Experiment of a ciculant weak PRF

n Types of secret keys
Random Semi-circulant Toeplitz Circulant

16 − 8.77 − 8.18 − 8.45 − 3.67

18 − 9.93 − 9.16 − 9.88 − 4.24

24 − 13.11 − 13.15 − 13.17 − 5.36

28 − 16.02 − 16.39 − 15.65 − 6.19

Expected bias ≈ 2−0.59n ≈ 2−0.68n ≈ 2−0.59n ≈ 2−0.20n

Averages of (logarithm) biases according to n and type of secret keys and expected biases

respectively. For n = 16, 18, we experimented with 128 different secret keys to compute
(average of) logarithm biases of the statistical attack. Similarly, for n = 24, 28, we provided
experimental results for 20 different secret keys. Moreover, for each case, 2n samples were
used to compute accurate M = maxα,β{Mα,β}α∈{0,2},β∈{odd, even}.

According to the Fig. 3 and Table 3, we observe that a semi-circulant weak PRF with B
and a Toeplitz weak PRF, behaves a Mod-2/Mod-3 weak PRF with random secret key A.
Moreover, the fixed candidate is secure against all known attacks under the current parameters
n = m = 256 since its advantage is already larger than 2−0.5n .

The fixed candidate would be also interesting since it almost preserves the advantage
of a circulant Mod-2/Mod-3 weak PRF: a quasi-linear multiplication time. Since the semi-
circulantmatrix consists of two secret vectorswith their rotations, by computing two circulant
matrix-vector multiplications, we easily obtain outputs of the semi-circulant Mod-2/Mod-3
weak PRFs. Similarly, the Toeplitz matrix also has a quasi-linear multiplication time. Thus,
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the fixed candidates still allow a quasi-linear multiplication time although its real time is
twice slower than the circulant Mod-2/Mod-3 weak PRF.

Remark 5.1 We observe that the weakness of a circulant Mod-2/Mod-3 weak PRF might
come from a structured property ofA. Indeed, we observe that if we break down the property
that (1, . . . , 1) is an left-eigenvector of the secret key, then Mod-2/Mod-3 weak PRFs with
semi-circulant matrix and Toeplitz are secure against our attacks.

Remark 5.2 Themain idea of the revision of weak PRF candidates is to change the way secret
keys are sampled (a single vector with high Hamming weights, or semi-circulant or Toeplitz
keys) while slightly increasing or preserving the parameters. Thus, it is more efficient than
the basic revision that increases the key size.
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A Simple Non-Adaptive Attack

In this section, we provide a simple non-adaptive attack of a basic Mod-2/Mod-3 weak PRF,
which runs in polynomial time n. The attack is motivated by rank attack [14, 15].

Assume that adversary has exponentially many samples (zi , vi ). The goal is to determine
whether vi is uniformly sampled from Z3 or sampled from a Mod-2/Mod-3weak PRF.

Let s be an integer > max{m, n}. Then, our attack is:

1. Find s2 pairs of vectors {(xi , y j )}i, j∈[s] such that zi, j = xi + y j for some zi, j in a list of
samples.

2. Construct a matrix M = (vi, j ), where vi, j is a sample corresponding to a vector zi, j .
3. Compute a rank ofM.

For an analysis, we borrow a polynomial representation of FA(x) in [13].

FA(x) =
m∑

i=1

⎛

⎝
n∏

j=1

(1 + x j )
ai, j − 1

⎞

⎠ ,

where a matrix A = (ai, j ) ∈ {0.1}m×n and a vector x = (xi ) ∈ {0, 1}n . Note that since ai, j
is 0 or 1, the following lemma is trivial.

Lemma A.1 Mod-2/Mod-3 weak PRF is interpreted as a product of matrices. More precisely,
for a key A = (ai, j ) ∈ {0, 1}m×n and a vector x = (xi ) ∈ {0, 1}n,

FA(x) + m =
n∑

i=1

fi (x) = 1T ·
n∏

i=1

(I + diag(xiAi )) · 1

where Ai is the i-th column of A, and fi (x) = ∏n
j=1(1 + ai, j x j ), and diag(xiAi ) is a

diagonal matrix whose j-th diagonal entry is the same as j-th component of a vector xiAi .
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Based on the above lemma, we complete the non-adaptive attack. When vi, j ’s are truly
random, a rank ofM is s with high probability. However, if it is of the form map(A · ([xi +
y j )]2), then a matrix M is divided into a product of two matrices using Lemma A.1.

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1T · H(x1)

1T · H(x2)

1T · H(x3)
...

1T · H(xρ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

·
(
H(y1) · 1, H(y2) · 1, H(y3) · 1, · · · , H(yρ) · 1

)

Hence, a rank ofM is bounded by min(m, n) with high probability. The attack runs in O(n)

time and space.
The rank attack only succeeds when an adversary is possible to use an oracle access to

input queries. However, in the setting ofweak PRF, inputs are selected randomly from {0, 1}n ,
our attack does not work anymore.

B Proofs of Theorems

In this section, we provide proofs of Lemma 4.11, Theorems 4.13 and 4.14.

m 64 128 196 256 384 512 1024
dm − 0.53 0.18 − 0.54 − 0.57 − 0.49 0.31 − 0.38

Proof (of Lemma 4.11) We easily obtain the following relations.

H(x) · H(y) =
n∏

i=1

(I + diag(xiAi )) ·
n∏

i=1

(I + diag(yiAi ))

=
n∏

i=1

(I + diag(xiAi ))(I + diag(yiAi )),

H([x + y]2) =
n∏

i=1

(I + diag([xi + yi ]2Ai ))

Therefore, it is enough to confirm that

(I + diag([xi + yi ]2Ai )) ≡ (I + diag(xiAi ))(I + diag(yiAi )) mod 3. (6)

If (xi , yi ) is one of (0, 0), (1, 0), and (0, 1), the above identity is trivial.
For the last case (xi , yi ) = (1, 1), the right-hand side of an Eq. (6) is the identity matrix.

Moreover, the left-hand side of the equation is the same as (I + diag(Ai ))
2. Note that 12 ≡

22 ≡ 1 mod 3, and every element ofA is binary, it must hold that (I+diag(Ai ))
2 ≡ I mod 3.

Hence, the proof is completed. ��
Proof (of Theorem 4.13) Let {xi }3i=1 be vectors such that

∑3
i=1 xi = 0 mod 2. Since a key

A is randomly chosen matrix, fi (xk) and f j (xk) are independent with distinct i, j for all k.
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Also, without loss of generality, assume that x1, x2 are mutually independent since x3 can
be regarded as x3 = [x1 + x2]2. Moreover, for sufficient large n, it could be assumed that
fi (xk) is uniformly drawn from {1, 2} since for any j, k, Pr[ f j (xk) = 1] ≈ 1/2 + 1/2n+1,
and f j (xk)’s are independent as stated above.

Then we easily confirm that

Pr[ fi (x1) + fi (x2) + fi (x1) fi (x2) ≡ 0 mod 3] = 1/4,

Pr[ fi (x1) + fi (x2) + fi (x1) fi (x2) ≡ 1 mod 3] = 0,

Pr[ fi (x1) + fi (x2) + fi (x1) fi (x2) ≡ 2 mod 3] = 3/4.

Let i1, i2, i3 be the number of i’s that satisfies fi (x1)+ fi (x2)+ fi (x1) fi (x2) ≡ 0, 1, 2 mod
3, respectively. Then

∑3
i=1(FA(xi )+ n) mod 3 is i2 + 2i3 mod 3. In this case, i2 is zero. so,

if i3 is a multiple of 3, then fi (x1) + fi (x2) + fi (x1) fi (x2) mod 3 is zero.
According to an Eq. (4), we have that

Pr

[
3∑

i=1

(FA(xi ) + n) = 0 mod 3 |
3∑

i=1

xi = 0

]

=

∑

i≡0 mod 3

(
m

i

)

· 3i

4m
= 4m + (3 + ζ )m + (3 + ζ 2)m

3 · 4m

= 1

3
+

(
δm + δ̄m

3

)

·
(√

7

4

)m

≈ 1

3
+ dm · 1

20.60m

where ζ is 3-rd root of unity, −1+i
√
3

2 and δ is 5+i
√
3

2
√
7
.

dm is a value determined according to m. For the parameter m, which is commonly used,
it has the following values.

Similarly, for k = 4, we can provide a proof by computing almost the same procedures.

Proof (of Theorem 4.14) Let {xi }4i=1 be vectors such that
∑4

i=1 xi = 0 mod 2. Since a key
A is randomly chosen matrix, fi (xk) and f j (xk) are independent with distinct i, j for all k.
Without loss of generality, assume that x1, x2, x3 are mutually independent since x4 can be
regarded as x4 = [x1 + x2 + x3]2. Moreover, for sufficient large n, it could be assumed that
fi (xk) is uniformly drawn from {1, 2} since for any j, k, Pr[ f j (xk) = 1] ≈ 1/2 + 1/2n+1,
and f j (xk)’s are independent as stated above. Then, we observe that

Pr[ fi (x1) + fi (x2) + fi (x3) + fi (x1) fi (x2) fi (x3) ≡ 0 mod 3] = 3/4,

Pr[ fi (x1) + fi (x2) + fi (x3) + fi (x1) fi (x2) fi (x3) ≡ 1 mod 3] = 1/8,

Pr[ fi (x1) + fi (x2) + fi (x3) + fi (x1) fi (x2) fi (x3) ≡ 2 mod 3] = 1/8.

Let i1, i2, i3 be the number of i’s that satisfies fi (x1) + fi (x2) + fi (x1) fi (x2) fi (x3) ≡
0, 1, 2 mod 3, respectively. Then

∑3
i=1(FA(xi )+n) mod 3 is i2+2i3 mod 3. i2 ism−i1−i3.

so, ifm− i1 + i3 is a multiple of 3, then fi (x1)+ fi (x2)+ fi (x1) fi (x2) fi (x3) mod 3 is zero.
According to the similar analysis, it holds that

Pr

[
4∑

i=1

(FA(xi ) + n) = 0 mod 3 |
4∑

i=1

xi = 0

]
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=

m∑

i1=0

⎛

⎝
(
m

i1

)

· 6i1 ·
∑

m−i1+i3≡0 mod 3

(
m − i1
i3

)
⎞

⎠

8m

=

m∑

i1=0

((
m

i1

)

· 6i1 · 1
3
(2m−i1 + ζm−i1(ζ + 1)m−i1 + ζ 2m−2i1(ζ 2 + 1)m−i1)

)

8m

= 1

3
+

m∑

i1=0

((
m

i1

)

· 6i1 · ((−1)m−i1 + (−1)m−i1)

)

3 · 8m
= 1

3
+ 2

3
·
(
5

8

)m

≈ 1

3
+ 2

3
· 1

20.68m
,

where ζ is 3-th root of unity, −1+i
√
3

2 . ��
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