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Abstract
In Etzion et al. (IEEE Trans Inform Theory 64(4):2398–2409, 2018), introduced metrics on
F
n
2 based on directed graphs on n vertices, and in Hyun et al. (IEEE Trans Inform Theory

65(8):4664–4672, 2019), the authors introduced weighted poset metrics on F
n
2 which may

be considered as an algebraic version of directed graph metric. They also classify weighted
posets and directed graphs admitting the extendedHamming code of length 8 to be a 2-perfect
code. In this paper, we will continue the classification problem further. It will be shown that
every weighted poset or directed graph which admits extended Hamming code is completely
determined by its structure vector. Let s be the length of the structure vector. In Sect. 3
(resp.4), we will classify structure vectors of weighted posets (resp. directed graphs) which
admit the extended Hamming code ˜Hm,m ≥ 2 to be a 2-perfect code when s = 3, 4, 5 (resp.
s = 3, 4). As a consequence our classification, we will classify weighted posets and directed
graphs which admit the extended Hamming code of length 16 to be a 2-perfect code.
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1 Introduction

Let F2 be the finite field of order two and F
n
2 be the vector space of n-tuples of elements in

F2.
Coding theory has mainly focused on the study of Fn

2 when F
n
2 is endowed with the Ham-

ming metric. Since the late 1980’s several attempts have been made to generalize classical
problems of the coding theory by introducing a family of new non-Hamming metrics on
F
n
2 (cf. [9, 11, 12]). These attempts led Brualdi et al. [2] to introduce the concept of poset

metrics on Fn
2 in 1995. We refer to [1, 3, 4, 6, 8, 10] for some results on poset metric spaces

such as perfect codes, group of isometries, packing radius, and relation with association
schemes. Recently, in [5], the authors introduced metrics on F

n
2 based on directed graphs

and they discussed basic topics of coding theory over the metric based on directed graphs.
In [7], the authors extended the concept of poset metric to that of weighted poset metric.
The passage from ‘poset metric’ to ‘weighted poset metric’ is not a mere generalization of
concepts, but rather it is motivated by directed graph metrics. In fact, we may view weighted
poset metric as an algebraic version of directed graph metric. One merit of this algebraic
formulation is that it facilitates to classify directed graphs which admit a given code to be
a perfect code. In [7], the authors investigated interrelations between weighted poset metric
space and corresponding weighted directed graph metric space, and as an application of this
interrelationship, they classify weighted posets and directed graphs which admit the extend
Hamming code of length 8 to be a 2-perfect code. In the present paper, we will continue this
classification problem further.

To explain our goal more clearly, we briefly introduce some terminology. We refer to [7]
for detailed discussion.

1.1 Poset metrics

Recall thatFn
2 is the vector space of binary n-tuples of elements in F2. The support supp(x) of

x in Fn
2 is the set of non-zero coordinate positions. The Hamming weight wH (x) of a vector

x in F
n
2 is the size of supp(x). Notice that there is a one to one correspondence between F

n
2

and the set of subsets of {1, 2, . . . , n} defined by x �→ supp(x). Throughout this paper, we
identify x in F

n
2 with its support, and so we can identify x + y with x�y, where � is the

symmetric difference.
Throughout this paper, for a positive integer n, [n] denotes the set {1, 2, . . . , n}, i.e [n] �

{1, 2, . . . , n}.
Let (P,�) be a partially ordered set (for short, poset) of size n. A subset I of P is called

an order ideal if i ∈ I and j � i imply that j ∈ I . For a subset A of P , 〈A〉P denotes the
smallest order ideal of P containing A. The order ideal generated by {i} is denoted 〈i〉P for
short.

Without loss of generality, we may assume that P is {1, 2, . . . , n} and that the coordinate
positions of vectors in F

n
2 are labeled by P . The P-weight of a vector x in F

n
2 is defined by

the size of the smallest order ideal of P containing x , that is,

wP (x) = |〈x〉P | .
The P-distance of the elements x and y in F

n
2 is defined by

dP (x, y) = wP (x − y).

The metric dP on F
n
2, which is introduced by Brualdi et al. in [2], is called a poset metric.
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Classification of weighted posets and digraphs 2251

1.2 Weighted poset metrics

Let (P,�) be a partially ordered set and π a function from P toR>0 being the set of positive
real numbers. The triple (P,�, π) is called aπ -weighted poset.We simply denote aweighted
poset by Pπ . The Pπ -weight of x in F

n
2 is defined by

wPπ (x) =
∑

i∈〈x〉P
π(i).

The Pπ -distance of the vectors x and y in F
n
2 is defined by

dPπ (x, y) = wPπ (x − y).

We have the following lemma whose proof is straightforward.

Lemma 1.1 If Pπ is a weighted poset, then Pπ -distance dPπ is a metric on F
n
2 .

We call the metric dPπ on Fn
2 a π -weighted poset metric.

1.3 Directed graphmetrics

All graphs considered are directed simple graphs, that is, it has neither a loop nor a multiple
edge. Let G be a directed graph (or digraph for short) consisting of a vertex set V (G) and
an edge set E(G) where the (directed) edge is an ordered pair of distinct vertices. For any u
and v in V (G) with u 	= v, we say that v is dominated by u if there is a path from u to v.
For a subset S of V (G), we denote 〈S〉G the set consisting of S and the vertices which are
dominated by vertices in S. The G-weight of x in F

n
2 is defined by the size of the vertices

dominated by {x}, that is,
wG(x) = |〈x〉G | .

The G-distance of the vectors x and y in F
n
2 is defined by

dG(x, y) = wG(x − y).

The metric dG on F
n
2 which is introduced by Etzion et al. in [5] is called a digraph metric.

The Hamming metric may be considered as a G-metric where G contains no edges.

1.4 Weighted poset metric and directed graphmetric

In this subsection, we briefly explain how a digraph metric induces a weighted poset metric.
In fact we can show that the weighted poset metric and digraph metric are ‘essentially’
equivalent. Moreover the weighted poset metric is easy to handle algebraically and this
justifies the phrase ‘weighted poset metric is an algebraic version of digraph metric’. We
refer to [7] for details.

Let G be a digraph with n vertices. For any u and v in V (G), we write u ∼ v if u = v

or there are paths from u to v and from v to u. One can easily check that it is an equivalence
relation on V (G).

Let G/∼ be the set of equivalence classes of the relation ∼. Let v̄ denote the equivalence
class containing a vertex v. We define a relation on G/∼ by ū � v̄ if ū = v̄ or there is a path
from a to b where a ∈ v̄ and b ∈ ū. Recall that a poset is a directed acyclic graph and vice
versa. One can easily show that this relation makes G/∼ into a poset.
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2252 H. K. Kim, J. Kwon

Fig. 1 π̃(1̄) = π̃(8̄) = 1,
π̃(2̄) = 4 and π̃(6̄) = 2

We may make the poset (G/∼,�) into a weighted poset by using a weight function
π̃ : G/∼ → N by π̃(v̄) = |v̄|. Here, for a set A, |A| denotes the size of A. The weighted
poset (G/∼,�, π̃) is called theweighted poset induced by the digraphG or inducedweighted
poset of G. In the sequel, we simply denote it by Pπ̃ instead of (G/∼,�, π̃). Notice that Pπ̃

is a poset with size m where m denotes the number of equivalence classes of G/∼.

Example 1.1 In Fig. 1, the given digraph has eight vertices while the induced weighted poset
has four elements which are labeled by the Pπ̃ -weight. Observe that 1̄ = {1}, 2̄ = {2, 3, 4, 5},
6̄ = {6, 7} and 8̄ = {8}.

1.5 Perfect codes

Let ∗ be either a weighted poset Pπ or a digraph G, and let d∗ be the metric on Fn
2 based on ∗,

i.e., d∗ is either a dPπ or a dG , correspondingly. Let x be a vector in Fn
2 and r a non-negative

integer. The ∗-sphere with center x and radius r is defined as the set

S∗(x; r) = {y ∈ F
n
2 | d∗(x, y) ≤ r}

of all vectors in Fn
2 whose ∗-distance from x is at most r .

Let (Fn
2, d∗) denote the metric space on F

n
2 endowed with the d∗-metric. A subset C of

(Fn
2, d∗) is called a ∗-code of length n. We wish to define an r -error-correcting perfect (for

short, r -perfect) ∗-code to be a ∗-code C of length n such that the ∗-spheres of radius r
centered at the codewords of C cover the whole space Fn

2 without overlapping. However this
definition depends on the labeling of coordinate positions of a code (See, Example 3.1). So
we modify the definition as follow:

Definition 1.1 Let C be a ∗-code of length n. We say that C admits an r -perfect code when
there is a labeling of coordinate positions such that ∗-spheres of radius r centered at the
codewords of C cover the whole space Fn

2 without overlapping with respect to this labeling.
Otherwise, we say that C does not admit an r -perfect code.

Remark 1.1 Let Fn
2 be endowed with the Hamming metric, and C be a linear code of length

n, dimension k. In this situation we say that C is an [n, k]H code or simply an [n, k] code.
If the (Hamming) minimum distance of C is d , we write C is an [n, k, d]H or simply an
[n, k, d] code. In our development we need to consider C as a subset of Fn

2 endowed with the
d∗-metric. In this situation we say that C is an [n, k, d∗]∗ code. In general, we have d ≤ d∗.

1.6 Size of sphere

In the weighted poset metric space, we can compute the cardinality of sphere of radius r as
follows. Let�ω

j (i) be the number of order ideals of P of size i , Pπ -weight ω with j maximal
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Classification of weighted posets and digraphs 2253

elements. Recall from the definition of Pπ -weight that the number of vectors in F
n
2 whose

Pπ -distance to the zero vector is exactly ω equals
⎧

⎪

⎨

⎪

⎩

1 if ω = 0,
ω

∑

i=1

i
∑

j=1

2i− j�ω
j (i) if ω > 0.

Therefore we have

∣

∣SPπ (x; r)∣∣ = 1 +
r

∑

ω=1

ω
∑

i=1

i
∑

j=1

2i− j�ω
j (i). (1)

We will close this introduction section with a short comment on the goal of this paper. In
this paper, we consider the problem of classifying weighted posets and digraphs which admit
the extend Hamming code to be a 2-perfect code. Our first goal was to classify weighted
posets and digraphs which admit the extended Hamming code of length 16 to be a 2-perfect
code, and our ultimate goal in this research is, of course, to classify all weighted posets and
digraphs which admit the extended Hamming code of length 2m,m ≥ 2, to be a 2-perfect
code. Keep this goal in mind, our approach for the extended Hamming code of length 16
would be as general as possible. It will be shown in Sect. 2 that a weighted poset or a digraph
which admits the extended Hamming code ˜Hm,m ≥ 2 to be a 2-perfect code is completely
determined by the structure vector which will be defined at the end of Chapter 2, and we
approach the problem according to the length s of the structure vector.

This paper is organized as follow: In Sect. 2, we briefly introduce basic facts which will be
used in our developments. Section 3 forms a technical core of this paper. In this section, we
classify all possible structure vectors of weighted posets which admit the extend Hamming
code ˜Hm,m ≥ 2 to be a 2-perfect code when s = 3, 4, 5. The classification consists of two
parts, namely analytic part and construction part. We first prove a necessary condition for a
weighted poset to admit the extended Hamming code to be a 2-perfect code by an analytic
method. Next we construct a labeling of coordinate positions of the extended Hamming code
which avoid forbidden patterns for each possible structure vector.Wewill end Sect. 3 with the
classification of weighted posets which admit the extend Hamming code ˜H4 to be a 2-perfect
code. This follows easily as a corollary of our previous result together with the consideration
of the case s = 6 with structure vector (0, 0, 0, 0, 0, 0). In Sect. 4, we classify all possible
structure vectors of digraphs which admit the extend Hamming code ˜Hm,m ≥ 2 to be a
2-perfect code when s = 3, 4, which gives the classification of digraphs which admit the
extend Hamming code ˜H4 to be a 2-perfect code as a consequence.

2 Preliminary

In this section, we collect basic facts which will be used in our developments. We will mainly
state the facts without proofs and refer to [7] for details.

Let ˜Hm = [n = 2m, 2m − 1 − m, 4] (m ≥ 2) be the extended Hamming code with the
usual parity check matrix Hm , where Hm is a (m + 1) × 2m binary matrix whose first row is
the all one vector of length 2m and the remaining m rows of Hm form a m × 2m submatrix
whose i-th column corresponds to the 2-adic representation of i − 1.

Recall that the set of codewords of Hamming weight 4 in ˜Hm forms a Steiner system
S(3, 4, 2m). We obtain this fact as follows: Let a and b be distinct elements in [2m] and let
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2254 H. K. Kim, J. Kwon

C be the set of codewords of Hamming weight 4 which contain {a, b}. For c ∈ C , we put
c′ = c\{a, b}. Then C ′ = {c′ : c ∈ C} is a partition of [2m]\{a, b}.

Definition 2.1 Let a, b be distinct elements in [2m]. If {a, b, x, y} is a codeword of ˜Hm , a
pair (x, y) will be called a good pair with respect to a, b. In case of fixed elements a and b
are clear from the context, we would call (x, y) a good pair simply.

The extended Hamming code ˜H4 is a binary code of length 16 with the parity check
matrix H4. Maybe one of usual way to label coordinate positions of a vector in ˜H4 would be
{0, 1, 2, . . . , 15}. However, in order to utilize the symmetry of the matrix H4, we will give a
labeling of coordinate positions by

{α, β, γ, δ, α′, β ′, γ ′, δ′, α′′, β ′′, γ ′′, δ′′, α′′′, β ′′′, γ ′′′, δ′′′},
so that H4 can be written as follow:

α β γ δ α′ β′ γ ′ δ′ α′′ β′′ γ ′′ δ′′ α′′′ β′′′ γ ′′′ δ′′′

H4 =

⎡

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎦

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

We will fix this labeling from now on. There are several advantages of this labeling:
We have several typical codewords. For example, {α, β, γ, δ}, {α′, β ′, γ ′, δ′}, {α, β, α′, β ′},
{α, γ ′, α′′, γ ′′′}, etc. are codewords of ˜H4. Moreover, if {x1, x2, x3, x4} is a codeword, then
so is {x ′

1, x
′
2, x

′
3, x

′
4}.

The following proposition, which gives a necessary and sufficient condition for a given
code to be a perfect code, was proved in [7]. Recall that we have identified a binary vector
with its support.

Proposition 2.1 [7] Let ∗ be either a π -weighted poset Pπ or a digraph G, and C be an
[n, k] binary linear ∗-code. Then C is an r-perfect ∗-code if and only if the following two
conditions are satisfied:

1. (The sphere packing condition) |S∗(0; r)| = 2n−k ,
2. (The partition condition) for any non-zero codeword c and any partition x and y of c,

either w∗(x) ≥ r + 1 or w∗(y) ≥ r + 1,

Since we aremainly interested with weighted posets or digraphs which admit the extended
Hamming code ˜Hm to be a 2-perfect code, we apply the proposition to the extendedHamming
codes to obtain the following corollary.

Corollary 2.2 [7] Let ∗ be either a π -weighted poset Pπ or a digraph G. The extended binary
Hamming code ˜Hm is a 2-packing ∗-code if and only if for any codeword c of ˜Hm with
w∗(c) = 4, and any partition x and y of c such that wH (x) = wH (y) = 2, we have either
w∗(x) ≥ 3 or w∗(y) ≥ 3, where the partition of a vector means the partition of its support.

Lemma 2.3 [7] Let ∗ be either a π -weighted poset Pπ or a digraph G. If the extended
Hamming code ˜Hm is a 2-perfect ∗-code, then there are no elements in ∗ whose ∗-weight is
bigger than two.
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Classification of weighted posets and digraphs 2255

Weneed some terminology about posets to describe our result. Let∗ be either aπ-weighted
poset Pπ or a digraph G. For the sake of simplicity we assume that ∗ is a π-weighted poset
Pπ , and write Pπ by P for short. The case of ∗ is a digraph G can be treated in a similar
manner by considering the induced weighted poset of G.

As usual we use a Hasse diagram to represent P graphically. To describe P literally, we
introduce the following subsets of P . For an integer i , and an element a in the ground set of
P , we define


i (P) = {x ∈ P : |〈x〉P | = i},

a = 
a(P) = {x ∈ P : x � a}.

Let P be a weighted poset which admits the extended Hamming code ˜Hm to be a 2-perfect
code. It follows from Lemma 2.3 that every weighted poset which admits extended Hamming
code to be a 2-perfect code has level at most two, and no element has weight bigger than
two. Notice that x is of level i in P if and only if x ∈ 
i (P) for i = 1, 2. By an abuse of
notation, we will call 
i (P) be the i th level set of P and an element in the set will be called
a level i element or an i th level element. Let X denote the set of level one elements of weight
one, and Y denote the set of level one elements of weight two. We sometimes call an element
of X a root. The number of roots in the weighted poset P will play a crucial role in our
development. Let s be the number of roots in P and write X = {r1, r2, . . . , rs}. The vector
(n1, n2, . . . , ns), where ni = |
ri (P)| is called the structure vector of the weighted poset
P . It is known that the cardinality of Y (See, for example, Lemma 3.2 in the next section) is
determined by that of X , and hence the structure of P could be completely determined by its
structure vector.

3 Classification of weighted posets

In this section, we will classify weighted posets which admit the extend Hamming code
˜Hm,m ≥ 2 to be a 2-perfect code. As it is explained in the introduction, such a weighted
poset could be completely determined by its structure vector, and we are interested in the
computation of all possible structure vectors. Let s denote the number of roots, i.e, s is the
length of the structure vector. We divide the classification into the cases s = 3, 4, 5. For
each s, we first derive a necessary condition for the structure vectors to admit the extend
Hamming code ˜Hm,m ≥ 2 to be a 2-perfect code by an analytic method. In the next, we
derive a sufficient condition by constructing a labeling of coordinate positions of ˜Hm for
each possible structure vector.

Let s indicate the number of roots, i.e, s is the value of �1
1(1). By a slight modification of

proofs in [7], we have the following lemmas:

Lemma 3.1 [7]
∣

∣SPπ (0; 2)∣∣ = 1 + �1
1(1) + �2

1(1) + 2�2
1(2) + �2

2(2).

Lemma 3.2 [7] If the extended Hamming code ˜Hm is a 2-perfect Pπ -code, then �2
1(1) =

1 + 1
2�

1
1(1)(�

1
1(1) − 3).

Lemma 3.3 [7] If the extended Hamming code ˜Hm is a 2-perfect Pπ -code, then 1 ≤ �1
1(1) ≤

� 1+√
2m+3−7
2 �.

The following corollary follows immediately from Corollary 2.2.
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Fig. 2 Forbidden patterns for
weighted posets

Fig. 3 Labeling which contains a
forbidden pattern of Type 3

Fig. 4 Labeling which avoids
forbidden patterns

Fig. 5 Labeling which contains a
forbidden pattern of Type 2

Corollary 3.4 Let Pπ be a π -weighted poset. The extended binary Hamming code ˜Hm is a
2-perfect Pπ -code if and only if for any codeword c in ˜Hm of Hamming weight 4 is not of
the types in Fig. 2.

A codeword of these types will be called a forbidden pattern. When we need to specify
the type, it will be called a forbidden pattern of type i, 1 ≤ i ≤ 3.

Example 3.1 Let us consider the following three pictures. Notice that {α, β, γ ′, δ′} is a code-
word of Hamming weight 4 in ˜H3. On the one hand, in Fig. 3, {α, β, γ ′, δ′} is a forbidden
pattern of Type 3 since the partition {α, γ ′}, {β, δ′} of {α, β, γ ′, δ′} does not satisfy the parti-
tion condition in Proposition 2.1. This illustrates that the labeling in Fig. 3 does not admit the
extended Hamming code ˜H3 to be a 2-perfect code. In fact, this structure does not admit the
extended Hamming code ˜H3 to be a 2-perfect code with respect to any labeling(See Theorem
3.5). On the other hand, in Fig. 4, one can check that any codeword c of Hamming weight 4
in ˜H3 does not yield a forbidden pattern. This proves that the labeling in Fig. 4 admits the
extended Hamming code ˜H3 to be a 2-perfect code. However, if we change the labels on Figs.
4 and 5, it does not admit the extended Hamming code ˜H3, even though their weighted poset
structures are exactly same. In Fig. 5, {α, β, γ, δ} is a codeword of Hamming weight 4 in ˜H3,
but it forms a forbidden pattern of Type 2, since the partition {α, γ }, {β, δ} of {α, β, γ, δ}
does not satisfy the partition condition of Proposition 2.1.
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Fig. 6 Basic form with s = 3

(a) (b)

Fig. 7 Extenders of s = 3

3.1 Construction from ˜Hk to ˜Hm

In this subsection, we develop a method of constructing a new weighted poset structure on
[2m] which avoids forbidden patterns from a given weighted poset structure on [2k] which
avoids forbidden patterns. This method will play an important role in proving sufficient
condition.

Definition 3.1 In a given weighted poset, the level one element of weight 1 is called a root.
For a root α, the level two elements which belong to 
α are called leaves at α.

Let m and k be natural numbers with k < m, and let Hm be the parity check matrix of
the extended Hamming code ˜Hm . We divide Hm into 2m−k submatrices A1, A2, . . . , A2m−k ,
which we will call sections, as follow: A1 denotes the submatrix of Hm consists of the first
2k columns, and A2 denotes the submatrix of Hm consists of the next 2k columns, and so on.
We need one more notation about vectors. Let c be a vector of length m + 1. The subvector
consists of the firstm+1−k (resp. last k) components is called the head (resp. tail) of c. Then
we will realize that the sections A1, A2, . . . , A2m−k have the same tail part, while they have
distinct head part. We remark that to vectors a and b of the same length satisfy a + b = 0 if
and only if they have the same head and tail. It now follows from the definition of extended
Hamming code that every codeword of Hamming weight 4 has either four columns in the
same section, two columns in one section and the other two in another section, or one column
in four different sections.

Let P(= P1) be a weighted poset on [2k] which avoids forbidden patterns. We will call P
a basic form, and the coordinate positions belonging to other section will be called extender.
The basic idea of our construction runs as follow: We start from a basic form,

and place coordinate positions of one extender as leaf of the roots of P to form a weighted
poset P2 on [2k+2k] elements in such away that the resultingweighted poset avoids forbidden
patterns. By repeating this process 2m−k − 1 times we obtain a weighted poset Q on [2m]
which avoids forbidden patterns. We first illustrate our idea when s = 3. In this case, k = 2
and the basic form is as in Fig. 6:

There are two ways to add extenders to roots as in Fig. 7.
Recall that, when we distribute extenders to leaves on two roots say {α, β}, we place

{α′, β ′} as leaves on one root and the remaining two extenders as leaves on the other root.
When s > 3, basic forms will be more complicated and k becomes larger. However the basic
idea remains the same.
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Fig. 8 Weighted posets with
s = 3

We now return to the case of arbitrary k, and prove that the resulting weighted poset Q
cannot posses a forbidden pattern. Since P and Q have the same roots, Q cannot possess a
forbidden pattern of type 1 and 2. Let c = {a, b, c, d} be a codeword ∈ ˜Hm of where a, b, c
and d are elements in Q. Note that forbidden pattern of type 3 contain two roots. So we may
assume that a and b are roots. Since c ∈ ˜Hm , c and d are column positions of A j for some
1 ≤ j ≤ i . Notice that, from the way of distributing extenders to leaves of roots, we already
avoid forbidden patterns of type 3 and this proves that c is not a forbidden pattern.

3.2 The case s = 3

From now on, we begin to classify weighted posets which admit extended hamming codes
to be a 2-perfect code. We start with a few sentences of caution. The meaning of α, β, γ, . . .

from now on is different from that of α, β, γ, . . . on page 7. The α, β, γ, . . . will denote the
level one elements. We sometimes use figure 1© to denote a level one element of weight one,
and 2© to denote a level one element of weight two. We will use sub-indexed notation to
denote level two elements. Therefore αi (respectively β j ) denotes level two elements lying
above α (respectively β).

In this subsection, we will discuss a classification the for case of s = 3. Then we
have (�1

1(1),�
2
1(1),�

2
1(2)) = (3, 1, 2m − 4). The weighted poset with the structure vector

(a, b, c) may be represented as in Fig. 8.
where a + b+ c = 2m − 4. Notice that variables in this figure does not mean the labeling

of coordinate positions.

Theorem 3.5 The condition that a, b, and c are even is a necessary condition for theweighted
poset admits 2-perfect Pπ -code.

Proof Let {α, β, γ, x} be a codeword which contains {α, β, γ }. If x 	= δ, we have a forbidden
pattern. This proves that {α, β, γ, δ} is a codeword in Fig. 8 above. By considering codewords
which contain {α, γ, γi }(resp.{β, γ, γi }), 1 ≤ i ≤ c, we obtain the following codewords:

{α, γ, γ1, x1} {α, γ, γ2, x2} · · · {α, γ, γc, xc}
{β, γ, γ1, y1} {β, γ, γ2, y2} . . . {β, γ, γc, yc}.

Each xi (resp. yi ) belongs to 
β ∪
γ (resp. 
α ∪
γ ). If xi ∈ 
β and yi ∈ 
α for some i ,
we obtains a forbidden pattern. Therefore we have xi ∈ 
γ or yi ∈ 
γ for each i . We claim
that we may choose xi or yi , namely zi for each i , so that {z1, . . . , zc} = {γ1, . . . , γc}.

We first prove our claim. Assume that xi = x j for some distinct i and j . By adding
two codewords {α, γ, γi , xi } and {α, γ, γ j , x j }, we obtain a codeword {γi , γ j }, which is a
contradiction. This proves that i 	= j implies that xi 	= x j and yi 	= y j . Assume now that xi
and y j are chosen and xi = y j for some distinct i and j . Then, {α, γ, γi , xi }+{β, γ, γ j , y j } =
{α, β, γi , γ j } ∈ ˜Hm . Since {α, γ, γ j , x j } + {β, γ, γi , yi } = {α, β, γi , γ j , x j , yi } ∈ ˜Hm , we
have x j = yi . Note that x j ∈ 
β ∪
γ and yi ∈ 
α ∪
γ so that x j = yi only if x j ∈ 
γ , and
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Fig. 9 Basic form of the case
s = 3

we may choose x j instead of y j in this case. Assume finally that we choose xi and y j with
xi 	= y j . To complete the claim, it is enough to show that there does not exist k such that
{xk, yk} = {xi , y j }. If {xk, yk} = {xi , y j }, {α, γ, γk , xk} + {β, γ, γk , yk} = {α, β, xk, yk} =
{α, β, xi , y j } is a codeword of ˜Hm . Therefore {α, γ, γi , xi } + {α, β, xi , y j } = {β, γ, γi , y j }
is also a codeword of ˜Hm . And this would yield that yi = y j which is a contradiction. This
proves the claim.

Now next consider the summation of codewords which contain {γ, γi , zi } where zi , i =
1, . . . , c, are chosen in our claim:

c
∑

i=1

{α(or β), γ, γi , zi } =
{ {α, γ } or {β, γ } (c is odd)

{α, β} or 0 (c is even).

Since the left hand side of the equation is clearly a codeword of ˜Hm , c must be even. By
changing roles of a, b, c we finally conclude that a, b, c are all even and this completes the
proof. ��
Theorem 3.6 If the weighted poset structure is represented as in Fig. 8, the weighted poset
admits 2-perfect Pπ -code if a, b, c are all even.

Proof Let P be a weighted poset on [2m] which avoids forbidden patterns, and let X =
{α, β, γ } be the set of weight one and level one and elements in P . There should be the
fourth element, say δ, such that {α, β, γ, δ} is a codeword of Hamming weight 4. To avoid
forbidden patterns δ should have level one and weight two. This weighted poset can be
represented as in Fig. 9.

When m = 2, there is clearly a unique weighted poset on 4 elements avoiding forbidden
patterns. On the other hand, there is only one solution for the equation a+b+c = 2m−4 = 0
with a, b, c are even, namely (a, b, c) = (0, 0, 0).

We may construct two extenders whose roots are {α, β, γ } and leaves are {α′, β ′, γ ′, δ′}
as in Fig. 7. By symmetry, we obtain extenders whose structure vectors are (4, 0, 0),
(0, 4, 0), (0, 0, 4), (2, 2, 0), (2, 0, 2), and (0, 2, 2).

Now let m be an arbitrary integer such that m ≥ 2. Assume that a + b + c = 2m − 4 and
a, b, c are even. To show there is a weighted poset P who admits 2-perfect Pπ -code on [2m]
with structure vector (a, b, c), it is enough to show that (a−0, b−0, c−0) can be represented
by sum of elements in E = {(4, 0, 0), (0, 4, 0), (0, 0, 4), (2, 2, 0), (2, 0, 2), (0, 2, 2)}.

Let a′, b′ and c′ be remainders of a, b and c divided by 4 respectively. Then a′, b′ and c′
are even and a′ +b′ +c′ is either 0 or 4. That is, (a′, b′, c′) = 0 or (a′, b′, c′) ∈ E . Therefore,
(a, b, c) = (a′, b′, c′) + a−a′

4 (4, 0, 0) + b−b′
4 (0, 4, 0) + c−c′

4 (0, 0, 4) implies that weighted
poset avoiding forbidden patterns with structure vector (a, b, c) is constructable. ��

3.3 The case s = 4

In this subsection, we will classify weighted posets admitting extended 2-perfect Pπ -code
for the case s = 4. That is, (�1

1(1),�
2
1(1),�

2
1(2)) = (4, 3, 2m −7) and it can be represented

by a figure as in Fig. 10.
where a + b + c + d = 2m − 7. Note that Y = {ω1, ω2, ω3}.
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Theorem 3.7 The condition that exactly one of a, b, c and d is odd is a necessary condition
for the weighted poset admits 2-perfect Pπ -code.

Proof Let {α, β, γ, x} and {α, β, δ, y} be codewords which contain {α, β, γ } and {α, β, δ}
respectively. Note that x ∈ 
δ ∪ Y and y ∈ 
γ ∪ Y . Since {α, β, γ, x} + {α, β, δ, y} =
{γ, δ, x, y} ∈ ˜Hm , either x /∈ 
δ or y /∈ 
γ . This implies x ∈ Y or y ∈ Y and wemay assume
that x ∈ Y and x = ω1. Let {α, γ, δ, z} be a codeword which contains {α, γ, δ}. Note that z ∈

β ∪Y and {α, β, δ, y}+{α, γ, δ, z} = {β, γ, y, z} ∈ ˜Hm . Therefore y ∈ Y or z ∈ Y and we
may assume that y ∈ Y . Let {β, γ, δ,w} be a codewords which contains {β, γ, δ}. Then w ∈

α ∪Y . Since {α, γ, δ, z}+{β, γ, δ,w} = {α, β, z, w} ∈ ˜Hm , z ∈ Y orw ∈ Y . Therefore we
may assume that z ∈ Y also. By adding {α, β, γ, x}, {α, β, δ, y}, {α, γ, δ, z} and {β, γ, δ,w}
pairwise, we have x, y, z and w are distinct. So, for |Y | = 3 and {x, y, z} ⊂ Y , w /∈ Y which
implies w ∈ 
α . This proves we may assume that {β, γ, δ, α1}, {α, β, γ, ω1}, {α, β, δ, ω2}
and {α, γ, δ, ω3} are codewords. Now we have good pairs (γ, ω1), (δ, ω2), (α1, ω3) with
respect to α and β.

By considering codewords which contain {α, γ, γi } and {α, δ, δ j }(resp. {β, γ, γi } and
{β, δ, δ j }),1 ≤ i ≤ c and c + 1 ≤ j ≤ c + d we obtain the following codewords:

{α, γ, γ1, x1} · · · {α, γ, γc, xc} {α, δ, δ1, xc+1} · · · {α, δ, δd , xc+d}
{β, γ, γ1, y1} · · · {β, γ, γc, yc} {β, δ, δ1, yc+1} · · · {β, δ, δd , yc+d} .

To avoid forbidden patterns, each xi (resp. yi ) would belong to 
β ∪ 
γ ∪ 
δ ∪ Y (resp.

α ∪ 
γ ∪ 
δ ∪ Y ). First we will prove the claim: xi /∈ Y and yi /∈ Y . Note that (xi , yi ) are
good pairs. Therefore if xi = ω1 or xi = ω2 for some i , yi = γ or yi = δ respectively.
We can easily obtain contradiction for each cases, since {β, γ, γi , y}(if 1 ≤ i ≤ c) or
{β, δ, δi−c, yi }(if c + 1 ≤ i ≤ c + d) would be a forbidden pattern or have a length 2. So,
xi /∈ {ω1, ω2} and by the same argument, we also have yi /∈ {ω1, ω2}. Assume that xi = ω3

for some i . Then yi = α1. However, since {β, γ, δ, α1} ∈ ˜Hm , neither {β, γ, γi , yi } nor
{β, δ, δi−c, yi } can be a codeword. Also if yi = ω3 for some i , xi = α1 ∈ 
α and we have a
contradiction. This proves xi /∈ Y and yi /∈ Y , or xi ∈ 
β ∪ 
γ ∪ 
δ and yi ∈ 
α ∪ 
γ ∪ 
δ .
If xi ∈ 
β and yi ∈ 
α for some i , we obtain a forbidden pattern. Therefore we have
xi ∈ 
γ ∪ 
δ or yi ∈ 
γ ∪ 
δ for each i .

Here is the second claim: we may choose xi or yi , namely zi for each i , so that
{z1, . . . , zc+d} = {γ1, . . . , γc, δ1, . . . , δd}. Now we prove this claim. Assume that xi = x j
for some i < j . By adding two codewords {α, γ, γi , xi } and {α, γ, γ j , x j }(1 ≤ i < j ≤ c),
or {α, γ, γi , xi } and {α, δ, δ j−c, x j }(1 ≤ c < j ≤ c + d), or {α, δ, δi−c, xi } and
{α, δ, δ j−c, x j }(c + 1 ≤ i < j ≤ c + d), we have a contradiction. This proves that i 	= j
implies xi 	= x j and yi 	= y j . For the next, assume that xi and yi are chosen and xi = y j for
some i 	= j . Then {α, β, xi , yi } + {α, β, x j , y j } = {x j , yi } ∈ ˜Hm . Therefore x j = yi . Note
that xi ∈ 
β ∪
γ ∪
δ and yi ∈ 
α ∪
γ ∪
δ . So x j ∈ 
δ ∪
γ andwemay choose x j instead
of y j in this case. To complete the claim, it is enough to show that if we choose xi and y j such
that xi 	= y j , there does not exist k such {xk, yk} = {xi , y j }. Assume that {xk, yk} = {xi , y j }
for some i 	= j and k. Note that {α, β, xk, yk} is a codeword. So {α, β, xi , y j } should be a
codeword also, which is contradiction since {α, β, xi , y j } + {α, β, xi , yi } = {yi , y j } cannot
be zero. This proves claim.

Now next consider the summation of codewords which contain {γ, γi , zi } or {δ, δi−c, zi },
where zi , 1 ≤ i ≤ c + d are chosen in our last claim, namely c:
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Fig. 10 Weighted posets with s = 4

Fig. 11 Basic form of the case
s = 4

c =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{α, β, γ, δ} or {γ, δ} (c ≡ d ≡ 1(mod2))
{α, γ } or {β, γ } (c ≡ 1, d ≡ 0(mod2))
{α, δ} or {β, δ} (c ≡ 0, d ≡ 1(mod2))
{α, β} or 0 (c ≡ d ≡ 0(mod2)).

Since the c ∈ ˜Hm clearly„ c and d must be even. We may change the roles of b, c and
d , without breaking the symmetry, and we finally conclude that b, c, and d are even which
implies that a is odd. ��
Theorem 3.8 If the weighted poset structure is represented as in Fig. 10, the weighted poset
admits 2-perfect Pπ -code if one and only one of a, b, c is odd.

Proof Let P be a weighted poset on [2m](m ≥ 3) which avoids forbidden patterns, and
let α, β, and γ be level 1 elements of weight 1. There is a fourth element, namely δ, such
that {α, β, γ, δ} is a codeword of Hamming weight 4. To avoid forbidden patterns, δ cannot
be a root. So we may assume that X = {α, β, γ, α′} is a set of roots. Let β ′,γ ′ and δ′
be elements such that {α, β, α′, β ′},{α, γ, α′,′ γ ′},{β, γ, α′, δ′} are codewords respectively.
Then, to avoid forbidden patterns, δ ∈ 
α′ ∪ Y , β ′ ∈ 
γ ∪ Y , γ ′ ∈ 
β ∪ Y and δ′ ∈ 
α ∪ Y .
Assume that neither δ nor β ′ is in Y . Then, δ ∈ 
α′ and β ′ ∈ 
γ . In this case, the codeword
{α, β, γ, δ} = {α, β, α′, β ′} = {γ, δ, α′, β ′} be a forbidden pattern. Therefore at least one of
δ and β ′ should be in Y . This implies that at least three of δ, β ′, γ ′, δ are level 1 elements of
weight 2. Since |Y | = 3, one of δ, β ′, γ ′, δ′ is a leaf and the others are level 1 elements of
weight 2. Without loss of generality, we may assume that δ′ ∈ 
α . When m = 3, there is a
unique weighted poset on 8 elements avoiding forbidden pattern, up to symmetry as in Fig.
11.

Now let m ≥ 3 be an arbitrary integer and let a, b, c and d are integers such that a +
b + c + d = 2m − 7 and exactly one of a, b, c and d is odd. We may assume that a is
an odd number. Let a′, b′, c′ and d ′ are remainders of dividing 8 into a − 1, b, c and d
respectively. Then a′, b′, c′ and d ′ are even numbers and a′ + b′ + c′ + d ′ is multiple of
8 which is less than 32. It is obvious that (a′, b′, c′, d ′) can be represented by the sum of
some elements in {(6, 2, 0, 0), (4, 4, 0, 0), (4, 2, 2, 0)} involving their permuted component.
Note that (a, b, c, d) = (1, 0, 0, 0) + (a′, b′, c′, d ′) + a−a′

8 (8, 0, 0, 0) + b−b′
8 (0, 8, 0, 0) +

c−c′
8 (0, 0, 8, 0)+ d−d ′

8 (0, 0, 0, 8). To show that there is a weighted poset avoiding forbidden
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Fig. 12 Extenders with structure
vector (2, 2, 2, 2)

patterns with structure vector (a, b, c, d), it is enough to show that there are extenders whose
structure vectors are (8, 0, 0, 0), (6, 2, 0, 0), (4, 2, 2, 0) and (2, 2, 2, 2).

In (8, 0, 0, 0), (6, 2, 0, 0), (4, 2, 2, 0) cases, it may treated similarly with s = 3 since

α′ = ∅, and we may construct the structure by using extenders of s = 3. (2, 2, 2, 2) may
constructed as in Fig. 12.

So, we can obtain the result that we desired.
��

3.4 The case s = 5

If s = 5, the structure vector of weighted posets may given by (�1
1(1),�

2
1(1),�

2
1(2)) =

(5, 6, 2m −11). Therefore, the leastm we may consider is 4, and the number of leaves would
be 5. There are seven vectors (a, b, c, d, e) where a ≥ b ≥ c ≥ d ≥ e and a + b + c + d +
e = 5; (5, 0, 0, 0, 0), (4, 1, 0, 0, 0), (3, 2, 0, 0, 0), (3, 1, 1, 0, 0),(2, 2, 1, 0, 0), (2, 1, 1, 1, 0),
(1, 1, 1, 1, 1). For these 7 cases, we can obtain basic forms as represented in the following
weighted posets. Actually a tedious check shows that each of the poset in Fig. 13 avoids
forbidden patterns.

Now let m be an arbitrary positive integer and a, b, c, d and e be positive integers such
that a + b + c + d + e = 2m − 11. Let a1, b1, c1, d1 and e1 be the number such that
a1 + b1 + c1 + d1 + e1 = 5 and x − x1(x = a, b, c, d, e), namely x ′ are all even.
Then, (a, b, c, d, e) = (a1, b1, c1, d1, e1) + (a′, b′, c′, d ′, e′) and we can easily find out
that (a′, b′, c′, d ′, e′) can be represented by the some elements in {(m1,m2,m3,m4,m5) :
m1 + · · · + m5 = 16 and mi are even}.

Now we will construct extenders with structure vector (m1,m2,m3,m4,m5), where
∑5

i=1 mi = 16 and a ≥ b ≥ c ≥ d ≥ e are all even. If e = 0, we may construct it by
add the two extenders whose the number of leaves are 8 which is already constructed in Sect.
3.3. So, it is enough to consider the case (6, 4, 2, 2, 2) and (4, 4, 4, 2, 2). Figure 14 represents
these extenders, where {α1, β1, . . . , δ4} is the set of coordinates of another blocks, which
may considered as a duplication of {α, β, . . . , δ′′′′}.

From the basic forms and these extenders, we may conclude that every structure in case
s = 5 admits the extended binary Hamming code ˜Hm .

Theorem 3.9 Let Pπ be a weighted poset with (�1
1(1),�

2
1(1),�

2
1(2)) = (5, 6, 2m − 11).

Then there is a labeling for Pπ which make ˜Hm be a 2-perfect Pπ -code.

3.5 A classification of weighted posets admitting ˜H4 to be a 2-perfect code

Nowwemay classify theweighted posetswhich admit the extendedbinaryHamming code ˜H4

to be a2-perfect code.Note that the onlypossibilities of (�1
1,�

2
1,�

1
2) are (1, 0, 15), (2, 0, 14),

(3, 1, 12), (4, 3, 9), (5, 6, 5) and (6, 10, 0). Since we already observed for s = 1, 2, 3, 4, 5,
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Fig. 13 Basic forms of the case s = 5

it is enough to consider the case s = 6. Since ˜H4 is a code of length 16, the only possible
structure vector is (0, 0, 0, 0, 0, 0), and in this case we can give a labeling which admits ˜H4

to be a 2-perfect code as in Fig. 15.
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Fig. 14 Extenders with e 	= 0

Fig. 15 The weighted poset admits extended 2-perfect code ˜H4 with s = 6

4 Classification of directed graph

In this section, we will classify the digraphs which admit the extended Hamming code to be
a 2-perfect code. The theory runs similarly as that of weighted poset case. However there
is a major difference between two theories, namely in the weighted poset case an element
of weight two can be considered as one point in the weighted poset, while in the digraphs
case an element of weight two, which is a cycle of length two in the digraphs, should be
considered as two vertices in the graph. This difference yields modifications in Lemmas 3.1,
3.2 and 3.3 as follow.

Lemma 4.1 |SG(0; 2)| = 1 + �1
1(1) + 3�2

1(1) + 2�2
1(2) + �2

2(2).

Lemma 4.2 If the extended Hamming code ˜Hm is a 2-perfect G-code, then �2
1(1) = 1 +

1
2�

1
1(1)(�

1
1(1) − 3).

Lemma 4.3 If the extended Hamming code ˜Hm is a 2-perfect G-code, then 1 ≤ �1
1(1) ≤

�√2m − 1�.
We also need to modify Corollary 3.4 as follow

Corollary 4.4 Let G be a digraph. The extended binary hamming code ˜Hm is a 2-perfect
G-code if and only if for any codeword c in ˜Hm of Hamming weight 4 is not of the types in
Fig. 16.

A codeword of these types will be called a forbidden pattern. When we need to specify
the type, it will be called a forbidden pattern of type i, 1 ≤ i ≤ 6.

Remark 4.1 Wemay apply the same argument as in Sect. 3.1. We first obtain a digraph which
avoids forbidden patterns, i.e., a basic form for digraphs, and get a new digraph which avoids
forbidden patterns for an extended Hamming code of larger length. Note that the extenders
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Fig. 16 Forbidden patterns for digraphs

Fig. 17 Digraph with s = 3

of a weighted poset can also be used as extenders for digraphs. Therefore we may apply same
process and extenders to obtain a new digraph which avoids forbidden patterns. From this
remark, we may conclude that, in the proof of sufficient condition in this section, it is enough
to construct appropriate basic forms.

4.1 The case s = 3

Wemay represent the correspondence digraph structure as in Fig. 17where a+b+c = 2m−5.
Note that Y = {ω,ω′}.
Theorem 4.5 The digraph admits 2-perfect G-code if and only if a, b, c are odd.

Proof (⇒)Let {α, β, γ, x} be a codeword. To avoid forbidden patterns, x should be ω. So
{α, β, γ, ω} ∈ ˜Hm . Consider codewords containing {α, γ, γi } and {α, ω, ω′} (resp. {β, γ, γi },
and {β, ω, ω′})1 ≤ i ≤ c.

{α, γ, γ1, x1} {α, γ, γ2, x2} · · · {α, γ, γc, xc} {α, ω, ω′, x0}
{β, γ, γ1, y1} {β, γ, γ2, y2} . . . {β, γ, γc, yc} {β, ω, ω′, y0}.

Each xi (resp.yi ) belongs to 
β ∪
γ ∪ {ω′}(resp. 
α ∪
γ ∪ {ω′}). Since (xi , yi ) are good
pairs, we have xi ∈ {ω′} ∪ 
γ or yi ∈ {ω′} ∪ 
γ for each i . We claim that we may choose xi
or yi , namely zi for each i , so that {z0, z1 . . . , zc} = {γ1, . . . , γc, ω′}.

We first prove our claim. Assume that xi = x j for some distinct i 	= j . If j = 0, by
adding two codewords {α, γ, γi , xi } and {α, ω, ω′, x0}, we obtain a forbidden pattern. If
neither i nor j is zero, by adding two codewords {α, γ, γi , xi } and {α, γ, γ j , x j }, we obtain
{γi , γ j } which cannot be a codeword. This proves that xi 	= x j and yi 	= y j if i 	= j .
Assume that xi and y j are chosen and xi = y j for distinct i and j . Then {α, β, xi , yi } +
{α, β, x j , y j } = {x j , yi } ∈ ˜Hm and x j = yi . Note that xi ∈ 
β
γ ∪ {ω′} and y j ∈

α ∪ 
γ ∪ {ω′}. So x j = yi implies x j ∈ 
γ ∪ {ω′} and we may choose x j instead of y j .
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Fig. 18 Basic form of digraph
when s = 3

Fig. 19 Digraphs with s = 4

Assume finally that we choose xi and y j with xi 	= y j . To complete the claim, it is enough
to show that there does not exist k such that {xk, yk} = {xi , y j }. If {xk, yk} = {xi , y j }, we
have {α, β, xk , yk} + {α, β, xi , yi } = {α, β, xi , y j } + {α, β, xi , yi } = {yi , y j }. Note that
{α, β, xk , yk}and {α, β, xi , yi } are codewords but {yi , y j } is not. So, this is contradiction and
the claim is proved.

Now consider the summation of codewords which contains {γ, γi , zi } or {ω,ω′, z0}. By
simple calculation, we may obtain this is {α, ω} or {β, ω} if c is even, and this cannot be a
codeword. So c must be odd and, by changing roles of a,b, and c, we finally conclude that
a, b and c are all odd. This complete the proof.

(⇐) If we consider the basic form of s = 3,m should be at least 3. Let X = {α, β, γ } be a
set of roots and let {α, β, γ, δ} be a codeword. To avoid forbidden patterns, δ should be in Y .
Letα′ be the another columnof Hm and assume thatα′ ∈ 
γ . There should another elementβ ′
so that {α, β, α′, β ′} be a codeword. Then, since {α, β, γ, δ} + {α, β, α′, β ′} = {γ, δ, α′, β ′}
is also codeword, β ′ /∈ 
β ∪ Y . Therefore β ′ ∈ 
α . For the elements γ ′ and δ′ such that
{α, γ, α′, γ ′} and {α, δ, α′, δ′} be codewords respectively, we may obtain γ ∈ 
β and δ′ ∈ Y .

Now let m = 3. Then we obtain a unique basic form as in Fig. 18.
Now we may apply the same extender arguments as in Sect. 3.2 to obtain the digraphs

with structure vector (a, b, c) with a, b and c are odd.
��

4.2 The case s = 4

We may represent the correspondence digraph structure figure as in Fig. 19 where a + b +
c + d = 2m − 10. Note that Y = {ω1, ω

′
1, ω

′
2, ω

′
2, ω3, ω

′
3}.

Theorem 4.6 The digraph G admits 2-perfect G-code if and only if a, b, c and d are even.

Proof (⇒) Let {α, β, γ, x} and {α, γ, δ, y} be codewords which contains {α, β, γ } and
{α, β, δ} respectively. Then x ∈ 
δ ∪ Y and y ∈ 
β ∪ Y . Then {β, δ, x, y} is a code-
word, and to avoid forbidden patterns, at leas one of x and y should be in Y . So we may
assume that x = ω1 in Fig. 19. Let {α, β, δ, z} and {β, γ, δ,w} be codewords which contains
{α, β, γ } and {α, β, δ} respectively. Then, z ∈ 
γ ∪ Y and y ∈ 
α ∪ Y . To avoid forbidden
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patterns, it should be z ∈ Y or y ∈ Y , since {α, γ, z, w} ∈ ˜Hm . So we may assume that
z ∈ Y . Note that sum of two codewords {α, β, aγ, x} and {α, β, δ, z} gives that {γ, δ, x, z}
is a codewords. So z /∈ {ω1, ω

′
1}. Therefore we also may assume that z = ω2 in Fig. 4. Now

we apply same argument on {α, β, δ, y} and {β, γ, δ,w} and may assume that y = ω3. So,
we have {α, β, γ, ω1}, {α, β, δ, ω2}, {α, β, δ, ω3} ∈ ˜Hm .

By considering codewords which contains {α, γ, γi }(resp. {β, γ, γi })for 1 ≤ i ≤
c,{α, δ, δi }(resp {β, δ, δi })for 1≤ i ≤ d , {α, ωi , ω

′
i }(resp. {β, ωi , ω

′
i })for i = 1, 2, 3 or

{α, γ, δ}(resp. {β, γ, δ}, we obtain the following codewords:

{α, γ, γ1, x1} · · · {α, γ, γc, xc} {α, δ, δ1, xc+1} · · · {α, δ, δd , xc+d}
{β, γ, γ1, y1} · · · {β, γ, γc, yc} {β, δ, δ1, yc+1} · · · {β, δ, δd , yc+d}

{α, ω1, ω
′
1, xc+d+1} {α, ω2, ω

′
2, xc+d+2} {α, ω3, ω

′
3, xc+d+3} {α, γ, δ, x0}

{β, ω1, ω
′
1, yc+d+1} {β, ω2, ω

′
2, yc+d+2} {β, ω3, ω

′
3, yc+d+3} {β, γ, δ, y0} .

Each xi (resp. yi ) belongs to
β ∪
γ ∪
δ ∪Y (resp.
α ∪
γ ∪
δ ∪Y ). Since (xi , yi ) should
be a good pair, either xi ∈ 
γ ∪
δ ∪Y or yi ∈ 
γ ∪
δ ∪Y for each i . We claim that we may
choose xi or yi , namely zi for each i , so that {z0, . . . , zc+d+3} = 
γ ∪
δ ∪{ω3, ω

′
1, ω

′
2, ω

′
3}.

We first prove our claim.Assume that xi = x j for some distinct i and j . Then by adding the
correspondence two codewords with respect to xi and x j on the above table, we may obtain
a codeword of length 2 or a forbidden pattern. This is contradiction and we have xi 	= x j
and yi 	= y j for i 	= j . Assume now that xi and y j are chosen and xi = y j for some distinct
i and j . Then {α, β, xi , yi } + {α, β, x j , y j } = {x j , yi } ∈ ˜Hm and it implies that x j = yi .
Since x j ∈ 
β ∪ 
γ ∪ 
δ ∪ Y and yi ∈ 
α ∪ 
γ ∪ 
δ ∪ Y , we have x j ∈ 
γ ∪ 
δ ∪ Y . So
we may choose x j instead of y j in this case. Assume that we choose xi and y j with xi 	= x j .
Then we have to show that there does not exits k such that {xk, yk} = {xi , y j }. If there is a
k such that {xk, yk} = {xi , y j }, it implies that (xi , y j ) is a good pair. But (xi , yi ) is a good
pair and y j 	= y j , so this is a contradiction. To complete the prove of claim, it is enough to
show that xi /∈ {ω1, ω2} and yi /∈ {ω1, ω2}. If xi = ω1(resp. xi = ω2), yi = γ (resp.yi = δ),
since {α, β, γ, ω1}(resp.{α, β, δ, ω2}). Note that both of γ and δ are not in 
α ∪ 
δ ∪ Y . So
x /∈ {ω1, ω2} and by the same reason, y /∈ {ω1, ω2} for each i . So the proof of claim is done.

Now next consider the summation of codewords which contains {γ, γi , zi } or {δ, δi−c, zi }
or {ωi−c−d , ωi−c−d , zi } or {γ, δ, z0} for each i and let it be c. Then c is,

c =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{α, β, ω1, ω2} or {ω1, ω2} (c ≡ d ≡ 1(mod2))
{α, γ, ω1, ω2} or {β, γ, ω1, ω2} (c ≡ 1, d ≡ 0(mod2))
{α, δ, ω1, ω2} or {β, δ, ω1, ω2} (c ≡ 0, d ≡ 1(mod2))
{α, β, γ, δ, ω1, ω2} or {γ, δ, ω1, ω2} (c ≡ d ≡ 0(mod2)).

Note that {α, β, γ, ω1} + {α, β, δ, ω2} = {γ, δ, ω1, ω2} is a codeword. Since c is a code-
word obviously, if c or d is odd, this is a contradiction. By changing roles of β, γ, δ, we may
obtain that b is also even. Since a + b + c + d ≡ 0(mod2), we finally conclude that a, b, c
and d are all even and this completes the proof.

(⇐)If s = 4, it is clear that m ≥ 4. In the case of m = 4, the number of leaves is 6. Since
a, b, c and d are even numbers, if we assume a ≥ b ≥ c ≥ d , there are three possible vectors
as a structure vectors: (6, 0, 0, 0), (4, 2, 0, 0) and (2, 2, 0, 0). For each cases, we may give a
labeling to digraphs and make them avoiding forbidden patterns as in Figs. 20, 21 and 22.

By using the extender, every digraph with structure vector (a, b, c, d) with a, b, c, and d
are even admits the extended Hamming code to be a 2-perfect code.

��
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Fig. 20 (a, b, c, d) = (6, 0, 0, 0)

Fig. 21 (a, b, c, d) = (4, 2, 0, 0)

Fig. 22 (a, b, c, d) = (2, 2, 2, 0)

5 Conclusion

In this section, we summarize our contributions and suggest some further problems.
In this paper, we consider the problem of classifying weighted posets and digraphs which

admit the extend Hamming code ˜Hm,m ≥ 2 to be a 2-perfect code. Maybe usual method to
approach this problem is divide the problem according to the value of m. In this paper, we
take a somewhat extraordinary method. We first showed that a weighted poset or a digraph
which admits the extended Hamming code to be a 2-perfect code is completely determined
by the structure vector, and we divide the problem according to the length s of the structure
vector. We classify all possible structure vectors of weighted posets which admit the extend
Hamming code ˜Hm,m ≥ 2 to be a 2-perfect code when s = 3, 4, 5. This result together with
the considerationof the case s = 6with structure vector (0, 0, 0, 0, 0, 0)give the classification
of weighted posets which admit the extend Hamming code ˜H4 to be a 2-perfect code. We
also classify all possible structure vectors of digraphs which admit the extend Hamming code
˜Hm,m ≥ 2 to be a 2-perfect code when s = 3, 4, which gives the classification of digraphs
which admit the extend Hamming code ˜H4 to be a 2-perfect code as a consequence.

Recall that, for a positive integer n, [n] denotes the set {1, 2, . . . , n}. We suggest a short
list of problems for future works:
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• Classification of weighted posets and digraphs on [2m] which admit the extended Ham-
ming code ˜Hm to be a 2-perfect code for larger s.

• Establish an effective method to give an admissible labeling on basic forms.
• Classification of (weighted) posetmetrics on [ 3m−1

2 +1]which admit the ternary extended
Hamming code to be a 2-perfect code.

• Classification of weighted poset metrics and digraphs on [8] which admit the extended
Hamming code ˜H3 to be a 3-perfect code.
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