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Abstract
We classify all permutation polynomials of the form x3g(xq−1) of Fq2 where g(x) = x3 +
bx + c and b, c ∈ F

∗
q . Moreover we find new examples of permutation polynomials and we

correct some contradictory statements in the recent literature.We assume that gcd(3, q−1) =
1 and we use a well known criterion due to Wan and Lidl, Park and Lee, Akbary and Wang,
Wang, and Zieve.
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1 Introduction

Let q be a power of a prime, Fq be a finite field with q elements and F
∗
q = Fq \ {0}. A

polynomial is called a permutation polynomial if it induces a bijection on Fq . Permutation
polynomials over finite fields has been studied by numerous researchers for a long time.
In general it is not so hard to construct a permutation polynomial for a finite field Fq .
Researchers have been interested in permutation polynomials that looks simple, nice and
have some additional properties which are practically needed by some applications in other
areas such as coding theory, cryptography and combinatorial designs. Finding permutation
polynomials having such properties are usually hard to find.
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As far as we know, permutation polynomials were first studied by Dickson and Hermite
(see [11, 13]). The books on finite fields (see [26] and Chap. 8 in [27]) together with the
survey papers (see [15, 17, 33]) which review some of the recent results will be a very useful
starting point for the interested reader. For further results on permutation polynomials over
finite fields we refer to [4–6, 12, 16, 19, 20, 23–25, 30] and the references therein.

In order to decide whether a polynomial of the form f (x) = xr h
(
x (qn−1)/d

)
permutes

Fqn or not, there is a well known criterion due to Wan and Lidl [31], Park and Lee [28],
Akbary and Wang [1], Wang [32] and Zieve [34] which is given in the following lemma.

Lemma 1 [1, 28, 31, 32, 34] Let h (x) ∈ Fqn [x] and d, r be positive integers with d | qn −1.
Then f (x) = xr h

(
x (qn−1)/d

)
permutes Fqn if and only if the following conditions hold:

(i) gcd (r , (qn − 1) /d) = 1,
(ii) xr h (x)(q

n−1)/d permutes Ud , where Ud = {a ∈ F
∗
qn | ad = 1}.

In this paper we classify all permutation polynomials of the form x3g(xq−1) of Fq2 where
g(x) = x3 + bx + c and b, c ∈ F

∗
q . We explain our approach in Sect. 2, which seems to

go back, at least to [21, 29]. We assume that gcd(3, q − 1) = 1 and use Lemma 1 in our
classification. Our results are different in even and odd characteristics and hence we present
them in separate sections.

We obtain a complete classification and we also compare our results with the related
results, mainly [3], in Sects. 6 and 7.

We find it useful and interesting to obtain a complete classification. Moreover we find
new examples of permutation polynomials and we show some contradictory statements in
the recent literature. We refer to Sects. 6 and 7 for the details. In particular, using Theorem 4
andTheorem8below,we completely determinewhen x3g(xq−1) is a permutation polynomial
of Fq2 (see also Remarks 3 and 5). Furthermore we present finer if and only if conditions
corresponding to factorization structure of a related bivariate polynomial C f (see Sect. 2) in
Theorems 1, 2, 3 in the even characteristic, and in Theorems 5, 6, 7 in the odd characteristic.

The paper is organized as follows: In Sect. 2 we determine all conditions on b and c for
which the polynomial g(x) = x3 + bx + c ∈ F

∗
q [x] does not have any roots in Uq+1, in

Sects. 3 and 4 we give all our results with their proofs in even and odd characteristic respec-
tively, in Sect. 5 we give our results for the case when C f (see, (13)) is absolutely irreducible
and finally in Sects. 6 and 7 we compare our results with the results in [Theorem 3.4, [3]]
and [Theorem 3.6, [3]] respectively.

Throughout the paper the trace function denoted byTr stands for the absolute trace function
TrFq/F2 of Fq over F2.

2 Our approach

We plan to apply Lemma 1. Hence we need to find out b, c ∈ F
∗
q for which the polynomial

g(x) = x3 + bx + c ∈ F
∗
q [x] does not have any roots in Uq+1. If g(1) = 0 or g(−1) = 0,

then g(x) has a root in Uq+1 trivially, therefore we characterize all such polynomials in the
next proposition under the assumptions g(1) �= 0 and g(−1) �= 0. Note that we present an
equivalent statement giving an if and only if condition such that g(x) has a root in Uq+1,
instead of g(x) has no roots in Uq+1.

Proposition 1 Let g (x) = x3 + bx + c ∈ Fq [x] where b, c ∈ F
∗
q and assume that g(1) =

1 + b + c �= 0, g(−1) = −1 − b + c �= 0 . Then there exists x ∈ Uq+1 such that g(x) = 0
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Classification of permutation polynomials 1539

if and only if one the following conditions hold according to the characteristic of the finite
field Fq :

(i) char(Fq) = 2:
b = 1 − c2 and Tr(1/c) = 1,

(ii) char(Fq) is odd:
b = 1 − c2 and c2 − 4 is a nonsquare in Fq .

Before proving Proposition 1 we need to prove a simple result showing that if g(x) has a root
in Uq+1 then it must be in Fq2 \ Fq .

Lemma 2 Let g (x) = x3 + bx + c ∈ Fq [x] where b, c ∈ F
∗
q and assume that g(1) �= 0,

g(−1) �= 0 . If there exists x ∈ Uq+1 such that g(x) = 0 then x ∈ Fq2 \ Fq .

Proof Assume that there exists x ∈ Uq+1 ∩ Fq such that g(x) = 0, then we have x = xq =
1/x which implies that x2 = 1, that is, x = 1 or x = −1 both of which contradict with the
assumptions g(1) �= 0 and g(−1) �= 0. ��

We are now ready to prove Proposition 1.

Proof of Proposition 1 Let x ∈ Uq+1 such that g(x) = 0, that is, xq = 1/x and x3+bx+c =
0. Taking the q-th power of the equation x3 + bx + c = 0 and inserting xq = 1/x we get

x3q + bxq + c = 1

x3
+ b

1

x
+ c = 0 ⇔ 1 + bx2 + cx3 = 0. (1)

Hence, there exists x ∈ Uq+1 such that g(x) = 0 if and only if the following system
{

x3 + bx + c = 0

x3 + b

c
x2 + 1

c
= 0

(2)

holds. Subtracting the equations in the above system (2) we get:

b

c
x2 − bx + 1

c
− c = 0 (3)

and then multiplying the equation in (3) by
c

b
we have:

x2 − cx + 1

b
− c2

b
= 0. (4)

Letting Δ = 1 − c2

b
, the equation in (4) becomes

x2 − cx + Δ = 0. (5)

Here, we note that Δ �= 0, because otherwise the equation in (5) implies that either x = 0 or
x = c, which contradicts with Lemma 2 as 0, c ∈ Fq . Note also that Δ ∈ Fq .

Taking the q-th power of the equation in (5) and substituting xq = 1/x , we obtain

1

x2
− c

x
+ Δ = 0 ⇔ Δx2 − cx + 1 = 0 ⇔ x2 − c

Δ
x + 1

Δ
= 0. (6)

Now, subtracting the equations in (5) and (6) we have

− cx + c

Δ
x + Δ − 1

Δ
= 0, (7)
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which is equivalent to

c

(
1

Δ
− 1

)
x + Δ2 − 1

Δ
= 0 ⇔ c(1 − Δ)x + (Δ2 − 1) = 0. (8)

If Δ �= 1, then by the equation in (8) we get

cx − (Δ + 1) = 0 ⇔ x = Δ + 1

c
,

which contradicts with Lemma 2, since
Δ + 1

c
= 1 − c2 + b

bc
∈ Fq . Thus, Δ = 1, that is,

b = 1 − c2, so the proof of the first condition in both parts (i) and (ii) of the proposition is
complete.

Now, assume that char(Fq) = 2. Using the equation in (5) and the fact that Δ = 1, we
obtain

x2 + cx = 1 ⇔ x2

c2
+ cx

c2
= 1

c2
⇔ y2 + y = 1

c2
, where y = x

c
. (9)

If Tr(1/c2) = Tr(1/c) = 0 then y = x/c ∈ Fq , so x ∈ Fq (see for instance Theorem 2.25
in [26]), which is not possible by Lemma 2, therefore Tr(1/c) = 1 and this completes the
proof of necessity in part (i).

Next, assume that char(Fq) is odd. Using the equation in (5) and Δ = 1, we obtain

x2 − cx + 1 = x2 − cx + c2

4
+ 1 − c2

4
= 0 ⇔ x2 − cx + c2

4
= c2 − 4

4
,

which holds if and only if
(
x − c

2

)2 = c2 − 4

4
. (10)

Using the equation in (10) and Lemma 2, we obtain that
c2 − 4

4
must be a nonsquare in Fq ,

or equivalently c2 − 4 must be a nonsquare in Fq and this completes the proof of necessity
in odd characteristic.

Finally, in order to prove sufficiency in both parts (i) and (ii), let x ∈ Fq2 satisfying
x2 − cx + 1 = 0, multiplying both sides by x we get x3 = cx2 − x .

Substituting x3 = cx2 − x and b = 1 − c2 in the system (2) we obtain the following:

x3 + bx + c = cx2 − x + (1 − c2)x + c = c(x2 − cx + 1) = 0 (11)

and

x3 + b

c
x2 + 1

c
= cx2 − x + 1 − c2

c
x2 + 1

c
= 1

c
(x2 − cx + 1) = 0. (12)

This completes the proof of sufficiency and the whole proof ends here. ��
There is a related result (see, Proposition 3.1,[3]) in [3], however [Proposition 3.1, [3]] is

only an existence result and moreover there are some polynomials such that [Proposition 3.1,
[3]] can not show that they exist. We give a detailed comparison in the following Remark.

Remark 1 In this remark we compare Proposition 1 with [Proposition 3.1, [3]]. We first
note that Proposition 1 gives an if and only if condition for g(x) = x3 + bx + c with
b, c ∈ F

∗
q to have no roots in Uq+1. However, [Proposition 3.1, [3]] provides only some of

such polynomials. In Table 1 we compare the number of polynomials g(x) = x3 + bx + c
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Table 1 # of g(x) denotes the number of g(x) = x3 + bx + c with b, c ∈ F
∗
q which has no roots in Uq+1

q # of g(x) provided by [Proposition 3.1, [3]] # of g(x) provided by Proposition 1

8 34 37

9 42 46

11 74 80

13 112 116

16 191 211

17 210 220

19 272 282

23 414 434

25 508 518

with b, c ∈ F
∗
q such that g(x) has no roots in Uq+1 which is determined using Proposition 1

with the partial number of such polynomials provided by [Proposition 3.1, [3]].

For instance, let q = 8, w ∈ F8 with w3 + w + 1 = 0. Put b = w2, c = w2 and
g(x) = x3+bx+c. Then g(x) has no roots inU9 using Proposition 1. However, [Proposition
3.1, [3]] does not imply that g(x) has no roots in U9. Indeed, we have (b + 1 − c2)3 +
b3c2(b + 1− c2) + b3c4 = 0 and hence the conditions of [Proposition 3.1, [3]] do not hold.
As another example, let q = 9, w ∈ F9 with w2 + 2w + 2 = 0. Put b = w7, c = w6 and
g(x) = x3 + bx + c. Then g(x) has no roots inU10 using Proposition 1. Indeed, b �= 1− c2.
However, [Proposition 3.1, [3]] does not imply that g(x) has no roots in U10. As in the
previous example, we have (b + 1 − c2)3 + b3c2(b + 1 − c2) + b3c4 = 0 and hence the
conditions of [Proposition 3.1, [3]] do not hold.

Now, suppose that g(x) has no roots in Uq+1, then for any x ∈ Uq+1 we have

x3g(x)q−1 = x3
g(x)q

g(x)
= x3

x3q + bxq + c

x3 + bx + c
= x3

x−3 + bx−1 + c

x3 + bx + c
= cx3 + bx2 + 1

x3 + bx + c
.

Let f (x) = cx3 + bx2 + 1

x3 + bx + c
and note that f (x) permutes Uq+1 if and only if f (x) �= f (y)

for all x �= y ∈ Uq+1. Computing
f (x) − f (y)

x − y
, one gets the following

C f : x2y2 − c(x2y + xy2) + (1 − c2)

b
(x2 + y2) + (1 − c2 − b2)

b
xy − c(x + y) + 1 (13)

That is, f (x) permutes Uq+1 if and only C f defined in (13) is not zero for any x, y ∈ Uq+1

with x �= y. This approach seems to go back, at least, to [21] and [29]. There are further
applications of this method, for instance in [2, 7, 9, 10, 14, 22, 35]. Thus, in order to solve
this problem we need to check all decompositions of the bivariate polynomial in (13) into
absolutely irreducible factors in Fq , where Fq stands for an algebraic closure of the finite
field Fq .

Remark 2 Note that all possible decompositions of C f defined in (13) into absolutely irre-
ducible factors are the following:

(a) (xy + α1x + α2y + μ)(xy + α3x + α4y + 1/μ),
(b) (x2 + α1x + μ)(y2 + α2y + 1/μ),
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1542 F. Özbudak, B. G. Temür

(c) (x + α1)(x + α2)(y + α3)(y + α4),
(d) C f is absolutely irreducible.

3 Results in characteristic two

Throughout this section assume that Fq is a finite field of characteristic two. Note that if
char(Fq) is even then in order to have gcd(3, q − 1) = 1, q must be of the form q = 22k+1,
for some k ∈ N.

In this section we exhibit all the results whenever C f is not absolutely irreducible in
the even characteristic case. We deal with the possible decompositions given in Remark 2
parts (a), (b) and (c) in Theorems 1, 2 and 3, respectively and combine all these results in
Theorem 4.

Theorem 1 Let g(x) = x3 + bx + c with b, c ∈ F
∗
q , where q = 22k+1, for some k ∈ N.

Assume that C f is decomposed into absolutely irreducible factors in the form

(xy + α1x + α2y + μ)(xy + α3x + α4y + 1/μ),

where α1, α2, α3, α4, μ ∈ Fq . Then x3g(xq−1) is a permutation polynomial of Fq2 iff either
b = 1 and Tr(1/c) = 1 or b = 1 + c2 and Tr(1/c) = 0.

Proof Assume that C f decomposes in the following form

(xy + α1x + α2y + μ)(xy + α3x + α4y + 1/μ) = 0, (14)

where μ �= 0.
First, assume that the factors in (14) remain invariant under the map (x, y) 	→ (y, x), that

is, C f decomposes in the following form

(xy + α1x + α1y + μ)(xy + α3x + α3y + 1/μ) = 0 (15)

since α1 = α2 and α3 = α4 in this case. In order to simplify the notation a little bit let us
defineα := α1 andβ := α3. After computing the product of the factors in (15) and comparing
the coefficients with the coefficients of C f defined in (13) we obtain the following

α +β = c (16)

αβ = 1 + c2

b
(17)

μ + 1

μ
= 1 + b2 + c2

b
(18)

α

μ
+βμ = c (19)

By the equations in (16) and (19) we get

c = α + β = α

μ
+ βμ ⇐⇒ (μ + 1)

(
α

μ
+ β

)
= 0 (20)

Thus, two possibilities occur: either μ = 1 or α = μβ. If μ = 1, then by equation (18) we
obtain b2 + c2 = 1 which implies b + c = 1 since q is even. Thus g(x) = x3 + bx + b + 1
and g(1) = 0 and we conclude that the polynomial xg(x)q−1 does not permute Uq+1. Now,
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suppose that α = μβ. Substituting α = μβ in equation (19) we obtain that β = c

μ + 1
and

thus α = cμ

μ + 1
.

Let

Δ := μ + 1

μ
= 1 + b2 + c2

b

On the other hand, substituting α = cμ

μ + 1
and β = c

μ + 1
in equation (17), we also obtain

that Δ = c2b

1 + c2
. Thus Δ = c2b

1 + c2
= 1 + b2 + c2

b
gives us the following

(c2 + b)2 = 1 ⇒ b = 1 + c2, (21)

and so Δ = c2.

On the other hand, Δ = μ + 1

μ
implies that

μ2 + Δμ + 1 = 0 (22)

It follows that μ ∈ F
∗
q iff Tr

( 1
Δ

) = 0 and μ ∈ Fq2 \ Fq iff Tr
( 1

Δ

) = 1 (by Theorem 2.25 in

[26]). AsΔ = c2, we have Tr
( 1

Δ

) = Tr
(

1
c2

)
= Tr

( 1
c

)
. Moreover b = 1+c2 by (21). Using

Proposition 1 we obtain that x3g(xq−1) is not a permutation polynomial of Fq2 if Tr
( 1
c

) = 1

as in the case b = 1 + c2 and Tr
( 1
c

) = 1 there exists x ∈ Uq+1 with g(x) = 0. Hence we
assume that Tr

( 1
c

) = 0 without loss of generality. Then we obtain

Tr

(
1

Δ

)
= Tr

(
1

c2

)
= Tr

(
1

c

)
= 0, (23)

and hence μ ∈ F
∗
q . This also imply that α, β ∈ F

∗
q as α = cμ

μ+1 and β = c
μ+1 .

Assume that xy + αx + αy + μ = 0 for some x, y ∈ Uq+1, then together with its qth
power we get the following system of equations

xy + αx + αy + μ = 0 (24)

μxy + αx + αy + 1 = 0 (25)

Subtracting the above equations we obtain, (1+μ)(xy+1) = 0, thus, xy = 1 as we assumed

that μ �= 1. Substituting xy = 1 in xy + αx + αy + μ = 0 we obtain x + y = μ + 1

α
=

1

c
(b + 1) = c as α = cμ

μ + 1
and Δ = b + 1 = c2 in this case. Now, substituting y = 1

x
in

x + y = c, we obtain x2 + cx + 1 = 0. That is, xy + αx + αy + μ �= 0 for x, y ∈ Uq+1 iff
the polynomial x2 + cx + 1 has no roots in Uq+1.

Moreover, if xy + βx + β y + 1/μ = 0 for some x, y ∈ Uq+1, then together with its qth
power we get the following system of equations

xy + βx + β y + 1/μ = 0 (26)

(1/μ)xy + βx + β y + 1 = 0 (27)

Subtracting the above equations we obtain, (1 + 1

μ
)(xy + 1) = 0, thus, xy = 1 as we

assumed that μ �= 1.
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Substituting xy = 1 in xy + βx + β y + 1

μ
= 0 we obtain

x + y = μ + 1

μβ
= μ2 + 1

cμ
= 1

c

(
μ + 1

μ

)
as β = c

μ + 1
.

Now, substituting y = 1

x
in the above equation, we obtain

x2 + (b + 1)

c
x +1 = x2 + cx +1 = 0, since b = 1+ c2. That is, xy+βx +β y+ 1

μ
= 0

for x, y ∈ Uq+1 iff the polynomial x2 + cx + 1 has roots in Uq+1. But we have

x2 + cx + 1 = 0 ⇔ x2

c2
+ cx

c2
= 1

c2
⇔ y2 + y = 1

c2
, where y = x

c
. (28)

If Tr(1/c2) = Tr(1/c) = 0 then y = x/c ∈ Fq , so x ∈ Fq (see for instance Theorem 2.25
in [20]), so we obtain that x ∈ Uq+1 ∩ Fq , which implies x = 1 by Lemma 2 and x = 1 can
not be a root of the polynomial x2 + cx + 1 as c �= 0.

For g(1) �= 0, we must have 1 + b + c �= 0 but this is already satisfied since b = 1 + c2

and b, c are nonzero. In this case, we proved that x3g(xq−1) is a permutation polynomial of
Fq2 iff b = 1 + c2 and Tr(1/c) = 0.

Next, assume that the factors in (14) are mapped to each other under the map (x, y) 	→
(y, x), that is C f decomposes in the following form

(xy + α1x + α2y + μ)(xy + α2x + α1y + 1/μ) = 0 (29)

since α1 = α4 and α2 = α3 in this case. We also have μ = 1/μ which implies that μ = 1.
In order to simplify the notation let us define α := α1 and β := α2.

Thus the equation in (29) is actually the following

(xy + αx + β y + 1)(xy + βx + αy + 1) = 0 (30)

After computing the product of the factors in (30) and comparing the coefficients with the
coefficients of C f defined in (13) we obtain the following equations:

α + β = c (31)

αβ = 1 + c2

b
(32)

α2 + β2 = 1 + c2 + b2

b
(33)

Substituting αβ = 1 + c2

b
in (33) we obtain that

b = α2 + β2 + αβ (34)

and then substituting both b = α2 +β2 +αβ and c = α +β in equation (32) we end up with
the following equation

α3β + αβ3 + α2β2 + α2 + β2 + 1 = 0

which implies that
(αβ + 1)(α2 + β2 + αβ + 1) = 0
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Thus either αβ = 1 or α2 + β2 + αβ + 1 = 0. Note that, if αβ = 1 then the equation in (30)
is of the following form

(xy + αx + 1

α
y + 1)(xy + 1

α
x + αy + 1)

= (x(y + α) + 1

α
(y + α))(y(x + α) + 1

α
(x + α))

= (x + 1

α
)(y + α)(y + 1

α
)(x + α) = 0, (35)

andwe consider this case in Theorem 3. Thus, assume thatαβ �= 1, that is,α2+β2+αβ+1 =
0. Then using the equations in (32) and (33) we get

1 + c2 + b2

b
= α2 + β2 = αβ + 1 = 1 + c2

b
+ 1 = 1 + c2 + b

b

which implies that b(b + 1) = 0. Thus, since b �= 0, we obtain that b = 1. Since αβ �= 1
then b �= 1 − c2 by (32), so by Proposition 1, g(x) will have no roots in Uq+1 if g(1) �= 0
is satisfied. Substituting b = 1 in g(1) = 1 + b + c �= 0 we just obtain that c �= 0 which is
already our assumption. Now, substituting α = β + c in the equation α2 + β2 + αβ + 1 = 0
we get β2 + cβ + c2 + 1 = 0 implying that

(
β

c

)2

+ β

c
= 1 + 1

c2

which holds if and only if Tr

(
1 + 1

c2

)
= 0, for some β ∈ Fq . Since, q = 22k+1, we have

0 = Tr

(
1 + 1

c2

)
= Tr(1) + Tr

(
1

c2

)
= 1 + Tr

(
1

c

)

implying that Tr

(
1

c

)
= 1.

Now, substituting α = c+β in the factor xy+αx+β y+1 we get xy+(c+β)x+β y+1.
If xy + (c + β)x + β y + 1 = 0 for some x, y ∈ Uq+1 then taking the q-th power of this
equation we obtain 1 + (c + β)y + βx + xy = 0. So we have the following system of
equations:

xy + (c + β)x + β y + 1 = 0

xy + βx + (c + β)y + 1 = 0

Subtracting the equations in the above system we obtain

c(y − x) = 0.

It follows that the only solution to the above equation is x = y since c �= 0. Similarly,
substituting α = c + β in the second factor xy + βx + αy + 1 we obtain the same result.
Thus we proved that in this case x3g(xq−1) is a permutation polynomial of Fq2 iff b = 1 and
Tr(1/c) = 1.

On the other hand, if Tr (1/c) = 0 then this implies that β ∈ Fq2 \Fq and we observe that
the factors in the decomposition (30) must be mapped to each other when we apply the map
a 	→ aq to the coefficients of the factors, that is, xy + αq x + βq y + 1 = xy + βx + αy + 1
and xy + βq x + αq y + 1 = xy + αx + β y + 1. As a result we obtain β = αq and α = βq .
Now, if xy + αx + β y + 1 = xy + βq x + β y + 1 = 0 for some x, y ∈ Uq+1 then this
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implies that x = β y + 1

y + βq
= β y + 1

y + β + c
since α + β = βq + β = c. Thus x = y ∈ Uq+1 iff

y2 + cy + 1 = 0 which is iff Tr (1/c) = 0 for some y ∈ Fq , that is y ∈ Uq+1 ∩ Fq , that is,

y = 1 or y = −1 by Lemma 2, but in both cases x �= y since c �= 0. Therefore if x = β y + 1

y + βq

then C f is zero for some x, y ∈ Uq+1 with x �= y, which implies that x3g(x)q−1 does not
permute Uq+1. ��
Theorem 2 Let g(x) = x3 + bx + c with b, c ∈ F

∗
q , where q = 22k+1, for some k ∈ N.

Assume that C f is decomposed into absolutely irreducible factors in the form

(x2 + α1x + μ)(y2 + α2y + 1/μ),

where α1, α2, μ ∈ Fq . Then x3g(xq−1) is a permutation polynomial of Fq2 iff b = 1 + c2

and Tr(1/c) = 0.

Proof Assume that C f decomposes in the following form

(x2 + α1x + μ)(y2 + α2y + 1/μ) = 0, (36)

where μ �= 0. First of all, we observe that the factors in (36) must be mapped to each other
under the map (x, y) 	→ (y, x) so we obtain α1 = α2 and μ2 = 1 which implies that μ = 1,
that is, the equation in (36) is actually the following

(x2 + αx + 1)(y2 + αy + 1) = 0, (37)

where α := α1 = α2. After computing the product of the factors in (37) and comparing the
coefficients of the equation in (37) with the coefficients of C f defined in (13) we obtain the
following

α = c (38)

1 + c2

b
= 1 (39)

1 + b2 + c2

b
= α2. (40)

By (39) we have b = 1 + c2 and thus by (40) we have α2 = 1 + b. Now, assume that the
first factor in (37) is zero for some x ∈ Uq+1, that is, x2 + αx + 1 = 0 for some x ∈ Uq+1.
Dividing both sides by α2 we obtain

x2

α2 + x

α
+ 1

α2 = 0 ⇐⇒ x2

α2 + x

α
= 1

α2 .

Recall that b = 1 + c2 and hence Tr(1/c) = 0 by Proposition 1 for x3g(xq−1) to be
a permutation polynomial of Fq2 . Using the last equation (see for instance [26, Theorem
2.25]) we conclude that Tr(1/α2) = Tr(1/c2) = Tr(1/c) = 0 and hence x/α ∈ Fq which
implies that x ∈ Fq as α = c ∈ F

∗
q , so x ∈ Fq ∩ Uq+1 \ {1} = ∅ by Lemma 2 which means

that x2+αx+1 has no roots inUq+1. Similarly the second factor y2+αy+1 in (37) does not
have any roots inUq+1. Moreover, by Proposition 1 we also need that g(1) = 1+ b+ c �= 0
be satisfied. The proof is completed. ��

The proof of Theorem 3 is given below.
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Theorem 3 Let g(x) = x3 + bx + c with b, c ∈ F
∗
q , where q = 22k+1, for some k ∈ N.

Assume that C f is decomposed into absolutely irreducible factors in the form

(x + α1)(x + α2)(y + α3)(y + α4),

where α1, α2, α3, α4 ∈ Fq . Then x3g(xq−1) is a permutation polynomial of Fq2 iff there

exists α ∈ F
∗
q2

\Uq+1 such that c = α + 1

α
and b = 1 + c2.

Proof Let g(x) = x3 + bx + c with b, c ∈ F
∗
q . Assume that C f is decomposed in the form

(x + α1)(x + α2)(y + α3)(y + α4), (41)

where α1, α2, α3, α4 ∈ Fq , since C f is fixed under the map (x, y) 	→ (y, x), we obtain
α1 = α3 and α2 = α4. Now, comparing the coefficients of (41) with the coefficients of C f

we get the following:

α1 + α2 = c (42)

α1α2 = 1 + c2

b
(43)

(α1 + α2)
2 = 1 + b2 + c2

b
(44)

(α1 + α2)α1α2 = c (45)

α2
1α

2
2 = 1. (46)

From (42) and (45) we get that α1α2 = 1. Let α ∈ F
∗
q2

\ Uq+1, with α1 = α and α2 = 1

α
,

then, by (42) we get c = α + 1

α
and b = 1+ (α2 + 1

α2 ) which satisfy b = 1+ c2. Thus, by

Proposition 1, for g(x) not to have any roots in Uq+1 we must have g(1) = 1 + b + c �= 0
and Tr(1/c) = 0. We have

g(1) = 1 + b + c = 1 + 1 + (α2 + 1

α2 ) + (α + 1

α
)

= α2 + 1

α2 + α + 1

α

= α4 + 1 + α3 + α

α2

Thus, by Proposition 1, α ∈ F
∗
q2

\ Uq+1 must be such that α4 + α3 + α + 1 �= 0. Note

that α4 + α3 + α + 1 = (α + 1)2(α2 + α + 1) �= 0 holds automatically as α �= 1 and
α2 + α + 1 �= 0 since otherwise α ∈ F4 \ F2 which is not possible as q = 22k+1, that is, q

is an odd power of 2. Moreover, c = α + 1

α
= α2 + 1

α
, then taking θ := α + 1 we get the

following

1

c
= α

α2 + 1
= θ + 1

θ2
= 1

θ
+ 1

θ2
,

and thus we have

Tr(
1

c
) = Tr(

1

θ
+ 1

θ2
) = Tr(

1

θ
) + Tr(

1

θ2
) = Tr(

1

θ
) + Tr(

1

θ
) = 0.
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1548 F. Özbudak, B. G. Temür

That is, whenever c = α + 1

α
, where α ∈ F

∗
q2

\ Uq+1, the condition Tr(1/c) = 0 in

Proposition 1 is already satisfied, which implies that g(x) has no roots in Uq+1 in this case.
Thus, the proof is completed. ��

The following theorem is the main result of this section, where we combine all results in
even characteristic case.

Theorem 4 Let g(x) = x3 + bx + c with b, c ∈ F
∗
q , where q = 22k+1, for some k ∈ N.

Assume that C f is not absolutely irreducible. Then x3g(xq−1) is a permutation polynomial
of Fq2 iff one of the following conditions hold:

(i) b = 1 + c2 and Tr(1/c) = 0.
(ii) b = 1 and Tr(1/c) = 1.

Proof In this Theorem we just combine all results in Theorems 1, 2 and 3. Thus, it is enough
to simply prove that under the assumptions b, c ∈ F

∗
q and b = 1+c2 the following conditions

are equivalent:

(a) There exists α ∈ F
∗
q2

\Uq+1 such that c = α + 1

α
,

(b) Tr(1/c) = 0.

Consider the equation
x2 + cx + 1 = 0. (47)

The equation in (47) has a solution α ∈ F
∗
q2

iff c = α + 1

α
. Moreover, by (47), α ∈ Fq iff

Tr(1/c) = 0. Also, if α ∈ Fq2 \ Fq , that is, if Tr(1/c) �= 0, then the roots of the equation in
(47) are α and αq . Thus, this implies that x2 + cx + 1 = (x − α)(x − αq). Considering the
coefficient of 1 on both sides we obtain that αq+1 = 1. This completes the proof. ��
Remark 3 In Sect. 5 we prove that there is no permutation polynomial of the form x3g(xq−1)

of Fq2 if C f is absolutely irreducible. Hence we complete the classification when the char-
acteristic is even.

4 Results in odd characteristic

In this section we exhibit all the results whenever C f is not absolutely irreducible in the odd
characteristic case. We deal with the possible decompositions given in Remark 2 parts (a),
(b) and (c) in Theorems 5, 6 and 7 respectively and combine all these results in Theorem 8.

Theorem 5 Let Fq be a finite field of odd characteristic, where gcd(3, q − 1) = 1. Let
g(x) = x3+bx+c with b, c ∈ F

∗
q . Assume that C f is decomposed into absolutely irreducible

factors in the form

(xy + α1x + α2y + μ)(xy + α3x + α4y + 1/μ),

where α1, α2, α3, α4, μ ∈ Fq . Then x3g(xq−1) is a permutation polynomial of Fq2 iff either

char(Fq) �= 3, b = −3, c �= −2, 2 and
(4 − c2)

3
is a square in Fq or b = 1− c2 and c2 − 4

is a nonzero square in Fq .
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Using the same arguments and similar computations as in Theorem 1 one can prove
Theorem 5. Therefore, in order not to repeat the long and complicated computations we omit
the proof of Theorem 5.

Theorem 6 Let Fq be a finite field of odd characteristic, where gcd(3, q − 1) = 1. Let
g(x) = x3+bx+c with b, c ∈ F

∗
q . Assume that C f is decomposed into absolutely irreducible

factors in the form

(x2 + α1x + μ)(y2 + α2y + 1/μ),

where α1, α2, μ ∈ Fq . Then x3g(xq−1) is a permutation polynomial of Fq2 iff b = 1 − c2

and c2 − 4 is a nonzero square in Fq .

Proof Assume that C f decomposes in the following form

(x2 + αx + μ)(y2 + β y + 1/μ) = 0, (48)

where μ �= 0. First of all, we observe that the factors in (48) must be mapped to each other
under the map (x, y) 	→ (y, x) so we obtain α = β and μ2 = 1 which implies that either
μ = 1 or μ = −1. If μ = −1, then the equation in (48) becomes

(x2 + αx − 1)(y2 + αy − 1) = 0. (49)

After computing the product of the factors in (49) and comparing the coefficients with the
coefficients of C f defined in (13) we obtain the following

α = −c (50)

1 − c2

b
= −1 (51)

1 − b2 − c2

b
= α2 (52)

−c = −α. (53)

By (50) and (53) we obtain α = −c = 0 which gives a contradiction since c �= 0. Thus
μ = 1 and we have only the following decomposition in odd characteristic case

(x2 + αx + 1)(y2 + αy + 1) = 0. (54)

After computing the product of the factors in (49) and comparing the coefficients with the
coefficients of C f defined in (13) we obtain the following

α = −c (55)

1 − c2

b
= 1 (56)

1 − b2 − c2

b
= α2 (57)

Substituting (56) in the equation (57) we obtain b = 1−α2 which implies that b = 1−c2 by
(55). Now, the polynomial x2 + αx + 1 = x2 − cx + 1 = 0 has a root x ∈ Fq iff c2 − 4 is a
square in Fq . So, if c2 −4 is a square in Fq and x ∈ Uq+1 is such that x2 −cx +1 = 0 we get
x = ±1. Since c2−4 is a square in Fq , g(x) does not have any roots inUq+1 by Proposition 1
whenever g(1) �= 0 and g(−1) �= 0. Note that for g(1) = 1 + b + c = 2 − c2 + c �= 0 and
g(−1) = −1 − b + c = c2 + c − 2 �= 0 we must have c /∈ {−1, 2,−2, 1}. The proof of the
theorem is completed here. ��
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Theorem 7 Let Fq be a finite field of odd characteristic, where gcd(3, q − 1) = 1. Let
g(x) = x3+bx+c with b, c ∈ F

∗
q . Assume that C f is decomposed into absolutely irreducible

factors in the form

(x + α1)(x + α2)(y + α3)(y + α4),

where α1, α2, α3, α4 ∈ Fq . Then x3g(xq−1) is a permutation polynomial of Fq2 iff there

exists α ∈ F
∗
q2

\ Uq+1 such that (α2 + α + 1)(α2 − α + 1) �= 0, c = −
(

α + 1

α

)
and

b = 1 − c2.

Proof Let g(x) = x3 + bx + c with b, c ∈ F
∗
q . Assume that C f is decomposed in the form

(x + α1)(x + α2)(y + α3)(y + α4), (58)

where α1, α2, α3, α4 ∈ Fq , since C f is fixed under the map (x, y) 	→ (y, x), we obtain
α1 = α3 and α2 = α4. Now, comparing the coefficients of (58) with the coefficients of C f

we get the following:

α1 + α2 = −c (59)

α1α2 = 1 − c2

b
(60)

(α1 + α2)
2 = 1 − b2 − c2

b
(61)

(α1 + α2)α1α2 = −c (62)

α2
1α

2
2 = 1. (63)

From (59) and (62) we get that α1α2 = 1. Let α ∈ F
∗
q2

\ Uq+1, with α1 = α and α2 = 1

α
,

then, by (59) we get c = −(α+ 1

α
) and b = −1− (α2+ 1

α2 )which satisfy b = 1−c2. Thus,

by Proposition 1, for g(x) not to have any roots inUq+1 we must have g(1) = 1+b+c �= 0,
g(−1) = −1 − b + c �= 0 and moreover c2 − 4 must be a square in Fq . For g(1) �= 0,
α ∈ F

∗
q2

\ Uq+1 must satisfy α4 + α3 + α + 1 �= 0. Note that α4 + α3 + α + 1 =
(α + 1)2(α2 − α + 1) �= 0 so it is enough to assume that α2 − α + 1 �= 0, since α �= −1.

Similarly,

g(−1) = −1 − b + c = −1 + 1 + (α2 + 1

α2 ) − (α + 1

α
)

= α2 + 1

α2 − α − 1

α

= α4 + 1 − α3 − α

α2 �= 0

Thus α ∈ F
∗
q2

\Uq+1 must be such that α4 − α3 − α + 1 �= 0. Note that α4 − α3 − α + 1 =
(α − 1)2(α2 + α + 1) �= 0, so it is enough to assume that α2 + α + 1 �= 0, since α �= 1.

Moreover, c = −(α + 1

α
) implies that

c2 = α2 + 2 + 1

α2 �⇒ c2 − 4 =
(

α − 1

α

)2

,

so c2 − 4 is already a square in Fq . The proof is completed. ��
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Remark 4 The conditions in the statement ofTheorem7donot seem to appear in the statement
of Theorem 8 which is the main result in odd characteristic case. Note that in the proof of
Theorem 8 we show that under the assumptions b, c ∈ F

∗
q and b = 1 − c2 the following

conditions are equivalent:

(a) There existsα ∈ F
∗
q2

\Uq+1 such that c = −
(

α + 1

α

)
,α2+α+1 �= 0 andα2−α+1 �= 0,

(b) c2 − 4 is a square in Fq , where c /∈ {−2,−1, 1, 2}.
Therefore, the conditions in the statement of Theorem 7 are actually involved in Theorem 8.

The following theorem is the main result of this section, where we combine all results in
odd characteristic case.

Theorem 8 Let Fq be a finite field of odd characteristic, where gcd(3, q − 1) = 1. Let
g(x) = x3 + bx + c with b, c ∈ F

∗
q . Assume that C f is not absolutely irreducible. Then

x3g(xq−1) is a permutation polynomial of Fq2 iff one of the following conditions hold:

(i) b = 1 − c2 and c2 − 4 is a nonzero square in Fq ,

(ii) char(Fq) �= 3, b = −3 and
4 − c2

3
is a nonzero square in Fq .

Proof In this Theorem we just combine all results in Theorems 5, 6 and 7. Thus, it is enough
to simply prove that under the assumptions b, c ∈ F

∗
q and b = 1−c2 the following conditions

are equivalent:

(a) There existsα ∈ F
∗
q2

\Uq+1 such that c = −
(

α + 1

α

)
,α2+α+1 �= 0 andα2−α+1 �= 0,

(b) c2 − 4 is a square in Fq , where c /∈ {−2,−1, 1, 2}.
The equation x2 − cx + 1 = 0 has a solution in Fq (i.e. all solutions) iff c2 − 4 is a square in
Fq . Otherwise, α and αq are solutions with α, αq ∈ Fq2 \Fq and we have (x −α)(x −αq) =
x2 − cx + 1. Considering the coefficient of 1 on both sides we obtain αq+1 = 1 which gives
a contradiction since α /∈ Uq+1. Assume that α2 − cα + 1 = 0. Note that α2 − α + 1 = 0
iff (−c + 1)α = 0 which is iff c = 1. Similarly, α2 + α + 1 = 0 iff (c + 1)α = 0 which is
iff c = −1. Now, assume that c2 − 4 is a square, then α2 − cα + 1 = 0 and αq+1 = α2 = 1
iff α = −1 or α = 1 and α2 − cα + 1 = 0 which is iff c = 2 or c = −2. This completes the
proof. ��
Remark 5 In Sect. 5 we prove that there is no permutation polynomial of the form x3g(xq−1)

of Fq2 if C f is absolutely irreducible. Hence we complete the classification when the char-
acteristic is odd.

5 The case when Cf is absolutely irreducible

In this section, we consider all b, c ∈ F
∗
q so that C f is absolutely irreducible and we prove

that in this case x3g(xq−1) is not a permutation polynomial of Fq2 . For this purpose we will
make use of the Hasse-Weil bound. In order to be able to use the Hasse-Weil bound (see [18,
Theorem 5.28]), we need to apply the following idea:

Let z be any element in Fq2 \Fq and define φ (x) = x+z
x+zq for any x ∈ Fq with φ (∞) = 1.

Note that it is easy to observe that φ is one to one from Fq ∪ {∞} to Uq+1 and thus onto.
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Moreover, φ−1 (x) = xzq−z
1−x for any x �= 1 with φ−1 (1) = ∞. In this setting, f (x) =

cx3+bx2+1
x3+bx+c

is one to one on Uq+1 if and only if the map
(
φ−1 ◦ f ◦ φ

)
is one to one on

Fq ∪ {∞}.
First assume that Fq is of even characteristic, where q = 22k+1. Let F(x) =(

φ−1 ◦ f ◦ φ
)
(x), zq + z = α, for some α ∈ Fq and moreover assume without loss of gen-

erality that α = 1 and z2 + z+1 = 0 then we obtain F(x) = x3(b+c+1)+x2(b+1)+x(b+c)+c+1
x2(b+c+1)+x(b+c+1)+b

.

Here we first assume that Tr
(

b
b+c+1

)
�= 0 so for any x ∈ Fq the denominator of F(x) is

nonzero. Computing F(x)−F(y)
x−y one gets the following

χF : x2y2 + B1(x
2y + xy2) + C2(x

2 + y2) + xy + C1(x + y) + C0, (64)

where B1 = 1,C2 = b
b+c+1 ,C1 = 1 + bc

b2+c2+1
and C0 = 1 + b

b2+c2+1
. We obtain that if

the conditions of Theorem 4 do not hold, namely b, c ∈ F
∗
q such that none of the following

conditions hold:

(i) b = 1 + c2 and Tr(1/c) = 0,
(ii) b = 1 and Tr(1/c) = 1,

thenχF is absolutely irreducible. Nextwe consider the casewhere Tr
(

b
b+c+1

)
= 0.Note that

b+c+1 �= 0 aswe assume g(1) �= 0. Note that the polynomial x2+x+ b
b+c+1 corresponds to

the denominator of the rational function F(x) and x3(b+c+1)+x2(b+1)+x(b+c)+c+1
is the numerator of F(x). It is easy to observe that the numerator and denominator of F(x)
are coprime if c+1

c �= b
b+c+1 . Note that

c+1
c = b

b+c+1 if and only if b = 1+c2. First consider

the subcase where b �= 1 + c2 and Tr
(

b
b+c+1

)
= 0. As the numerator and denominator of

F(x) are coprime and the denominator has a root x0 ∈ Fq , the composite map φ−1 ◦ f ◦ φ

is not one to one on Fq ∪ {∞}. In particular both ∞ and x0 are mapped to ∞ by the
composite map φ−1 ◦ f ◦ φ. Next we consider the remaining subcase where b = 1+ c2 and

Tr
(

b
b+c+1

)
= 0. These conditions imply that b = 1 + c2 and Tr(1/c) = 1 as Tr(1) = 1.

This gives a contradiction to the assumption that g(x) has no roots in Uq+1 by Proposition

1. Consequently we can assume without loss of generality that Tr
(

b
b+c+1

)
= 1 whenever

x3g(xq−1) is a permutation polynomial of Fq2 .
Next, we consider the case Fq has odd characteristic. Choose a nonsquare u ∈ F

∗
q and let

z2 = u then note that z + zq = 0 and zq+1 = −u. Here we first assume that b + 3c − 3 �= 0
and similarly let F(x) = (

φ−1 ◦ f ◦ φ
)
(x) be the composite map on Fq ∪ {∞}. Using the

chosen value of z we obtain that F(x) = x3+Ax
x2+B

, where A = u (−b+3c+3)
b+c+1 , B = u (−b+c−1)

b+3c−3 .

Computing F(x)−F(y)
x−y one gets the following

χF : x2y2 + B(x2 + y2) + (B − A)xy + AB. (65)

We obtain that if the conditions of Theorem 8 do not hold, namely b, c ∈ F
∗
q such that none

of the following conditions hold:

(i) b = 1 − c2 and c2 − 4 is a nonzero square in Fq ,

(ii) char(Fq) �= 3, b = −3 and 4−c2
3 is a nonzero square in Fq ,

then χF is absolutely irreducible. Next, we consider the case where b + 3c − 3 = 0. In this
case F(x) becomes F(x) = x3 + Ax where A = 3c

2−c . Computing F(x)−F(y)
x−y one gets the

following
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χF : x2 + xy + y2 + A. (66)

Similarly we obtain that if the conditions of Theorem 8 do not hold then χF is absolutely
irreducible.

Now assume that χF in both (64) and (65) is absolutely irreducible. Homogenizing the
polynomial in (64) (respectively in (65)) with x = X

Z and y = Y
Z we obtain a homogeneous

polynomial of degree d = 4. Then by the Hasse-Weil bound (see [18, Theorem 5.28]) we
have the following:

c(d) = 1
2d(d − 1)2 + 1, note that c(d) = 19 if d = 4 and c(d) = 2 if d = 2 (namely,

d = 4 except when q is odd and b + 3c − 3 = 0), hence c(d) ≤ 19 and
∣
∣N − q

∣
∣ ≤ (d − 1)(d − 2)q1/2 + c(d) ≤ 6q1/2 + 19,

where N is the number of affineFq -rational points ofχF . This implies that if q−6q1/2−19 >

4 then both (64) and (65) have an Fq -rational point off the line x = y. As q is a prime power,
we note that q − 6q1/2 − 19 > 4 for any such q provided that q ≥ 79. Consequently, we
complete the proof of the statement x3g(xq−1) is not a permutation polynomial of Fq2 if
C f is absolutely irreducible and q ≥ 79. It remains to consider q < 79. If characteristic
of Fq is even then q is in the form q = 22k+1 in our case and so we need to consider only
q ∈ {2, 8, 32} and if characteristic of Fq is odd, then since 3 � (q − 1) we need to consider
only q ∈ {3, 5, 9, 11, 17, 23, 27, 29, 41, 47, 53, 59, 71}. Using MAGMA [8] we observed
that there are no other permutation polynomials of the form x3g(xq−1) other than the ones
obtained by Theorems 4 and 8. As these correspond to the cases that C f is not absolutely
irreducible, we complete the proof of the statement that x3g(xq−1) is not a permutation
polynomial of Fq2 if C f is absolutely irreducible for any finite field Fq .

Consequently, combining all the results we attained in the absolutely irreducible case, we
have the following theorem.

Theorem 9 Let Fq be a finite field and g(x) = x3 + bx + c with b, c ∈ F
∗
q . Assume that C f

is absolutely irreducible. Then x3g(xq−1) is not a permutation polynomial of Fq2 .

Hence, using Theorems 4, 8 and 9 we completely classify all permutation polynomial of
the form x3g(xq−1) of Fq2 , where g(x) = x3 + bx + c with b, c ∈ F

∗
q .

6 Comparison of Theorem 4with Theorem 3.4 in [3]

We first consider [Theorem 3.4, [3]], item (ii). As q = 22k+1, we obtain that the conditions
of [Theorem 3.4, [3]], item (ii) imply

Tr(
1

c
) = 1 and T 2 + cT + 1 has no roots in Uq+1. (67)

However, these two conditions are contradictory. Using Hilbert’s Theorem 90 (see, for

instance, Theorem 2.25 in [26]), as Tr(
1

c
) = 1, we obtain that the polynomial T 2 + cT + 1

is irreducible over Fq and hence its roots are α, αq ∈ Fq2 \ Fq , that is, T 2 + cT + 1 =
(T −α)(T −αq). Considering the coefficient of T 0 on both sides we conclude that αq+1 = 1
which gives a contradiction to (67). Hence [Theorem 3.4, [3]], item (ii) is an empty con-
dition. On the other hand, Theorem 4, item (ii) gives exactly q/2 polynomials of the form
g(x) = x3 + x + c such that x3g(xq−1) is a permutation polynomial of Fq2 . Indeed, as
|{u : Tr(u) = 1}| = q/2, choosing c ∈ Fq with 1/c ∈ {u : Tr(u) = 1}, we obtain exactly
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q/2 distinct polynomials of the form g(x) = x3+ x+c satisfying the conditions of Theorem
4, item (ii).

We also indicate an unnecessary phrase in [Theorem3.4, [3]], item (i). Indeed, if c = α+ 1

α

with α ∈ Fq , then putting α = θ + 1 we obtain that Tr(
1

c
) = Tr

(
1

θ
+ 1

θ2

)
= 0 and hence

the polynomial T 2 + cT + 1 has no roots in Uq+1 automatically.
The last but not the least comparison we need to underline is the following:
Theorem 4 gives an if and only if statement provided thatC f is not absolutely irreducible.

However, [Theorem 3.4, [3]] is only an existence result, which is far from complete, as
explained above.

7 Comparison of Theorem 8with Theorem 3.6 in [3]

We first consider [Theorem 3.6, [3]], item (ii). Let p be the characteristic of the finite field Fq

and q = pm . As q ≡ 2 (mod 3), this implies that p ≡ 2 (mod 3) and m is odd. Note that if
the polynomial T 2 − cT + 1 has no roots inUq+1 then c2 − 4 must be a square in Fq . Hence
the assumptions of [Theorem 3.6, [3]], item (ii) hold if and only if −3c2 + 12 and c2 − 4
are both squares in Fq . As −3c2 + 12 = −3(c2 − 4), we obtain that if the assumptions of
[Theorem 3.6, [3]], item (ii) hold, then

p ≡ 2 (mod 3) and − 3 is a square in Fp. (68)

However, there are many examples in which the conditions in (68) do not hold. For instance,
p = 5 ≡ 2 (mod 3) and−3 = 2 is not a square in F5. In fact, we have checked for all primes
p ≤ 10000 and observed that there is no prime p satisfying the conditions in (68). Hence
[Theorem 3.6, [3]], item (ii) is empty for many (if not all) cases. However, Theorem 8 gives
examples for any finite field Fq of odd characteristic, where q ≡ 2 (mod 3). For instance, if
q = 5, then for g(x) = x3 − 3x + 1 and g(x) = x3 − 3x + 4, we obtain that x3g(xq−1) is a
permutation polynomial of Fq2 .

Next, we consider [Theorem 3.6, [3]], item (i) and observe that [Theorem 3.6, [3]], item (i)
does not hold when char(Fq) = 3. However, Theorem 8, item (i) holds when char(Fq) = 3
as well. For instance, if q = 9, then for g(x) = x3 + (1− w2)x + w2 and g(x) = x3 + (1−
w6)x+w6, wherew2+2w+2 = 0,w ∈ F9 \F3, we obtain that x3g(xq−1) is a permutation
polynomial of Fq2 .

Finally, the last but not the least comparisonwewant to underline is the following:Theorem
8 gives an if and only if statement provided that C f is not absolutely irreducible. However,
[Theorem 3.6, [3]] is only an existence result, which is far from complete as explained above.

Acknowledgements We would like to thank the anonymous referees for their valuable suggestions and com-
ments. Ferruh Özbudak is supported partially by METU Coordinatorship of Scientific Research Projects via
Grant GAP-101-2021-10755.

References

1. Akbary A., Wang Q.: On polynomials of the form xr f (x(q−1)/l ), Int. J. Math. Math. Sci. 7 (2007).
2. Aubry Y.,McGuire G., Rodier F.: A fewmore functions that are not APN infinitely often. In: Finite Fields:

Theory and Applications, Contemp. Math., vol. 518, pp. 23–31. Amer. Math. Soc., Providence (2010).

123



Classification of permutation polynomials 1555

3. Bartoli D., Quoos L.: Permutation polynomials of the type xr g(xs ) over Fq2n . Des. Codes Cryptogr. 86,
1589–1599 (2018).

4. Bartoli D.: On a conjecture about a class of permutation trinomials. Finite Fields Appl. 52, 30–50 (2018).
5. Bartoli D., Giulietti M.: Permutation polynomials, fractional polynomials, and algebraic curves. Finite

Fields Appl. 51, 1–16 (2018).
6. Bartoli D., Timpanella M.: A family of permutation trinomials over Fq2 . Finite Fields Appl. 70, 101781

(2021).
7. Bartoli D., Zhou Y.: Exceptional scattered polynomials. J. Algebra 509, 507–534 (2018).
8. BosmaW., Cannon J., Playoust C.: TheMagma algebra system. I. The user language. J. Symbolic Comput.

24, 1179–1260 (1997).
9. Caullery F., Schmidt K.-U.: On the classification of hyperovals. Adv. Math. 283, 195–203 (2015).

10. Caullery F., Schmidt K.-U., Zhou Y.: Exceptional planar polynomials. Des. Codes Cryptogr. 78(3), 605–
613 (2016).

11. Dickson L.E.: The analytic representation of substitutions on a power of a prime number of letters with
a discussion of the linear group. Ann. Math. 11, 65–120 (1896).

12. Gupta R., Sharma R.K.: Some new classes of permutation trinomials over finite fields with even charac-
teristic. Finite Fields Appl. 41, 89–96 (2016).

13. Hermite C.: Sur les fonctions de sept lettres. C.R. Acad. Sci. Paris 57, 750–757 (1863).
14. Hernando F., McGuire G.: Proof of a conjecture of Segre and Bartocci on monomial hyperovals in

projective planes. Des. Codes Cryptogr. 65(3), 275–289 (2012).
15. Hou X.: Permutation polynomials over finite fields—a survey of recent advances. Finite Fields Appl. 32,

82–119 (2015).
16. Hou X.: Determination of a type of permutation trinomials over finite fields. Finite Fields Appl. 35, 16–35

(2015).
17. Hou X.: A survey of permutation binomials and trinomials over finite fields. (English summary) Topics

in finite fields, Contemp. Math., vol. 632, pp. 177–191. Amer. Math. Soc., Providence (2015).
18. Hou X.: Lectures on Finite Fields, Graduate Studies in Mathematics, vol. 190. American Mathematical

Society, Providence (2018).
19. Hou X.: On the Tu-Zeng permutation trinomial of type (1/4, 3/4). Discret. Math. 344(3), 112241 (2021).
20. Hou X., Tu Z., Zeng X.: Determination of a class of permutation trinomials in characteristic three. Finite

Fields Appl. 61, 1–27 (2020).
21. Janwa H., Wilson R.M.: Hyperplane sections of Fermat varieties in P3 in char.2 and some applications to

cyclic codes, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, San Juan, PR, Lecture
Notes in Comput. Sci., vol. 673, pp. 180–194. Springer, Berlin (1993).

22. Leducq E.: Functions which are PN on infinitely many extensions of Fp , p odd. Des. Codes Cryptogr.
75(2), 281–299 (2015).

23. Li N., Helleseth T.: Several classes of permutation trinomials from Niho exponents. Cryptogr. Commun.
9, 693–705 (2017).

24. Li K., Qu L., Chen X.: New classes of permutation binomials and permutation trinomials over finite fields.
Finite Fields Appl. 43, 69–85 (2017).

25. Li K., Qu L., Wang Q.: New constructions of permutation polynomials of the form xr h(xq−1) over Fq2 .
Des. Codes Cryptogr. 86, 2379–2405 (2018).

26. Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, Cambridge (1997).

27. Mullen G.L., Panario D.: Handbook of Finite Fields, Discret Mathematics and its Applications. CRC
Press, Boca Raton (2013).

28. Park Y.H., Lee J.B.: Permutation polynomials and group permutation polynomials. Bull. Austral. Math.
Soc. 63, 67–74 (2001).

29. Rodier F.: Borne sur le degré des polynômes presque parfaitement non-linéaires, Arithmetic, geometry,
cryptography and coding theory, Contemp. Math., vol. 487, pp. 169–181. Amer. Math. Soc., Providence
(2009).

30. Tu Z., ZengX., Li C., Helleseth T.: A class of new permutation trinomials. Finite Fields Appl. 50, 178–195
(2018).

31. Wan D., Lidl R.: Permutation polynomials of the form xr f (x(q−1)/d ) and their group structure. Monat-
shefte Math. 112, 149–163 (1991).

32. Wang Q.: Cyclotomic mapping permutation polynomials over finite fields. In: Sequences, Subsequences,
and Consequences, Lecture Notes in Comput. Sci., vol. 4893, pp. 119–128. Springer, Berlin (2007).

33. Wang Q.: Polynomials over finite fields: an index approach. In: Combinatorics and Finite Fields, Differ-
ence Sets, Polynomials, Pseudorandomness and Applications, De Gruyter, pp. 319–348 (2019).

123



1556 F. Özbudak, B. G. Temür

34. Zieve M.E.: On some permutation polynomials over Fq of the form xr h(x(q−1)/d ). Proc. Am. Math.
Soc. 137, 2209–2216 (2009).

35. Zieve M.E.: Planar functions and perfect nonlinear monomials over finite fields. Des. Codes Cryptogr.
75(1), 71–80 (2015).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Classification of permutation polynomials of the form x3g(xq-1) of mathbbFq2 where g(x)=x3+bx+c and b,c inmathbbFq*
	Abstract
	1 Introduction
	2 Our approach
	3 Results in characteristic two
	4 Results in odd characteristic
	5 The case when Cf is absolutely irreducible
	6 Comparison of Theorem 4 with Theorem 3.4 in BQ
	7 Comparison of Theorem 8 with Theorem 3.6 in BQ
	Acknowledgements
	References




