
Designs, Codes and Cryptography (2022) 90:881–920
https://doi.org/10.1007/s10623-022-01017-3

Dispelling myths on superposition attacks: formal security
model and attack analyses

Luka Music1 · Céline Chevalier2 · Elham Kashefi1,3

Received: 27 January 2021 / Revised: 1 February 2022 / Accepted: 3 February 2022 /
Published online: 10 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
With the emergence of quantum communication, it is of folkloric belief that the security
of classical cryptographic protocols is automatically broken if the Adversary is allowed
to perform superposition queries and the honest players forced to perform actions coher-
ently on quantum states. Another widely held intuition is that enforcing measurements on
the exchanged messages is enough to protect protocols from these attacks. However, the
reality is much more complex. Security models dealing with superposition attacks only con-
sider unconditional security. Conversely, security models considering computational security
assume that all supposedly classical messages are measured, which forbids by construction
the analysis of superposition attacks. To fill in the gap between those models, Boneh and
Zhandry have started to study the quantum computational security for classical primitives
in their seminal work at Crypto’13, but only in the single-party setting. To the best of our
knowledge, an equivalent model in the multiparty setting is still missing. In this work, we
propose the first computational security model considering superposition attacks for multi-
party protocols. We show that our new security model is satisfiable by proving the security
of the well-known One-Time-Pad protocol and give an attack on a variant of the equally
reputable Yao Protocol for Secure Two-Party Computations. The post-mortem of this attack
reveals the precise points of failure, yielding highly counter-intuitive results: Adding extra
classical communication, which is harmless for classical security, can make the protocol
become subject to superposition attacks. We use this newly imparted knowledge to construct
the first concrete protocol for Secure Two-Party Computation that is resistant to superposi-
tion attacks. Our results show that there is no straightforward answer to provide for either the
vulnerabilities of classical protocols to superposition attacks or the adapted countermeasures.

Communicated by M. Naya-Plasencia.

B Luka Music
luka.music@lip6.fr

1 LIP6, CNRS, Sorbonne Université, Paris, France

2 CRED, Université Panthéon-Assas Paris 2, Paris, France

3 School of Informatics, University of Edinburgh, Edinburgh, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-022-01017-3&domain=pdf

882 L. Music et al.

Keywords Cryptographic protocols · Superposition attack · Post-quantum security ·
Security model · Yao’s protocol

Mathematics Subject Classification 94A60 · 81P94

1 Introduction

Recent advances in quantum technologies [1] point towards a future in which the security of
manywidely-deployed cryptographic primitives is threatened ifwe assume that theAdversary
has classical access to the primitive but can locally perform quantum computations [27]. This
scenario has led to the emergence of post-quantum cryptography. But the situation is even
worse in the fully quantum scenario, if we assume the Adversary further has quantum access
to the primitive and can query the oracle with quantum states in superposition. Such access
can arise in the case where the Adversary has direct access to the primitive that is being
implemented (e.g. symmetric encryption, hash functions), or if a protocol is used as a sub-
routine where the Adversary plays all roles (as in the Fiat-Shamir transform based on Sigma
Protocols) and can therefore implement them all quantumly. In the future, various primitives
might natively be implemented on quantum machines and networks, either to benefit from
speed-ups or because the rest of the protocol is inherently quantum. In this fully quantum case,
more information could be leaked, leading to new non-trivial attacks, as presented in a series
of work initiated in [2, 6, 14]. A possible countermeasure against such superposition attacks
is to forbid any kind of quantum access to the oracle through measurements. However, the
securitywould then rely on the physical implementation of themeasurement tool, which itself
could be potentially exploited by a quantum Adversary. Thus, providing security guarantees
in the fully quantum model is crucial. We focus here on the multiparty (interactive) setting.

Analysis of existing security models Modelling the security of classical protocols in a
quantum world (especially multiparty protocols) is tricky, since various arbitrages need to
be made concerning the (quantum or classical) access to channels and primitives.

A first possibility is to consider classical protocols embedded as quantum protocols, thus
allowing the existence of superposition attacks. However, in such a setting, previous results
only consider perfect security, meaning that the messages received by each player do not
contain more information than its input and output. The seminal papers starting this line of
work are those proving the impossibility of bit commitment [19, 20]. The perfect security of
the protocol implies that no additional information is stored in the auxiliary quantum registers
of both parties at the end of the protocol and can therefore be traced out, so that an Adversary
can easily produce a superposition of inputs and outputs.

This is for example the approach of [6, 25], where the perfect correctness requirement is in
fact a perfect (unconditional) security requirement (the protocol implements the functionality
and only the functionality). In [6], they consider an even more powerful adversarial scenario
where not only the honest player’s actions are described as unitaries (their inputs are also
in superposition) but the Adversary can corrupt parties in superposition (the corruption is
modelled as an oracle call whose input is a subset of parties and which outputs the view of
the corresponding parties). Both papers show that protocols are insecure in such a setting: In
[6], they show that in the case of a multi-party protocol implementing a general functionality
(capable of computing any function), no Simulator can perfectly replicate the superposition
of views of the parties returned by the corruption oracle by using only an oracle call to an
Ideal Functionality. In the case of a deterministic functionality, they give a necessary and

123

Formal computational security model for superposition attacks... 883

sufficient condition for such a Simulator to exist, but which cannot be efficiently verified and
is not constructive. In [25], they prove that any non-trivial Ideal Functionalities that accept
superposition queries (or, equivalently, perfectly-secure protocols emulating them) must leak
information to the Adversary beyond what the classical functionality does (meaning that the
Adversary can do better than simply measure in the computational basis the state that it
receives from the superposition oracle). In both cases, they heavily rely on the assumption of
unconditional security to prove strong impossibility results and their proof techniques cannot
be applied to the computational setting.

The second possibility to model the security of classical protocols in a quantum world
is to define purely classical security models, in the sense that all supposedly classical mes-
sages are measured (Stand-Alone Model of [13] or the Quantum UC Model of [28]). Some
(computationally) secure protocols exist in this setting, as shown by a series of articles in the
literature (e.g. [18]). However, these models forbid by construction the analysis of superpo-
sition attacks, precisely since all classical communications are modelled as measurements.
The missing link The results of [6, 25] in the unconditional security setting are not directly
applicable to a Computationally-Bounded Adversary. The premiss to their analyses is that
since the perfect execution of non-trivial functionalities is insecure, any real protocol imple-
menting these functionalities is also insecure against Adversaries with quantum access (even
more since they are simply computationally secure). However it turns out that, precisely
because the protocol is only computationally-secure, the working registers of the parties
cannot be devoid of information as is the case in the perfectly-secure setting (the messages
contain exactly the same information as the secret inputs of the parties, but it is hidden to
computationally-bounded Adversaries) and the techniques used for proving the insecurity of
protocols in the perfect scenario no longer work.

This issue has been partially solved for single-party protocolswith oracle queries in the line
ofwork from [2], but never extended fully to themulti-party setting.Thedifficulty arises by the
interactive property of such protocols. Indeed, in a real protocol,more care needs to be taken in
considering all the registers that both parties deal with during the execution (auxiliary qubits
that can be entangled due to the interactive nature of the protocols). Furthermore, care must
also be taken in how the various classical operations are modelled quantumly, as choosing
standard or minimal oracle representations may influence the applicability of some attacks
[15]. The naive implementation of superposition attacks, applied to a real-world protocol,
often leads to a joint state of the form

∑

x,m1,m2

|x〉 |m1〉 |m2〉 | f (x, y)〉 for a given value y of the
honest player’s input, and with the second register (containing the set of messagesm1 sent by
the Adversary) being in the hands of the honest player (m2 is the set of messages sent by the
honest player and f (x, y) is the result for input x). This global state does not allow the known
attacks (such as [14]) to go through as the message registers cannot simply be discarded. This
shows that the simple analysis of basic ideal primitives in the superposition attack setting is
not sufficient to conclude on the security of the overall computationally-secure protocol and
motivates the search for a framework for proving security of protocols against such attacks.
On the importance of superposition attack analysis The reader might wonder why it may be
important to consider an attack which can be mitigated by simply measuring the incoming
supposedly classical messages.While a full computational basis measurement nullifies any
superposition attack, this means that an additional security assumption is needed, namely
that the quantum device is trusted when required to perform the measurement. This is a
common assumption and an Adversary with inside access to the laboratory can potentially
perform more devastating attacks. We argue however that this adds a requirement for secur-
ing yet another system against outside access in a world where even air-gapped machines

123

884 L. Music et al.

have been shown to be breachable if the stakes are high enough (e.g. Stuxnet attack). If
the quantum device is connected to a quantum external channel, even protocols that were
proven unconditionally-secure (Quantum Key Distribution) have shown vulnerabilities to
side channel attacks such as detector blinding, an example of the techniques called quantum
hacking (see [11] and related works). On the other hand, proving resistance to superposition
attacks automatically removes these possibilities without further resource expenditure and
it can therefore be seen as closely related to the questions arising in the field of Device-
Independent Quantum Cryptography (where no trust is placed in the devices performing the
protocol).

Our contributions The main purpose of this paper is thus to bridge a gap between two
settings: one considers the security analysis of superposition attacks, but either for perfect
security [6, 25] (bothworks preclude the existence of secure protocols by being too restrictive)
or only for single-party primitives with oracle access [2], while the other explicitly forbids
such attacks by measuring classical messages [13, 28].

To our knowledge, our result is the first attempt to formalise a security notion capturing
security of two-party protocols against superposition attacks with computationally-bounded
Adversaries as a simulation-based definition. We consider a more realistic scenario where a
computationalAdversary corrupts afixed set of players at the beginningof the protocol and the
input of the honest players are fixed classical values. We suppose that the ideal world trusted
third party always measures its queries (it acts similarly to a classical participant), while the
honest player always performs actions in superposition unless specifically instructed by the
quantum embedding of the protocol (the Adversary and the Simulator can do whatever they
want). Security is then defined by considering that an attack is successful if an Environment
is able to distinguish between the real and ideal executions with non-vanishing probability.
The reason for adding a measurement to the functionality is to enforce that the (supposedly
classical) protocol behaves indeed as a classical functionality. This is further motivated by the
results of previous papers proving that functionalities with quantum behaviour are inherently
broken.
Case studies We show that our proposed security model is satisfiable by proving the
superposition-resistance of the classical One-Time-Pad protocol for implementing a Con-
fidential Channel. We also study a slight variant of the Honest-but-Curious1 version of the
classical Yao’s protocol [30] for Secure Two-Party Computation. On one hand, we show that
it is secure against Honest-but-Curious Adversaries with abort that have a quantum computer
internally but send classical messages. On the other hand, we present an attack on the same
protocol in the case where the Adversary can transmit quantum messages and the honest
player implements its internal functions quantumly. This attack, once de-quantumised, is
equivalent to an Honest-but-Curious Adversary with abort in a classical network. Those two
results put together therefore show a separation between our two models. The variant of
Yao’s Protocol is presented to demonstrate unusual and counter-intuitive reasons for which
protocols may be insecure against superposition attacks.
Proof techniqueDuring the superposition attack, the Adversary essentially makes the honest
player implement the oracle call in Deutsch-Jozsa’s (DJ) algorithm [7] through its actions on
a superposition provided by the Adversary. The binary function for which this oracle query
is performed is linked to two possible outputs of the protocol. The Adversary can then apply
the rest of the DJ algorithm to decide the nature of the function,2 which allows it to extract

1 An Adversary is Honest-but-Curious if it acts honestly during the protocol but performs arbitrary computa-
tions later to recover more information about the input of the honest player.
2 The DJ algorithm decides whether a binary function is balanced or constant.

123

Formal computational security model for superposition attacks... 885

the XOR of the two outputs. Similarly to the DJ algorithm where the state containing the
output of the oracle remains in the |−〉 state during the rest of the algorithm (it is not acted
upon by the gates applied after the oracle call), the Adversary’s actions during the rest of the
attack do not affect the output register. Interestingly, this means that the attack can thus also
be performed on the same protocol but where the Adversary has no output.
Superposition-secure two-party computationCounter-intuitively, it is therefore not the output
that makes the attack possible, but in this case the attack vector is a message consisting
of information that, classically, the Adversary should already have, along with a partial
measurement on the part of the honest player (which is even stranger considering that it is
usually thought that the easiest way to prevent superposition attack is to measure the state).
This shows that adding extra communication, even an exchange of classical information
which seems meaningless for classical security, can make the protocol become subject to
superposition attacks. Removing the point of failure by never sending back this information
to the Adversary (as is the case in the original Yao Protocol) makes the protocol very similar
in structure to theOne-Time-Pad Protocol, where one party sends everything to the other, who
then simply applies local operations. The proof for the One-Time-Pad works by showing that
there is a violation of the no-signalling condition of quantum mechanics if the Environment
is able to distinguish between ideal and real scenarios (if it were able to gain any information,
it would be solely from these local operations by the honest player, which would imply that
information has been transferred faster than the speed of light). This technique can only be
reused if the honest party in Yao’s protocol does not give away the result of the measurement
on its state (by hiding the fact that it either succeeded in completing the protocol or aborted
if it is unable to do so correctly). We show that Yao’s protocol is secure against superposition
attacks if the (honest) Evaluator recovers the output and does not divulge whether or not it
has aborted.

Updates from the conference version The extended abstract of this paper was presented
at ProvSec 2020 [22]. The current version of the work contains updated and more detailed
proofs throughout. This is the only version in which the full proofs figure. We also demon-
strate an optimised version of our attack on the modified Yao’s protocol using the free-XOR
technique in the case where the computed function is a 1-out-of-2 Bit Oblivious Transfer
(Sect. 5.5). Additionally, we show that the classical One-Time Pad is superposition-secure
(Sect. 6.1), thereby demonstrating yet another functionality that is capable of withstanding
these attacks. As explained in the introduction above, its proof of security is similar to that
of the superposition-secure Yao protocol and serves as a good stepping stone towards that
protocol. We take this opportunity to also discuss the applicability of our model to the study
of superposition attacks on more basic cryptographic primitives.

Contribution summary and outline After basic notations in Sect. 2:

– Sect. 3 gives a new security model for superposition attacks;
– Sect. 4 describes a variant of Yao’s protocol and proves its security against adversaries

exchanging classical messages;
– Sect. 5 demonstrates a superposition attack against this modified Yao’s protocol. This

attack is applied in Sect. 5.5 to an Oblivious Transfer protocol with slightly improved
attack success probability;

– Sect. 6 proves the superposition-resistance of two protocols. First we show that the
Classical One-Time-Pad Protocol remains secure in our framework. We then leverage
the knowledge acquired through our attack in the previous Section to build a secure
version of Yao’s Protocol.

123

886 L. Music et al.

Open questions An interesting research direction would be to analyse what functionalities
(if any) can be implemented using the “insecure" Ideal Functionalities with allowed super-
position access described in [25]. Since these functionalities necessarily leak information,
they can no longer be universal: if they were, then it would be possible to construct non-leaky
functionalities with protocols onlymaking calls to these leaky functionalities. However, some
limited functionalities may also be useful, as exemplified by the biased coin-toss.

The security model presented in this paper does not support any kind of composability,
as can be shown with rather simple counter-examples. While it would be ideal to have a
simulation-based fully-composable framework for security against superposition attacks, we
leave this question open for now.

While we prove that Yao’s Protocol is secure in our model if the Evaluator does not
reveal the outcome of the protocol, it would also be interesting to analyse the consequence
of removing the minimal oracle assumption from the symmetric encryption scheme and
instead use a traditional IND-CPA symmetric encryption with the original Yao garbled table
construction (therefore adding an additional entangled quantum register). The Yao protocol
has recently been studied in [3] and proven secure against Adversaries that do not have
superposition access to the honest party, under the assumption that the encryption scheme
is pq-IND-CPA (the quantum Adversary does not make queries to the encryption oracle in
superposition but has access to a Quantum Random Oracle).

Finally, this paper shows that partial measurements by honest players are not sufficient
to prevent superposition attacks. It would be interesting to find the minimum requirements
for the security of protocols with superposition access and measurements by honest parties
so that they are as secure as classical protocols. This field of study has been somewhat
initiated by the work of [29] with the collapsing property (measuring one message makes
the other message collapse to a classical value if it passes some form of verification), but the
question of whether there is a minimal amount of information that should be measured to be
superposition-secure remains open.

2 Preliminaries

We will call quantum operations any completely positive and trace non-decreasing superop-
erator acting on quantum registers (see [23] and Appendix A for more details).

The principle of superposition attacks is to consider that a player, otherwise honestly
behaving, performs all of its operations on quantum states rather than on classical states.
In fact, any classical operation defined as a binary circuit with bit-strings as inputs can
be transformed into a unitary operation that has the same effect on each bit-string (now
considered a basis state in the computational basis) as the original operation by using Toffoli
gates. Although any quantum computation can be turned into a unitary operation (using a
large enough ancillary quantum register to purify it), it may be that the honest player may
have to take a decision based on the value of its internal computations. This is more naturally
defined as a measurement, and therefore such operations will be allowed but only when
required by the protocol (in particular, when the protocol branches out depending on the
result of some computation being correct). The rest of the protocol (in the honest case) will
be modelled as unitary operations on the quantum registers of the players (see Sect. 5.1 for
the precise description of the quantum embedding of a classical protocol).

There are two ways to represent a classical function f : {0, 1}n → {0, 1}m as a unitary
operation. Themost general way (called standard oracle of f) is defined on basis state |x〉 |y〉

123

Formal computational security model for superposition attacks... 887

(where x ∈ {0, 1}n and y ∈ {0, 1}m) byU f |x〉 |y〉 = |x〉 |y ⊕ f (x)〉, where⊕ corresponds to
the bit-wise XOR operation. On the other hand, if n = m and f is a permutation over {0, 1}n ,
then it is possible (although in general inefficient) to represent f as a minimal oracle by
M f |x〉 = | f (x)〉. Note that this representation is in general more powerful than the standard
representation of classical functions as quantum unitaries (see [15] for more information).

The security parameter will be noted η throughout the paper (it is passed implicitly as 1η

to all participants in the protocol and we omit when unambiguous). A functionμ is negligible
in η if, for every polynomial p, for η sufficiently large it holds that μ(η) < 1

p(η)
. For any

positive integer N ∈ N, let [N] := {1, . . . , N }. For any element X , #X corresponds to the
number of parts in X (e.g. size of a string, number of qubits in a register). The special symbols
Abort will be used to indicate that a party in a protocol has aborted.

3 New security model for superposition attacks

The security of protocols is defined using the real/ideal simulation paradigm, adapted from
the Stand-Alone Model of [13]. The parties involved are: an Environment Z, the parties
participating in the protocol, an Adversary A and (in the ideal case) a Simulator S which
interacts with the Ideal Functionality F that the protocol strives to emulate. We describe
below their interactions, which are later represented in Fig. 1.

General protocol modelWe focus on the case of protocols between two players P1 and P2.
P1 will be considered to be the Adversary (written P∗

1 when corrupted), while P2 is honest.
Although we study purely classical protocols, in order to be able to execute superposition
attacks, both will have access to multiple quantum registers and be able to perform quantum
operations. More precisely, all parties are modelled as Quantum Polynomial-Time Turing
(QPT) machines [4, 23]. They can perform any polynomial-sized family of quantum circuits
and interact quantumly with other participants (by sending quantum states which may or may
not be in superposition). The formal definition of these efficient quantum machines is given
in Definition 7, in Appendix A.3.

We assume that the input of the honest player is classical, meaning it is a pure state in
the computational basis, unentangled from the rest of the input state (which corresponds to
the Adversary’s input). This is in stark contrast with other papers considering superposition
attacks [6, 25] where the input of the honest players is always a uniform superposition over
all possible inputs. We also consider that the corrupted party is chosen and fixed from the
beginning of the protocol. We will often abuse notation and consider the corrupted party and
the Adversary as one entity.

An execution of the protocol (in the real or ideal case) works as follows:

1. The Environment Z, possibly using an auxiliary state, produces the classical input y of
P2 and the input state ρA of the Adversary (containing an input for corrupted party P∗

1 ,
which may or may not be in superposition).

2. The Adversary interacts with either an honest player performing the protocol (real sce-
nario) or a Simulator with single-query access to an Ideal Functionality (ideal scenario).

3. The Adversary sends a state to the Environment Z.
4. The Environment Z takes as input this final state and outputs a bit corresponding to its

guess of whether the execution was real or ideal. To this end, it may use its internal state
kept after generating the inputs (including the honest player’s classical input).

Intuitively, if the protocol is secure, no Environment should be able to distinguish with high
probability the two scenarios.

123

888 L. Music et al.

Network model To capture both the security against Adversaries with and without super-
position (so that we may compare both securities for a given protocol), we parameterise
the security Definition 1 below with a network model N. The quantum network Q is mod-
elled by having both players interact not only with their internal quantum registers but also
with a shared quantum communication register Q. These actions are defined as unitaries.
On the other hand, the classical network C is modelled as both players having access to a
shared classical tape C which is read at the beginning of each activation of a player and a
quantum register initialised using the computational basis vector corresponding to the mes-
sage contained within (or equivalently, the shared quantum register Q from the quantum
network is measured in the computational basis). The outgoing messages are written to the
tape at the end of each player’s activation. The case where the network is classical is called
classical-style security (as it is simply a weaker variant of Stand-Alone Security in the usual
sense of [13]), while a protocol that remains secure when the network is quantum is said to
be superposition-resistant. This allows us to demonstrate a separation between Adversaries
with and without superposition access. Conversely, since the classical network can be seen
as a restricted quantum channel, security with superposition access automatically implies
classical-style security.

Ideal functionality behaviour This section differs crucially from previous models of secu-
rity. The Two-Party Computation Ideal Functionality implementing a binary function f ,
formally defined as Ideal Functionality 1, takes as input a quantum state from each party,
measures it in the computational basis, applies the function f to the classical measurement
results and returns the classical inputs to each party while one of them also receives the
output. 3

Ideal Functionality 1 Two-Party Secure Function Evaluation.
– Public information: Binary function f : {0, 1}nX × {0, 1}nY −→ {0, 1}nZ to be com-

puted (where nX , respectively nY , is the size of the input of P1, respectively P2, and nZ

is the size of the output).
– Inputs: P1 has classical input x ∈ {0, 1}nX and P2 has classical input y ∈ {0, 1}nY .
– Computation by the trusted party:

1. If the trusted party receives an input which is inconsistent with the required format
(different input size) or Abort, it sends Abort to both parties. Otherwise, let ρ̃in be
the input state it received from P1 and P2.

2. The trusted party measures the parts of ρ̃in in registers X and Y in the computational
basis, let (x̃, ỹ) be the outcomes of the measurement.

3. The trusted party computes z̃ = f (x̃, ỹ) and sends (x̃, z̃) to P1 and ỹ to P2.

While it can seem highly counter-intuitive to consider an ideal scenario where a measure-
ment is performed (since it is not present in the real scenario), this measurement by the Ideal

3 In the classical case, it is argued in [17] that it suffices without loss of generality to describe the ideal
functionality for functions where only one party receives an output, in this case P1, via the following trans-
formation: any function inputs (x, y) and two outputs (w, z) to two parties can be transformed into a function
taking as input ((x, p, a, b), y) and outputting to a single party (w, α := z ⊕ p, β := a � α ⊕ b), where
⊕ and � are the addition and multiplication operations in a well-chosen finite field (p serves as a perfect
One-Time-Pad of the output z and β serves as a perfect One-Time Message Authentication Code of α). As
shown in Sect. 6.2 this is not so clear in our model.

123

Formal computational security model for superposition attacks... 889

(a) (b)

Fig. 1 Interactions between EnvironmentZ , AdversaryA, Honest PlayerH, Simulator S and Ideal Function-
ality I in quantum networkQ. Purple arrows represent quantum communications while grey arrows indicate
classical communications. The Environment provides the input to the Adversary (quantum) and the Honest
Player (classical), receives a quantum state from the Adversary and outputs a single bit. All communications
with the Adversary (and therefore the protocol’s transcript) are inherently quantum while interactions with
the Ideal Functionality can be seen as purely classical (Color figure online)

Functionality is necessary in order to have a meaningful definition of security. It is only if
the protocol with superposition access behaves similarly to a classical protocol that it can
be considered as resistant to superposition attacks. It is therefore precisely because we wish
to capture the security against superposition attacks, that we define the Ideal Functionality
as purely classical (hence the measurement). If the Ideal Adversary (a Simulator interact-
ing classically with the Ideal Functionality) and the Real Adversary (which can interact in
superposition with the honest player) are indistinguishable to the Environment, only then is
the protocol superposition-secure.

Furthermore, as argued briefly in the Introduction, Ideal Functionalities which do notmea-
sure the inputs of both parties when they receive them always allow superposition attacks,
which then extract more information than in the classical case (as proven in [25]). A superpo-
sition attack against a protocol implementing such a functionality is therefore not considered
an attack since it is by definition a tolerated behaviour in the ideal scenario.

Formal security definitions The behaviour of the participants in the security model is sum-
marised in Fig. 1 below.

We can now give our security Definition 1. A protocol between parties P1 and P2 is said
to be secure against corrupted party P∗

1 if no Environment Z can distinguish between the
real and ideal executions with high probability.

Definition 1 (Computational security in network class N) Let ε(η) = o(1) be a function of
the security parameter η.We say that a protocolΠ ε(η)-securely emulates Ideal Functionality
F in network N (with N ∈ {C,Q}) if for all quantum polynomial-time Adversaries A
controlling the corrupted party P∗

1 and Environments Z producing inputs y and ρA, and all
auxiliary states ρZ , there exists a Simulator SP∗

1
such that, in network N:

∣
∣
∣P

[
b = 0 | b ← Z

(
y, ρZ , vA(SP∗

1
, ρA)

)]

−P

[
b = 0 | b ← Z

(
y, ρZ , vA(P2(y), ρA)

)]∣
∣
∣ ≤ ε(η)

In the equation above, the variable vA(SP∗
1
, ρA) corresponds to the final state (or view)

of the Adversary in the ideal execution when interacting with Simulator SP∗
1
which has a

single oracle-access to the Ideal Functionality F and vA(P2(y), ρA) corresponds to the final
state of the Adversary when interacting with honest party P2 in the real protocol Π . The
probability is taken over all executions of protocol Π and auxiliary states ρZ .

123

890 L. Music et al.

In the case where one party does not receive an output, it is possible to reduce the security
property to input-indistinguishability, defined below in Definition 2.

Definition 2 (Input-indistinguishability in network classN) Let Π be protocol between par-
ties P1 and P2 with input space {0, 1}nY for P2 and no output for P1. We say that the
execution of Π is ε-input-indistinguishable for adversarial P∗

1 in network N if there exists
an ε(η) = o(1) such that, for all computationally-bounded quantum Distinguishers D, aux-
iliary states ρD and any two inputs y1, y2 ∈ {0, 1}nY :

∣
∣
∣P

[
b = 0 | b ← D

(
y1, ρD, vA(P2(y1), ρA)

)]

−P

[
b = 0 | b ← D

(
y1, ρD, vA(P2(y2), ρA)

)]∣
∣
∣ ≤ ε(η)

In the equation above, the variable vA(P2(yi), ρA) corresponds to the final state of the
Adversary when interacting with honest party P2 (with input yi) in the real protocol Π . The
probability is taken over all executions of protocol Π .

We can now state Lemma 1, showing the equivalence of our security notions in the case
where the attacker has no output.

Lemma 1 (Input-Indistinguishability to Security) If a protocol Π in which party P1 has no
honest output is input-indistinguishable for adversarial P∗

1 in networkN (Definition 2) then
it is secure against adversarial P∗

1 in network N (Definition 1) with identical bounds.

Proof If we suppose that the protocol is input-indistinguishable for Adversaries in network
N, then no computationally-bounded quantum Distinguisher (represented as a an efficient
quantum machine acting on its internal state and the state returned by the Adversary) can
distinguish between an execution with inputs y1 and y2, even when it knows which input is
supposed to be used. The Simulator against an Adversary in networkN then simply runs the
protocol honestly with a random input ỹ (it does not need to call the Ideal Functionality as
the adversarial player has no output). Therefore:

∣
∣
∣P

[
b = 0 | b ← D

(
y, ρD, vA(P2(y), ρA)

)]
− P

[
b = 0 | b ← D

(
y, ρD, vA(SP∗

1
(ỹ), ρA)

)]∣
∣
∣

≤ ε(η)

Since this is the case for any efficient distinguisher, it also means that the probability that
the Environment outputs a given bit as the guess for the real or ideal execution is the same
up to ε in both cases. Therefore the protocol is secure.
�
Adversarial classes Quantifying Definition 1 and 2 over a subset of Adversaries in each
class yields flavours such as Honest-but-Curious or Malicious. The behaviour of an Honest-
but-Curious Adversary in a classical network C is the same as a classical Honest-but-Curious
Adversary during the protocol but it may use its quantum capabilities in the post-processing
phase of its attack. We define an extension of these Adversaries in Definition 3: they are
almost Honest-but-Curious in that there is an Honest-but-Curious Adversary whose Simu-
lator also satisfies the security definition for the initial Adversary. This is required as the
adversarial behaviour of our attack is not strictly Honest-but-Curious when translated to
classical messages, but it does follow this new definition.

Definition 3 (Extended Honest-but-Curious adversaries) Let Π be a protocol that is secure
according to Definition 1 against Honest-but-Curious Adversaries in a classical network C.
We say that an Adversary A is Extended Honest-but-Curious if there exists an Honest-but-
Curious AdversaryA′ such that the associated Simulator S ′ satisfies Definition 1 forA if we
allow it to output Abort when the honest party would abort as well.

123

Formal computational security model for superposition attacks... 891

Comments on the security modelNote that in any security proof, the Simulator may simply
choose not to perform the call to the Ideal Functionality. This is because the security definition
does not force the Simulator to reproduce faithfully the output of the honest party, as the
distinguishing done by the Environment takes only the Adversary’s output into account. This
also means that sequential composability explicitly does not hold with such a definition, even
with the most basic functionalities (whereas the Stand-Alone Framework of [13] guarantees
it). An interesting research direction would be to find a composable framework for proving
security against superposition attacks and we leave this as an open question. The subtlety
of our attack vector presented below tends to suggest a negative answer. On the other hand,
even without composability, it remains interesting to consider hybrid scenarios where a sub-
protocol is performed via a call to an Ideal Functionality. This is similar to the RandomOracle
Model which is used to represent a shared hash function. It has been shown that there are
protocols in that model such that replacing the Random Oracle by any instantiation of it in
the form of a hash function breaks the protocol completely. Even so, it remains widely used
as a sort of first step in secure protocol construction, serving as a test-bed before proving the
security of the protocol’s concept before using concrete hash function properties to prove the
full security.

4 Themodified Honest-but-Curious Yao protocol

In order to demonstrate the capabilities of our new model in the case of more complex two-
party scenarios, we will analyse the security of the well-known Yao Protocol, pioneer of
Secure Two-Party Computation, in classical and quantum networks.

Its purpose is to allow two Parties, the Garbler and the Evaluator, to compute a joint
function on their two classical inputs. The Garbler starts by preparing an encrypted version
of the function and then the Evaluator decrypts it using keys that correspond to the two
players’ inputs, the resulting decrypted value being the final output.

The Original Yao Protocol secure against Honest-but-Curious classical Adversaries has
first been described by Yao in the oral presentation for [30], but a rigorous formal proof
was only presented in [17]. It has been proven secure against quantum Adversaries with no
superposition access to the honest player in [3] (for a quantum version of IND-CPA that only
allows random oracle queries to be in superposition).

We start by presenting definitions for symmetric encryption schemes in Sect. 4.1. We then
present in Sect. 4.2 the garbled table construction which is the main building block of Yao’s
Protocol and give an informal description of the Original Yao Protocol. Then in Sect. 4.3 we
give a description of a slight variant of the original protocol, resulting in the Modified Yao
Protocol. We show that the modifications do not make the protocol less secure in classical
networks, but will make superposition attacks possible as presented in Sect. 5.

4.1 Definitions for symmetric encryption schemes

Anencryption scheme consists of two classical efficiently computable deterministic functions
Enc : K × A × M → K × A × C and Dec : K × A × C → K × A × M (where K is the
set of valid keys, A the set of auxiliary inputs, M the set of plaintext messages and C the
set of ciphertexts, which is supposed equal to M). For simplicity we will suppose that the
key-generation algorithm simply samples the key uniformly at random from the set of valid

123

892 L. Music et al.

keys and that M = C. We suppose also that the scheme is perfectly correct, i.e. for all
(k, aux,m) ∈ K × A × M, we have Deck(aux, Enck(aux,m)) = m.

The symmetric encryption scheme that is used in this paper has slightly different properties
compared to the original protocol of [30] or [17]. The requirements above imply that the
encryption and decryption functions are inverse permutations over the message space. It is
then possible to represent the action of the honest player (the decryption of garbled values)
using a minimal oracle representation when embedded as a quantum protocol.

Definition 4 (Minimal oracle representation) Let (Enc,Dec) be an encryption scheme
defined as above, we say that it has a Minimal Oracle Representation if there exists effi-
ciently computable unitariesMEnc andMDec, called minimal oracles, such that for all k ∈ K,
aux ∈ A and m ∈ M:

MEnc |k〉 |aux〉 |m〉 = |eK (k)〉 |eA(aux)〉 |Enck(aux,m)〉
MDec |k〉 |aux〉 |c〉 = |dK (k)〉 |dA(aux)〉 |Deck(aux, c)〉

where eK , dk and eA, dA are efficiently invertible permutations of the key and auxiliary value
respectively.

Note that all permutationswith an efficiently computable inverse have an efficientminimal
oracle representation. This can be achieved by applying the encryption standard oracle SEnc
to registers containing the key, auxiliary value, message and empty state, permuting the last
two registers and applying the decryption standard oracle SDec to the same four registers. The
effect is to erase the contents of the final register, which can then be traced out. Noting σ

and σ−1 the encryption and decryption for convenience and abstracting the key and auxiliary
value registers (the standard oracle leaves them unaffected), we obtain for any message
m ∈ M:

Sσ−1 ◦ SWAP ◦ Sσ |m〉 |0〉 = Sσ−1 |σ(m)〉 |m〉 = |σ(m)〉 ∣
∣m ⊕ σ−1(σ (m))

〉 = |σ(m)〉 |0〉
Finally, since we use a deterministic encryption function, it cannot be IND-CPA secure.

We instead require it to be a quantum-secure pseudo-random permutation overM. This will
be sufficient to guarantee the classical security of our construction, as shown in Theorem 2
below. For a discussion on this choice of security definitions, see Sect. 5.3.

Definition 5 (Quantum-secure pseudo-random permutation) Let (Enc,Dec) be a symmetric
encryption scheme with Minimal Oracle Representation. Let Sym(M) be the set of permu-
tations overM. Consider the following game Γ between a Challenger and the Adversary:

1. The Challenger chooses uniformly at random a bit b ∈ {0, 1} and:
– If b = 0, it samples a key k ∈ K uniformly at random, and sets the oracle O by

defining it over the computational basis states |aux〉 |m〉 for m ∈ M and aux ∈ A

as O |aux〉 |m〉 = UEnc |k〉 |aux〉 |m〉 = |k〉 |eA(aux)〉 |Enck(aux,m)〉 (the oracle first
applies the minimal encryption oracleMEnc and then the inverse of dK to the register
containing the key).

– If b = 1, it samples a permutation over M uniformly at random σ ∈ Sym(M) and
sets the oracle O as O |aux〉 |m〉 = Uσ,eA |aux〉 |m〉 = |eA(aux)〉 |σ(m)〉.

2. For i ≤ q with q = poly(η), the Adversary sends a state ρi of its choice (of same size
as messages in M) to the Challenger. The Challenger responds by sampling an auxiliary

123

Formal computational security model for superposition attacks... 893

value at random auxi ∈ A, applying the oracle to the state |auxi 〉 ⊗ ρi and sending the
result back to the Adversary along with the modified auxiliary value.4

3. The Adversary outputs a bit b̃ and stops.

A symmetric encryption scheme is said to be a quantum-secure pseudo-random permu-
tation (or qPRP) if there exists ε(η) negligible in η such that, for any Adversary A with
superposition access and initial auxiliary state ρaux:

AdvΓ (A) :=
∣
∣
∣
∣
1

2
− P

[[
b = b̃ | b̃ ← A(ρaux, Γ)

]]∣∣
∣
∣ ≤ ε(η)

In a sense, the perfect (but inefficient) symmetric encryption is given by associating each
key k ∈ [#M!] to a different permutation from Sym(M) in a canonical way (sampling the
key is then equivalent to sampling the permutation). The encryption scheme that is used in
the protocol may even be considered to be exactly this perfect encryption scheme since the
superposition attack does not use the specifics of the underlying encryption scheme, or even
supposes a negligible advantage in breaking the encryption scheme (it simply requires it to
have a Minimal Oracle Representation). This would amount to proving the security of the
scheme in the ideal cipher model [26]. In the following, the key-space, auxiliary-space and
message-space are fixed to bit-strings of length nK , nA and nM .

4.2 The original Yao protocol

The protocol will be presented in a hybrid model where both players have access to a trusted
third party implementing a 1-out-of-2 String Oblivious Transfer (Ideal Functionality 2), in
which one party, called the Sender, inputs two strings (k0, k1) and the other, the Receiver,
inputs a bit b ∈ {0, 1}. The output of the Receiver is the string kb (with no knowledge about
kb̄), while on the other hand the Sender has no output and no knowledge about the choice-bit
b.

Ideal Functionality 2 1-out-of-2 String OT.
– Inputs: The Sender has as input (k0, k1) and the Receiver has as input b ∈ {0, 1}.
– Computation by the trusted party:

1. If the trusted party receives Abort or an incorrectly formatted input from either party,
it sends Abort to both parties and halts.

2. Otherwise, let (k̂0, k̂1) and b̂ be the inputs received. The Ideal Functionality sends k̂b̂
to the Receiver and halts.

The Garbler of Yao’s Protocol plays the role of the Sender of the OT while the Evaluator
is the Receiver. The attack presented further below does not rely on an insecurity from the
OT (the classical correctness of the Oblivious Transfer is sufficient), which will therefore be
supposed to be perfectly implemented and, as all Ideal Functionalities in this model, without
superposition access.

We assume that both parties have access to a quantum-secure symmetric encryption
scheme for which it is possible to check whether decryption was successful. Yao’s Protocol
can be then summarised as follows:

4 Notice that the oracle has no effect on the key if there is one and so it remains unentangled from the
Adversary’s system.

123

894 L. Music et al.

1. The Garbler samples at random two keys for each bit of input (for both players).
2. It uses those keys to construct a garbled version of the function they both wish to com-

pute. The construction of this garbled table is done by iterating over all possible inputs,
computing the associated output and encrypting it using the corresponding input keys.

3. The Garbler sends the keys for the Evaluator’s input through the OT, while the Evaluator
uses its input bit to recover the keys for its input. There is one OT call for each input bit
of the Evaluator.

4. The Garbler then sends directly the garbled function and the keys corresponding to its
own input.

5. Finally, after receiving the keys (through the OT calls for its own, and via direct communi-
cation for the Garbler’s) and garbled table, the Evaluator uses them to decrypt sequentially
each entry of the table and until it succeeds.

6. It then returns the correctly decrypted value to the Garbler.

We now present the garbled table construction, defined below for two bits of input.

Definition 6 (Garbled table for binary gates) Let (Enc,Dec) be a symmetric encryption
scheme with key space K and message length nM . Let f : {0, 1}2 → {0, 1} be a binary gate,
with input wires labelled a and b and output wire z. Let (ka0 , k

a
1 , k

b
0 , k

b
1) ∈ K4 be keys for the

input wires, kz ∈ {0, 1} a key for the output and auxa and auxb two auxiliary values for the
encryption scheme.

We call initial garbled table the lexicographically ordered list
[
Ekz

ã,b̃

]

ã,b̃∈{0,1}, whose

elements are computed as follows by iterating over ã and b̃ (with p = nM − 1 being the
padding length and ‖ representing string concatenation):

Ekz

ã,b̃
:= Enckaã

(
auxa, Enckb

b̃
(auxb, f (ã, b̃) ⊕ kz ‖ 0p)

)

The final garbled table GT(a,b,z)
f is obtained by applying a random permutation π ∈ S4 to

the list above.

For functions with fan-in l, the number of keys used will be 2l (two for each input bit) and
the number of values in the garbled table will be 2l . The construction is otherwise identical,
done by iterating over all possible input values. We assume that the keys are always used in
a fixed order which is known to both players at time of execution (e.g. during encryption, all
the keys of the Evaluator are applied first, followed by the keys of the Garbler).

Note that here the padding in the garbled table as described above allows the Receiver
to test that a decryption succeeded by checking if the last p bits are equal to 0 (except with
probability negligible in p, the decryption of a ciphertext with the wrong keys will not yield
p bits set to 0, see Lemma 1). This padding enforces the verifiable and elusive range property
required in the original Yao Protocol [17, 30].

Finally, remark that the value kz is used to One-Time-Pad the outputs, thus preserving
security for the Garbler after decryption as only one value from the garbled table can be
decrypted correctly. If the Evaluator recovers the final output, this value is unnecessary.

4.3 Presentation of themodified Yao protocol

Differences with the Original Yao Protocol There are four main differences between our
Modified Yao Protocol 1 and the well-known protocol from [30] recalled above. The first
two are trivially just as secure in the classical case (as they give no more power to either

123

Formal computational security model for superposition attacks... 895

player): the Garbler sends one copy of its keys to the Evaluator for each entry in the garbled
table and instructs it to use a “fresh" copy for each decryption; and the Evaluator returns to the
Garbler the copy of theGarbler’s keys that were used in the successful decryption. Notice also
that there is only one garbled table for the whole function instead of a series of garbled tables
corresponding to gates in the function’s decomposition. As explained above, this means that
the size of the garbled table is 2l for inputs of size l (equivalently, this modified protocol can
only be used for logarithmically-sized inputs). This is less efficient but no less secure than the
original design in the classical case (and quantum case without superposition access), as a
player breaking the scheme for this configuration would only havemore power if it has access
to intermediate keys as well. The last difference is the use of a weaker security assumption for
the symmetric encryption function (quantum indistinguishability from a random permutation
instead of the quantum equivalents to IND-CPA security developed in [2, 10, 21]). This
lower security requirement is imposed in order to model the honest player’s actions using the
minimal oracle representation. This property influences the security against an adversarial
Evaluator, but Theorem 2 shows that this assumption is sufficient for security in our scenario.
The reasons for these modifications, related to our attack, are developed in Sect. 5.3.

From now on we focus on the case where the final output is a single bit and note f :
{0, 1}nX × {0, 1}nY → {0, 1} the binary function to be evaluated, with the Garbler’s input
being x ∈ {0, 1}nX and the Evaluator’s input being y ∈ {0, 1}nY . The keys for the Garbler’s
and Evaluator’s input will be noted

{
kG,i
0 , kG,i

1

}

i∈[nX] and
{
kE,i
0 , kE,i

1

}

i∈[nY] respectively.
The full protocol is described formally in Protocol 1.

The correctness and security in classical networks of this Modified Yao Protocol are
captured by Theorems 1 and 2, showing that the modifications above have no impact in this
setting (against both quantum and classical Adversaries).

Theorem 1 (Correctness of theModifiedYaoProtocol)Let (Enc,Dec)bea symmetric encryp-
tion scheme with a Minimal Oracle Representation (Definition 4). Protocol 1 is correct with
probability exponentially close to 1 in η for p = η.

Proof We suppose here that both players are honest. Note that the protocol will only fail if
one decryption which should have been incorrectly decrypted is instead decrypted as valid.
The parameter p must be chosen such that the probability of failure is negligible (in the
security parameter in this instance). If at least one of the keys used in decrypting an entry
in the garbled table does not correspond to the key used in encrypting it, the encryption and
decryption procedure is equivalent to applying a random permutation on r ‖ 0p for uniformly
random r (up to negligible probability in η that the encryption scheme is distinguishable from
a random permutation). The probability that the resulting element also has p bits equal to 0
at the end is therefore 2−p .

For p = poly(η), we show that the failure probability corresponding to one such event hap-
pening across any possible “wrong" decryption is negligible in η. In fact, there are 2nX+nY+1

ciphertexts (counting both possibilities for kz) and 2nX+nY possible input key combina-
tions, all but one being wrong for each ciphertext. This results in 2nX+nY+1(2nX+nY − 1) ≈
22nX+2nY+1 random values being potentially generated through incorrect decryption. The
probability that none of these random values has the string 0p as suffix (let Good be the
associated event) is given by:

P[Good] ≈ (
1 − 2−p)22nX+2nY +1 ≈ 1 − 2−p · 22nX+2nY+1

The first approximation comes from the aforementioned negligible probability that the
encryption scheme is not a random permutation while the second stems from p � nX + nY .

123

896 L. Music et al.

Protocol 1Modified Yao Protocol for One Output Bit.
Input: The Garbler and Evaluator have inputs x ∈ {0, 1}nX and y ∈ {0, 1}nY respectively,
with nX + nY = Olog(η).
Output: The Garbler has one bit of output, the Evaluator has no output.
Public Information: The function f to be evaluated, the encryption scheme (Enc,Dec)
and the size of the padding p.
The Protocol:

1. The Garbler chooses uniformly at random the values
{
kG,i
0 , kG,i

1

}

i∈[nX],{
kE, j
0 , kE, j

1

}

j∈[nY] from K and kz ∈ {0, 1}. It uses those values to compute the garbled

tableGT(X ,Y ,Z)
f , with X being the set of wires for the Garbler’s input, Y the set of wires

for the evaluators input, and Z the output wire.
2. The Garbler and Evaluator perform nY interactions with the trusted third party per-

forming the OT Ideal Functionality. In interaction j :
– The Garbler’s inputs are the keys (kE, j

0 , kE, j
1), the Evaluator’s input is y j .

– The Evaluator’s output is the key kE, j
y j .

3. The Garbler sends the garbled table GT(X ,Y ,Z)
f and 2nX+nY copies of the keys corre-

sponding to its input
{
kG,i
xi

}

i∈[nX]. It also sends the auxiliary values {auxk}k∈[nX+nY]
that were used for the encryption of the garbled values.

4. For each entry in the garbled table:
(a) The Evaluator uses the next “fresh" copy of the keys supplied by the Garbler along

with the keys that it received from the OT Ideal Functionality to decrypt the entry
in the garbled table.

(b) It checks that the last p bits of the decrypted value are all equal to 0. If so it returns
the register containing the output value and the ones containing the Garbler’s keys
to the Garbler.

(c) Otherwise it discards this “used" copy of the keys and repeats the process with the
next entry in the garbled table. If this was the last entry it outputs Abort and halts.

5. If the Evaluator did no output Abort, the Garbler applies the One-Time-Pad defined by
the key associated with wire z to decrypt the output: if kz = 1, it flips the corresponding
output bit, otherwise it does nothing. It then sets the bit in the output register as its output.

This probability should be negligibly close to 1 in η, in which case setting p = η is sufficient
since nX + nY = Olog(η).
�
Theorem 2 (Classical-style security of the Mmodified Yao protocol) Consider a hybrid
execution where the Oblivious Transfer is handled by a classical trusted third party. Let
(Enc,Dec) be a symmetric encryption scheme that is εSym-real-or-permutation-secure (Def-
inition 5). Then, in classical network C, Protocol 1 is perfectly-secure against adversarial
Garbler (the Adversary’s advantage is 0) and (2nX+nY − 1)εSym-secure against adversarial
Evaluator according to Definition 1.

Proof In both cases (adversarial Garbler and Evaluator) we will construct a Simulator that
runs theAdversary against the real protocol internally and show that theEnvironment’s advan-
tage in distinguishing the real and ideal executions is negligible. Recall that all exchanged
messages are classical.

123

Formal computational security model for superposition attacks... 897

Security against adversarial Garbler The Simulator works as follows:

1. During each OT, it performs the same interaction as an honest player would, but with a
random value for the input ỹi of each OT.

2. The Adversary’s machine then necessarily sends the Garbler’s keys and the circuit in the
computational basis.

3. This automatically fixes the value of theAdversary’s input x̂ (the Adversary beingHonest-
but-Curious, it has generated the keys correctly and sent the keys corresponding to its
input). The Simulator can thereforemeasure the register containing the input of theGarbler
to recover x̂ .

4. The Simulator then sends x̂ to the Ideal Functionality computing the function f and gets
f (x̂, ŷ) (for the actual value of the honest player’s input ŷ).

5. The Simulator can compute the value f (x̂, ỹ) and decrypt the garbled table values to
recover f (x̂, ỹ) ⊕ kz using the keys that were given to it through the OTs (for its “fake"
input ỹ). It uses both values to recover kz .

6. The Simulator then computes f (x̂, ŷ) ⊕ kz and sends this value to the Adversary.

The only distinguishing advantage of the Environment between the real protocol and this
ideal execution stems from the Adversary’s potential difference in behaviours during the
execution of the OTs. These executions are ideal in the hybrid model and so the advantage
of the Environment is 0.
Security against adversarial Evaluator Themessages sent to the adversarial Evaluator consist
of nY instances of OTs, 2nX+nY garbled table entries and the keys corresponding to the input
of the honest player. The Simulator performs all these steps similarly to an honest Garbler but
sends the keys corresponding to a randomly chosen input x̃ . We can show through a series of
games that this does not give any information to a computationally-bounded Evaluator (we
show that the protocol is input-indistinguishable according to Definition 2, which as stated
Lemma 1 is equivalent since the Adversary has no output):

– Game 0: The Simulator performs Protocol 1 with the Adversary, with random input x̃ .
– Game 1: In the execution of the OTs the Simulator replaces the values of the keys that

are not chosen by the Adversary with random values (that were not used to compute any
of the encryptions). The advantage in the real-world for the Adversary compared to this
situation is 0 since the execution of the OTs is perfectly-secure in the hybrid model.

– Game 2: The encryptions that use those (now random) keys can be replaced by random
values, with a security cost of εSym per replaced encryption (as the encryption can be
considered to be random permutations without having access to the key). It is a double
encryption, so for some values the Adversary may possess either the inner or the outer
key. This means that it could invert one of the encryptions, but since it does not have the
other this is meaningless.

– Game 3: Finally, the key kz only appears in one encryption as a One-Time-Pad of the
output of the computation (the others are now independent from it). It can therefore be
replaced by an encryption of a random value, meaning that it is as well a random value
(this is perfectly equivalent).

Finally, at the end of Game 3, only the keys received through the OT remain and they are
random values chosen independently from one another and from any input. The Environment
has no advantage in this scenario, meaning that the overall advantage is at most (2nX+nY −
1)εSym .
�

The proof above shows that proving the security of some protocols does not require the
Simulator to call the Ideal Functionality, in particular if the adversarial party does not have

123

898 L. Music et al.

an output in the protocol. This is contrary to the usual simulation-based proofs, where the
Simulator must extract the input of the Adversary to send it to the Ideal Functionality (for the
sake of composition). However, the exact same proofs of security work in the Stand-Alone
Framework of [13] if the Simulator does send the input value of the Adversary to the Ideal
Functionality (anyAdversary against a classical protocol in the Stand-Alone Framework only
sends classical messages as well).

5 Analysis of Yao’s protocol with superposition access

In Sect. 5.1 we first describe how the actions performed during the protocol are transcribed
into quantum operations. The superposition attack on theModified Yao Protocol (Protocol 1)
is then presented in two steps: Sect. 5.2 first describes the actions of the Adversary during
the execution of the protocol, while Sect. 5.3 presents the Full Attack. This attack is proven
to be Extended Honest-but-Curious in Sect. 5.4, therefore the same Adversary in a classical
network does not break the classical-style security expressed in Theorem 2 (this proves
the separation between the quantum and classical settings). The attack is further optimised
in Sect. 5.5 using the free-XOR technique, and applied to an Oblivious Transfer protocol
(computed by an instance of Yao’s Protocol). The full proofs of the results from this section
can be found in Appendix B.

Note that this attack does not simply distinguish between the ideal and real executions,
but allows the Adversary to extract one bit of information from the honest player’s input. It is
therefore a concrete attack on theModified Yao Protocol 1 (as opposed to a weaker statement
about not being able to perform an indistinguishable simulation in our model).

5.1 Quantum embedding of the classical protocol

The inputs of each party are stored in one register each, as |x〉 and |y〉 respectively. For each
key k that is created as part of the protocol, a different quantum register is initialised with
the state |k〉 (there are therefore nY registers for the Evaluator’s keys and nX2nX+nY for the
Garbler’s keys due to the copies being generated). Similarly, for each value Ei of the garbled
tables, a quantum register is initialised with the value |Ei 〉 (there are 2nX+nY such registers).
The auxiliary values are also all stored in separate quantum registers. All of these values are
encoded in the computational basis.

TheOT trusted partyworks as described in the Ideal Functionality 2.The inputs andoutputs
are considered to be pure quantum states in the computational basis (no superposition attack
is allowed to go through the OT). Sending messages in the other parts of the protocol is
modelled as taking place over perfect quantum channels (no noise is present on the channel
and superpositions are allowed to pass undisturbed). A decryption of ciphertext c using a
key k and auxiliary value aux is modelled using the Minimal Oracle Representation from
Definition 4 as MDec |k〉 |aux〉 |c〉 = |dK (k)〉 |dA(aux)〉 |Deck(aux, c)〉 on the states of the
computational basis.

Checking whether the final p bits are equal to 0 corresponds to performing a measure-
ment MC on the corresponding register P in the basis {|0p〉〈0p|, 1P − |0p〉〈0p|}. If the
measurement fails, the Evaluator applies the inverses of dK and dA to the registers con-
taining respectively its keys and the auxiliary values so that they may be reused in the next
decryption. Finally, the correction applied at the end which depends on the choice of key
for wire Z is modelled as classically controlled Pauli operators Xk

z
(this corresponds to the

123

Formal computational security model for superposition attacks... 899

quantum application of a classical One-Time-Pad and the value kz can be seen as internal
classical values of the Garbler for simplicity).

For simplicity of notations, let kEy := kE,1
y1 ‖ . . . ‖ kE,nY

ynY
for y ∈ {0, 1}nY (and similarly

for x ∈ {0, 1}nX). Also, let Ẽnc be the sequential encryption by all keys corresponding to
strings x and y, using the set of auxiliary values ãux := aux1 ‖ . . . ‖ auxnX+nY . Then
Ekz
x,y = ẼnckGx ,kEy

(ãux, f (x, y) ⊕ c ‖ 0p). Finally, d̃K is the function applying dK to each

key, and similarly for d̃A.

5.2 Generating the correct and unpolluted superposition

We start by presenting the action of the adversarial Garbler during the execution of Protocol 1
(its later actions are described in Sect. 5.3). Its aim is to generate a state containing a super-
position of its inputs and the corresponding outputs for a fixed value of the Evaluator’s input,
without it being polluted by additional ancillary registers. This State Generation Procedure
on the Modified Yao Protocol 1 (Attack 1) can be summarised as follows:

1. The Adversary’s choice of keys, garbled table generation (but for both values of kz) and
actions in the OT are performed honestly.

2. Instead of sending one set of keys as its input, it sends a superposition of keys for two
different non-trivial values of the Garbler’s input (x̂0, x̂1) (they do not uniquely determine
the output).

3. For each value in the garbled table, it instead sends a uniform superposition over all
calculated values (with a phase of−1 for states representing garbled valueswhere kz = 1).

4. It then waits for the Evaluator to perform the decryption procedure and, if the Evaluator
succeeded in decrypting one of the garbled values and returns the output and register con-
taining the Garbler’s keys, the Adversary performs a clean-up procedure which translates
each key for bit-input 0 (respectively 1) into a logical encoding of 0 (respectively 1). This
procedure depends only on its own choice of keys.

We can now analyse the states of both parties and the success probability of this procedure
in Theorem 3.

Theorem 3 (State generation analysis) The state contained in the Garbler’s attack registers
at the end of a successful Superposition Generation Procedure (Attack 1) is negligibly close
to 1

2

∑

x,kz
(−1)k

z ∣
∣x L

〉 ∣
∣ f (x, ŷ) ⊕ kz

〉
, where x L is a logical encoding of x and x ∈ {x̂0, x̂1}. Its

success probability is lower bounded by 1 − e−1 for all values of nX and nY .

Proof (Sketch) The Evaluator’s state after one decryption of a garbled table entry is (for

x ∈ {x̂0, x̂1}, tracing out the unentangled values and with gx
′,y′,c

x,y representing incorrectly
decrypted values):

(∑

x,kz
(−1)k

z
∣
∣
∣kGx

〉 ∣
∣ f (x, ŷ) ⊕ kz

〉 |0〉⊗p +
∑

kz ,x,x ′,y′
(x,y)�=(x ′,ŷ)

(−1)k
z
∣
∣
∣kGx

〉 ∣
∣
∣g

x ′,y′,kz
x,ŷ

〉)

With overwhelming probability in η, gx
′,y′,c

x,ŷ �= r ‖ 0p and the states in both sums are
orthogonal. Checking the padding is modelled as a measurement with successful outcome
|0p〉〈0p|. If successful, the projected state received by the Garbler is then:

∑

x,kz
(−1)c

∣
∣
∣kGx

〉 ∣
∣ f (x, ŷ) ⊕ kz

〉

123

900 L. Music et al.

Attack 1 Superposition Generation Procedure on the Modified Yao Protocol.
Inputs:

– The (adversarial) Garbler has as input the quantum state φinp,G = |x̂0〉 ⊗ |x̂1〉, with
x̂0, x̂1 ∈ {0, 1}nX received from Environment Z (this describes classically the super-
position of inputs that it should use).

– The (honest) Evaluator has as input ŷ ∈ {0, 1}nY , received from Environment Z.

The Attack:

1. The Garbler chooses uniformly at random the values
{
kG,i
0 , kG,i

1

}

i∈[nX] and
{
kE,i
0 , kE,i

1

}

i∈[nY] and computes the initial garbled tables GT(X ,Y ,Z),0
f =

{
E0
x,y

}

x,y

and GT(X ,Y ,Z),1
f =

{
E1
x,y

}

x,y
(where the index 0 corresponds to kz = 0 and similarly

for 1, or equivalently that the value encrypted is f (x, y) in the first case and f (x, y)⊕1
in the second). This computation is the same as in the honest protocol (but done for
both values of kz). Note that there is no need to permute the values as they will be sent
in superposition anyway.

2. The Garbler and Evaluator perform nY interactions with the trusted third party per-
forming the OT Ideal Functionality. At the end of all interactions, the Evaluator has a

quantum register initialised in the state
⊗

i∈[nY]
∣
∣
∣kE,i

ŷi

〉
=

∣
∣
∣kEŷ

〉
.

3. The Garbler sends the auxiliary values as it would in the original protocol. The cor-
responding state is |ãux〉 = ⊗nX+nY

i=1 |auxi 〉. For each key kGx that it would send to

the Evaluator, the Garbler instead sends a uniform superposition 1√
2

(∣
∣
∣kGx̂0

〉
+

∣
∣
∣kGx̂1

〉)
.

For each entry in the garbled table that it would send, it instead sends the following
superposition over all garbled values:

|GT〉 = 1√
2nX+nY+1

∑

x,y,kz
(−1)k

z
∣
∣
∣Ekz

x,y

〉

4. For each entry in the garbled table, the Evaluator proceeds as it would in the protocol,
decrypting the ciphertexts sequentially, performing a measurement on register P in
the basis {|0p〉〈0p|, 1P − |0p〉〈0p|} and returning the corresponding output and the
register containing the Garbler’s keys if successful.

5. If the Evaluator is successful and returns a state after one of its measurements, the
Garbler applies the following clean-up procedure:
(a) For each register containing one of its keys, it applies the inverse of dK .
(b) For each index i such that x̂0i �= x̂1i , if there is an index j such that kG,i, j

0 �= kG,i, j
1

and kG,i, j
0 = 1 it applies an X Pauli operation on the qubit containing this bit of

the key.
(c) The first register then contains a superposition of logical encodings of the inputs

x̂0L
′
and x̂1L

′
. The register containing the output is unchanged.

6. It then sets these registers (called attack registers) as its output, along with a register
containing |x̂0〉 ⊗ |x̂1〉 ⊗ ∣

∣L′〉, with L′ being a list of integers corresponding to the size
of a given logical repetition encoding of the inputs (see the proof of Theorem 3).

123

Formal computational security model for superposition attacks... 901

The final result after the clean-up procedure is 1
2

∑

x,kz
(−1)k

z
∣
∣
∣x L

′ 〉 ∣
∣ f (x, ŷ) ⊕ kz

〉
(where

x L
′
is a logical encoding of x) .
If a given measurement fails, the Evaluator moves to the next garbled table value with

fresh keys, essentially repeating the same procedure. The success probability of each attempt
is simply given by the number of states correctly decrypted out of the total number of states

1
2nX+nY

. The probability that no measurement succeeds in 2nX+nY independent attempts is

given by
(
1− 1

2nX+nY

)2nX+nY ≤ e−1. The success probability is therefore lower-bounded by

1 − e−1.
�
Generalisation for almost separable superpositions For binary function f : {0, 1}nX ×
{0, 1}nY → {0, 1} and ŷ, let U ŷ

f be the unitary defined through its action of computational

basis states by U ŷ
f |x〉 |kz〉 = |x〉 | f (x, y) ⊕ kz〉. The above procedure allows the Adversary

to generate U ŷ
f |ψ〉 |φ〉 for any states |ψ〉 (over nX qubits) and |φ〉 (over one qubit) whose

classical descriptions ψ and φ are efficient (notice that the state |ψ〉 |φ〉 must be separable).
The description of state ψ is used to generate the superposition of keys (if an input appears
in the superposition ψ , then the key corresponding to it should appear in the superposition
of keys with the same amplitude) while φ is used when generating the superposition over
garbled table entries (if |φ〉 = α |0〉 + β |1〉, the corresponding superposition over garbled

values is
∣
∣GTα,β

〉 = ∑

x,y
α

∣
∣
∣E0

x,y

〉
+ β

∣
∣
∣E1

x,y

〉
). The same results and bounds are applicable

(with similar corresponding proofs).

5.3 Applying the state generation procedure to the full attack

We can now analyse the actions of the Adversary after the protocol has terminated. The Full
Attack 2 breaking the security of the Modified Yao Protocol 1 can be summarised as follows:

1. The Environment provides the Adversary with the values of the Garbler’s input (x̂0, x̂1).
The input of the honest Evaluator is ŷ.

2. The Adversary performs the State Generation Procedure with these inputs.
3. If it has terminated successfully, the Adversary performs an additional clean-up procedure

(which only depends on the values of (x̂0, x̂1)) to change the logical encoding of x̂b into an
encoding of b. The resulting state is (omitting this logical encoding, with bi := f (x̂i , ŷ)
and up to a global phase):

1√
2

(|0〉 + (−1)b0⊕b1 |1〉) ⊗ |−〉

4. The Adversary recover the XOR of the output values for the two inputs by applying a
Hadamard gate to its first register and measuring it in the computational basis.5

This Full Attack 2 breaks the security of the Modified Yao Protocol 1 (Theorem 4) by
guessing the XOR of the outputs for two different inputs of the Garbler and the same input for
theEvaluator. If the ideal and real executionswere indistinguishable according toDefinition 1,
such a feat would be impossible for the Adversary since the Simulator can at most access
one value of the output through the Ideal Functionality.

5 This corresponds to the final steps of the DJ algorithm after the application of the oracle, see Appendix A.

123

902 L. Music et al.

Attack 2 Full Superposition Attack on the Modified Yao Protocol.
The Attack:

1. The EnvironmentZ generates values (x̂0, x̂1, ŷ) and sends |x̂0〉⊗|x̂1〉 to the Adversary.
The values (x̂0, x̂1) are non-trivial in the sense that they do not uniquely determine the
value of the output.

2. The Adversary applies the Superposition Generation Procedure described in Attack 1,
using a superposition of keys for x̂0 and x̂1. If the Evaluator was not successful, the
Adversary samples and outputs a bit b (equal to 0 with probability pGuess, which
corresponds to the optimal guessing probability and whose value is defined in the
proof of Theorem 4) and halts.

3. Otherwise, the Adversary applies the following clean-up procedure on the output state
of the Superposition Generation Procedure, similar to the one described in Attack 1
(recall that the first register then contains a logical encoding of the inputs x̂0L

′
and x̂1L

′
,

obtained after the first clean-up procedure described in Attack 1):
(a) If there is an index j such that x̂0 j �= x̂1 j and x̂0 j = 1, it applies a Pauli X

operation on the qubits corresponding to the logical encoding of bit j (each bit is
encoded with a repetition code of varying length given by the list L’).

(b) The qubits corresponding to a value j such that x̂0 j = x̂1 j are unentangled from
the rest of the state and so can be discarded.

4. The result of the previous step is that the first register now contains a superposition of
a logical encoding 0L and 1L (for another logical encoding L). The Adversary then
applies a logical Hadamard gate HL on this register.

5. The Adversary measures the first qubit in the computational basis and outputs the result
s to Z.

6. The Environment guesses that the execution is real if s = f (x̂0, ŷ) ⊕ f (x̂1, ŷ).

Theorem 4 (Vulnerability to superposition attacks of the modified Yao protocol) For any
non-trivial two-party function f : {0, 1}nX × {0, 1}nY → {0, 1}, let (x̂0, x̂1) be a pair
of non-trivial values in {0, 1}nX . For all inputs ŷ of honest Evaluator in Protocol 1, let
PEf (ŷ) = f (x̂0, ŷ) ⊕ f (x̂1, ŷ). Then there exists a real-world Adversary A in quantum
networkQ against Protocol 1 implementing f such that for any Simulator S, the advantage
of the Adversary over the Simulator in guessing the value of PEf (ŷ) is lower-bounded by
1
2 (1 − e−1).

Proof (Sketch) The Superposition Generation Procedure succeeds with probability 1 − e−1.
Then the Adversary applies the final steps of Deutsch’s algorithm as follows and recover the
value of the XOR with probability 1. The Adversary first applies the clean-up procedure on
the registers containing x̂i L

′
and obtains (for a different value L for the logical encoding):

1

2

(|0〉⊗L
∣
∣ f (x̂0, ŷ)

〉 − |0〉⊗L
∣
∣ f (x̂0, ŷ) ⊕ 1

〉 + |1〉⊗L
∣
∣ f (x̂1, ŷ)

〉 − |1〉⊗L
∣
∣ f (x̂1, ŷ) ⊕ 1

〉)

Let bi := f (x̂i , ŷ), the state is then 1√
2
(−1)b0

(|0〉⊗L + (−1)b0⊕b1 |1〉⊗L
) ⊗ |−〉. The

Adversary then applies the logical Hadamard gate, the resulting state is |b0 ⊕ b1〉⊗L ⊗ |−〉.
The Adversary measures the first qubit in the computational basis to obtain b0 ⊕ b1 =
f (x̂0, ŷ) ⊕ f (x̂1, ŷ).

123

Formal computational security model for superposition attacks... 903

If the state generation fails, Adversary resorts to guessing the value of the value of PEf (ŷ),

winning with a probability 1
2 . On the other hand, any Simulator is only able to guess the

value of PEf (ŷ). The advantage of the Adversary over any Simulator is lower-bounded by
1
2 (1 − e−1).
�
Justifying the differences in the protocol variant We can nowmore easily explain the choices
straying from the Original Yao Protocol mentioned in Sect. 4.3. The first remark is that the
fact that the Garbler sends multiple copies of its keys is what allows the success probability to
be constant and independent from the size of the inputs (see Theorem 3). Otherwise it would
decrease exponentially with the number of entries in the garbled table, which might not be
too bad if it is a small constant (the minimum being 4 for the naive implementation). On the
other hand, returning the Garbler’s keys to the Adversary is an essential part of the attack, as
otherwise it would not be able to correct them (the final operations described in the full attack
are all performed on these registers). If they stay in the hands of the Evaluator, it is unclear
how the Adversary would perform the attack (as the state is then similar to the entangled
one described in the introduction as something that we seek to avoid). Similarly, the fact that
we do not use an IND-CPA secure symmetric encryption scheme is linked to the fact that it
adds an additional register containing the randomness used to encrypt (for quantum notions
of IND-CPA developed in [2, 21]), and which is then entangled with the rest of the state
(this register can not be given back to the Adversary as it would break the security, even in
the classical case, by revealing the index of the correctly decrypted garbled entry). On the
other hand, in [10] they show that the notion of quantum IND-CPA they define is impossible
for quasi-length-preserving encryption scheme (which includes encryptions which permute
the message space, such as the ones we use here for their Minimal Oracle Representation).
Finally, if we were to follow the same principle as in the original protocol and decompose the
binary function into separate gates, then the intermediate keys would similarly add another
register which is entangled with the rest of the state. This is why we require that the garbled
table represents the whole function.

5.4 The full attack is not malicious

Note that the Original Yao Protocol is secure against Honest-but-Curious Adversaries. The
equivalent in termsof superposition attacks is to send exactly the samemessages but computed
over an arbitrary superposition of the randomness used by the Adversary (be it the inputs of
other random values). That is to say that, if the honest party would have measured the state
sent by the Adversary, it would recover perfectly honest classical messages. On the other
hand, the Adversary described in Attack 2 is not strictly Honest-but-Curious.

However, the following lemma captures the fact that the previously described Adversary
does not break the Honest-but-Curious security of the Modified Yao Protocol if it does not
have superposition access (a fully-malicious one can trivially break it), thereby demonstrating
the separation between Adversaries with and without superposition access.

Lemma 2 (Adversarial Behaviour Analysis) In a classical network C, the Adversary
described in Attack 2 is an Extended Honest-but-Curious Adversary (Definition 3).

Proof Attack 2 is not strictly Honest-but-Curious since a player that measures honestly and
tries to decrypt after can also fail with probability e−1 if it never gets the correct ciphertext
in the table after measuring. When restricted to classical networks, this Adversary works as
follows:

123

904 L. Music et al.

1. It generates all values for the garbled table (for both values of kz).
2. For each garbled table entry that it is supposed to send, it instead chooses uniformly at

random one of the generated values (with replacement) and a key for either x̂0 or x̂1 and
sends them (it does not store in memory which values have been sent).

3. It then waits to see if the honest player has been able to decrypt one of the values or not.
4. If it has, then it receives (as classical messages) the key that was used to decrypt (either

for x̂0 or x̂1) and the decrypted value.

This Adversary is precisely an Extended Honest-but-Curious Adversary according to
Definition 3 as the Simulator presented in the security proof of Theorem 2 works as well
for this Adversary, with the difference that with a probability of e−1 it cannot recover the
value of kz if it is unable to decrypt (but then this is also the case when interacting with an
honest party) and so must abort. Since the Adversary does not store which values have been
sent it does not know whether this value has been decrypted from the keys from the honest
player or the Simulator (using a random input). On the other hand this action by the Simulator
is necessary to simulate the probability that none of the keys decrypt correctly the garbled
values (this happens with the same probability in the simulated and real executions).
�
�

The core reason why the Honest-but-Curious Simulator works is that the Adversary’s
internal register is never entangled with the states that are sent to the honest party: much
more efficient attacks exist in that case, for example the Adversary can recover the full input
of the Evaluator if it keeps a register containing the index of the garbled table value, which
collapses along with the output register when it is measured by the honest player while
checking the padding, therefore revealing the input of the Evaluator. However this Adversary
is not simulatable when placed in a classical network (and therefore this attack does not show
a separation between the two scenarios as it would be similar to subjecting the protocol to a
Malicious classical Adversary, that can trivially recover the honest player’s input).

5.5 Attack optimisation and application to oblivious transfer

The attack described in Sect. 5 will now be applied to a simple function, namely the 1-out-
of-2 bit-OT, in order to demonstrate a potential improvement. In this case, the Garbler has a
bit b as input, the Evaluator has two bits (x0, x1) and the output for the Garbler is xb. This
can be represented by the function OT (b, x0, x1) = bx1 ⊕ (1 ⊕ b)x0. This can be factored
as OT (b, x0, x1) = b(x0 ⊕ x1) ⊕ x0. By changing variables and defining X := x0 ⊕ x1, it
can be rewritten further into OT (b, x0, X) = bX ⊕ x0.

Based on this simplified formula, instead of computing the garbled table for the full
function, the Garbler will only garble the AND gate between b and X . In order to compute
the XOR gate at the end, the Free-XOR technique will be used. Recall first that the key-space
is fixed to K = {0, 1}nK . Instead of choosing both keys for each wire uniformly at random,
this technique works by choosing uniformly at random a value K ∈ {0, 1}nK and setting
kw
1 := kw

0 ⊕ K for all wires w which are linked to the XOR gate (either as input or output
wires). The value kw

0 is sampled uniformly at random for the input wires. For the output wire,
if a and b are the labels of the input wires, the value is set to kw

0 = ka0 ⊕ kb0 . In this way,
instead of going through the process of encrypting and then decrypting a garbled table, given
a key for each input of a XOR gate, the Evaluator can directly compute the output key in one
string-XOR operation (as an example, if the keys recovered as inputs for the input wires are
ka0 and kb1 , then the output key is computed as ka0 ⊕ kb1 = ka0 ⊕ kb0 ⊕ K = kw

0 ⊕ K = kw
1 ,

which is the correct output key value for inputs a = 0 and b = 1). The security of Yao’s

123

Formal computational security model for superposition attacks... 905

protocol using the Free-XOR technique derives from the fact that only one value for the keys
is known to the evaluator at any time, so the value K is completely hidden (if the encryption
scheme is secure). This has been first formalised in [16].

After having decrypted the garbled table for the AND gate, the Evaluator simply performs
the XOR gate using the Free-XOR technique. Without loss of generality the XOR of the keys
is performed into the register containing the key corresponding to the output of the AND gate.
In the quantum case, this is done using a CNOT gate, where the control qubit is the register
containing the keys for x0 and the controlled qubit is the register containing the output of the
decryption of the garbled AND gate (the key for x0 is not in superposition as it belongs to the
Evaluator and so the register containing it remains unentangled from the rest on the state).

The initial input to the garbled table is 3 bits long in the decomposed protocol, while
the input to the AND gate is only 2 bits long, lowering the number of pre-computations
to generate the garbled table and improving slightly the attack’s success probability (it is a
decreasing function of the number of possible inputs).

The probability of successfully generating the attack superposition 1
2

(|0〉⊗L |x0〉 −
|0〉⊗L |x0 ⊕ 1〉+|1〉⊗L |x1〉−|1〉⊗L |x1 ⊕ 1〉) by using this new technique is 1−

(
3
4

)4 = 175
256

(by not using the approximation at the end of the proof of part 2 of Theorem 3 for success
probability). As described in Theorem 4, such a superposition can be used to extract the
XOR of the two values, an attack which is impossible in the classical setting or even in the
quantum setting without superposition access. The advantage of the Adversary in finding the
XOR (over a Simulator which guesses the value) by using this attack is 175

512 . This is far from
negligible and therefore the security property of the OT is broken.

Of course this is a toy example as it uses two string-OTs to generate one bit-OT. But the
bit-OT that has been generated has a reversed Sender and Receiver compared to the string-
OTs that were used. In the classical case, it can be noted that similar constructions have been
proposed previously to create an OT which was simulatable for one party based on an OT
that is simulatable for the other (and this construction is close to round-optimal).

6 Security model satisfiability

Having dissected an attack on a protocol, we now give feasibility results in our model. As
a cryptographic “Hello World", we first prove in Sect. 6.1 that the classical One-Time-Pad
remains secure even against superposition attacks. Sect. 6.2 then analyses post-mortem the
superposition attack on Yao’s Protocol to build a Superposition-Resistant Yao Protocol.

6.1 Superposition-resistance of the classical one-time pad

The OTP (Protocol 2) uses a Key Distribution (Ideal Functionality 4, see [24]) for two parties
to emulate a Confidential Channel (Ideal Functionality 3), which assures that only the length
of the message is leaked to the Eavesdropper but does not guarantee that it was not tampered
with (see also [5, 8]). The security of the classical OTP Protocol against Adversaries in
classical networks C is proven in [8].

Wewill now prove the security of the protocol against malicious Eavesdropper in quantum
network Q (with superposition access), as captured by the following Lemma 3.

123

906 L. Music et al.

Ideal Functionality 3 Confidential Channel.
– Inputs: The Sender has a message m ∈ {0, 1}n . The Receiver has no input and the

Eavesdropper has an auxiliary input ρaux .
– Computation by the Functionality: It sends n to the Eavesdropper. If it has not received

anything from the Eavesdropper, it sends m to the Receiver. Otherwise if it has received
message m̂ from the Eavesdropper over n bits, it then sends it to the Receiver.

Ideal Functionality 4 Key Distribution.
– Inputs: Parties P1 and P2 have as input the size n of the key.
– Computation by the trusted party: It samples uniformly at random k ∈ {0, 1}n and

sends k to P1 and P2.

Protocol 2 OTP Protocol.
Input: The Sender has a message m ∈ {0, 1}n . The Receiver has as input the size of the
message. The Eavesdropper has an auxiliary input ρaux .
The Protocol:

1. The Sender and Receiver call the Key Distribution Ideal Functionality on input n and
receive a key k of size n.

2. The Sender computes y = m ⊕ k (where ⊕ corresponds to an bit-wise XOR) and sends
it to the Eavesdropper.

3. The Eavesdropper sends a message ŷ to the Receiver.
4. The Receiver computes m̂ = ŷ ⊕ k

Lemma 3 (Security of One-Time-Pad against Adversaries with Superposition Access) Pro-
tocol 2 is perfectly superposition-resistant against a malicious Eavesdropper, i.e. it satisfies
Definition 1 in quantum network Q with advantage ε = 0.

Proof We start by defining the quantum equivalent of all operations in Protocol 2. The initial
message is represented as a quantum register containing |m〉. The call to the Key Distribution
Ideal Functionality yields a quantum register for both parties containing a state |k〉 in the
computational basis. Thebit-wiseXOR is appliedusingCNOTgateswhere the key corresponds
to the control. The definition of the CNOT gate implies that if the control is in a computational
basis state, it remains unentangled from the rest of the state after application of the gate. The
state is then sent to the Eavesdropper. It can perform any quantum computation on the state
|y〉 ⊗ ρaux ⊗ ∣

∣0⊗n
〉
and send the last register to the Receiver. The Receiver applies the XOR

using CNOT gates with its key as control.
The Eavesdropper has no output in this protocol. As stated in Lemma 1, it would be

sufficient to show that two executions with different inputs are indistinguishable. However
we will now describe the Simulator for clarity. It receives the size of the message n from the
Confidential Channel Ideal Functionality. It chooses uniformly at random a value ỹ ∈ {0, 1}n
and sends |ỹ〉 to the Eavesdropper. It receives in return a state ρ on n qubits and sends it to the
Confidential Channel Ideal Functionality (which thenmeasures the state in the computational
basis).

Before the message sent by the Adversary, the protocol is equivalent to its classical exe-
cution, so the Environment has no additional advantage compared to the classical execution

123

Formal computational security model for superposition attacks... 907

(which is perfectly secure). The only advantage possibly obtained by the Adversary com-
pared to a fully classical one comes from the state that it sent to the Receiver (respectively
Simulator) and the application by the Receiver of an operation dependent on its secret key
(respectively a measurement in the computational basis by the Ideal Functionality). It is a
well known fact (No-Communication Theorem of quantum information) that the Environ-
ment obtaining any bit of information with probability higher than 0 via this method (using
only local operation on the Receiver’s side or by the Ideal Functionality) would violate the
no-signalling principle [9, 12], therefore the distinguishing advantage of the Environment
between the real and ideal executions is 0, thereby concluding the proof.
�

Extending the model to other encryption schemes and cryptographic primitives The
model presented in this work applies tomulti-party protocols. However, onemay also wonder
if it is applicable to the security of more fundamental building blocks, such as encryption
schemes or hash functions. We use here the former as an example of why our security model
is not suited for such analyses.

In classical simulation-based security frameworks, it is possible to define the security
of encryption schemes since such scheme can be seen as a tool for implementing a secure
message transmission protocol: a channel that leaks no information about the message apart
from its size and guarantees that the message, if delivered, has not been tampered with.

The Secure Message Transmission Protocol has the Sender encrypt the message using the
key of the Receiver (private key for symmetric encryption and public key for asymmetric
encryption) and sending the ciphertext. The Eavesdropper receives the ciphertext and trans-
mits it to the Receiver. The security of the protocol reduces directly to the CCA2-security of
the encryption scheme (via its equivalence with non-malleability).

In short, the Simulator for the Adversary works similarly to the one presented in this
Section for the classical One-Time-Pad. It receives the length n of the message from the
Secure Message Transmission Ideal Functionality, produces a ciphertext of 0n using the key,
and sends it to the Eavesdropper. The Eavesdropper returns a message to the Simulator,
who then tries to decrypt it. If the decryption succeeds without aborting, it tells the Ideal
Functionality to proceed, and aborts otherwise.

Now, if the scheme is CCA2-secure, the probability that the Environment notices without
having access to the key that the ciphertext received by the Eavesdropper does not correspond
to the transmitted message is negligible. The probability that the Adversary has successfully
modified the message without causing an abort is also negligible. The protocol is therefore
secure.

Conversely, the CCA2-security game assumes that an Adversary can make polynomially-
many queries to an encryption and decryption oracle for the encryption scheme. Then, for
the challenge query, the encryption oracle replies either with an encryption of the submitted
message or an encryption of 0n . Then the Adversary can again make polynomially-many
encryption and decryption queries (but not a decryption query on the challenge ciphertext).
The security is quantified by the probability of the Adversary distinguishing between the two
challenges.

The queries of such an Adversary can be made using the Environment in the Secure Mes-
sage Transmission Protocol above (in the real case). An encryption query is done by setting
the initial message of the Sender and recovering the ciphertext received by the Eavesdropper.
Conversely, a decryption query is made by giving a ciphertext to the Eavesdropper to transmit
and looking at the output of the Receiver. The challenge is done by setting the challenge mes-
sage as the Sender’s input and interacting either with the real or ideal case. The distinguishing

123

908 L. Music et al.

advantage of the Environment is then directly equal to the CCA2-security advantage of the
encryption scheme.

Our framework is not capable of sustaining the same proof for three subtle reasons.
One crucial element in this proof of equivalence between the two models of security for
encryption schemes is the fact that the security framework allows sequential composability
of protocols. This is lacking in our framework and therefore the same proof does not hold.
Without composability, it is possible to recover a weaker security model: non-adaptive real-
or-random security. In that case, the Environment sends at once all the messages that it wants
to query and sets the Eavesdropper’s input to contain non-empty messages for all decryption
queries (the protocol needs to be adapted to accept multiple input messages).

Furthermore, the possibility to perform encryption queries in superposition is hindered by
the fact that we assume the inputs of honest players to always be classical. This restriction
would have to be removed to perform the oracle calls in the proof above in superposition.
Finally, the Environment in our framework does not consider the outputs of honest players
in making its decision, making it also impossible to recover the output of the decryption
oracle as in the equivalence proof above (note that the decryption queries can be made in
superposition as they are based on the input of the Adversary as set by the Environment).

The same problems would arise when dealing with the security of other primitives that use
oracle calls in their game-based definitions. Lifting these constraints would certainly yield a
framework of security that is compatible with the ones used for defining the security of these
basic cryptographic functions. However, recalling discussions from Sect. 3 leading to the
definition of the model, restoring these capabilities would create conflicts with the fact that
the Ideal Functionality measures the inputs received from all players. This condition was put
in place to capture superposition security as the inability to achieve more with superposition
access than what the classical ideal scenario allows.

While finding a security framework that can capture both the security of cryptographic
primitives and multi-party protocols can seem appealing, it is important to note that the
security of these cryptographic primitives is never proven using themore complex simulation-
based frameworks and instead always use their native game-based definitions. In particular,
concerning the superposition security of encryption schemes, solid dedicated frameworks
already exist which transpose the classical IND-CPA and IND-CCA definitions to the quan-
tum oracle case [2]. Consequently, while theoretically interesting, it would be more fruitful
to focus on improving the framework by enabling composability rather than trying to make
it capture various sub-cases that benefit more from tailor-made definitions.

6.2 Superposition-resistant Yao protocol

We can now analyse the crucial points where the security breaks down and propose counter-
measures. We notice that all actions of the Adversary only act on the registers that contain its
ownkeys (recall that theEvaluator sends back theGarbler’s keys after a successful decryption)
and have no effect on the output register, which stays in the |−〉 state the whole time. It is
thus unentangled from the rest of the state and the attack on the protocol can therefore also be
performed if the Garbler has no output. As the security in this case still holds for Adversaries
in classical network C via input-indistinguishability, it means that this security property does
not carry over from the classical to the quantum network case either.

Therefore, as counter-intuitive as it may seem, the precise point that makes the attack
possible is a seemingly innocuous message consisting of information that the Adversary
should (classically) already have, along with a partial measurement on the part of the honest

123

Formal computational security model for superposition attacks... 909

player (which is even stranger considering that it is usually thought that the easiest way to
prevent superposition attack is to measure the state).

Not sending back this register to the Adversary (as in the Original Yao Protocol) makes the
protocol structurally similar to the One-Time-Pad Protocol 2: one party sends everything to
the other, who then simply applies local operations. The proof for the One-Time-Pad works
by showing that there is a violation of the no-signalling condition if the Environment is able to
guess whether it is in the real or ideal situation. This technique can be reused if the Evaluator
does not give away the result of the measurement on its state (by hiding the success or failure
of the garbled table decryption6).

We present here the Superposition-SecureYao Protocol 3, alongwith a proof of its security
against Adversaries with superposition access. It uses Yao’s original efficient construction
for the garbled table, where the function is decomposed into elementary single output gates
(of constant fan-in, which can be taken equal to 2) and can therefore be applied to any binary
function with inputs that are of polynomial size in the security parameter (andmultiple output
bits).

Each wire in the gate-decomposition is associated to a pair of keys (one for 0 and another
for 1). For gates whose output wire is also an output of the function, the garbled table is
computed in exactly the same way as in Definition 6 (without the value kz). The garbled table
for each internal gate encrypts the keys associated to the output wire of that gate instead of
the output values. If a wire is both an output of the function and an input to another gate,
both the value and key are encrypted.

This is exactly the same construction as in [17] in the case where only the Evaluator
receives an output and we refer to it for more details, in particular regarding the construction
of the garbled tables and decryption procedure.

Protocol 3 Superposition-Secure Yao Protocol.
Inputs: The Garbler and Evaluator have inputs x ∈ {0, 1}nX and y ∈ {0, 1}nY respectively,
with nX + nY = poly(η).
Public Information: The function f : {0, 1}nX × {0, 1}nY −→ {0, 1}nZ to be evaluated,
the encryption scheme (Enc,Dec) and the size of the padding p.
The Protocol:

1. The Garbler creates the keys and garbled table as in the original Yao’s Protocol using
the procedure described above.

2. The Garbler and the Evaluator participate in the OT ideal executions, at the end of
which the Evaluator receives its evaluation keys for its input of choice.

3. The Garbler sends the evaluation keys for its inputs and stops.
4. The Evaluator decrypts each entry in the garbled tables sequentially, according to the

order of evaluation of gates in the decomposition of function f .
– If all tables are decrypted correctly, meaning that for each garbled gate exactly one
value has padding 0p after decryption, it sets as its output the bit-string of output
values of the output wires.

– Otherwise (if none of the values were decrypted correctly for a given table), it sets
as its output Abort. This is not communicated to the Garbler.

6 This contradicts the footnote in Sect. 3 before Ideal Functionality 1 since the proof works if there is no
future communication between the two players.

123

910 L. Music et al.

Theorem 5 shows that Protocol 3 is secure both in quantum and classical networks against
both the Garbler and Evaluator.7

Theorem 5 (Security of Superposition-resistant Yao protocol in quantum network Q) The
Superposition-Resistant Yao Protocol 3 is perfectly-secure against an adversarial Garbler
and computationally-secure against adversarial Evaluator in quantum networkQ according
to Definition 1 in an OT-hybrid execution.

Proof The quantum equivalents of all operations in Protocol 3 have been described in Sect.
5.1.
Adversarial garbler The ideal execution of the OTs guarantees that the only output from
this interaction is a classical set of keys for the Evaluator. The rest of the protocol can be
summarised as the Garbler sending one quantum state and then the Evaluator performing a
local operation on it and stopping. Therefore the whole protocol can be seen as a one-way
communication from the Adversary to the honest player. This is exactly the same scenario
as in the One-Time Pad protocol with a malicious Eavesdropper sending a message to Bob.
The same analysis applies in this case.

The Simulator uses a random input during the the OT executions, and receives in exchange
the associated keys.8 It then receives a state ρ corresponding to theGarbler’s keys and garbled
table. The only advantage possibly obtained by the Adversary compared to one in a classical
network comes from this state and the applicationby theEvaluator of the decryptionprocedure
using its secret keys and those of the Garbler (compared to no operations by the Simulator).
The No-Communication Theorem of quantum information implies that the Environment
obtaining any bit of information with probability higher than 0 via this method (using only
a local operation on the Evaluator’s side) would violate the no-signalling principle [9, 12],
therefore the distinguishing advantage is 0.
Adversarial evaluator AnAdversarial Evaluator receives only classical information from the
honest Garbler, whether through the OTs or direct communication of the garbled table and
Garbler’s keys. Therefore, the security analysis is equivalent to one in a classical network
with a quantum Adversary. This work has already been done in [3], where they analyse in
particular the security of the double encryption based on the pq-IND-CPA assumption of the
symmetric encryption scheme.

We present briefly the associated Simulator for completeness sake:

1. In the hybrid model, it receives from the Evaluator the input to the OTs and sends back
keys sampled uniformly at random.

2. It uses this classical value ỹ in its call to the Two-Party Secure Function Evaluation Ideal
Functionality implementing the function f . It receives in return the classical output of
the Evaluator oE = f (x, ỹ) corresponding to this input and the honest player’s classical
input x .

3. It selects uniformly at random a value x̂ and creates a fake garbled table in such a way that,
if decrypted using the keys associated to ỹ and x̂ , it produces the output oE . Otherwise the
decryption fails. It has otherwise the same structure as a correct garbled table for function
f with the same gate decomposition as in a real execution of the protocol.

4. It sends the fake garbled table and the keys associated to x̂ to the Evaluator and stops.

7 As noted in Sect. 3, superposition-resistance implies classical-style security.
8 Notice that we do not assume that the Simulator is capable of extracting the input of the Garbler during
the OT execution. Since the Sender has no output in the OT, it is sufficient for any OT protocol to be simply
input-indistinguishable.

123

Formal computational security model for superposition attacks... 911

The security of the double encryption of the entries in each garbled table prove the indis-
tinguishability between the real and fake garbled tables, therefore concluding the proof.
�

The proof above does not translate into a proof for an actual instance of the protocol since
security in our model does not hold under sequential composability, but it gives a hint as to
which steps are crucial for securing it.

7 Conclusion

Our security model and the attack analysis performed in this paper lie completely outside of
the existingmodels of security against superposition attacks. They either consider the compu-
tational security of basic primitives or, for more complex protocols with multiple interactions
between distrustful parties, the protocols are all considered to be statistically-secure (and are
therefore essentially extensions of [20]). This leads to many simplifications which have no
equivalent in the computational setting.We develop a novel security framework, based on the
simple premise that to be secure from superposition attacks means emulating a purely classi-
cal functionality. We show that, given slight modifications that preserves classical security, it
is possible to show superposition attacks on computationally-secure protocols. The intuition
gained from the attack allows us to build a computationally superposition-resistant protocol
for Two-Party Secure Function Evaluation, a task never achieved before.

Our results demonstrate once again the counter-intuitive nature of quantum effects, regard-
ing not only the vulnerability of real-world protocols to superposition attacks (most would
require heavy modifications for known attacks to work), but also attack vectors and the
optimal ways to counter them (as partial measurements can even lead to attacks).

Acknowledgements We would like to thank Michele Minelli, Marc Kaplan and Ehsan Ebrahimi for fruitful
discussions.

Author Contributions Conceptualization: LM; Formal analysis and investigation: LM;Writing - original draft
preparation: LM;Writing - review and editing: CCr, EK, Funding acquisition: CCElhamKashefi; Supervision:
CC, EK

Funding This work was supported in part by the French Agence Nationale de la Recherche project Cryp-
tiQ (ANR-18-CE39-0015). We acknowledge support of the European Union’s Horizon 2020 Research and
Innovation Program under Grant Agreement No. 820445 (QIA).

Data availability Not applicable.

Code Availability Not applicable.

Declarations

Conflict of interest All authors certify that they have no affiliations with or involvement in any organization
or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this
manuscript.

123

912 L. Music et al.

Appendix A Additional quantum preliminaries

A.1 Quantum operations

We give here a brief overview of quantum systems and a few basic operations and refer to
[23] for a more detailed presentation.

Any pure quantum state is represented by a vector |ψ〉 in a given Hilbert spaceH, which in
the simplest case is C

2 for qubits (which will always be the case in this paper). For n qubits,
the joint system is given by C

2n = C
2 ⊗ . . . ⊗ C

2 for n subspaces, where ⊗ designates the
tensor product of Hilbert spaces. We will use the term quantum register in the same sense as
a classical memory register in a classical computer (as a way to reference specific qubits or
subsystems). For n qubits, we call computational basis the family of classical bit-string states
BC = {|x〉 | x ∈ {0, 1}n}. Let 1A be the identity operation on quantum registerA. We write †
for the conjugate transpose operation and 〈φ| = |φ〉†. This in turn gives us the inner-product
〈φ|ψ〉 and projector |ψ〉〈ψ |.

More generally, if the quantum state is in pure state |φi 〉 with probability pi then the
system is described as the density matrix ρ = ∑

i
pi |φi 〉〈φi | (also called mixed state). Let

D(Q) be the set of all possible quantum states in a given quantum register A: it is the set
of all Hermitian mixed states with trace equal to 1 and positive eigenvalues. In general, the
input to a protocol is a mixed state ρin ∈ D(X ⊗ Y ⊗ W), where W is an auxiliary register
(the inputs are potentially entangled to this reference register).

Unitaries acting on registerQ are linear operationsU such thatU †U = 1Q. On the other
hand, a measurement on a quantum registerQ is represented in the simplest case (which will
be sufficient here) by a complete set of orthogonal projectors {Pm} satisfying ∑

m
Pm = 1Q

and Pm P ′
m = δm,m′ Pm , where δm,m′ is Kronecker’s delta. Then the probability of obtaining

output m by the measurement defined above on state |ψ〉 is given by p(m) = 〈ψ |Pm |ψ〉, the
post-measurement state is then Pm |ψ〉√

p(m)
.

Let L(A) be the set of linear mappings from A to itself. If E : L(A) → L(B) is a
completely positive and trace non-decreasing superoperator, it is called quantum operation
or CPTP-map, with 1A being identity operator on register A. A CPTP-map can always be
decomposed into unitaries followed by measurements in the computational basis. For any
quantum registerQ and any state ρQ is it always possible to define, given another sufficiently
large quantum systemR, a pure state

∣
∣φRQ

〉
such that looking at the restriction of the system

to register Q (by tracing out R) gives ρQ . This technique is called purification, the register
R is called the reference or ancillary register, and allows to represent any CPTP-map as a
unitary on a larger system.

We can now give some standard quantum operations used throughout the paper. The Pauli

X operator is defined as X =
(
0 1
1 0

)

(corresponding to a bit-flip classically), while the CNOT

gate (with the first qubit being the control) is defined through CNOT |0〉 |φ〉 = |0〉 |φ〉 and
CNOT |1〉 |φ〉 = |1〉X |φ〉 for any state |φ〉. The Pauli Z operator is defined as Z =

(
1 0
0 −1

)

.

A logical Hadamard gate HL is defined by HL |0〉⊗L = |+L 〉 = 1√
2

(
|0〉⊗L + |1〉⊗L

)
,

HL |1〉⊗L = |−L 〉 = 1√
2

(
|0〉⊗L −|1〉⊗L

)
(HL acts as identity on the remaining basis states).

We write SWAP for the gate which interchanges two quantum states, i.e. SWAP |ψ〉 |φ〉 =
|φ〉 |ψ〉 for all states |ψ〉 and |φ〉.

123

Formal computational security model for superposition attacks... 913

It is possible to represent any classical operation using a quantum implementation of the
reversible classical Toffoli gate computing the function T (a, b, c) = (a · b)⊕ c where (⊕, ·)
are defined in Z2. This can be defined as a unitary on three qubits (any reversible classical
gate is simply a permutation of the computational basis states) and is universal for classical
computations. Any binary function f : {0, 1}n → {0, 1}m can therefore be implemented as
a unitaryU f defined on computational basis states |x〉 |y〉 (with x ∈ {0, 1}n and y ∈ {0, 1}m)
as U f |x〉 |y〉 = |x〉 |y ⊕ f (x)〉 (called standard oracle of f).

A.2 Deutsch–Jozsa algorithm

Since our attack resembles in spirit the Deutsch-Jozsa algorithm, we recall here the principle.
The point of this algorithm is to solve the following promise problem: given a function f
outputting a single bit, determine whether it is constant (the output bit is the same for all
inputs) or balanced (half of the inputs output 0 and the other half output 1). The DJ algorithm
solves this problem by using a single call to the standard oracle implementing the function
f (with probability 1). It works in the following way (for a single bit of input):

1. The player prepares two qubits in the |0〉 |1〉.
2. It applies a Hadamard gate to the two qubits.
3. It applies U f with the second qubit receiving the output.
4. It applies a Hadamard to the first qubit.
5. It measures the first qubit in the computational basis and outputs the result.

This is represented as the following circuit:

Ideal Functionality 1 Two-Party Secure Function Evaluation.

– Public information: Binary function f : {0, 1}nX × {0, 1}nY −→ {0, 1}nZ to
be computed (where nX , respectively nY , is the size of the input of P1, respectively
P2, and nZ is the size of the output).

– Inputs: P1 has classical input x ∈ {0, 1}nX and P2 has classical input y ∈
{0, 1}nY .

– Computation by the trusted party:
1. If the trusted party receives an input which is inconsistent with the required

format (different input size) or Abort, it sends Abort to both parties. Otherwise,
let ρ̃in be the input state it received from P1 and P2.

2. The trusted party measures the parts of ρ̃in in registers X and Y in the com-
putational basis, let (x̃, ỹ) be the outcomes of the measurement.

3. The trusted party computes z̃ = f(x̃, ỹ) and sends (x̃, z̃) to P1 and ỹ to P2.

Ideal Functionality 2 1-out-of-2 String OT.

– Inputs: The Sender has as input (k0, k1) and the Receiver has as input b ∈ {0, 1}.
– Computation by the trusted party:

1. If the trusted party receives Abort or an incorrectly formatted input from either
party, it sends Abort to both parties and halts.

2. Otherwise, let (̂k0, ̂k1) and b̂ be the inputs received. The Ideal Functionality
sends ̂kb̂ to the Receiver and halts.

123

914 L. Music et al.

A simple calculation gives that the state right before the application of the last Hadamard
on the first qubit is (with bi = f (i) for i ∈ {0, 1} in the case of DJ for one input qubit):

1√
2

(|0〉 + (−1)b0⊕b1 |1〉) ⊗ |−〉

A.3 Quantummachines and complexity classes

We give here the formal definition of Quantum Polynomial-Time Turing machines. They
capture the class of computations that are believed to be efficiently implementable on uni-
versal quantum computers. It has been shown that QPTmachines are equivalent to efficiently
generated quantum circuits [4], the definition of which is given in Definition 7.

Definition 7 (Quantumpolynomial-time uniformcircuits) LetG be a universal set of quantum
gates. We say that a family of quantum circuits {Qn | n ∈ N} is polynomial-time uniform if
there exists a polynomial-time deterministic Turing machine taking as input 1n in unary
notation for n ∈ N and outputting a classical description of Qn using gates from the set G
such that Qn takes n qubits of input.

Appendix B Full proofs of insecurity of modified Yao protocol against
superposition attacks

We present here the proof of the Theorems from Sect. 5.

B.1 Proof of Theorem 3

Theorem 6 (State generation analysis) The state contained in the Garbler’s attack registers
at the end of a successful Superposition Generation Procedure (Attack 1) is negligibly close
to 1

2

∑

x,kz
(−1)k

z ∣
∣x L

〉 ∣
∣ f (x, ŷ) ⊕ kz

〉
, where x L is a logical encoding of x and x ∈ {x̂0, x̂1}. Its

success probability is lower bounded by 1 − e−1 for all values of nX and nY .

We prove the two parts of Theorem 3 separately, first analysing the result of a successful
execution and later computing the success probability of the procedure.

Proof (State Generation Correctness – Theorem 3, part 1) The state in the registers of the Eval-
uator (with input ŷ ∈ {0, 1}nY) before it starts the decryption process is (up to appropriate
normalisation):

∣
∣ŷ

〉 ⊗
∣
∣
∣kEŷ

〉
⊗ 1√

2

(∣
∣
∣kGx̂0

〉
+

∣
∣
∣kGx̂1

〉)
⊗ |ãux〉 ⊗

∑

x,y

∣
∣
∣E0

x,y

〉
−

∣
∣
∣E1

x,y

〉

In fact there are 2nX+nY registers containing the superposition of keys and the same
number containing the superposition of encryptions, but it suffices to consider the result
on one such register (the protocol has been specifically tailored so that repetitions can be
handled separately, as seen in the next part of the proof). For x �= x ′ or y �= y′ (inclusively),
let gx

′,y′,kz
x,y = D̃eckGx ,kEy

(ãux, Ekz
x ′,y′) (this is the decryption of Ekz

x ′,y′ using the keys for x and
y, leading to awrong decryption as at least one key does notmatch and generating the garbage

123

Formal computational security model for superposition attacks... 915

value gx
′,y′,kz

x,y). The state after applying the decryption procedure is then (for x ∈ {x̂0, x̂1}):

|C〉 ⊗
(∑

x,kz
(−1)k

z
∣
∣
∣d̃K {(} kGx)

〉 ∣
∣ f (x, ŷ) ⊕ kz

〉 |0〉⊗p

+
∑

kz ,x,x ′,y′
(x,y)�=(x ′,ŷ)

(−1)k
z
∣
∣
∣d̃K {(} kGx)

〉 ∣
∣
∣g

x ′,y′,kz
x,ŷ

〉)

Here the registers containing the Garbler’s keys have been rearranged and |C〉 = ∣
∣ŷ

〉 ⊗∣
∣
∣d̃K

(
kEŷ

)〉 ⊗ ∣
∣d̃A(ãux)

〉
corresponds to the classical values unentangled from the rest of the

state. With overwhelming probability in η (based on the analysis from Theorem 1), there are

no values (r , kz, x, x ′, y′) such that gx
′,y′,kz

x,ŷ = r ‖ 0p and so the states

∑

x,kz
(−1)k

z
∣
∣
∣d̃K (kGx)

〉 ∣
∣ f (x, ŷ) ⊕ kz

〉 |0〉⊗p

and
∑

kz ,x,x ′,y′
(x,y)�=(x ′,ŷ)

(−1)k
z
∣
∣
∣d̃K (kGx)

〉 ∣
∣
∣g

x ′,y′,kz
x,ŷ

〉

are orthogonal. If the measurementMC succeeds (i.e. the outcome is |0p〉〈0p|), the projected
state is (also up to appropriate normalisation):

|C〉 ⊗
∑

x,kz
(−1)k

z
∣
∣
∣d̃K (kGx)

〉 ∣
∣ f (x, ŷ) ⊕ kz

〉 |0〉⊗p

Note that the keys of the Evaluator and the auxiliary values are unentangled from the
rest of the state during the whole process thanks to the properties satisfied by the symmetric
encryption scheme. The state in the Garbler’s registers after receiving the output and its keys
is then simply:

∑

x,kz
(−1)k

z
∣
∣
∣d̃K (kGx)

〉 ∣
∣ f (x, ŷ) ⊕ kz

〉

After applying the first step of clean-up procedure at the end (applying the inverse of dK
for each key), the Garbler is left with the state:

∑

x,kz
(−1)c

∣
∣
∣kGx

〉 ∣
∣ f (x, ŷ) ⊕ kz

〉

To demonstrate the effect of the rest of the clean-up procedure, we will apply it to
an example with k0 = 01110 and k1 = 11100 (for an Adversary’s input consisting of
a single bit). The corresponding (non-normalised) superposition is then |k0〉

∣
∣ f (0, ŷ)

〉 +
|k1〉

∣
∣ f (1, ŷ)

〉 = |01110〉 ∣
∣ f (0, ŷ)

〉 + |11100〉 ∣
∣ f (1, ŷ)

〉
(the terms with kz = 1 behave sim-

ilarly). If the bits of key are the same, we can factor out the corresponding qubits (in this
case, the second, third and fifth qubits are unentangled from the rest). This gives the state
|110〉⊗ (|01〉 ∣

∣ f (0, ŷ)
〉+ |10〉 ∣

∣ f (1, ŷ)
〉
). The unentangled qubits may be discarded and then

the qubits i for which ki0 �= ki1 and ki0 = 1 are flipped using X (meaning the fourth initial
qubit in this case, or the second one after discarding the unentangled qubits). The result is

123

916 L. Music et al.

|00〉 ∣
∣ f (0, ŷ)

〉+|11〉 ∣
∣ f (1, ŷ)

〉
. This procedure does not depend on the choice of ŷ (and is the

same for kz = 1), only on the keys that were generated by the Adversary.
In the general case, the final clean-up transforms each key associated with a bit-value

of 0 into a logical 0 (i.e. 0L
′
i for a random but known value L ′

i), and similarly with the

corresponding key associated to the bit-value 1 (changed into 1L
′
i with the same L ′

i). The

final result is therefore (where x L
′
is a logical encoding of x where some bits may be repeated

a variable but known number of times):

1

2

∑

x,kz
(−1)k

z
∣
∣
∣x L

′ 〉 ∣
∣ f (x, ŷ) ⊕ kz

〉

This is exactly the state that was expected, therefore concluding the proof.
�
Proof (Success Probability of State Generation – Theorem 3, part 2) If a given measurement
fails, based on the analysis in the previous proof, the state in the Evaluator’s registers corre-
sponding to this decryption is negligibly close to:

∣
∣ŷ

〉 ⊗
∣
∣
∣d̃K (kEŷ)

〉
⊗

∣
∣
∣d̃A(ãux)

〉
⊗

∑

kz ,x,x ′,y′
(x,y)�=(x ′,ŷ)

(−1)k
z
∣
∣
∣d̃K (kGx)

〉 ∣
∣
∣g

x ′,y′,kz
x,ŷ

〉

By applying the inverse of the dK and dA operations on each of the registers containing
its keys and the auxiliary values, the Evaluator recovers the state:

∣
∣ŷ

〉 ⊗
∣
∣
∣kEŷ

〉
⊗ |ãux〉 ⊗

∑

kz ,x,x ′,y′
(x,y)�=(x ′,ŷ)

(−1)k
z
∣
∣
∣d̃K (kGx)

〉 ∣
∣
∣g

x ′,y′,kz
x,ŷ

〉

Unless it is the last remaining copy of the superposition of Garbler’s keys and garbled
values (in which case the attack has failed), the Evaluator can simply proceed and repeat
the decryption process using its keys and the auxiliary values on the next copy (the failed
decryption state is unentangled from the rest and can be ignored in the remaining steps). This
essentially means that the Evaluator has 2nX+nY independent attempts to obtainmeasurement
result 0p .

Since the states that are being considered are normalised and in a uniform superposition,
the probability of success of each measurement attempt is simply given by the number of
states correctly decrypted out of the total number of states.

There are 2nX+nY+1 encrypted values in the garbled table and 2 key pairs (one key for
wires in Y and 2 keys for wires in X). There are therefore 2nX+nY+2 decrypted values (taking
into account decryptions performed with the incorrect keys and counting duplicates). For
each key pair, there are exactly two ciphertexts which will decrypt correctly (one for each
value of kz), meaning that 4 decrypted values out of 2nX+nY+2 have their last p bits equal to
0. The probability of the measurement MC succeeding is therefore 1

2nX+nY
. The probability

that no measurement succeeds in 2nX+nY independent attempts (noted as event Fail) is given
by:

P[Fail] =
(

1 − 1

2nX+nY

)2nX+nY

The function p(x) = (1− 1
x)x is strictly increasing and upper-bounded by e−1, meaning

that the success probability is P[Succ] = 1 − P[Fail] ≥ 1 − e−1
�

123

Formal computational security model for superposition attacks... 917

B.2 Proof of Theorem 4

Theorem 7 (Vulnerability to superposition attacks of the modified Yao protocol) For any
non-trivial two-party function f : {0, 1}nX × {0, 1}nY → {0, 1}, let (x̂0, x̂1) be a pair
of non-trivial values in {0, 1}nX . For all inputs ŷ of honest Evaluator in Protocol 1, let
PEf (ŷ) = f (x̂0, ŷ) ⊕ f (x̂1, ŷ). Then there exists a real-world Adversary A in quantum
networkQ against Protocol 1 implementing f such that for any Simulator S, the advantage
of the Adversary over the Simulator in guessing the value of PEf (ŷ) is lower-bounded by
1
2 (1 − e−1).

Proof Let (x̂0, x̂1) be a pair of values in {0, 1}nX such that there exists (ŷ0, ŷ1) with
f (x̂0, ŷ0) = f (x̂1, ŷ0) and f (x̂0, ŷ1) �= f (x̂1, ŷ1) (at least one such pair of inputs exists,
otherwise the function is trivial). The Environment Z initialises the input of the Adversary
with values a pair of such values x̂0 and x̂1. Let ŷ ∈ {0, 1}nY be the value of the honest
player’s input chosen (uniformly at random) by the Environment Z. The goal of the attack
is to obtain the value of PEf (ŷ) = f (x̂0, ŷ) ⊕ f (x̂1, ŷ).

The Adversary will try to generate the superposition state during the protocol using
Attack 1, succeeding with probability pGen. If the state has been generated correctly, Adver-
sary will apply the final steps of Deutsch’s algorithm and recover the value of the XOR with
probability equal to 1 (see below). If the state generation fails, Adversary resorts to guessing
the value of the value of PEf (ŷ), winning with a probability pGuess. On the other hand, the

Simulator is only able toss a coin to guess the value of PEf (ŷ) (the only information that
it possesses is either f (x̂0, ŷ) or f (x̂1, ŷ), given by the Ideal Functionality), winning with
probability pGuess.

The overall advantage of the Adversary is therefore pGen · (1 − pGuess) (if the State
Generation Procedure does not succeed, the probabilities of winning of the Adversary and
theSimulator are the same). It has been shownviaTheorem3 that the probability of generating
the state is lower-bounded by 1 − e−1, the rest of the proof will focus on describing the last
steps of the Attack 2 and calculating the other values defined above.

We first analyse the behaviour of the state during the Adversary’s calculation in Attack 2
if there was no Abort. The state in the register of the Adversary registers at the end of
a successful Superposition Generation Procedure via Attack 1 is (the logical encoding L ′
being known to the Adversary):

1

2

(∣
∣
∣x̂0

L ′ 〉 ∣
∣ f (x̂0, ŷ)

〉 −
∣
∣
∣x̂0

L ′ 〉 ∣
∣ f (x̂0, ŷ) ⊕ 1

〉

+
∣
∣
∣x̂1

L ′ 〉 ∣
∣ f (x̂1, ŷ)

〉 −
∣
∣
∣x̂1

L ′ 〉 ∣
∣ f (x̂1, ŷ) ⊕ 1

〉)

The Adversary applies the clean-up procedure on the registers containing x̂i L
′
and obtains

(for a different value L for the logical encoding):

1

2

(|0〉⊗L
∣
∣ f (x̂0, ŷ)

〉 − |0〉⊗L
∣
∣ f (x̂0, ŷ) ⊕ 1

〉 + |1〉⊗L
∣
∣ f (x̂1, ŷ)

〉 − |1〉⊗L
∣
∣ f (x̂1, ŷ) ⊕ 1

〉)

This is exactly the state of Deutsch’s algorithm after applying the (standard) oracle uni-
tary implementing U

f
x̂0,x̂1
ŷ

, where f x̂0,x̂1ŷ (b) = f (x̂b, ŷ) (by standard we mean of the form

U f |x〉 |b〉 = |x〉 |b ⊕ f (x)〉, in comparison to the Minimal Oracle Representation). The rest
of the attack and analysis follows the same pattern as Deutsch’s algorithm.

123

918 L. Music et al.

For simplicity’s sake, let bi := f (x̂i , ŷ), then the state is:

1√
2
(−1)b0

(|0〉⊗L + (−1)b0⊕b1 |1〉⊗L) ⊗ |−〉

The Adversary then applies the logical Hadamard gate, the resulting state is (up to a global
phase):

|b0 ⊕ b1〉⊗L ⊗ |−〉
The Adversary can measure the first qubit in the computational basis and distinguish

perfectly both situations, therefore obtaining f (x̂0, ŷ) ⊕ f (x̂1, ŷ) = b0 ⊕ b1.
On the other hand, in the ideal scenario, to compute the probability of guessing the correct

answer pGuess, we consider the mixed strategies in a two-player game between the Environ-
ment Z and the Simulator where both players choose a bit simultaneously, the Simulator
wins if they are the same and the Environment wins if they are different (this represents the
most adversarial Environment for the Simulator). The Environment chooses bit-value 0 with
probability p, while the Simulator chooses the bit-value 0 with probability q . The probability
of winning for the Simulator is then pGuess = pq + (1 − p)(1 − q) = 1 − q − p(1 − 2q).
We see that if q �= 1

2 there is a pure strategy for the Environment such that pGuess < 1
2 (if

the Simulator chooses its bit in a way that is biased towards one bit-value, the Environment
always chooses the other), while if q = 1

2 then pGuess = 1
2 . The same analysis can be applies

to the Environment and therefore p = 1
2 as well.

In the end, we have pGuess = 1
2 and therefore the advantage of the Adversary is Adv =

pGen(1 − pGuess) ≥ 1
2 (1 − e−1), which concludes the proof.
�

References

1. Arute F., Arya K., Babbush R., Bacon D., Bardin J.C., Barends R., Biswas R., Boixo S., Brandao F.G.S.L.,
Buell D.A., Burkett B., Chen Y., Chen Z., Chiaro B., Collins R., Courtney W., Dunsworth A., Farhi E.,
Foxen B., Fowler A., Gidney C., Giustina M., Graff R., Guerin K., Habegger S., HarriganM.P., Hartmann
M.J., Ho A., Hoffmann M., Huang T., Humble T.S., Isakov S.V., Jeffrey E., Jiang Z., Kafri D., Kechedzhi
K., Kelly J., Klimov P.V., Knysh S., Korotkov A., Kostritsa F., Landhuis D., Lindmark M., Lucero E.,
Lyakh D., Mandrà S., McClean J.R., McEwenM., Megrant A., Mi X., Michielsen K., Mohseni M., Mutus
J., NaamanO., NeeleyM., Neill C., NiuM.Y., Ostby E., PetukhovA., Platt J.C., Quintana C., Rieffel E.G.,
RoushanP., RubinN.C., SankD., SatzingerK.J., SmelyanskiyV., SungK.J., TrevithickM.D.,Vainsencher
A., Villalonga B., White T., Yao Z.J., Yeh P., Zalcman A., Neven H., Martinis J.M.: Quantum supremacy
using a programmable superconducting processor. Nature 574(7779), 505–510 (2019). https://doi.org/
10.1038/s41586-019-1666-5.

2. Boneh D., Zhandry M.: Secure signatures and chosen ciphertext security in a quantum computing world.
In: Canetti R., Garay J.A. (eds.) Advances in Cryptology-CRYPTO 2013, pp. 361–379. Springer, Berlin
(2013).

3. Büscher N., Demmler D., Karvelas N., Katzenbeisser S., Krämer J., Rathee D., Schneider T., Struck
P.: Secure two-party computation in a post-quantum world. In: 18th International Conference on
Applied Cryptography and Network Security (ACNS’20) (2020). URL http://tubiblio.ulb.tu-darmstadt.
de/119789/

4. Chi-Chih Yao, A.: Quantum circuit complexity. In: Proceedings of 1993 IEEE 34th Annual Foundations
of Computer Science, pp. 352–361 (1993). https://doi.org/10.1109/SFCS.1993.366852

5. Coretti S., Maurer U., Tackmann B.: Constructing confidential channels from authenticated channels-
public-key encryption revisited. In: Sako K., Sarkar P. (eds.) Advances in Cryptology-ASIACRYPT
2013, pp. 134–153. Springer, Berlin (2013).

123

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
http://tubiblio.ulb.tu-darmstadt.de/119789/
http://tubiblio.ulb.tu-darmstadt.de/119789/
https://doi.org/10.1109/SFCS.1993.366852

Formal computational security model for superposition attacks... 919

6. Damgård I., Funder J., Nielsen J.B., Salvail J.B., Salvail L.: Superposition attacks on cryptographic pro-
tocols. In: Padró C. (ed.) Information Theoretic Security, pp. 142–161. Springer International Publishing,
Cham (2014).

7. Deutsch D., Jozsa R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A
439(1907), 553–558 (1992).

8. Dunjko V., Fitzsimons J.F., Portmann C., Renner R.: Composable security of delegated quantum compu-
tation. In: Sarkar P., Iwata T. (eds.) Advances in Cryptology-ASIACRYPT 2014, pp. 406–425. Springer,
Berlin (2014).

9. Eberhard P.H., Ross R.R.: Quantum field theory cannot provide faster-than-light communication. Found.
Phys. Lett. 2(2), 127–149 (1989). https://doi.org/10.1007/BF00696109.

10. Gagliardoni T., Hülsing A., Schaffner C.: Semantic security and indistinguishability in the quantum
world. In: Robshaw M., Katz J. (eds.) Advances in Cryptology-CRYPTO 2016, pp. 60–89. Springer,
Berlin (2016).

11. Gerhardt I., Liu Q., Lamas-Linares A., Skaar J., Kurtsiefer C., Makarov V.: Full-field implementation of
a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 349 (2011). https://doi.
org/10.1038/ncomms1348.

12. Ghirardi G.C., Grassi R., Rimini A., Weber T.: Experiments of the EPR type involving CP-violation do
not allow faster-than-light communication between distant observers. EPL (Europhys. Lett.) 6, 95 (1988).
https://doi.org/10.1209/0295-5075/6/2/001.

13. Hallgren S., Smith A., Song F.: Classical cryptographic protocols in a quantum world. Int. J. Quant.
Inform. 13(04), 1550028 (2015).

14. KaplanM., Leurent G., Leverrier A., Naya-Plasencia M.: Breaking symmetric cryptosystems using quan-
tum period finding. In: RobshawM., Katz J. (eds.) Advances in Cryptology-CRYPTO 2016, pp. 207–237.
Springer, Berlin (2016).

15. Kashefi E., Kent A., Vedral V., Banaszek K.: Comparison of quantum oracles. Phys. Rev. A 65, 050304
(2002). https://doi.org/10.1103/PhysRevA.65.050304.

16. Kolesnikov V., Schneider T.: Improved garbled circuit: free XOR gates and applications. In: Aceto L.,
Damgård I., Goldberg L.A., Halldórsson M.M., Ingólfsdóttir A., Walukiewicz I. (eds.) Automata, Lan-
guages and Programming. Springer, Berlin (2008).

17. Lindell Y., Pinkas B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptol. 22(2),
161–188 (2009). https://doi.org/10.1007/s00145-008-9036-8.

18. Liu M., Krämer J., Hu Y., Buchmann J.A.: Quantum security analysis of a lattice-based oblivious transfer
protocol. Front. Inf. Technol. Electron. Eng. 18(9), 1348–1369 (2017). https://doi.org/10.1631/FITEE.
1700039.

19. Lo H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997). https://doi.
org/10.1103/physreva.56.1154.

20. Mayers D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–
3417 (1997). https://doi.org/10.1103/PhysRevLett.78.3414.

21. Mossayebi, S., Schack, R.: Concrete security against adversaries with quantum superposition access to
encryption and decryption oracles. arXiv e-prints arXiv:1609.03780 (2016)

22. Music L., Chevalier C., Kashefi E.: Dispelling myths on superposition attacks: formal security model
and attack analyses. In: Nguyen K., Wu W., Lam K.Y., Wang H. (eds.) Provable and Practical Security.
Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-62576-4_16.

23. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University
Press, Cambridge (2000).

24. Portmann, C.: Quantum authentication with key recycling. In: Advances in Cryptology-EUROCRYPT
2017, In: Proceedings, Part III, Lecture Notes in Computer Science, vol. 10212, pp. 339–368. Springer
(2017). Online arXiv:1610.03422

25. Salvail L., Schaffner C., Sotáková M.: Quantifying the leakage of quantum protocols for classi-
cal two-party cryptography. Int. J. Quant. Inform. 13(04), 1450041 (2015). https://doi.org/10.1142/
S0219749914500415.

26. Shannon C.E.: Communication theory of secrecy systems. Bell. Syst. Tech. J. 28(4), 656–715 (1949).
27. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the

35th Annual Symposium on Foundations of Computer Science, SFCS ’94, p. 124-134. IEEE Computer
Society (1994). https://doi.org/10.1109/SFCS.1994.365700

28. Unruh D.: Universally composable quantum multi-party computation. In: Gilbert H. (ed.) Advances in
Cryptology-EUROCRYPT 2010, pp. 486–505. Springer, Berlin (2010).

29. Unruh D.: Computationally binding quantum commitments. In: Fischlin M., Coron J.S. (eds.) Advances
in Cryptology-EUROCRYPT 2016, pp. 497–527. Springer, Berlin (2016).

123

https://doi.org/10.1007/BF00696109
https://doi.org/10.1038/ncomms1348
https://doi.org/10.1038/ncomms1348
https://doi.org/10.1209/0295-5075/6/2/001
https://doi.org/10.1103/PhysRevA.65.050304
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1631/FITEE.1700039
https://doi.org/10.1631/FITEE.1700039
https://doi.org/10.1103/physreva.56.1154
https://doi.org/10.1103/physreva.56.1154
https://doi.org/10.1103/PhysRevLett.78.3414
http://arxiv.org/abs/1609.03780
https://doi.org/10.1007/978-3-030-62576-4_16
http://arxiv.org/abs/1610.03422
https://doi.org/10.1142/S0219749914500415
https://doi.org/10.1142/S0219749914500415
https://doi.org/10.1109/SFCS.1994.365700

920 L. Music et al.

30. Yao, A.C.C.: How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on
Foundations of Computer Science, SFCS ’86, p. 162-167. IEEE Computer Society (1986). https://doi.
org/10.1109/SFCS.1986.25

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

	Dispelling myths on superposition attacks: formal security model and attack analyses
	Abstract
	1 Introduction
	2 Preliminaries
	3 New security model for superposition attacks
	4 The modified Honest-but-Curious Yao protocol
	4.1 Definitions for symmetric encryption schemes
	4.2 The original Yao protocol
	4.3 Presentation of the modified Yao protocol

	5 Analysis of Yao's protocol with superposition access
	5.1 Quantum embedding of the classical protocol
	5.2 Generating the correct and unpolluted superposition
	5.3 Applying the state generation procedure to the full attack
	5.4 The full attack is not malicious
	5.5 Attack optimisation and application to oblivious transfer

	6 Security model satisfiability
	6.1 Superposition-resistance of the classical one-time pad
	6.2 Superposition-resistant Yao protocol

	7 Conclusion
	Acknowledgements
	Appendix A Additional quantum preliminaries
	A.1 Quantum operations
	A.2 Deutsch–Jozsa algorithm
	A.3 Quantum machines and complexity classes

	Appendix B Full proofs of insecurity of modified Yao protocol against superposition attacks
	B.1 Proof of Theorem 3
	B.2 Proof of Theorem 4

	References

