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Abstract
Quasi-symmetric designs (QSDs) with particular block graphs are investigated. We rule out
the possibility of aQSDwith block graph that has the same parameters as that of the Symplec-
tic graph Sp(2t, q), where q is an odd prime power or its complement. We obtain support for
Bagchi’s recent conjecture, which states that ‘For the existence of a quasi-symmetric 2-design
with block graph Km×n , we must have m ≡ n + 1 (mod n2)’. Under certain conditions, we
rule out the possibility of a QSD having a pseudo-Latin square or negative Latin square block
graph.
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1 Introduction

Let X be a finite set of v elements called points, and β be a set of k-element subsets of X
called blocks, such that each pair of points occur in λ blocks, then the pair D = (X , β) is
2-(v, k, λ) design. For a 2-(v, k, λ) design D, the number of blocks containing α in X is r ,
which is independent of α. The number of blocks in D is denoted by b.

An integer λ1, 0 ≤ λ1 < k, is an intersection number of D if there exist B, B ′ ∈ β such
that |B ∩ B ′| = λ1. Symmetric designs have exactly one intersection number.
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A 2-design with two intersection numbers is a quasi-symmetric design (QSD). Denote
these intersection numbers by λ1 and λ2, where 0 ≤ λ1 < λ2 < k. We denote μ = λ2 − λ1,
and call it as the defect of the QSD.

The parameters (v, b, r , k, λ; λ1, λ2) are the standard parameters of a QSD, which are
said to be feasible if they satisfy all necessary conditions given in the Lemma 2.1. Complete
parametric classification of QSDs with μ = 1, 2, 3 has been obtained in [4–6].

The block graph G of a QSDD has vertices that are blocks ofD, where two distinct blocks
B, B ′ are adjacent if and only if |B ∩ B ′| = λ2. It was shown in [3,11] that G is a strongly
regular graph (SRG) with parameters (b, a, c, d). Here b is the number of vertices of G, i.e.
the number of blocks of the design D, a its valency, any two adjacent vertices have exactly
c common neighbors and any two non-adjacent vertices have exactly d common neighbors.
We assume, as is customary, that a SRG is connected but is neither the null graph nor the
complete graph.

The adjacency matrix of G is the b × b matrix A, with its rows and columns indexed by
the vertices of G, such that, for vertices x, y, the (x, y)-th entry A(x, y) of A is 1 if x, y
are adjacent in G, and A(x, y) = 0 otherwise. The spectrum spec(A) (i.e., the multi-set of
eigenvalues of A, counting multiplicity) is also called the spectrum of G, and is denoted
spec(G). A connected SRG G has exactly three distinct eigenvalues, which we shall denote
by a > ρ > σ , with corresponding multiplicities 1, f , g. Here a is the degree of G and
f + g + 1 = b. Since trace(A) = 0, we have a = − f ρ − gσ. If G is non-complete then we
have the following inequalities, known as the Krein Bounds, [10].

1. (ρ + 1)(a + ρ + 2ρσ) ≤ (a + ρ)(σ + 1)2;
2. (σ + 1)(a + σ + 2ρσ) ≤ (a + σ)(ρ + 1)2.

It is known to be a difficult problem to decide which SRGs are block graphs of QSDs.
In [7,8], it was established that several infinite families of SRGs are not block graphs of
QSDs. In the recent paper [1], Bagchi obtained several restrictions on parameters of the
block graph of a QSD in terms of its spectral parameters. Efforts were made to characterize
QSDs associated with a particular class of SRGs. The following conjecture related to QSDs
with block graph, the complete multi-partite graph Km×n(m ≥ 2, n ≥ 2), was made.

Conjecture 1.1 Bagchi, [1] For the existence of a quasi-symmetric 2-design with block graph
Km×n, we must have m ≡ n + 1 (mod n2).

In support of the Conjecture 1.1, we rule out the possibility of QSD’s with block graph
Km×n , if n = hα,m = hβ + 1 for positive integers α ≥ 2, β such that gcd(n,m − 1) = h,
and 1 ≤ h < 4α or gcd(h, α − β) = 1.

In [1], several algebraic conditions are given on q , for Symplectic graphs Sp(2t, q),
where q > 2 a prime power and t ≥ 2 to be a block graph of QSDs. It was hinted that for
each fixed prime power q > 2, the graph Sp(2t, q) is a block graphs of QSDs for at most
finitely many values of t . We continue with the proof of Corollary 2.6 of [1] and rule out the
possibility of QSDs with block graph that has the same parameters as that of the Symplectic
graph Sp(2t, q). To rule out the possibility of QSDs with associated graph that has the same
parameters as that of the complement of Symplectic graph Sp(2t, q), we use the technique
developed in [8].

Under certain conditions, we rule out the possibility of a QSD having a pseudo-Latin
square or negative Latin square block graph.

We follow [1] for definitions and terminology. Symbolic calculations were made easy
with the help of Mathematica [13].

123



Non-existence of some quasi-symmetric designs 873

2 Preliminaries

Lemma 2.1 [9,12] Let D be a QSD with standard parameter set (v, b, r , k, λ; λ1, λ2). Then
the following relations hold:

1. vr = bk and λ(v − 1) = r(k − 1).
2. k(r − 1)(λ1 + λ2 − 1) − λ1λ2(b − 1) = k(k − 1)(λ − 1).
3. μ = λ2 − λ1 divides k − λ1 and r − λ.

4. −σ = k − λ1

μ
> 0 and ρ − σ = r − λ

μ
> 0.

Theorem 2.2 [[8], Theorem 6 (iii)] Let D be a QSD with parameters (v, b, r , k, λ; λ1, λ2)

and G be the strongly regular block graph with parameters (b, a, c, d) of D. Then, we have

μ = (−a + c − d − σ − b σ) (b − s) s

b (c − d − 2 σ) (−a + σ − b σ)
(2.1)

for a positive integer s = (−a + σ − bσ)μ

(λ1 − σμ)
.

Corollary 2.3 [[1], Corollary 2.6.] Let q > 2 be a prime power and let t ≥ 2 be an integer.
Then, a quasi-symmetric 2-design of defect μ with block graph Sp(2t, q) is parametrically
feasible if and only if t is even, q ≡ 3 (mod 8), μ = (qt − q + 2)/8, and the pair (q, t)
satisfies

(
qt − 1

q − 1

)2

− qt
(
qt−1 − 1

q − 1

)
= x2 (2.2)

for some integer x .

3 QSDs with complete multipartite graphs

The complete multi-partite graph Km×n(m ≥ 2, n ≥ 2) has mn vertices partitioned into
m parts of size n each, where two vertices are adjacent if and only if they are in different
parts. In other words, Km×n is the complement of mKn (the disjoint union of m copies of
the n-vertex complete graph Kn). In this section we rule out the possibility of QSDs with
complete multi-partite block graph under certain conditions, which provide support to the
Conjecture 1.1.

Theorem 3.1 Let D be a QSD whose block graph has the same parameters as that of the
complete multipartite graphs with m ≥ 2 classes of size n ≥ 2, i.e.,

(nm, n(m − 1), n(m − 2), n(m − 1)).

If γ = gcd(nm − m + 1, n2), then γ ≥ 4(n − 1).

Proof We find σ = −n. We use Eq. (2.1) to find

μ = s(nm − s)(nm − m + 1)

(n − 1)n2m2 . (3.1)

If γ = gcd(nm −m + 1, n2) then (n − 1)n2m2 divides s(nm − s)γ , write s(nm − s)γ =
e(n − 1)n2m2 for some positive integer e and observe that the discriminant of this quadratic
in s is n2m2γ (γ − 4e(n − 1)), which is a perfect square. As e ≥ 1, we get γ ≥ 4(n − 1). �	
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Remark 3.2 1. As an application of the Theorem 2.3 of [1] one can show that m − 1 ≥ n,
where equality holds if and only if μ = 1 and D is a 2-(n2, n, 1) design, known as affine
plane of order n.

2. The truthfulness of Conjecture 1.1 implies n divides m − 1.
3. Suppose m − 1 > n and n = hα,m = hβ + 1 for positive integers α, β such that

gcd(n,m − 1) = h. Then

γ = gcd(n2, nm − m + 1)

= gcd(h2α2, h(hβα + α − β))

= h gcd(hα2, hβα + α − β)

= h gcd(h, hβα + α − β) as gcd(α, β) = 1

= h gcd(h, α − β).

We take γ = hh′, with h′ = gcd(h, α − β). As γ ≥ 4(n − 1) and hh′ ≥ 4(hα − 1).
Hence h′ ≥ 4(α − 1). If h′ < 4 then α = 1, which implies n divides m − 1.

In support of the Conjecture 1.1, we give the following results.

Corollary 3.3 There is no QSD whose block graph has the same parameters as that of the
complete multipartite graph with m ≥ 2 classes of size n ≥ 2, with gcd(n,m − 1) = 1.

Proof We give proof with same notations as used in the Corollary 2.4 of [1]. Since m =
tn2/α + n + 1, this means that gcd(tn2/α, n) = 1; also, since n = l + l∗ + 2α, α ≤ n/2.
Since n2 divides (tn2/α)(α) and is co-prime to the first factor, it follows that n2 divides α,
and so α ≥ n2, which is a contradiction.

Alternately, if gcd(n,m−1) = 1, then γ = gcd(nm−m+1, n2) = 1, which contradicts
Theorem 3.1. �	

If m �≡ n + 1 (mod n2), and n = hα,m = hβ + 1 for positive integers α, β such that
gcd(n,m − 1) = h, then α ≥ 2.

Theorem 3.4 Let G be a SRG that has the same parameters as that of the complete multi-
partite graph with m ≥ 2 classes of size n ≥ 2. Suppose n = hα,m = hβ + 1 for positive
integers α ≥ 2, β such that gcd(n,m − 1) = h. If 1 < h < 4α or gcd(h, α − β) = 1, then
there is no QSD whose block graph is G.

Proof We use Eq. (2.1) to find

μ = s(hβα + α − β)
(
αβh2 + αh − s

)
hα2(hα − 1)(hβ + 1)2

.

As gcd(α, β) = 1, we get gcd(α2(hα − 1)(hβ + 1)2, hβα + α − β) = 1, hence

s
(
αβh2 + αh − s

)
α2(hα − 1)(hβ + 1)2

= e, (3.2)

for some positive integer e. We consider the Eq. (3.2) as a quadratic in s and find the dis-
criminant

� = α2(hβ + 1)2
(
h2 − 4eαh + 4e

)
.

Observe that h2 − 4eαh + 4e ≤ h(h − 4α) + 4, which is negative for 1 < h < 4α and
α ≥ 2. This a contradiction as s is a positive integer.
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If gcd(h, α − β) = 1, then we get gcd(hα2(hα − 1)(hβ + 1)2, hβα + α − β) = 1, hence

s
(
αβh2 + αh − s

)
hα2(hα − 1)(hβ + 1)2

= e, (3.3)

for some positive integer e. As before, we consider the Eq. (3.3) as a quadratic in s and find
the discriminant

� = hα2(hβ + 1)2(h + e(4 − 4hα)).

Observe that h + e(4 − 4hα) ≤ 4 − h(4α − 1) < 0, as α ≥ 2 and h > 1, which is a
contradiction. �	

4 QSDs with Symplectic graphs

Let t ≥ 2 and let q be a prime power. Take a (2t)-dimensional vector space V over the field
of order q with a non-degenerate symplectic bilinear form < ·, · > (such a form is unique up
to linear isomorphisms). Let P(V ) = PG(2t − 1, q) be the corresponding projective space.
For non-zero vectors x ∈ V , let [x] denote the point in P(V )with homogeneous co-ordinates
x . The symplectic graph Sp(2t, q) has the points of PG(2t −1, q) as its vertices. Two points
[x], [y] are adjacent in Sp(2t, q) if < x, y >�= 0.

Theorem 4.1 Let q > 2 be a prime power. Then there does not exist a QSD with block graph
that has the same parameters as that of the Symplectic graph Sp(2t, q), with t ≥ 2.

Proof We show that the Eq. (2.2) have no integer solution and use Corollary 2.3 to complete
the proof. The condition q ≡ 3 (mod 8) obtained in the Corollary 2.3 implies q must be an
odd prime power. We assume the Eq. (2.2) has integer solutions and rewrite it as follows:(

qt − 1
)2 − qt (q − 1)

(
qt−1 − 1

) = y2,

where y = x(q − 1). Observe that qt
(
qt−1 + q − 3

) = y2 − 1, which implies qt divides
either y − 1 or y + 1, as q is an odd prime power. We take y = uqt + 1 and y = uqt − 1,
for positive integer u to observe that(

qt − 1
)2 − qt (q − 1)

(
qt−1 − 1

) − y2 = −qt−1 (−qt − q2 + 3q + u2qt+1 + 2uq
)

≤ −qt−1 (
qt+1 − qt − q2 + 5q

)
< 0,

and(
qt − 1

)2 − qt (q − 1)
(
qt−1 − 1

) − y2 = −qt−1 (−qt + u2qt+1 − q2 − 2uq + 3q
)

≤ −(q − 1)qt−1 (
qt − q

)
< 0,

respectively, which is a contradiction. �	
Theorem 4.2 There is no QSD whose block graph parameters are(

q2t − 1

q − 1
,
q

(
q2t−2 − 1

)
q − 1

,

(
q2t−4 − 1

)
q2

q − 1
+ q − 1,

(
q2t−4 − 1

)
q2

q − 1
+ q + 1

)
,

which are same as that of the complement of Symplectic graph Sp(2t, q), where q is an odd
prime power and t ≥ 2.
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Proof We find σ = −qt−1 − 1. We use Eq. (2.1) to find

μ =
(
qt + q − 2

)
s
(
q2t − 1 − sq + s

)
2qt (qt − 1)2

(
qt−1 + 1

)

=
(
(qt − 1) + (q − 1)

)
s
((
qt − 1

) (
qt + 1

) − (q − 1)s
)

2qt (qt − 1)2
(
qt−1 + 1

)

= (qt−1 + qt−2 + · · · + q + 2)((qt−1 + qt−2 + · · · + q + 1)(qt + 1) − s)s

2qt (qt−1 + qt−2 + · · · + q + 1)2
(
qt−1 + 1

)

Observe the following:

1. qt − 1 = (q − 1)(qt−1 + qt−2 + · · · + q + 1);
2. qt + q − 2 = (qt − 1) + (q − 1) = (q − 1)(qt−1 + qt−2 + · · · + q + 2);

3. gcd(qt−1 + qt−2 + · · · + q + 2, qt ) = 1;
4. gcd(qt−1 + qt−2 + · · · + q + 2, qt−1 + qt−2 + · · · + q + 1) = 1;
5.

(
qt−1 + qt−2 + · · · + q + 2

) − (
qt−1 + 1

) = qt−2 + · · · + q + 1;
6.

(
qt−1 + 1

) − (qt−2 + · · · + q + 1)(q − 1) = 2;

7. gcd(qt−1 + qt−2 + · · · + q + 2, qt−1 + 1) =
{
1 if t is an even integer;

2 if t is an odd integer.

As before we get

2((qt−1 + qt−2 + · · · + q + 1)(qt + 1) − s)s

qt (qt−1 + qt−2 + · · · + q + 1)2
(
qt−1 + 1

) = e,

for some positive integer e.
We take α = qt−1 + qt−2 + · · · + q + 1 and observe that

2(α(qt + 1) − s)s

qtα2
(
qt−1 + 1

) = e,

for some positive integer e.
Discriminant of the above quadratic is 4α2�, where � = (

qt + 1
)2 − 2eqt

(
qt−1 + 1

)
.

Observe that � must be a perfect square. We take � = x2 for some positive integer x and,
as q is an odd prime, observe that qt divides either x − 1 or x + 1.

If x = qtu + 1, for some positive integer u, then � − x2 = qtδ(u), where δ(u) =
−2eqt−1 + qt − 2e + 2 − u

(
uqt + 2

)
, which is a decreasing function of u. Hence δ(u) ≤

δ(1) = −2e
(
qt−1 + 1

)
< 0, a contradiction.

If x = qtu − 1, for some positive integer u, then � − x2 = qtδ(u), where δ(u) =
−2eqt−1 + qt − 2e + 2 − u

(
qtu − 2

)
, which is a decreasing function of u. Hence δ(u) ≤

δ(1) = −2
(
eqt−1 + e − 2

)
< 0, a contradiction. �	

5 QSDs with pseudo-Latin square and negative Latin square graphs

Given m − 2 mutually orthogonal Latin squares of order n with m − 1 < n, the vertices of a
Latin square graph LSm(n) are the n2 cells; two vertices are adjacent if and only if they lie
in the same row or column or they have same entry in one of the Latin squares. This graph
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is a SRG, with parameters (n2,m(n − 1), n + m(m − 3),m(m − 1)). A SRG with these
parameters is known as a pseudo-Latin square graph, denoted by Lm(n). A Negative Latin
square graph NLm(n), is obtained by replacing m and n by their negatives in the parameters
of a LSm(n). Hence NLm(n) has parameters (n2,m(n+1),m2 +3m−n,m(m+1)), where
n ≤ m2 + 3m, and equality holds if and only if the Krein bounds are met. In [2], Cameron,
Goethals and Seidel characterized SRG’s attaining the Krein bounds in terms of Negative
Latin square graph NLe(e2 + 3e). In [8], the possibility of QSD’s whose block graph is
NLe(e2 + 3e), with 2 ≤ e or its complement was ruled out.

Theorem 5.1 Suppose m = hα + 1, n = hβ, for positive integers α and β such that
gcd(n,m − 1) = h. If 1 ≤ h2 < 4α or gcd(h, β −α) = 1, then there is no QSD whose block
graph is a pseudo-Latin Square graph Lm(n).

Proof For a pseudo-Latin Square graph σ = −m. As before, we use Eq. (2.1) to find

μ = (hβα + β − α)
(
h2β2 − s

)
s

h2(hα + 1)β3(hβ − 1)
.

As gcd(α, β) = 1, we get the following:

1. gcd(hβα + β − α, β3) = 1;
2. gcd(hβα + β − α, (hβ − 1)) = 1;
3. gcd(hβα + β − α, (hα + 1)) = 1.

As before we get (
h2β2 − s

)
s

(hα + 1)β3(hβ − 1)
= e,

for some positive integer e.
Discriminant of above quadratic is β3�, where

� = βh4 + e(4 − 4h(hβα − α + β))

≤ βh4 + (4 − 4h(hβα − α + β))

= h
(
4(α − β) + h

(
h2 − 4α

)
β
) + 4.

If 1 ≤ h2 < 4α then as α < β, we get � < 0, which is contradiction.
If gcd(h, β − α) = 1, then gcd(hβα + β − α, h2(hα + 1)β3(hβ − 1)) = 1. Hence

(
h2β2 − s

)
s

h2(hα + 1)β3(hβ − 1)
= e,

for some positive integer e.
Discriminant of above quadratic is h2β3�, where

� = βh2 + e
(−4αβh2 + 4(α − β)h + 4

)
≤ βh2 + (−4αβh2 + 4(α − β)h + 4

)
= −(4α − 1)βh2 − 4(β − α)h + 4.

This implies � < 0, which is a contradiction. �	
Theorem 5.2 Suppose m = hα, n = hβ for positive integers α and β such that gcd(n,m) =
h. If h2 < 4(β − α) or gcd(h, α) = 1, then there is no QSD whose block graph is a negative
Latin Square graph N Lm(n).
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Proof For a negative Latin Square graph σ = −(n −m). As before, we use Eq. (2.1) to find

μ =
(
hβ2 − hαβ − α

) (
h2β2 − s

)
s

h2β3(hβ + 1)(−hα + hβ − 1)
.

We observe the following:

1. As gcd(α, β) = 1, gcd(hβ2 − hαβ − α, β3) = 1;

2. h
(
hβ2 − hαβ − α

) − (hβ + 1)(−hα + hβ − 1) = 1;
3. gcd(hβ2 − hαβ − α, (hβ + 1)(−hα + hβ − 1)) = 1.

As before we have

s
(
h2β2 − s

)
β3(hβ + 1)(−hα + hβ − 1)

= e,

for some positive integer e.
Discriminant of above quadratic is β3�, where

� = 4(α − β)βh2 + βh2 + 4(hα + 1)

≤ (
h2 − 4(β − α)

)
βh2 + 4(hα + 1)

If 1 < h2 < 4(β − α) then as α < β we get � < 0, which is contradiction.
As gcd(h, α) = 1, gcd(hβ2 − hαβ − α, h2) = 1 we get(

h2β2 − s
)
s

h2β3(hβ + 1)(−hα + hβ − 1)
= e;

for some positive integer e. The discriminant of this quadratic in s is h2β3�, where

� = βh2 + e
(
4(α − β)βh2 + 4(hα + 1)

)
≤ 4(α − β)βh2 + (4α + hβ)h + 4.

As h(β−α) ≥ 2, we consider two cases (i) h = 1 and β ≥ α+2; (ii) h ≥ 2 and β ≥ α+1
to observe that � < 0, which is a contradiction. �	
Remark 5.3 Results similar to the Theorems 5.1 and 5.2 can be obtained for complements of
pseudo-Latin square and negative Latin square graphs as these are also pseudo-Latin square
and negative Latin square graphs respectively.
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