

Non-existence of quasi-symmetric designs with restricted block graphs

Rajendra M. Pawale[1](http://orcid.org/0000-0002-8734-5225) · Mohan S. Shrikhande² · Kusum S. Rajbhar²

Received: 19 May 2021 / Revised: 3 November 2021 / Accepted: 21 January 2022 / Published online: 28 February 2022 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Quasi-symmetric designs (QSDs) with particular block graphs are investigated. We rule out the possibility of a QSD with block graph that has the same parameters as that of the Symplectic graph $Sp(2t, q)$, where *q* is an odd prime power or its complement. We obtain support for Bagchi's recent conjecture, which states that 'For the existence of a quasi-symmetric 2-design with block graph $K_{m \times n}$, we must have $m \equiv n + 1 \pmod{n^2}$. Under certain conditions, we rule out the possibility of a QSD having a pseudo-Latin square or negative Latin square block graph.

Keywords Strongly regular graphs · Quasi-symmetric designs · Block graph

Mathematics Subject Classification 05B05

1 Introduction

Let *X* be a finite set of v elements called points, and β be a set of *k*-element subsets of *X* called blocks, such that each pair of points occur in λ blocks, then the pair **D** = (X, β) is 2-(v, k, λ) design. For a 2-(v, k, λ) design **D**, the number of blocks containing α in X is r, which is independent of α . The number of blocks in **D** is denoted by *b*.

An integer λ_1 , $0 \leq \lambda_1 < k$, is an *intersection number* of **D** if there exist *B*, $B' \in \beta$ such that $|B \cap B'| = \lambda_1$. Symmetric designs have exactly one intersection number.

Communicated by K. T. Arasu.

 \boxtimes Rajendra M. Pawale rmpawale@yahoo.co.in Mohan S. Shrikhande Mohan.Shrikhande@cmich.edu Kusum S. Rajbhar rajbharkusum93@gmail.com

¹ Mathematics Department, Central Michigan University, Mount Pleasant, MI 48859, USA

² Department of Mathematics, University of Mumbai, Santacruz(E), Mumbai 400 098, India

A 2-design with two intersection numbers is a *quasi-symmetric design* (QSD). Denote these intersection numbers by λ_1 and λ_2 , where $0 \leq \lambda_1 < \lambda_2 < k$. We denote $\mu = \lambda_2 - \lambda_1$, and call it as the *defect* of the QSD.

The parameters $(v, b, r, k, \lambda; \lambda_1, \lambda_2)$ are the *standard parameters* of a OSD, which are said to be *feasible* if they satisfy all necessary conditions given in the Lemma [2.1.](#page-2-0) Complete parametric classification of QSDs with $\mu = 1, 2, 3$ has been obtained in [\[4](#page-7-0)[–6\]](#page-8-0).

The *block graph G* of a QSD **D** has vertices that are blocks of **D**, where two distinct blocks *B*, *B*['] are adjacent if and only if $|B \cap B'| = \lambda_2$. It was shown in [\[3](#page-7-1)[,11](#page-8-1)] that *G* is a *strongly regular graph* (SRG) with parameters (b, a, c, d) . Here *b* is the number of vertices of *G*, i.e. the number of blocks of the design **D**, *a* its valency, any two adjacent vertices have exactly *c* common neighbors and any two non-adjacent vertices have exactly *d* common neighbors. We assume, as is customary, that a SRG is connected but is neither the null graph nor the complete graph.

The adjacency matrix of *G* is the $b \times b$ matrix *A*, with its rows and columns indexed by the vertices of *G*, such that, for vertices *x*, *y*, the (x, y) -th entry $A(x, y)$ of *A* is 1 if *x*, *y* are adjacent in *G*, and $A(x, y) = 0$ otherwise. The spectrum spec (A) (i.e., the multi-set of eigenvalues of *A*, counting multiplicity) is also called the spectrum of *G*, and is denoted $spec(G)$. A connected SRG G has exactly three distinct eigenvalues, which we shall denote by $a > \rho > \sigma$, with corresponding multiplicities 1, *f*, *g*. Here *a* is the degree of *G* and $f + g + 1 = b$. Since trace(*A*) = 0, we have $a = -f \rho - g \sigma$. If *G* is non-complete then we have the following inequalities, known as the *Krein Bounds*, [\[10\]](#page-8-2).

1. $(\rho + 1)(a + \rho + 2\rho\sigma) \leq (a + \rho)(\sigma + 1)^2;$ 2. $(\sigma + 1)(a + \sigma + 2\rho\sigma) \leq (a + \sigma)(\rho + 1)^2$.

It is known to be a difficult problem to decide which SRGs are block graphs of QSDs. In [\[7](#page-8-3)[,8](#page-8-4)], it was established that several infinite families of SRGs are not block graphs of QSDs. In the recent paper [\[1](#page-7-2)], Bagchi obtained several restrictions on parameters of the block graph of a QSD in terms of its spectral parameters. Efforts were made to characterize QSDs associated with a particular class of SRGs. The following conjecture related to QSDs with block graph, the complete multi-partite graph $K_{m \times n}$ ($m \geq 2$, $n \geq 2$), was made.

Conjecture 1.1 Bagchi, [\[1\]](#page-7-2) *For the existence of a quasi-symmetric 2-design with block graph* $K_{m \times n}$, we must have $m \equiv n + 1 \pmod{n^2}$.

In support of the Conjecture [1.1,](#page-1-0) we rule out the possibility of QSD's with block graph *K*_{*m*×*n*}, if $n = h\alpha$, $m = h\beta + 1$ for positive integers $\alpha \geq 2$, β such that $gcd(n, m - 1) = h$, and $1 \leq h < 4\alpha$ or $gcd(h, \alpha - \beta) = 1$.

In [\[1](#page-7-2)], several algebraic conditions are given on *q*, for Symplectic graphs $Sp(2t, q)$, where $q > 2$ a prime power and $t \ge 2$ to be a block graph of QSDs. It was hinted that for each fixed prime power $q > 2$, the graph $Sp(2t, q)$ is a block graphs of QSDs for at most finitely many values of *t*. We continue with the proof of Corollary 2.6 of [\[1](#page-7-2)] and rule out the possibility of QSDs with block graph that has the same parameters as that of the Symplectic graph *Sp*(2*t*, *q*). To rule out the possibility of QSDs with associated graph that has the same parameters as that of the complement of Symplectic graph $Sp(2t, q)$, we use the technique developed in [\[8\]](#page-8-4).

Under certain conditions, we rule out the possibility of a QSD having a pseudo-Latin square or negative Latin square block graph.

We follow [\[1\]](#page-7-2) for definitions and terminology. Symbolic calculations were made easy with the help of Mathematica [\[13\]](#page-8-5).

2 Preliminaries

Lemma 2.1 [\[9](#page-8-6)[,12\]](#page-8-7) *Let* **D** *be a QSD with standard parameter set* $(v, b, r, k, \lambda; \lambda_1, \lambda_2)$ *. Then the following relations hold:*

1. $vr = bk$ and $\lambda(v - 1) = r(k - 1)$. 2. $k(r-1)(λ₁ + λ₂ − 1) − λ₁λ₂(b − 1) = k(k − 1)(λ − 1).$ *3.* $μ = λ₂ − λ₁$ *divides* $k − λ₁$ *and* $r − λ$ *. 4.* $-\sigma = \frac{k - \lambda_1}{\mu} > 0$ *and* $\rho - \sigma = \frac{r - \lambda}{\mu} > 0$.

Theorem 2.2 [[\[8\]](#page-8-4), Theorem 6 (iii)] *Let* **D** *be a QSD with parameters* $(v, b, r, k, \lambda; \lambda_1, \lambda_2)$ *and G be the strongly regular block graph with parameters* (*b*, *a*, *c*, *d*) *of* **D***. Then, we have*

$$
\mu = \frac{(-a+c-d-\sigma-b\sigma) (b-s) s}{b (c-d-2\sigma) (-a+\sigma-b\sigma)}
$$
\nfor a positive integer

\n
$$
s = \frac{(-a+\sigma-b\sigma)\mu}{(\lambda_1-\sigma\mu)}.
$$
\n(2.1)

Corollary 2.3 [[\[1](#page-7-2)], Corollary 2.6.] *Let q* > 2 *be a prime power and let t* \geq 2 *be an integer. Then, a quasi-symmetric* 2*-design of defect* μ *with block graph Sp*(2*t*, *q*) *is parametrically feasible if and only if t is even,* $q \equiv 3 \pmod{8}$ *,* $\mu = (q^t - q + 2)/8$ *, and the pair* (q, t) *satisfies*

$$
\left(\frac{q^{t}-1}{q-1}\right)^{2} - q^{t}\left(\frac{q^{t-1}-1}{q-1}\right) = x^{2}
$$
\n(2.2)

for some integer x.

3 QSDs with complete multipartite graphs

The complete multi-partite graph $K_{m \times n}$ ($m \geq 2$, $n \geq 2$) has *mn* vertices partitioned into *m* parts of size *n* each, where two vertices are adjacent if and only if they are in different parts. In other words, $K_{m \times n}$ is the complement of mK_n (the disjoint union of *m* copies of the *n*-vertex complete graph K_n). In this section we rule out the possibility of QSDs with complete multi-partite block graph under certain conditions, which provide support to the Conjecture [1.1.](#page-1-0)

Theorem 3.1 *Let* **D** *be a QSD whose block graph has the same parameters as that of the complete multipartite graphs with m* \geq 2 *classes of size n* \geq 2*, i.e.,*

$$
(nm, n(m-1), n(m-2), n(m-1)).
$$

If $\gamma = \gcd(nm - m + 1, n^2)$, then $\gamma > 4(n - 1)$.

Proof We find $\sigma = -n$. We use Eq. [\(2.1\)](#page-2-1) to find

$$
\mu = \frac{s(nm - s)(nm - m + 1)}{(n - 1)n^2 m^2}.
$$
\n(3.1)

If $\gamma = \gcd(nm - m + 1, n^2)$ then $(n - 1)n^2m^2$ divides $s(nm - s)\gamma$, write $s(nm - s)\gamma =$ $e(n-1)n^2m^2$ for some positive integer *e* and observe that the discriminant of this quadratic in *s* is $n^2m^2\gamma(\gamma - 4e(n-1))$, which is a perfect square. As $e \ge 1$, we get $\gamma \ge 4(n-1)$. \Box

- *Remark 3.2* 1. As an application of the Theorem 2.3 of [\[1\]](#page-7-2) one can show that $m 1 \ge n$, where equality holds if and only if $\mu = 1$ and **D** is a 2-(n^2 , n, 1) design, known as affine plane of order *n*.
- 2. The truthfulness of Conjecture [1.1](#page-1-0) implies *n* divides *m* − 1.
- 3. Suppose $m 1 > n$ and $n = h\alpha$, $m = h\beta + 1$ for positive integers α , β such that $gcd(n, m - 1) = h$. Then

$$
\gamma = \gcd(n^2, nm - m + 1)
$$

= $\gcd(h^2 \alpha^2, h(h\beta \alpha + \alpha - \beta))$
= $h \gcd(h\alpha^2, h\beta \alpha + \alpha - \beta)$
= $h \gcd(h, h\beta \alpha + \alpha - \beta)$ as $\gcd(\alpha, \beta) = 1$
= $h \gcd(h, \alpha - \beta)$.

We take $\gamma = hh'$, with $h' = \gcd(h, \alpha - \beta)$. As $\gamma \ge 4(n-1)$ and $hh' \ge 4(h\alpha - 1)$. Hence $h' > 4(\alpha - 1)$. If $h' < 4$ then $\alpha = 1$, which implies *n* divides $m - 1$.

In support of the Conjecture [1.1,](#page-1-0) we give the following results.

Corollary 3.3 *There is no QSD whose block graph has the same parameters as that of the complete multipartite graph with m* \geq 2 *classes of size n* \geq 2*, with gcd(n, m - 1) = 1.*

Proof We give proof with same notations as used in the Corollary 2.4 of [\[1](#page-7-2)]. Since $m =$ $t n^2/\alpha + n + 1$, this means that gcd($t n^2/\alpha$, *n*) = 1; also, since $n = l + l^* + 2\alpha$, $\alpha \le n/2$. Since n^2 divides $(tn^2/\alpha)(\alpha)$ and is co-prime to the first factor, it follows that n^2 divides α , and so $\alpha \geq n^2$, which is a contradiction.

Alternately, if $gcd(n, m - 1) = 1$, then $\gamma = gcd(nm - m + 1, n^2) = 1$, which contradicts Theorem 3.1. Theorem [3.1.](#page-2-2) \square

If $m \neq n + 1 \pmod{n^2}$, and $n = h\alpha$, $m = h\beta + 1$ for positive integers α , β such that $gcd(n, m - 1) = h$, then $\alpha \geq 2$.

Theorem 3.4 *Let G be a SRG that has the same parameters as that of the complete multipartite graph with m* \geq 2 *classes of size n* \geq 2*. Suppose n* = *hα*, *m* = *hβ* + 1 *for positive integers* $\alpha \geq 2$, β *such that* $gcd(n, m - 1) = h$. If $1 < h < 4\alpha$ or $gcd(h, \alpha - \beta) = 1$, then *there is no QSD whose block graph is G.*

Proof We use Eq. [\(2.1\)](#page-2-1) to find

$$
\mu = \frac{s(h\beta\alpha + \alpha - \beta)\left(\alpha\beta h^2 + \alpha h - s\right)}{h\alpha^2(h\alpha - 1)(h\beta + 1)^2}.
$$

As gcd(α , β) = 1, we get gcd($\alpha^2(h\alpha - 1)(h\beta + 1)^2$, $h\beta\alpha + \alpha - \beta$) = 1, hence

$$
\frac{s(\alpha\beta h^2 + \alpha h - s)}{\alpha^2(h\alpha - 1)(h\beta + 1)^2} = e,
$$
\n(3.2)

for some positive integer *e*. We consider the Eq. [\(3.2\)](#page-3-0) as a quadratic in *s* and find the discriminant

$$
\Delta = \alpha^2 (h\beta + 1)^2 (h^2 - 4e\alpha h + 4e).
$$

Observe that $h^2 - 4e\alpha h + 4e \leq h(h - 4\alpha) + 4$, which is negative for $1 < h < 4\alpha$ and $\alpha \geq 2$. This a contradiction as *s* is a positive integer.

If gcd(*h*, $\alpha - \beta$) = 1, then we get gcd($h\alpha^2(h\alpha - 1)(h\beta + 1)^2$, $h\beta\alpha + \alpha - \beta$) = 1, hence

$$
\frac{s(\alpha\beta h^2 + \alpha h - s)}{h\alpha^2(h\alpha - 1)(h\beta + 1)^2} = e,
$$
\n(3.3)

for some positive integer *e*. As before, we consider the Eq. [\(3.3\)](#page-4-0) as a quadratic in *s* and find the discriminant

$$
\Delta = h\alpha^2(h\beta + 1)^2(h + e(4 - 4h\alpha)).
$$

Observe that $h + e(4 - 4h\alpha) \leq 4 - h(4\alpha - 1) < 0$, as $\alpha \geq 2$ and $h > 1$, which is a contradiction. \Box contradiction.

4 QSDs with Symplectic graphs

Let $t \geq 2$ and let q be a prime power. Take a (2t)-dimensional vector space V over the field of order *q* with a non-degenerate symplectic bilinear form $\langle \cdot, \cdot \rangle$ (such a form is unique up to linear isomorphisms). Let $P(V) = PG(2t - 1, q)$ be the corresponding projective space. For non-zero vectors $x \in V$, let [x] denote the point in $P(V)$ with homogeneous co-ordinates *x*. The symplectic graph $Sp(2t, q)$ has the points of $PG(2t-1, q)$ as its vertices. Two points $[x]$, $[y]$ are adjacent in *Sp*(2*t*, *q*) if < *x*, *y* > \neq 0.

Theorem 4.1 *Let q* > 2 *be a prime power. Then there does not exist a QSD with block graph that has the same parameters as that of the Symplectic graph* $Sp(2t, q)$ *, with* $t \geq 2$ *.*

Proof We show that the Eq. [\(2.2\)](#page-2-3) have no integer solution and use Corollary [2.3](#page-2-4) to complete the proof. The condition $q \equiv 3 \pmod{8}$ obtained in the Corollary [2.3](#page-2-4) implies *q* must be an odd prime power. We assume the Eq. [\(2.2\)](#page-2-3) has integer solutions and rewrite it as follows:

$$
(qt - 1)2 - qt (q - 1) (qt-1 - 1) = y2,
$$

where $y = x(q - 1)$. Observe that $q^t (q^{t-1} + q - 3) = y^2 - 1$, which implies q^t divides either *y* − 1 or *y* + 1, as *q* is an odd prime power. We take *y* = uq^t + 1 and *y* = uq^t − 1, for positive integer *u* to observe that

$$
(qt - 1)2 - qt (q - 1) (qt-1 - 1) - y2 = -qt-1 (-qt - q2 + 3q + u2qt+1 + 2uq)
$$

\n
$$
\leq -qt-1 (qt+1 - qt - q2 + 5q)
$$

\n
$$
< 0,
$$

and

$$
(qt - 1)2 - qt (q - 1) (qt-1 - 1) - y2 = -qt-1 (-qt + u2qt+1 - q2 - 2uq + 3q)
$$

\n
$$
\leq -(q - 1)qt-1 (qt - q)
$$

\n
$$
< 0,
$$

respectively, which is a contradiction.

Theorem 4.2 *There is no QSD whose block graph parameters are*

$$
\left(\frac{q^{2t}-1}{q-1},\frac{q(q^{2t-2}-1)}{q-1},\frac{\left(q^{2t-4}-1\right)q^2}{q-1}+q-1,\frac{\left(q^{2t-4}-1\right)q^2}{q-1}+q+1\right),\right
$$

which are same as that of the complement of Symplectic graph $Sp(2t, q)$ *<i>, where q is an odd prime power and t* \geq 2*.*

 $\circled{2}$ Springer

Proof We find $\sigma = -q^{t-1} - 1$. We use Eq. [\(2.1\)](#page-2-1) to find

$$
\mu = \frac{\left(q^{t} + q - 2\right) s \left(q^{2t} - 1 - s q + s\right)}{2q^{t} \left(q^{t} - 1\right)^{2} \left(q^{t-1} + 1\right)}
$$
\n
$$
= \frac{\left((q^{t} - 1) + (q - 1)\right) s \left(\left(q^{t} - 1\right) \left(q^{t} + 1\right) - (q - 1)s\right)}{2q^{t} \left(q^{t} - 1\right)^{2} \left(q^{t-1} + 1\right)}
$$
\n
$$
= \frac{\left(q^{t-1} + q^{t-2} + \dots + q + 2\right) \left((q^{t-1} + q^{t-2} + \dots + q + 1)\right) \left(q^{t} + 1\right) - s\right) s}{2q^{t} \left(q^{t-1} + q^{t-2} + \dots + q + 1\right)^{2} \left(q^{t-1} + 1\right)}
$$

Observe the following:

1.
$$
q^{t} - 1 = (q - 1)(q^{t-1} + q^{t-2} + \cdots + q + 1);
$$

\n2. $q^{t} + q - 2 = (q^{t} - 1) + (q - 1) = (q - 1)(q^{t-1} + q^{t-2} + \cdots + q + 2);$
\n3. $gcd(q^{t-1} + q^{t-2} + \cdots + q + 2, q^{t}) = 1;$
\n4. $gcd(q^{t-1} + q^{t-2} + \cdots + q + 2, q^{t-1} + q^{t-2} + \cdots + q + 1) = 1;$
\n5. $(q^{t-1} + q^{t-2} + \cdots + q + 2) - (q^{t-1} + 1) = q^{t-2} + \cdots + q + 1;$
\n6. $(q^{t-1} + 1) - (q^{t-2} + \cdots + q + 1)(q - 1) = 2;$
\n7. $gcd(q^{t-1} + q^{t-2} + \cdots + q + 2, q^{t-1} + 1) = \begin{cases} 1 & \text{if } t \text{ is an even integer;} \\ 2 & \text{if } t \text{ is an odd integer.} \end{cases}$

As before we get

$$
\frac{2((q^{t-1}+q^{t-2}+\cdots+q+1)(q^{t}+1)-s)s}{q^{t}(q^{t-1}+q^{t-2}+\cdots+q+1)^{2}(q^{t-1}+1)}=e,
$$

for some positive integer *e*.

We take $\alpha = q^{t-1} + q^{t-2} + \cdots + q + 1$ and observe that

$$
\frac{2(\alpha(q^t+1)-s)s}{q^t\alpha^2(q^{t-1}+1)}=e,
$$

for some positive integer *e*.

Discriminant of the above quadratic is $4\alpha^2 \Delta$, where $\Delta = (q^t + 1)^2 - 2eq^t (q^{t-1} + 1)$. Observe that Δ must be a perfect square. We take $\Delta = x^2$ for some positive integer *x* and, as *q* is an odd prime, observe that q^t divides either $x - 1$ or $x + 1$.

If $x = q^t u + 1$, for some positive integer *u*, then $\Delta - x^2 = q^t \delta(u)$, where $\delta(u) =$ $-2eq^{t-1} + q^t - 2e + 2 - u \left(uq^t + 2 \right)$, which is a decreasing function of *u*. Hence $\delta(u) \leq$ $\delta(1) = -2e(q^{t-1} + 1) < 0$, a contradiction.

If $x = q^t u - 1$, for some positive integer *u*, then $\Delta - x^2 = q^t \delta(u)$, where $\delta(u) =$ $-2eq^{t-1} + q^t - 2e + 2 - u (q^t u - 2)$, which is a decreasing function of *u*. Hence $\delta(u) \leq$ $\delta(1) = -2 \left(e q^{t-1} + e - 2 \right) < 0$, a contradiction.

5 QSDs with pseudo-Latin square and negative Latin square graphs

Given $m-2$ mutually orthogonal Latin squares of order *n* with $m-1 < n$, the vertices of a Latin square graph $LS_m(n)$ are the n^2 cells; two vertices are adjacent if and only if they lie in the same row or column or they have same entry in one of the Latin squares. This graph

is a SRG, with parameters $(n^2, m(n-1), n + m(m-3), m(m-1))$. A SRG with these parameters is known as a pseudo-Latin square graph, denoted by $L_m(n)$. A Negative Latin square graph $NL_m(n)$, is obtained by replacing *m* and *n* by their negatives in the parameters of a $LS_m(n)$. Hence $NL_m(n)$ has parameters $(n^2, m(n+1), m^2+3m-n, m(m+1))$, where $n \le m^2 + 3m$, and equality holds if and only if the Krein bounds are met. In [\[2](#page-7-3)], Cameron, Goethals and Seidel characterized SRG's attaining the Krein bounds in terms of Negative Latin square graph $NL_e(e^2 + 3e)$. In [\[8](#page-8-4)], the possibility of QSD's whose block graph is $NL_e(e^2 + 3e)$, with $2 \leq e$ or its complement was ruled out.

Theorem 5.1 *Suppose* $m = h\alpha + 1$, $n = h\beta$, *for positive integers* α *and* β *such that* $gcd(n, m - 1) = h$. If $1 \leq h^2 \leq 4\alpha$ or $gcd(h, \beta - \alpha) = 1$, then there is no OSD whose block *graph is a pseudo-Latin Square graph Lm*(*n*)*.*

Proof For a pseudo-Latin Square graph $\sigma = -m$. As before, we use Eq. [\(2.1\)](#page-2-1) to find

$$
\mu = \frac{(h\beta\alpha + \beta - \alpha)\left(h^2\beta^2 - s\right)s}{h^2(h\alpha + 1)\beta^3(h\beta - 1)}.
$$

As $gcd(\alpha, \beta) = 1$, we get the following:

- 1. gcd($h\beta\alpha + \beta \alpha$, β^3) = 1;
- 2. gcd($h\beta\alpha + \beta \alpha$, $(h\beta 1) = 1$;
- 3. gcd($h\beta\alpha + \beta \alpha$, $(h\alpha + 1) = 1$.

As before we get

$$
\frac{(h^2\beta^2 - s) s}{(h\alpha + 1)\beta^3(h\beta - 1)} = e,
$$

for some positive integer *e*.

Discriminant of above quadratic is $\beta^3 \Delta$, where

$$
\Delta = \beta h^4 + e(4 - 4h(h\beta\alpha - \alpha + \beta))
$$

\n
$$
\leq \beta h^4 + (4 - 4h(h\beta\alpha - \alpha + \beta))
$$

\n
$$
= h(4(\alpha - \beta) + h(h^2 - 4\alpha)\beta) + 4.
$$

If $1 \leq h^2 < 4\alpha$ then as $\alpha < \beta$, we get $\Delta < 0$, which is contradiction.

If gcd(*h*, $\beta - \alpha$) = 1, then gcd(*h* $\beta \alpha + \beta - \alpha$, $h^2(h\alpha + 1)\beta^3(h\beta - 1)$) = 1. Hence

$$
\frac{(h^2\beta^2 - s)s}{h^2(h\alpha + 1)\beta^3(h\beta - 1)} = e,
$$

for some positive integer *e*.

Discriminant of above quadratic is $h^2 \beta^3 \Delta$, where

$$
\Delta = \beta h^2 + e \left(-4\alpha \beta h^2 + 4(\alpha - \beta)h + 4 \right)
$$

\n
$$
\leq \beta h^2 + \left(-4\alpha \beta h^2 + 4(\alpha - \beta)h + 4 \right)
$$

\n
$$
= -(4\alpha - 1)\beta h^2 - 4(\beta - \alpha)h + 4.
$$

This implies $\Delta < 0$, which is a contradiction.

Theorem 5.2 *Suppose* $m = h\alpha$, $n = h\beta$ *for positive integers* α *and* β *such that* $gcd(n, m) =$ *h.* If $h^2 < 4(\beta - \alpha)$ *or* gcd(*h*, α) = 1*, then there is no QSD whose block graph is a negative Latin Square graph* $NL_m(n)$ *.*

Proof For a negative Latin Square graph $\sigma = -(n-m)$. As before, we use Eq. [\(2.1\)](#page-2-1) to find

$$
\mu = \frac{(h\beta^2 - h\alpha\beta - \alpha)(h^2\beta^2 - s)s}{h^2\beta^3(h\beta + 1)(-h\alpha + h\beta - 1)}.
$$

We observe the following:

- 1. As $gcd(\alpha, \beta) = 1$, $gcd(h\beta^2 h\alpha\beta \alpha, \beta^3) = 1$;
- 2. $h(h\beta^2 h\alpha\beta \alpha) (h\beta + 1)(-h\alpha + h\beta 1) = 1;$
- 3. gcd($h\beta^2 h\alpha\beta \alpha$, $(h\beta + 1)(-h\alpha + h\beta 1) = 1$.

As before we have

$$
\frac{s\left(h^2\beta^2 - s\right)}{\beta^3(h\beta + 1)(-h\alpha + h\beta - 1)} = e,
$$

for some positive integer *e*.

Discriminant of above quadratic is $\beta^3 \Delta$, where

$$
\Delta = 4(\alpha - \beta)\beta h^2 + \beta h^2 + 4(h\alpha + 1)
$$

\n
$$
\leq (h^2 - 4(\beta - \alpha)) \beta h^2 + 4(h\alpha + 1)
$$

If $1 < h^2 < 4(\beta - \alpha)$ then as $\alpha < \beta$ we get $\Delta < 0$, which is contradiction. As gcd(*h*, α) = 1, gcd($h\beta^2 - h\alpha\beta - \alpha$, h^2) = 1 we get

$$
\frac{(h^2\beta^2 - s) s}{h^2\beta^3(h\beta + 1)(-h\alpha + h\beta - 1)} = e;
$$

for some positive integer *e*. The discriminant of this quadratic in *s* is $h^2 \beta^3 \Delta$, where

$$
\Delta = \beta h^2 + e \left(4(\alpha - \beta)\beta h^2 + 4(h\alpha + 1) \right)
$$

$$
\leq 4(\alpha - \beta)\beta h^2 + (4\alpha + h\beta)h + 4.
$$

As $h(\beta - \alpha) \ge 2$, we consider two cases (i) $h = 1$ and $\beta \ge \alpha + 2$; (ii) $h \ge 2$ and $\beta \ge \alpha + 1$
observe that $\Delta < 0$ which is a contradiction to observe that $\Delta < 0$, which is a contradiction.

Remark 5.3 Results similar to the Theorems [5.1](#page-6-0) and [5.2](#page-6-1) can be obtained for complements of pseudo-Latin square and negative Latin square graphs as these are also pseudo-Latin square and negative Latin square graphs respectively.

Acknowledgements The authors would like to thank the anonymous referee for suggesting improvements on the earlier stated results.

References

- 1. Bagchi B.: Parametric restrictions on quasi-symmetric designs. Eur. J. Comb. **99**, 103434 (2022).
- 2. Cameron P., Goethals J., Seidel J.: Strongly regular graphs having strongly regular subconstituents. J. Algebra **55**(2), 257–280 (1978).
- 3. Goethals J.M., Seidel J.J.: Strongly regular graphs derived from combinatorial designs. Can. J. Math. **22**, 597–614 (1970).
- 4. Mavron V.C., McDonough T.P., Shrikhande M.S.: On quasi-symmetric designs with intersection difference three. Des. Codes Cryptogr. **63**(1), 73–86 (2012).
- 5. Pawale R.M.: Quasi-symmetric designs with fixed difference of block intersection numbers. J. Comb. Des. **15**(1), 49–60 (2007).
- 6. Pawale R.M.: Quasi-symmetric designs with the difference of block intersection numbers two. Des. Codes Cryptogr. **58**(2), 111–121 (2011).
- 7. Pawale R.M., Shrikhande M.S., Nyayate S.M.: Conditions for the parameters of the block graph of quasi-symmetric designs. Electron. J. Comb. **22**(1), 1–36 (2015).
- 8. Pawale R.M., Shrikhande M.S., Nyayate S.M.: Non-derivable strongly regular graphs from quasisymmetric designs. Discret. Math. **339**(2), 759–769 (2016).
- 9. Sane S.S., Shrikhande M.S.: Quasi-symmetric 2, 3, 4-designs. Combinatorica **7**(3), 291–301 (1987).
- 10. Scott L.L.: A condition on Higman's parameters. Notices Am. Math. Soc. **20**, 1–97 (1973).
- 11. Shrikhande S.S., Bhagwandas: Duals of incomplete block designs. J. Indian Stat. Assoc. **3**, 30–37 (1965).
- 12. Shrikhande M.S., Sane S.S.: Quasi-symmetric Designs, vol. 164. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1991).
- 13. Wolfram. Mathematica: A computer algebra system. Version 5., 1988. [http://www.wolfram.com/](http://www.wolfram.com/mathematica/) [mathematica/.](http://www.wolfram.com/mathematica/)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.