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Abstract
Let Fq be a finite field and Eb : y2 = x3 + b be an ordinary (i.e., non-supersingular) elliptic
curve (of j-invariant 0) such that

√
b ∈ Fq and q �≡ 1(mod 27). For example, these conditions

are fulfilled for the curve BLS12-381 (b = 4). It is a de facto standard in the real-world
pairing-based cryptography at the moment. This article provides a new constant-time hash
function H : {0, 1}∗ → Eb(Fq) indifferentiable from a random oracle. Its main advantage is
the fact that H computes only one exponentiation in Fq . In comparison, the previous fastest
constant-time indifferentiable hash functions to Eb(Fq) compute two exponentiations in Fq .
In particular, applying H to the widely used BLS multi-signature with m different messages,
the verifier should perform only m exponentiations rather than 2m ones during the hashing
phase.

Keywords Cubic residue symbol and cubic roots · Hashing to ordinary elliptic curves of
j-invariant 0 · Indifferentiability from a random oracle · Pairing-based cryptography

Mathematics Subject Classification 14E05 · 14G05 · 14G15 · 14G50 · 14H52 · 14J26 ·
14J27 · 14Q20 · 14L30

1 Introduction

Since its invention in the early 2000s, pairing-based cryptography [8] has become more
and more popular every year, for example in secure multi-party computations. One of the
latest reviews of standards, commercial products and libraries for this type of cryptography
is represented in [15, Sect. 4.1].

Let Fq be a finite field of char(Fq) > 3 and Eb : y2 = x3+b be an elliptic Fq -curve whose
the j-invariant is 0. The priority is given to the curves Eb, because the pairing computation
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on them is the most efficient (see [8, Sect. 4]). The paper’s focus is on ordinary curves,
because supersingular ones pose special challenges for security by virtue of [8, Remark
2.22]. And according to [18, Example V.4.4] the ordinariness of Eb results in the restriction
q ≡ 1 (mod 3), i.e., ω := 3

√
1 ∈ Fq , where ω �= 1. Today, the most popular pairing-friendly

curve in the industry is the Barreto–Lynn–Scott curve BLS12-381 [22, Sect. 2.1] for which
�log2(q)	 = 381.

Many pairing-based protocols (for example, the BLS multi-signature [2, Sect. 3], [3]) use
a hash function of the form H : {0, 1}∗ → Eb(Fq). There is the regularly updated draft [9]
(see also [8, Sect. 8]) on the topic of hashing to elliptic curves. Due to [9, Sect. 10] it is highly
desirable and often inevitable that H is indifferentiable from a random oracle [4, Definition
2] and constant-time, that is the computation time of its value is independent of an input
argument.

Almost all such previously proposed hash functions are obtained as the composition
H := e⊗2 ◦ h of a hash function h : {0, 1}∗ → F

2
q and the tensor square

e⊗2 : F
2
q → Eb(Fq) e⊗2(t1, t2) := e(t1) + e(t2)

of some map e : Fq → Eb(Fq). Such a map is often called encoding. In this case the indif-
ferentiability of H follows from [4, Theorem 1] if h is indifferentiable and e⊗2 is admissible
in the sense of [4, Definition 4].

The fastest known encodings to the curves Eb are Elligator 2 [1, Sect. 5] and the Wahby–
Boneh “indirect” map [22] (building on the simplified SWU map [4, Sect. 7]). Both (resp.
H ) can be implemented with the cost of one (resp. two) exponentiation(s) in Fq whenever
q �≡ 1 (mod 8). The other quite famous Icart encoding [11] is available if and only if
q ≡ 2 (mod 3), i.e., it is useless in the pairing context. The Icart approach is based on the
fact that under the mentioned condition there is a unique cubic root 3

√
a ∈ Fq given a ∈ Fq .

Nevertheless, as is shown by this article, the cubic root ideology also works (in a completely
different way) in the opposite case q ≡ 1 (mod 3).

This article essentially improves our ideas from [12]. There provided that
√

b ∈ Fq we
construct onemore encoding ewhose the tensor square e⊗2 is admissible.Moreover, e equally
requires only one exponentiation in Fq . However in this work (also for

√
b ∈ Fq ) we directly

provide an admissible map h : F
2
q → Eb(Fq) approximately with the same cost as e and

such that h(t, t) = ±e(t). In other words, the tensor square is superfluous in this situation
and hence we get rid of one exponentiation in Fq . Let us also remark that h is given by quite
simple formulas with small coefficients unlike the Wahby–Boneh encoding.

The same idea is applicable to the famous SWU (Shallue–van de Woestijne–Ulas) encod-
ing [8, Sect. 8.3.4] with the cost of two exponentiations in Fq . It is based on the seminal
work [19, Lemma 3] of Skałba, where the author derives a map F

2
q → E(Fq) for any elliptic

Fq -curve E of j(E) �= 0. The research society refused this map, because it is determined
by fairly cumbersome formulas in comparison with those of the SWU encoding. This arti-
cle restores justice by implicitly showing that the result of Skałba is more valuable than its
refinements of Shallue, van de Woestijne, and Ulas. Nevertheless, it still remains open the
existence question of an indifferentiable hash function to the ordinary curve E with the cost
of one exponentiation in Fq .

2 Geometric results

As mentioned above, we are only interested in q ≡ 1 (mod 3), i.e., ω := 3
√
1 ∈ F

∗
q ,

where ω �= 1. Consider the two different cubic Fq -twists E ( j)
b (for j ∈ {1, 2}) of the given
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Indifferentiable hashing to ordinary elliptic... 803

curve Eb = E (0)
b . There is on E (i)

b ⊂ A
2
(xi ,yi )

(for i ∈ {0, 1, 2}) the Fq -automorphism

[ω](xi , yi ) := (ωxi , yi ) of order 3. Take the quotient T := (Eb × E (1)
b × E (2)

b )/[ω]×3 with
respect to the diagonal action of [ω]. This is a Calabi–Yau threefold according to [14, Sect.
1.3]. By the way, the SWU encoding (as well as Skałba’s map) deals with another Calabi–Yau
Fq -threefold.

Without loss of generality, suppose that 3
√

b /∈ Fq . In the opposite case, one can start

from E (1)
b or E (2)

b (see details in Appendix). Under our assumption, the elliptic curves are

determined by the equations E (i)
b : y2i = bi x3i + b 
Fq Eb2i+1 . The next lemma is proved in

a similar way as [5, Lemma 2.1].

Lemma 1 At least up to a birational Fq -isomorphism, T has the affine model

T :
{

y21 − b = b(y20 − b)t31 ,

y22 − b = b2(y20 − b)t32
⊂ A

5
(y0,y1,y2,t1,t2),

where t j := x j/x0.

We can look at T as a curve in A
3
(y0,y1,y2)

given as the intersection of two quadratic surfaces
over Fq(t1, t2), where the latter denotes the rational function field in two variables t1, t2 over
the constant field Fq . Nevertheless, below it will be more convenient to work over the subfield
F := Fq(s1, s2), where s j := t3j .

Throughout the paper we rely on some Magma calculations [13] that can be verified in
the free calculator on the official site of this computer algebra system.

Lemma 2 [13] T /F is an elliptic curve having a short Weierstrass form W : y2 = x3 +
a4x + a6 with the coefficients

a4 := −3(b2s1s2 + ω2s1 + ωbs2)(b2s1s2 + ωs1 + ω2bs2),
a6 := −(b2s1s2 − 2s1 + bs2)(2b2s1s2 − s1 − bs2)(b2s1s2 + s1 − 2bs2).

In particular, the discriminant and j-invariant of W equal

� = (
2233bs1s2(bs1 − 1)(b2s2 − 1)(s1 − bs2)

)2
,

j = (
2432(b2s1s2 + ωs1 + ω2bs2)(b2s1s2 + ω2s1 + ωbs2)

)3
/�.

Theorem 1 [13] There is a point ψ ∈ W (F) with the coordinates

x = b(2bs1 − 1)s2 − (3bs1 − 2)s1, y = 3
√

b(2ω + 1)s1(bs1 − 1)(bs2 − s1).

It corresponds to a point ϕ ∈ T (F) whose the coordinates are the irreducible fractions
yi (t1, t2) := numi/den, where

num0 := √
b ·(b2s21 − 2b3s1s2 + 2bs1 + b4s22 + 2b2s2 − 3

)
,

num1 := √
b ·(−3b2s21 + 2b3s1s2 + 2bs1 + b4s22 − 2b2s2 + 1

)
,

num2 := √
b ·(b2s21 + 2b3s1s2 − 2bs1 − 3b4s22 + 2b2s2 + 1

)
,

den := b2s21 − 2b3s1s2 − 2bs1 + b4s22 − 2b2s2 + 1.

Moreover,
∑2

i=0 yi (t1, t2) + √
b = 0.
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804 D. Koshelev

It is remarkable that the functions yi (t, t) are nothing but (up to the minus sign) those from
[12, Theorem 1]. Besides, the important case b = 4 gives

num0 = 2·(24s21 − 27s1s2 + 23s1 + 28s22 + 25s2 − 3
)
,

num1 = 2·(−243s21 + 27s1s2 + 23s1 + 28s22 − 25s2 + 1
)
,

num2 = 2·(24s21 + 27s1s2 − 23s1 − 283s22 + 25s2 + 1
)
,

den = 24s21 − 27s1s2 − 23s1 + 28s22 − 25s2 + 1.

In other words, T /Fq is an elliptic threefold whose the elliptic fibration is the projection
to t1, t2. In these terms, ϕ : A

2
(t1,t2)

��� T is an Fq -section of the given fibration. In particular,
Im(ϕ) is a rational Fq -surface. In turn, W is a global minimal Weierstrass form for T . These
and other notions of the theory of elliptic threefolds see, e.g., in [10]. For completeness, the
much simpler theory of elliptic surfaces is well represented in [17].

If the point φ0 := (√
b,

√
b,

√
b

)
is chosen as the neutral element of the Mordell–Weil

group T (F), then as shown in [13] its 2-torsion subgroup T (F)[2] = {φi }3i=0, where

φ1 := (√
b,−√

b,−√
b

)
, φ2 := (−√

b,
√

b,−√
b

)
, φ3 := (−√

b,−√
b,

√
b

)
.

The next theorem clarifies why ψ has the simplest coordinates among infinite order points
from W (F).

Theorem 2 Consider F as the rational function field k1(s2) (resp. k2(s1)) over the constant
field k1 := Fq(s1) (resp. k2 := Fq(s2)). Then, taking into account the lattice structure with
respect to the height pairing,

T (F) 
 W (F) 
 A∗
1 ⊕ (Z/2)2, moreover, W (F)/W (F)tor = 〈ψ〉.

Proof Since T /k j is obviously a rational surface, W/k j is also so. With the help of [13] we
get that the singular fibers of the Kodaira–Néron model of W/k j have the types I2, I2, I2, I∗0
in Kodaira’s notation. Consequently W

(
k1(s2)

) 
 W
(
k2(s1)

) 
 A∗
1 ⊕ (Z/2)2 according to

[17, Table 8.2]. Further, [13] allows to compute the canonical height of ψ , which turns out
to equal 1/2. This is also the minimal norm of the lattice A∗

1. Thus the theorem is proved. ��
We do not claim that T (F)/T (F)tor = 〈ϕ〉 with respect to φ0 as the neutral element of
T (F), because this point does not correspond to that at infinity on W/F . We chose φ0 just
to describe T (F)[2] in a more canonical way.

For the sake of compactness we put

β := −3
√

b, ∞ := (1 : 0) ∈ P
1, P0 := (0,

√
b) ∈ Eb, O := (0 : 1 : 0) ∈ Eb.

Denote by Numi (resp. Den) the homogenization of numi (resp. den) with respect to a new
variable t0. For y ∈ Fq consider on P

2
(t0:t1:t2) the pencil of the Fq -sextics

Ci,y : Numi = Den·y, Ci,∞ = C∞ : Den = 0

and the Fq -conics Di,y := π(Ci,y), where

π : P
2 → P

2 π(t0 : t1 : t2) := (t30 : t31 : t32 ).

Also, let Li : ti = 0,

R0 := (1 : 0 : 0), R1 := (0 : 1 : 0), R2 := (0 : 0 : 1)
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Indifferentiable hashing to ordinary elliptic... 805

and Qk := π−1(Qk), where

Q0 := (0 : b : 1), Q1 := (b2 : 0 : 1), Q2 := (b : 1 : 0).
Below we formulate a few simple lemmas, which are readily checked. By the way, the

indices i ± 1 will always mean the operations ± modulo 3.

Lemma 3 The order 3 projective Fq -transformations

τ : P
2 ∼−→ P

2 τ(t0 : t1 : t2) := (bt2 : t0 : t1) and τ ′ := π ◦ τ ◦ π−1 : P
2 ∼−→ P

2

give the isomorphisms

τ : Ci,y
∼−→ Ci+1,y, τ ′ : Di,y

∼−→ Di+1,y, τ, τ ′ : Li
∼−→ Li+1

as well as

τ(Ri ) = τ ′(Ri ) = Ri+1, τ ′(Qi ) = Qi+1.

It is worth noting that the curves Di,±√
b (and henceCi,±√

b) are reducible overFq . Indeed,

D0,
√

b : t0(t0 − bt1 − b2t2) = 0, D0,−√
b : (t0 − bt1 + b2t2)(t0 + bt1 − b2t2) = 0. (1)

Lemma 4 There are the following equalities. First,

Di,y ∩ D∞ = Di,0 ∩ D∞ = {Qk}2k=0.

Second,

D0,y ∩ D1,y = {Qk}2k=0 ∪ {(
b2(y − √

b) : b(y − √
b) : 4y

)}
for y �= ±√

b. Third,

Di,y ∩ Li = {Qi }, D0,y ∩ L1 = {
Q1,

(
b2(y − √

b) : 0 : y − β
)}

,

D∞ ∩ Lk = {Qk}, D0,y ∩ L2 = {
Q2,

(
b(y − √

b) : y − β : 0)}
also for y �= ±√

b.

Lemma 5 The set of singular points

Sing(Ci,y) =
⎧⎨
⎩
Qi if y /∈ {±√

b, β,∞},
Qi ∪ {Ri } if y = β,

∪2
k=0Qk if y = ∞.

Moreover, Ri ∈ Ci,β is an ordinary point of multiplicity 3 and all other singularities are
cusps regardless of y.

Theorem 3 For y �= ±√
b the curves Ci,y are absolutely irreducible.

Proof The cases y ∈ {β,∞} are immediately processed byMagma [13]. In compliance with
Lemma 5 for another y the curve Ci,y has only 3 cusps, hence it has no more than 3 different
absolutely irreducible components F0, F1, F2. Consider the transformations

χk : Ci,y
∼−→ Ci,y χ0 := (ωt0 : t1 : t2), χ1 := (t0 : ωt1 : t2), χ2 := (t0 : t1 : ωt2).

Since they are of order 3, for any k, �, m ∈ {0, 1, 2}, � �= m the caseχk : F�
∼−→ Fm , Fm

∼−→ F�

is not possible, otherwise F� = Fm . Also, given � note that χk : F�
∼−→ F� for all k if and only
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806 D. Koshelev

if F� is a Fermat cubic or the line Lm for some m. Consequently either F0, F1 are Fermat
cubics or F0, F1, F2 are conics conjugate by χk for some (or, equivalently, any) k.

It is checked in [13] that the second case does not occur. In the first one, we obtain
the decomposition Di,y = π(F0) ∪ π(F1) into lines. However it is easily shown that the
discriminant of the conic Di,y equals ±4b6(y − √

b)(y + √
b)2, hence it is non-degenerate

for y �= ±√
b. ��

Hereafter we assume that y �= ±√
b. Let σi,y : C ′

i,y → Ci,y be the corresponding
normalization morphisms. As is well known,

#σ−1
i,y(Qi )=#σ−1

i,β(Ri )=#σ−1∞ (Qk)=3, σi,y : C ′
i,y \ σ−1

i,y

(
Sing(Ci,y)

) ∼−→ Ci,y \Sing(Ci,y).

Further, we have the coverings πi,y := π ◦ σi,y : C ′
i,y → Di,y whose the Galois group is

clearly isomorphic to (Z/3)2.

Theorem 4 For y /∈ {β,∞} the geometric genus g(Ci,y)=7. Also, g(Ci,β) = 4, g(C∞)=1.

Proof Denote by ry the number of ramified points Q ∈ Di,y . Since πi,y is a Galois covering,
the well defined ramification index eQ ∈ {3, 9} (see, e.g., [20, Corollary 3.7.2]). It is obvious
that Q ∈ Lk for some k ∈ {0, 1, 2}. Moreover, the case eQ = 9 may occur only for
Q ∈ {Rk}2k=0. From Lemmas 3, 4 it follows that

#(Di,y ∩ Li ) = 1, #(Di,y ∩ Li−1) = #(Di,y ∩ Li+1) =
{
1 if y = ∞,

2 otherwise.

Moreover, Ri−1, Ri+1 /∈ Di,y , but Ri ∈ Di,y if and only if y = β. Therefore ry = 5
for y /∈ {β,∞}, rβ = 4, and r∞ = 3. Besides, according to Lemma 5 for all points
Q ∈ Di,y ∩ (∪2

k=0Lk) we have eQ = 3. Applying the Riemann–Hurwitz formula [18,
Theorem II.5.9] to πi,y , we eventually obtain g(Ci,y) = 3ry − 8. ��

3 New hash function

This paragraph clarifies how the Fq -section ϕ : A
2
(t1,t2)

��� T from Theorem 1 results in a

constant-time map h : F
2
q → Eb(Fq). First of all, for a ∈ F

∗
q denote by

( a
q

)
3 := a(q−1)/3 the

cubic residue symbol, which is trivially a group homomorphism F
∗
q → {ωi }2i=0.

Lemma 6 [7, Remark 2.3] An element a ∈ F
∗
q is a cubic residue if and only if

( a
q

)
3 = 1.

Moreover, in this case

3
√

a =
⎧⎨
⎩
[6, Proposition 1] if q ≡ 1 (mod 9) and q �≡ 1 (mod 27),
a−(q−4)/9 = a(8q−5)/9 if q ≡ 4 (mod 9),
a(q+2)/9 if q ≡ 7 (mod 9).

To be definite, we put ω := ( b
q

)
3 (�= 1 by our assumption). Also, let us consider only

q �≡ 1 (mod 27).
Letting gi := y2i − b for i ∈ {0, 1, 2}, we get T : {

g j = b j g0t3j for j ∈ {1, 2}. It is
obvious that

{( gi
q

)
3

}2
i=0 = {ωi }2i=0 whenever gi , t j ∈ F

∗
q . Besides, denote by n ∈ {0, 1, 2}

the position number of an element t1 ∈ F
∗
q in the set

{
ωi t1

}2
i=0 ordered with respect to some

order in F
∗
q . For example, if q is a prime, then this can be the usual numerical one.
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Indifferentiable hashing to ordinary elliptic... 807

One of crucial components of h is the auxiliary map

h′ : T (Fq ) → Eb(Fq ) h′(y0, y1, y2, t1, t2) :=

⎧⎪⎨
⎪⎩

(
3√g0, y0

)
if g0 = 0 or

( g0
q

)
3 = 1,(

3√g1, y1
)

if
( g0

q
)
3 = ω2,(

3√g2, y2
)

if
( g0

q
)
3 = ω.

Unfortunately, in this form the value of h′ is computedwith the cost of two exponentiations
in Fq : the first for

( g0
q

)
3 and the second for

3
√

gi . Instead, we give an equivalent definition of

h′ (up to the automorphisms [ω]i ).

The case q ≡ 4 (mod 9). Under this assumption(ω

q

)
3

= ω(q−1)/3 = ω(q−4)/3 ·ω = ω3(q−4)/9 ·ω = ω.

Let θ := g(8q−5)/9
0 and c j := 3

√
(b/ω) j ∈ F

∗
q . We obtain

g j = b j g0t3j = (c jθ t j )
3 if θ3 = ω j g0, i.e.,

( g0
q

)
3

= ω3− j .

It is easily shown that

h′ : T (Fq ) → Eb(Fq ) h′(y0, y1, y2, t1, t2) =
⎧⎨
⎩

(
ωnθ, y0

)
if θ3 = g0,(

c1θ t1, y1
)

if θ3 = ωg0,(
c2θ t2, y2

)
if θ3 = ω2g0.

Since

θ3 = g−(q−4)/3
0 = gq−1−(q−4)/3

0 = g(2q+1)/3
0 = g2(q−1)/3

0 ·g0,
this map is well defined everywhere on T (Fq). It is worth noting that θ can be computed
with the cost of one exponentiation in Fq even if g0 is given as a fraction u/v for u ∈ Fq ,
v ∈ F

∗
q . Indeed,

θ = (u/v)(8q−5)/9 = u(8q−5)/9 ·v(q−4)/9 = u3(u8v)(q−4)/9. (2)

The case q ≡ 10 (mod 27) (relevant for BLS12-381). Take any ζ := 9
√
1 ∈ F

∗
q such that

ζ 3 = ω. In this case( ζ

q

)
3

= ζ (q−1)/3 = ω(q−1)/9 = ω(q−10)/9 ·ω = ω3(q−10)/27 ·ω = ω.

Let θ := g(2q+7)/27
0 and c j := 3

√
(b/ζ ) j ∈ F

∗
q . Given i ∈ {0, 1, 2} we obtain

g j = b j g0t3j = (c jθ t j )
3/ωi if θ3 = ωiζ j g0, i.e.,

( g0
q

)
3

= ω3− j .

It is easily shown that

h′ : T (Fq ) → Eb(Fq ) h′(y0, y1, y2, t1, t2) =
⎧⎨
⎩

(
ωnθ/ζ i , y0

)
if ∃i : θ3 = ωi g0,(

c1θ t1/ζ
i , y1

)
if ∃i : θ3 = ωi ζ g0,(

c2θ t2/ζ
i , y2

)
if ∃i : θ3 = ωi ζ 2g0.

Since

θ3 = g(2q+7)/9
0 = g2(q−1)/9

0 ·g0,
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808 D. Koshelev

this map is well defined everywhere on T (Fq). It is worth noting that θ can be computed
with the cost of one exponentiation in Fq even if g0 is given as a fraction u/v for u ∈ Fq ,
v ∈ F

∗
q . Indeed,

θ = (u/v)(2q+7)/27 = u(2q+7)/27 ·vq−1−(2q+7)/27 = u(2q+7)/27 ·v(25q−34)/27 =
= u ·u2(q−10)/27 ·v3v5(5q−23)/27 = uv8(u2v25)(q−10)/27.

(3)

The cases q ≡ 7 (mod 9) and q ≡ 19 (mod 27) are processed in a similar way. To be definite,
throughout the rest of the article we will deal with the modified version of h′. Finally, we
come to the map desired

h : F
2
q → Eb(Fq) h(t1, t2) :=

⎧⎨
⎩

P0 if t1t2 = 0,
O if den(t1, t2) = 0,
(h′ ◦ ϕ)(t1, t2) otherwise.

We emphasize that in the definition of h′ (a fortiori, in ϕ) the cubic residue symbol
does not appear. Further, by returning the value of h in (weighted) projective coordinates,
we entirely avoid inversions in the field. Besides, the constants ω, c j (and ζ , ζ−1 = ζ 8 if
q ≡ 10 (mod 27)) are found once at the precomputation stage. By the way, in the formulas
(2), (3) we take u := num2

0 − b ·den2 and v := den2. Calculating the value θ every time no
matter whether t0t1uv = 0 or not, we eventually obtain

Remark 1 When q �≡ 1 (mod 27), the map h is computed in constant time, namely in that of
one exponentiation in Fq .

4 Indifferentiability from a random oracle

Theorem 5 For any point P ∈ Eb(Fq) \ {±P0,O} we have

|#h−1(P) − (q + 1)| ≤ 7�2√q� + 6. In turn, |#h−1(P0) − 3q| ≤ �2√q�,
|#h−1(−P0) − 2(q + 1)| ≤ 2�2√q�, and |#h−1(O) − (q + 1)| ≤ �2√q�.

Proof All the inequalities follow from the Hasse–Weil–Serre bound [20, Theorem 5.3.1] for
the number of Fq -points on a projective non-singular absolutely irreducible Fq -curve.

First, suppose that h(t1, t2) = ±P0. Then t1t2 = 0 or θ = g0 = 0. In the first case,
h(0, t2) = h(t1, 0) = P0. In the second one, (1 : t1 : t2) ∈ C0,±√

b. These curves decompose
as C0,

√
b = L0 ∪ F0 and C0,−√

b = F1 ∪ F2, where Fk are Fermat cubics (cf. the equations
(1)). The latter are obviously elliptic curves (of j-invariant 0). In accordance with Lemma 4
we have (C0,±√

b ∩ C∞)(Fq) = ∅. Note also that (F1 ∩ F2)(Fq) = (Li ∩ Fk)(Fq) = ∅ for all
i, k ∈ {0, 1, 2}.

In turn, (C∞ ∩ Lk)(Fq) = ∅ according to Lemma 4, hence h−1(O) = C∞(Fq). Besides,
Sing(C∞)(Fq) = ∅ (see Lemma 5). As a result, we obtain the bijection σ∞ : C ′∞(Fq) ∼−→
C∞(Fq). Finally, the geometric genus g(C∞) = 1 by virtue of Theorem 4.

Now take P = (x, y) ∈ Eb(Fq) \ {±P0,O}. The case y = β does not occur, because
β2 − b = 8b is not a cubic residue in Fq . In compliance with Lemmas 3, 4 we see that

(Ci,y ∩ C∞)(Fq) = (Ci,y ∩ Ci+1,y)(Fq) = (Ci,y ∩ Li )(Fq) = ∅, #(Ci,y ∩ Lk)(Fq) ≤ 3

for all i, k ∈ {0, 1, 2}. Besides, the x-coordinates of h(t1, t2) and h(ωt1, t2) (resp. h(t1, ωt2))
are always different if i ∈ {0, 1} (resp. i = 2), because θ(t1, t2) = θ(ωt1, t2) = θ(t1, ωt2).
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Therefore

h−1({P, [ω](P), [ω]2(P)
}) =

2⊔
i=0

h−1([ω]i (P)
) =

2⊔
i=0

Ci,y(Fq) \ (Li−1 ∪ Li+1).

Since #h−1([ω]i (P)
) = #h−1([ω]i+1(P)

)
, we obtain

3·#h−1(P) =
2∑

i=0

#Ci,y(Fq) \ (Li−1 ∪ Li+1).

Consequently,

2∑
i=0

(#Ci,y(Fq) − 6) ≤ 3·#h−1(P) ≤
2∑

i=0

#Ci,y(Fq).

Further, #Ci,y(Fq) = #Ci+1,y(Fq) according to Lemma 3. Thus

3(#Ci,y(Fq) − 6) ≤ 3·#h−1(P) ≤ 3·#Ci,y(Fq)

and hence

|#h−1(P) − #Ci,y(Fq)| ≤ 6.

At the same time, Theorem 4 says that g(Ci,y) = 7. Besides, Sing(Ci,y)(Fq) = ∅ (see
Lemma 5). As a result, σi,y : C ′

i,y(Fq) ∼−→ Ci,y(Fq). We eventually obtain

|#h−1(P) − (q + 1)| ≤ |#h−1(P) − #Ci,y(Fq)| + |#Ci,y(Fq) − (q + 1)| ≤ 6 + 7�2√q�.
The theorem is proved. ��
Corollary 1 The map h : F

2
q → Eb(Fq) is surjective at least for q ≥ 211.

Corollary 2 The distribution on Eb(Fq) defined by h is ε-statistically indistinguishable from
the uniform one [4, Definition 3], where ε := 16q−1/2 + O(q−1).

Proof For any point P ∈ Eb(Fq) put

δ(P) :=
∣∣∣∣#h−1(P)

q2 − 1

#Eb(Fq)

∣∣∣∣ ≤
∣∣∣∣#h−1(P)

q2 − 1

q

∣∣∣∣ +
∣∣∣∣ 1q − 1

#Eb(Fq)

∣∣∣∣
= |#h−1(P) − q|

q2 + |#Eb(Fq) − q|
q ·#Eb(Fq)

≤ |#h−1(P) − q|
q2 + �2√q� + 1

q(q + 1 − �2√q�)
= |#h−1(P) − q|

q2 + 2

q3/2 + O
( 1

q2

)
.

If P /∈ {±P0,O} from Theorem 5 we obtain

δ(P) = 16

q3/2 + O
( 1

q2

)
.

Similarly,

δ(P0) = 2

q
+ O

( 1

q3/2

)
, δ(−P0) = 1

q
+ O

( 1

q3/2

)
, δ(O) = 4

q3/2 + O
( 1

q2

)
.
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Thus∑
P∈Eb(Fq )

δ(P) ≤ (q + �2√q� − 2)
( 16

q3/2 + O
( 1

q2

))
+ 3

q
+ O

( 1

q3/2

)
= 16

q1/2 + O
( 1

q

)
.

The corollary is proved. ��
For t2 ∈ Fq consider the encoding ht2 : Fq → Eb(Fq) of the form ht2(t1) := h(t1, t2). By

definition, h0(t1) = P0 for any t1 ∈ Fq . Nevertheless, by analogy with [12, Theorem 2] we
can prove the next lemma. Its main difference is that ht2(t1) = ht2(ωt1)whenever 3

√
g2 ∈ Fq ,

hence 10 appears instead of 6.

Lemma 7 For t2 ∈ F
∗
q and P ∈ Eb(Fq) we have #h−1

t2 (P) ≤ 10 and hence q/10 ≤ #Im(ht2).

By this lemma [4, Algorithm 1] still works well in the case of h. Indeed, for P ∈ Eb(Fq)

pick uniformly at random t2 ∈ Fq and then find uniformly at random t1 ∈ h−1
t2 (P). For

instance, when P /∈ {±P0,O}, the latter consists in computing a non-zero Fq -root (if any)
of the polynomial Ci,y ∈ Fq [t1] of degree 6 for i chosen randomly. The shape of Ci,y allows
to do this with the help of successive extraction of the square and cubic roots. We eventually
obtain

Remark 2 The map h is samplable [4, Definition 4].

Remarks 1, 2 and Corollary 2 imply that h is admissible in the sense of [4, Definition 4].
Finally, using [4, Theorem 1], we establish

Corollary 3 Consider the composition H := h ◦ h : {0, 1}∗ → Eb(Fq) of a hash function
h : {0, 1}∗ → F

2
q and h. The hash function H is indifferentiable from a random oracle if h is

so.

Appendix (the case 6√b ∈ F
∗
q )

In this case,without lost of generality,we can clearly suppose thatb = 1.By abuse of notation,
let us continue to denote by b an element such that

√
b ∈ Fq , but

3
√

b /∈ Fq . Obviously, it
always exists. Therefore the cubic Fq -twists of the curve E1 (including the trivial one) are

determined by the equations E (i)
1 : y2i = bi x3i + 1 
Fq Eb2i and hence the Calabi–Yau

threefold T (now denoted by T ′) has the affine model

T ′ :
{

y21 − 1 = b(y20 − 1)t31 ,

y22 − 1 = b2(y20 − 1)t32
⊂ A

5
(y0,y1,y2,t1,t2),

where t j := x j/x0.
Looking at T from Lemma 1 and at T ′ as the corresponding elliptic Fq(t1, t2)-curves, we

obtain the isomorphism

χ : T ∼−→ T ′ (y0, y1, y2) �→
(

y0√
b
,

y1√
b
,

y2√
b

)
.

Consequently, ϕ := χ(ϕ) is an Fq(t1, t2)-point on T ′ (for the old ϕ from Theorem 1) and the
map h : F

2
q → E1(Fq) is defined in the same way as in Sect. 3. It is worth emphasizing that all

results of the paper remain true modulo minor modifications. For example, the case y = β =
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−3 occurs in proving the analogue of Theorem 5, that is the estimate of #h−1(ωi2,−3) should
be slightly different from that of #h−1(P) for a general point P ∈ E1(Fq). Nevertheless, the
admissibility property of h is still fulfilled.

The content of this appendix is relevant for the curve BLS12-377 [21] popular in some
blockchains. It is defined over the field Fq such that

�log2(q)	 = 377, q ≡ 7 (mod 9), q − 1 = 246n,

where 2 � n ∈ N. Although Elligator 2 and the Wahby–Boneh encoding are formally appli-
cable to this curve, (in contrast to the new map h) they are not implemented by means of
one exponentiation in Fq , because q ≡ 1 (mod 8). Instead, one can utilize the constant-time
version [9, Appendix I.4] of the Tonelli–Shanks algorithm (cf. [16]) for extracting a square
root in Fq , but it is more costly than an exponentiation.
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