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Abstract
In this paper we obtain further improvement of index bounds for character sums of polyno-
mials over finite fields. We present some examples, which show that our new bound is an
improved bound compared to both the Weil bound and the index bound given by Wan and
Wang. As an application, we give an estimation of the number of all the solutions of some
algebraic curves by using our result.
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1 Introduction

Let p be a prime number and Fq be a finite field, where q = pm for some positive integer m.
Let ψ : Fq → C

∗ be a nontrivial additive character and f (x) ∈ Fq [x]. The following sums
∑

x∈Fq
ψ( f (x))

are referred to as the Weil sums [6]. Throughout this paper, we always view a polynomial
f (x) ∈ Fq [x] as a mapping over Fq . In this sense the degree of a polynomial in Fq [x] should
be controlled by q − 1 when we consider Weil sums.
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Given a polynomial f (x) ∈ Fq [x] of positive degree n with gcd(n, q) = 1, we have
∣∣∣∣
∑

x∈Fq
ψ( f (x))

∣∣∣∣ ≤ (n − 1)
√
q. (1.1)

The upper bound in (1.1) is well known as theWeil bound.
The Weil bound for character sums has many applications in mathematics, theoretical

computer science, and information theory etc. The Weil bound is trivial when the degree of
the polynomial is bigger than

√
q. Some progress on improvement to the Weil bound has

been made as follows.

(1) Using Deligne’s bound for exponential sums in several variables, Gillot et al. [3,4]
provided a new bound for | ∑x∈Fqm ψ( f (x))| such that for any b ∈ F

∗
qm the q-degree of

f (x) = bxd + g(x) ∈ Fqm [x] only depends on the leading term bxd ; the q-degree of a
nonzero polynomial f over Fqm is defined by

degq( f ) = max{d0 + d1 + · · · + dm−1 : d ∈ supp( f )},
where d = d0 + d1q + · · · + dm−1qm−1 denotes the q-ary expansion of d .

(2) Wan andWang [7] obtained an index bound for character sums over finite fields; they used
the the concept of index of a polynomial over a finite field, which was first introduced in
the research of permutation polynomials [1]. This bound improved the Weil bound for
high degree polynomials with small indices as well as polynomials with large indices
that are generated by cyclotomic mapping of small indices.

(3) Recently, there is an improvement on the Hasse-Weil bound in the characteristic two case
by Cramer and Xing [2]. They used the algebraic geometry and the algebraic number
theory. As an application, they also improved the Weil bound for character sums.

1.1 Main result and comparison with previous results

The concept of the index of a polynomial over a finite field was first introduced in [1].
A polynomial f (x) ∈ Fq [x] of degree n ≤ q − 1 can be written as the following form:

f (x) = a(xn + an−i1x
n−i1 + · · · + an−ik x

n−ik ) + b,

where a, an−i j �= 0, j = 1, . . . , k. Let r be the lowest degree of x in f (x) − b. The index l
of the polynomial f (x) is defined by

l := q − 1

gcd(n − r , n − r − i1, . . . , n − r − ik−1, q − 1)
.

In fact, any non-constant polynomial f (x) ∈ Fq [x] of degree n ≤ q − 1 can be written
uniquely as f (x) = a(xr h(x (q−1)/l)) + b.

By using the index of polynomials, Wan andWang [7] found a new bound, which is called
an index bound, for character sums of polynomials over finite fields as follows:

Theorem 1.1 [7, Theorem 1.1] Let f (x) = xr h(x (q−1)/l) + b ∈ Fq [x] be any polynomial
with index l. Let ξ be a primitive l-th root of unity inFq and n0 = �{0 ≤ i ≤ l−1 | h(ξ i ) = 0}.
Let ψ : Fq → C

∗ be a nontrivial additive character. Then
∣∣∣∣
∑

x∈Fq
ψ( f (x)) − q

l
n0

∣∣∣∣ ≤ (l − n0) gcd

(
r ,

q − 1

l

)√
q. (1.2)
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This theorem is sensitive to the form of f (x). Replacing f (x) with f ∗(x) = f (x)+d(x)
such that

∑
x∈Fq ψ(d(x)) = 0, and in particular, for d(x) of the form y p − y, leaves the left

hand side unchanged but may lower the upper bound in the right hand side.
As mentioned before, we can view a polynomial as a mapping over Fq when we just

consider the Weil sums. Then it is easy to extend the Frobenius mapping π over Fq to Fq [x]
as follows:

π : Fq [x] → Fq [x], π(a) = a p, π(x) = x p.

There is an equivalence relation between polynomials in Fq [x]. Given two polyno-
mials f (x) = ∑

i ai x
i and g(x) in Fq [x], we write f ∼ g if there exists a vector

v = (v0, v1, . . . , vn) ∈ Z
n+1
m such that

πv( f ) = πv0(a0) + πv1(a1x) + · · · + πvn (anx
n) = g.

The equivalence class of f (x) ∈ Fq [x] is denoted by [ f ]. For each polynomial g(x) in the
equivalence class [ f ], we use lg for the index of g(x) and ng for the degree of g(x). For each
equivalence class [ f ], let l∗ be defined by

l∗ = min{lg : g ∈ [ f ]}.
Then there exists a polynomial f ∗(x) ∈ [ f ] such that f ∗(x) = xr

∗
h∗(x (q−1)/l∗)+b ∈ Fq [x]

and the index of f ∗(x) is exactly l∗. We call f ∗(x) the equivalent polynomial of f (x) with
the smallest index and h∗(x) the associated polynomial of f ∗(x).

The following theorem is our main result, which provides a new formulation of index
bounds in Theorem 1.1 for character sums of polynomials over finite fields.

Theorem 1.2 Let f (x) ∈ Fq [x] be a polynomial of positive degree n with gcd(n, q) = 1.
Let f ∗(x) be the equivalent polynomial of f (x) with the smallest index l∗ and h∗(x) the
associated polynomial of f ∗(x). Let ξ be a primitive l∗-th root of unity in Fq and n0 = �{0 ≤
i ≤ l∗ − 1 | h∗(ξ i ) = 0}. Let ψ : Fq → C

∗ be a nontrivial additive character. Then
∣∣∣∣
∑

x∈Fq
ψ( f (x)) − q

l∗
n0

∣∣∣∣ ≤ (l∗ − n0) gcd

(
r∗, q − 1

l∗

)√
q. (1.3)

The following examples show that the upper bound in (1.3) is indeed an improved bound
compared to both the Weil bound in (1.1) and the index bound in Theorem 1.1.

Example 1.3 Let f (x) = x25 + ax4 ∈ F27[x], where a ∈ F
∗
27. Obviously, the Weil bound is

trivial because of the high degree. Since the index of f is 26, the index bound is also trivial.

However, by Theorem 1.2, l∗ = 26
gcd(25−12,26) = 2. If a3 = ±1, then

∣∣∣∣
∑

x∈F27 ψ(x25 +

ax4) − 27
2

∣∣∣∣ ≤ √
27; otherwise, we have

∣∣∣∣
∑

x∈F27 ψ(x25 + ax4)

∣∣∣∣ ≤ 2
√
27.

Example 1.4 Let f (x) = x19+ax2 ∈ F27[x], where a ∈ F
∗
27. Obviously, theWeil bound and

the index bound are both trivial. By Theorem 1.2, l∗ = 2. If a3 = ±1, then

∣∣∣∣
∑

x∈F27 ψ(x19+

ax2) − 27
2

∣∣∣∣ ≤ √
27; otherwise, we have

∣∣∣∣
∑

x∈F27 ψ(x19 + ax2)

∣∣∣∣ ≤ 2
√
27.
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Similarly, we define

n∗ = min{ng : g ∈ [ f ]}. (1.4)

Then using the Weil bound, the same arguments derives
∣∣∣∣
∑

x∈Fq
ψ( f (x))

∣∣∣∣ ≤ (n∗ − 1)
√
q. (1.5)

The following examples show that the upper bound in (1.5) is also an improved bound
when it is compared to the Weil bound in (1.1), the index bound in Theorem 1.1, and the
upper bound in (1.3).

Example 1.5 Let f (x) = x19 + ax4 ∈ F27[x], where a ∈ F
∗
27. Obviously, the Weil bound,

the index bound, and the upper bound in (1.3) are all trivial. However, by (1.4) and (1.5), we

have n∗ = 5 and

∣∣∣∣
∑

x∈F27 ψ(x19 + ax4)

∣∣∣∣ ≤ 4
√
27.

Example 1.6 Let f (x) = x10 + ax5 ∈ F27[x], where a ∈ F
∗
27. Obviously, the Weil bound,

the index bound, and the upper bound in (1.3) are all trivial. However, by (1.4) and (1.5), we

have n∗ = 5 and

∣∣∣∣
∑

x∈F27 ψ(x10 + ax5)

∣∣∣∣ ≤ 4
√
27.

The p-cyclotomic coset modulo q − 1 containing i is defined by

Ci = {i p j (mod q − 1) : 0 ≤ j < li },
where li is the smallest positive integer such that pli i ≡ i (mod q−1), and is the cardinality
of Ci . The smallest integer in Ci is called the coset leader of Ci . By [5, Lemma 6], we
also find an infinite family of polynomials, which shows that the upper bound in (1.5) is an
improved bound.

Proposition 1.7 Let q = pm, s be an integer with p < s <
√
q, and gcd(s, p) = 1. Let

f (x) = xsp
m−1 + axr ∈ Fq [x], where a ∈ F

∗
q and r < s. Then gcd(spm−1 − q + 1, q) = 1,

n∗ = s, and

∣∣∣∣
∑

x∈Fq ψ( f (x))

∣∣∣∣ ≤ (s − 1)
√
q.

The rest of this paper is organized as follows. In Sect. 2, we prove Theorem 1.2. Our main
idea of improving the index bound in [7] is to replace the polynomial over finite fields by
using the equivalent polynomial with the smallest index. Those equivalent polynomials are
obtained by applying Frobenius automorphisms on individual monomials. In Sect. 3, as an
application, we count the number of solutions of some algebraic curves by using our main
result.

2 Proof of Theorem 1.2 and corollaries

Let q = pm as before and Fp be a subfield of Fq . Let π be the Frobenius automorphism of
Fq over Fp , which is defined by π : Fq → Fq , π(a) = a p . We note that π(a) = a if and
only if a ∈ Fp .

Now, we are ready to give the proof of Theorem 1.2.
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Proof of Theorem 1.2 We write f (x) = a0 + a1x + · · · + anxn and ψ = ψ1(c) for some
nonzero c ∈ Fq , where ψ1 is the canonical additive character of Fq . Let Trq/p be the trace
function from Fq to Fp . For each v = (v0, v1, . . . , vn) ∈ Z

n+1
m ,

∑

x∈Fq
ψ1(π

v(c f (x)))

=
∑

x∈Fq
ψ1(π

v0(ca0) + πv1(ca1x) + · · · + πvn (canx
n))

=
∑

x∈Fq
ψ1((ca0)

pv0 + (ca1x)
pv1 + · · · + (canx

n)p
vn

)

=
∑

x∈Fq
ζ
Trq/p((ca0)p

v0 +(ca1x)p
v1 +···+(can xn)p

vn
)

p

=
∑

x∈Fq
ζ
Trq/p(ca0+ca1x+···+can xn)
p

=
∑

x∈Fq
ψ( f (x)).

Note that f (x) and c f (x) have the same indices. Taking a vector v ∈ Z
n+1
m such that

f ∗(x) = πv(c f (x)), the result follows from Theorem 1.1. 
�
Using the concept of the p-cyclotomic cosets, for binomial polynomials, we obtain the

following corollary,which is a simple version ofTheorem1.2. This also improves and corrects
an error in Corollary 1.2 in [7].

Corollary 2.1 Let f (x) = xn + axr ∈ Fq [x], where a ∈ F
∗
q and 1 ≤ r < n ≤ q − 1. Let

Cr be the p-cyclotomic coset modulo q − 1 containing r. Suppose that r∗ = rpk for some
integer k with 0 ≤ k ≤ m − 1 such that

l∗ = q − 1

gcd(n − r∗, q − 1)
= min

{
q − 1

gcd(n − j, q − 1)
: j ∈ Cr

}
.

Let t = gcd(n, r , q −1). Letψ : Fq → C
∗ be a nontrivial additive character. If xn−r∗ +a pk

has a solution in F
∗
q , then

∣∣∣∣
∑

x∈Fq
ψ(xn + axr ) − q

l∗

∣∣∣∣ ≤ (l∗ − 1)t
√
q; (2.1)

otherwise, we have
∣∣∣∣
∑

x∈Fq
ψ(xn + axr )

∣∣∣∣ ≤ l∗t√q. (2.2)

Proof By Theorem 1.2, we have

l∗ = min

{
q − 1

gcd(i − j, q − 1)
: i ∈ Cn, j ∈ Cr

}
.

Suppose that i = npα and j = rpβ such that l∗ = q−1
gcd(i− j,q−1) .Then i− j = pα(n−rpβ−α);

hence, using Theorem 1.2, the result follows immediately since gcd(p, q − 1) = 1. In
particular, n0 = 1 if there exists a solution for xn−r∗ + a pk . 
�
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In the following corollary, we present some special classes of polynomials for illustration
of our main result.

Corollary 2.2 Let Q be the least prime factor of q − 1, n = q−1
Q , and α be a positive integer.

Let f (x) = xn+pα + ax ∈ Fq [x], where a ∈ F
∗
q and 1 < n + pα ≤ q − 1. If xn + a pα

has
a solution in F

∗
q , then

∣∣∣∣
∑

x∈Fq
ψ(xn+pα + ax) − q

Q

∣∣∣∣ ≤ (Q − 1)
√
q;

otherwise, we have
∣∣∣∣
∑

x∈Fq
ψ(xn+pα + ax)

∣∣∣∣ ≤ Q
√
q.

Proof For each integer i with 0 ≤ i ≤ m − 1, gcd(n + pα − pi , q − 1) is a divisor of q − 1.
Since Q is the least prime factor of q − 1, gcd(n, q − 1) is the largest integer in the set{
gcd(n + pα − pi , q − 1) : i = 0, 1, . . . ,m − 1

}
. Hence, we have l∗ = Q; thus, the result

follows from Corollary 2.1. 
�
Let n = pα1

1 pα2
2 · · · pαh

h be the prime factorization, where p1, . . . , ph are distinct primes
and αi are positive integers for 1 ≤ i ≤ h. We denote rad(n) = p1 p2 · · · ph and vpi (n) = αi

for 1 ≤ i ≤ h, where vT denotes the T -adic valuation.

Corollary 2.3 Let p be an odd prime number and n be an odd positive integer such that
gcd(n, p − 1) = 1 and 2rad(n) = rad(p + 1). Let f (x) = xn+p + ax ∈ Fp2 [x], where
a ∈ F

∗
p2

and 1 < n+ p ≤ p2 − 1. Let s = p2−1
gcd(n,p+1) . If x

n + a p has a solution in Fp2 , then

∣∣∣∣
∑

x∈Fp2

ψ(xn+p + ax) − p2

s

∣∣∣∣ ≤ (s − 1)p;

otherwise, we have
∣∣∣∣

∑

x∈Fp2

ψ(xn+p + ax)

∣∣∣∣ ≤ sp.

Proof We note that gcd(n + p − 1, p2 − 1) = 1 and gcd(n, p2 − 1) = gcd(n, p + 1) > 1.
Hence, we have l∗ = s < l = p2 − 1. The result thus follows immediately from Corollary
2.1. 
�
Example 2.4 We present more polynomials xn + axr ∈ Fpm [x] where a ∈ F

∗
pm to illustrate

our main result for small primes p ≤ 5 as listed in Tables 1, 2 and 3. In the tables, ∗ indicates
that the bound is trivial.

3 An application

In this section, as an application of Theorem 1.2, we give an estimation of the number of
solutions for some algebraic curves.
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Table 1 p = 2 m n r Weil bound Index bound Our bound

4 13 4 ∗ ∗ 12

6 41 5 ∗ 56 24

6 43 25 ∗ 56 24

6 53 25 ∗ ∗ 24

8 57 12 ∗ ∗ 80

8 63 3 ∗ ∗ 80

Table 2 p = 3 m n r Weil bound Index bound Our bound

2 7 1 ∗ ∗ 6

3 19 2 ∗ ∗ 6
√
3

4 44 28 ∗ 45 18

4 46 18 ∗ ∗ 36

5 154 11 ∗ ∗ 18
√
3

6 107 9 ∗ ∗ 189

6 122 18 ∗ 378 108

Table 3 p = 5 m n r Weil bound Index bound Our bound

2 14 10 ∗ ∗ 20

2 19 11 ∗ 15 10

3 33 10 ∗ ∗ 20
√
5

3 77 3 ∗ ∗ 10
√
5

4 42 10 ∗ ∗ 150

4 314 50 ∗ ∗ 100

Let f (x) ∈ Fqm [x] be a polynomial and N f ,qm be the number of solutions (x, y) ∈ F
2
qm

of an Artin–Schreier equation yq − y = f (x). Then

N f ,qm =
∑

ψm

∑

x∈Fqm
ψm( f (x)),

where the outer sum runs over all additive characters ψ of Fq and ψm(x) = ψ(Trqm/q(x)).
If f (x) has degree n and gcd(n, q) = 1, then we have the well known Weil bound:

∣∣∣∣N f ,qm − qm
∣∣∣∣ ≤ (q − 1)(n − 1)

√
qm . (3.1)

By Theorem 1.2, we have the following corollary.

Corollary 3.1 Let f (x) ∈ Fqm [x] be a polynomial of degree n with gcd(n, q) = 1. Let N f ,qm

be the number of solutions (x, y) ∈ F
2
qm of an Artin–Schreier equation yq − y = f (x). Then

we get
∣∣∣∣N f ,qm − qm − (q − 1)qmn0

l∗

∣∣∣∣ ≤ (q − 1)(l∗ − n0) gcd

(
r∗, q

m − 1

l∗

)√
qm .
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Example 3.2 Let f (x) = x13 + ax ∈ F162 [x] with a ∈ F
∗
162

. Let N f ,162 be the number

of solutions (x, y) ∈ F
2
162

of an Artin–Schreier equation y16 − y = f (x). Note that the 2-
cyclotomic cosetC13 modulo 255 is given byC13 = {13, 26, 52, 67, 104, 134}. By Corollary
3.1, l∗ = 255

gcd(52−1,255) = 5. Then we get
∣∣∣∣N f ,162 − 162

∣∣∣∣ ≤ 15 · 5 · 16,

except the case when x51 + a has a solution in F162 , in which case, we have
∣∣∣∣N f ,162 − 162 − 15 · 16

5

∣∣∣∣ ≤ 15 · 4 · 16.

By Magma program, N f ,162 = 1024 if a5 = 1 and N f ,162 = 256 otherwise. Despite that
the above bounds are not close to the reality for a5 �= 1, our bounds are still an improvement
of (3.1) and the above second bound is pretty good when a5 = 1.

The following corollary is obtained from Corollary 2.2.

Corollary 3.3 Let Q be the least prime factor of qm − 1 and n = qm−1
Q . Let α and r be two

positive integers, and f (x) = xn+pα + ax ∈ Fqm [x], where a ∈ F
∗
qm and 1 < n + pα ≤

qm − 1. Let N f ,qm be the number of solutions (x, y) ∈ F
2
qm of an Artin–Schreier equation

yq − y = f (x). If xn + a pα
has a solution in Fqm , then we get

∣∣∣∣N f ,qm − qm − (q − 1)qm

Q

∣∣∣∣ ≤ (q − 1)(Q − 1)
√
qm;

otherwise, we have
∣∣∣∣N f ,qm − qm

∣∣∣∣ ≤ (q − 1)Q
√
qm .

The following corollary is obtained from Proposition 1.7.

Corollary 3.4 Let s be an integer with p < s <
√
qm and gcd(s, p) = 1. Let f (x) =

xsq
m/p + axr ∈ Fqm [x], where a ∈ F

∗
qm and r < s. Let N f ,qm be the number of solutions

(x, y) ∈ F
2
qm of an Artin–Schreier equation yq − y = f (x). Then

∣∣∣∣N f ,qm − qm
∣∣∣∣ ≤ (q − 1)(s − 1)

√
qm .
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