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Abstract
Very recently, a class of cryptographically strong permutations with boomerang uniformity
4 and the best known nonlinearity is constructed from the closed butterfly structure in Li
et al. (Des Codes Cryptogr 89(4):737–761, 2021). In this note, we provide two additional
results concerning these permutations. We first represent the conditions of these permutation
obtained in Li et al. (Des Codes Cryptogr 89(4):737–761, 2021) in a much simpler form,
and then show that they are linear equivalent to Gold functions. We also prove a criterion for
solving a new type of equations over finite fields, which is useful and may be of independent
interest.
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1 Introduction

1.1 Background

As a generalization of Dillon’s APN permutation in dimension six, butterfly structure was
initially proposed by Perrin et al. [14] to generate 2m-bit mappings by concatenating two
bivariate functions over F2m . Canteaut et al. [3] further studied this structure and generalized
it as below. Let R(x, y) be a bivariate polynomial on F2m such that Ry : x �→ R(x, y) is a
permutation of F2m for any y ∈ F2m . The closed butterfly is the function VR : F2m ×F2m →
F2m × F2m defined by

VR(x, y) = (R(x, y), R(y, x)) , (1.1)

and the open butterfly is the function HR : F2m × F2m → F2m × F2m defined by

HR(x, y) =
(
R

(
y, R−1

y (x)
)

, R−1
y (x)

)
,

where R−1
y is the compositional inverse of Ry . It is known that HR is always an involution

(and hence a permutation) and the two functions HR and VR are CCZ-equivalent, so they
share the same differential uniformity, nonlinearity and Walsh spectrum [3].

Let m, k be positive integers such that m is odd and gcd(k,m) = 1. Extending previous
work [3,5], Li et al. [11] considered a general bivariate polynomial R(x, y) of the form

R(x, y) = (x + αy)2
k+1 + β y2

k+1

for any α, β ∈ F
∗
2m := F2m\{0} and proved that the corresponding butterflies HR and VR

are differentially 4-uniform and have the best known nonlinearity when β �= (α + 1)2
k+1.

Under this condition, however, the closed butterfly VR may not be a permutation.

Since gcd(2k + 1, 2m − 1) = 1, any β ∈ F
∗
2m can be written as β = β2k+1

1 for some
β1 ∈ F

∗
2m . So equivalently, the general bivariate polynomial R(x, y) may be written as

R(x, y) = (x + αy)2
k+1 + (β y)2

k+1 , α, β ∈ F
∗
2m . (1.2)

In an interesting recent paper [8], the authors not only provided conditions under which
the closed butterfly VR is a permutation, but also proved that under these conditions the
boomerang uniformity of VR is 4, a new and important cryptographic property which was
discovered to be useful in analyzing the boomerang attack. Interested readers may refer to
[2,4,17] for more details. These functions VR may be considered as the sixth known family of
permutations with boomerang uniformity 4 over the field F22m in the literature. Observe that
for R(x, y) given in (1.2), if k is even, letting k′ := m− k, then k′ is odd and gcd(k′,m) = 1.
It is easy to see that for any x, y, α, β ∈ F2m we have

R(x, y)2
k′ = (x + αy)2

k′+1 + (β y)2
k′+1 .

So the case of k being even is equivalent to that of k′ which is odd now. For this reason, using
the new definition of R(x, y) in (1.2), we may state the main result of [8] as follows:

Theorem 1 [8, Theorem 1] Let m, k be odd with gcd(m, k) = 1 and q = 2m. The closed
butterfly function VR(x, y) given by (1.1)where the function R(x, y) is given in (1.2) permutes
F
2
q and has boomerang uniformity 4 if (α, β) is taken from the following set

� =
{
(α, β) ∈ F

∗
q × F

∗
q : ϕ2k

2 = ϕ1ϕ
2k−1
3 and ϕ3 �= 0

}
, (1.3)
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Cryptographically strong permutations from the butterfly structure 267

where ϕ1, ϕ2, ϕ3 are given by⎧⎪⎨
⎪⎩

ϕ1 = (α + 1)2
k+1+2 + α2k+2 + α2k + αβ2k+1 + β2k+1+2,

ϕ2 = (α + 1)2
k+1+2 + α2k+1+1 + α + α2kβ2k+1 + β2k+1+2,

ϕ3 = (α + 1)2
k+1+2 + β2k+1+2.

(1.4)

Two natural questions arise from Theorem 1. First, the set � given in (1.3) looks quite
complicated. Is there a simpler way to represent �? Second, two functions F and F ′ over
F2n are called linear (resp. affine) equivalent if F = A1 ◦ F ′ ◦ A2 holds for some linear (resp.
affine) permutations A1 and A2 over F2n . It was observed in [8] by numerical computation
that whenm = 3, 5 and (α, β) ∈ �, the closed butterfly function VR(x, y) is affine equivalent
to the Gold function. Is this true in general? In this note, we answer these two questions.

1.2 Statement of themain results

Theorem 2 Let m, k be odd integers with gcd(m, k) = 1.

(1) (α, β) ∈ � if and only if α, β ∈ F
∗
2m satisfy α2 + β2 + αβ + 1 = 0.

(2) If (α, β) ∈ �, then the closed butterfly function VR(x, y) over F2
2m given in (1.1) is linear

equivalent to the Gold function x2
k−m+1 over F22m .

Remark 1 According to [8, Conjecture 19], the closed butterfly VR is a permutation with
boomerang uniformity 4 if and only if (α, β) ∈ �. Hence if this conjecture is true, then The-
orem 2 shows that all closed butterfly functions VR which are permutations with boomerang
uniformity 4 are linear equivalent to the Gold function. We also remark that [8, Conjecture
19] is a consequence of a much more general conjecture concerning permutation properties
of general quadrinomials of the form (3.2) in [10, Sect. VI]. This conjecture has been proved
to be true for k = 1 in [7] but remains open for k > 1.

Remark 2 It seems fitting to summarize here what we have known about the open butterfly
function HR . The setting is the same as in Theorem 2.

(1) HR is always an involution (and hence a permutation) and the two functions HR and
VR are CCZ-equivalent, so they share the same differential uniformity, nonlinearity and
Walsh spectrum. The open butterfly function HR is particularly interesting. Interested
readers may refer to [3,5,11] for some of their cryptographic properties.

(2) Theorem2 shows that HR isCCZ-equivalent to theGold function x2
k−m+1 when (α, β) ∈

�. Experimental results show however that for m = 3, HR is not EA-equivalent to
general Gold functions when (α, β) ∈ �.

(3) When (α, β) /∈ �, experimental results show that for m = 3, 5, HR (and also VR) is
CCZ-inequivalent to general Gold functions.

(4) As for the boomerang uniformity of HR , experimental results show that for m = 3,
the boomerang uniformity of HR is at least 12 for any (α, β) ∈ F

2
23
, except when HR

becomes APN, which are CCZ-equivalent to the only known APN permutation over
F26 . It was known that HR is not APN whenever m > 3.

Next, in view of [8] and [10], there is no need to publish the arxiv paper [9], which proved
essentially the same result as [8]. Instead we take this opportunity to present from [9] a
criterion for solving a new type of equations over finite fields. We believe this criterion is
useful and is of independent interest. In fact it played an essential role in the proofs of [10],
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268 N. Li et al.

which substantially extends the work [8,15,16]. A special case of this criterion for k = 1 has
appeared in [15]. Similar criteria were well-known in the literature for equations over finite
fields such as x2 + ax + b = 0 [12], x2

k+1 + x + a = 0 [6] and xq+1 + ax + b = 0 [1].

Theorem 3 Let m, k be odd integers with gcd(k,m) = 1 and n = 2m. For any μ, ν ∈ F2n ,
define

Lμ,ν(x) = x2
k + μx + (μ + 1)x + ν.

Here x = x2
m
for any x ∈ F2n . Then the equation Lμ,ν(x) = 0 has either 0, 2 or 4 solutions

in F2n . More precisely, let ξ,� ∈ F2m and λ ∈ F2n be defined by the equations

ξ2
k−1 = 1 + μ + μ, � = ν + ν

ξ2
k , λ2

k + λ = μξ. (1.5)

Then

(1) Lμ,ν(x) = 0 has two solutions in F2n if and only if one of the following conditions is
satisfied:

(i) 1 + μ + μ = 0 and
∑m−1

i=0 (μ2k (ν + ν) + ν2
k
)2

ki = ν + ν;
(ii) 1 + μ + μ �= 0, Trm1 (�) = 0 and λ + λ = ξ + 1.

(2) Lμ,ν(x) = 0 has four solutions in F2n if and only if

1 + μ + μ �= 0,Trm1 (�) = 0, λ + λ = ξ, and Trn1(
λ2

k
ν

ξ2
k ) = 0.

(3) If ν = 0, 1 + μ + μ �= 0 and λ + λ = ξ , then Lμ,ν(x) = 0 has four solutions in F2n ,
and these four solutions are 0, 1, λ, λ + 1.

We remark that Theorem 3 can be used to study the number of solutions of equations
of the form c1x2

k+1 + c2 x̄2
k+1 + c3x2

k
x2

m + c4xx2
m+k

over F22m , where m, k are odd,
gcd(m, k) = 1 and c1, c2, c3, c4 ∈ F22m .

This note is organized as follows: we prove (1) and (2) of Theorem 2 in Sects. 2 and 3
respectively; we prove Theorem 3 in Sect. 4. Finally we conclude this note in Sect. 5.

2 Proof of part (1) of Theorem 2

To simplify our computation a little bit, we use

α �→ α + 1, σ := 2k .

Under this new α and symbol σ , we can rewrite ϕ1, ϕ2 and ϕ3 as
⎧⎨
⎩

ϕ1 = α2(1 + α + α2)σ + βσ+1
(
βσ+1 + α + 1

)
,

ϕ2 = α2σ (1 + α + α2) + βσ+1
(
βσ+1 + ασ + 1

)
,

ϕ3 = (
ασ+1 + βσ+1

)2
.

(2.1)

Now assume

α, β ∈ F2m , α �= 1, β �= 0. (2.2)
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Cryptographically strong permutations from the butterfly structure 269

To prove (1) of Theorem 2, it is equivalent to proving

ϕ3 �= 0, ϕσ
2 ϕ3 + ϕ1ϕ

σ
3 = 0 if and only if α2 + β2 + (1 + α)β = 0. (2.3)

It is easy to see that ϕ3 �= 0 if and only if α �= β. Denote

F := ϕσ
2 ϕ3 + ϕ1ϕ

σ
3 .

Plugging the values of ϕ1, ϕ2, ϕ3 from (2.1) into F , expanding and then collecting common
terms, we can obtain

F = α2(1 + α)σ β2σ 2+2σ + (1 + α)β2σ 2+3σ+1 + (1 + α)σ
2
βσ 2+3σ+2 +

α2σ+2(1 + α)σ
2
βσ 2+σ + α2σ 2

(1 + α)σ β2σ+2 + α2σ 2+2σ (1 + α)βσ+1.

Denote

Y = α2 + β2 + (α + 1)β. (2.4)

The right hand side of F above can be further simplified, and we have

F = βσ

(
ϕ3Y

σ 2 +
(
αβσ 2 + βασ 2

)2
Y σ + ϕσ

3 Y

)
. (2.5)

Now suppose Y = 0. It is clear that F = 0. Moreover, if α = β, then from Y = 0 we have
α = 1 or β = 0, contradicting (2.2). So α �= β and hence ϕ3 �= 0 as α, β satisfy (2.2).

On the other hand, suppose F = 0 and α �= β. Since β �= 0, we have

ϕ3Y
σ 2 +

(
αβσ 2 + βασ 2

)2
Y σ + ϕσ

3 Y = 0. (2.6)

To study (2.6), we quote a result of Bluher:

Lemma 1 [1, Theorem 5.4] Let gcd(m, k) = 1, b ∈ F2m and f (x) = x2
k+1 + bx + b.

Suppose γ ∈ F2m is a root of f (x). Then γ is the only root of f (x) in F2m if and only if
Trm1 (ξ) = 1. Here ξ is the unique element in F2m satisfying the relation ξ2

k−1 = 1
γ+1 .

Then we can prove

Lemma 2 Let m, k be odd integers with gcd(m, k) = 1, σ = 2k , α, β ∈ F2m and α �= β.

Assume that ϕ3 = (
ασ+1 + βσ+1

)2
. Then the equation

ϕ3Y
σ 2 +

(
αβσ 2 + βασ 2

)2
Y σ + ϕσ

3 Y = 0 (2.7)

has exactly two solutions Y = 0 and Y = α2 + β2 in F2m .

Proof It can be readily verified that both 0 and α2+β2 are solutions of (2.7). Thus, it suffices
to show that

ϕ3Y
σ 2−1 +

(
αβσ 2 + βασ 2

)2
Y σ−1 + ϕσ

3 = 0 (2.8)

has the unique solution Y = α2 + β2 in F2m . Let y = Y σ−1, then (2.8) becomes

ϕ3y
σ+1 +

(
αβσ 2 + βασ 2

)2
y + ϕσ

3 = 0,

which can be further written as

yσ+1 + ay + b = 0
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270 N. Li et al.

due to the fact that ϕ3 �= 0, where

a = (αβσ 2 + βασ 2
)2

ϕ3
, b = ϕσ−1

3 .

Note that a, b �= 0. Substituting y with b
a x leads to

xσ+1 + b
′
x + b

′ = 0 (2.9)

where b
′ = aσ+1/bσ .

To complete the proof, we use Lemma 1. Since gcd(σ − 1, 2m − 1) = 1, it suffices to
prove that (2.9) has the unique solution γ = a

b (α2 + β2)σ−1.
With a straightforward calculation, we have

ξσ−1 = 1

γ + 1
= ϕσ

3 (α + β)2

(αβσ 2 + βασ 2
)2(α + β)2σ + ϕσ

3 (α + β)2
= ϕσ−1

3

(α + β)2(σ
2−1)

,

which gives

ξ = ϕ3

(α + β)2(σ+1)
.

Further, we can obtain

Trm1 (ξ) = Trm1

(
ασ+1 + βσ+1

(α + β)σ+1

)
= 1 + Trm1

(
αβσ + βασ

(α + β)σ+1

)
.

Let ε = α + β. Then we have

Trm1

(
αβσ + βασ

(α + β)σ+1

)
= Trm1

(
α(α + ε)σ + (α + ε)ασ

εσ+1

)
= Trm1

(
α

ε
+ ασ

εσ

)
= 0.

This shows that Trm1 (ξ) = 1 and hence according to Lemma 1, the Eq. (2.9) has the unique
solution γ ∈ F2m . This completes the proof of Lemma 2. 	


Now we resume our proof of (1) in Theorem 2. From (2.6) and Lemma 2, we find that
either Y = 0 or Y = α2 + β2. On the other hand, since Y = α2 + β2 + (α + 1)β (see (2.4)),
α �= 1 and β �= 0, it is clear that Y �= α2 + β2. Thus we conclude that Y = 0. This proves
(2.3) and hence concludes the proof of part (1) of Theorem 2.

3 Proof of part (2) of Theorem 2

We first derive a univariate polynomial expression of VR (see also [8,9]). Let n = 2m and ω

be a root of x2 + x + 1 = 0 in F2n . Since m is odd, {1, ω} is a basis of F2n over F2m and F2
2m

is isomorphic to F2n under the map

z = (x, y) �→ x + ωy, ∀x, y ∈ F2m .

Hence every element z ∈ F2n can be uniquely represented as z = x + ωy with x, y ∈ F2m .
This together with z = x + ωy, where z := z2

m
, one obtains

x = ωz + ωz, y = z + z.

Substituting z with ω2z gives

VR(x, y) = VR(z) = ω2
(
e1z

2k+1 + e2z
2k+1 + e3z

2k z + e4zz
2k

)
,
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where

e1 = 1 + α + α2k+1 + β2k+1, e2 = 1 + α2k + α2k+1 + β2k+1,

e3 = 1 + α + α2k , e4 = α + α2k + α2k+1 + β2k+1.

Thus, the closed butterfly VR defined by (1.1) is linear equivalent to the polynomial

f (x) = e1x
2k+1 + e2x

2k+1 + e3x
2k x + e4xx

2k . (3.1)

Since (α, β) ∈ �, by (1) of Theorem 2, α, β ∈ F
∗
2m satisfy α2 + β2 + αβ + 1 = 0. Using

β = θα + 1 for some θ ∈ F
∗
2m , we find that a common solution of (α, β) ∈ � is given by

(α, β) =
(

1

1 + θ + θ2
,

θ2

1 + θ + θ2

)
, θ ∈ F

∗
2m .

Using the above expression, the quadrinomial (3.1) is linear equivalent to

F(x) := c1x
2k+1 + c2x

2k+1 + c3x
2k x + c4xx

2k , (3.2)

where the coefficients ci = eiα−(2k+1) and are explicitly given by

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

c1 = 1 + θ + θ2 + (θ + θ2)2
k+1 + θ2(2

k+1),

c2 = (1 + θ + θ2)2
k + (θ + θ2)2

k+1 + θ2(2
k+1),

c3 = 1 + (θ + θ2)2
k+1,

c4 = (1 + θ + θ2)2
k+1 + (θ + θ2)2

k+1 + θ2(2
k+1).

(3.3)

Thuswe can conclude that the closed butterflyVR(x, y)definedby (1.1) is linear equivalent
to F(x) defined by (3.2). Then, we can complete the proof of (2) of Theorem 2 by proving
Lemma 3.

Lemma 3 Let n = 2m, m odd, gcd(n, k) = 1, θ ∈ F
∗
2m and F(x) be the polynomial defined

by (3.2) and (3.3). Then F(x) is linear equivalent to the Gold function x2
k−m+1 on F2n .

Proof Denote g(x) = x2
k
x , L1(x) = Ax+Bx and L2(x) = Cx+Dx , where the coefficients

A, B,C, D ∈ F2n . First, we need to find A, B,C, D ∈ F2n such that

Cg (Ax + Bx) + Dg (Ax + Bx) = F(x). (3.4)

Denote the left hand side of (3.4) to be H(x), we can obtain

H(x) = (CA2k B + DAB
2k

)x2
k+1 + (CAB2k + DA

2k
B)x2

k+1 +
(CA2k A + DBB

2k
)x2

k
x + (CB2k B + DAA

2k
)xx2

k
.

Now take the values
⎧
⎪⎪⎨
⎪⎪⎩

A = 1,
B = 1 + θ,

C = θ + θ2
k + θ2

k+1,

D = 1 + θ2
k+1.

(3.5)
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It can be readily verified that
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CA2k B + DAB
2k = 1 + θ + θ2 + (θ + θ2)2

k+1 + θ2(2
k+1),

CAB2k + DA
2k
B = (1 + θ + θ2)2

k + (θ + θ2)2
k+1 + θ2(2

k+1),

CA2k A + DBB
2k = 1 + (θ + θ2)2

k+1,

CB2k B + DAA
2k = (1 + θ + θ2)2

k+1 + (θ + θ2)2
k+1 + θ2(2

k+1).

Hence under the values of (3.5), Eq. (3.4) holds. Then, to complete the proof, it suffices to
prove that both L1(x) and L2(x) are permutations. Note that L1(x) and L2(x) are permuta-
tions if and only if A �= B and C �= D respectively. Obviously A �= B since θ ∈ F

∗
2m . On

the other hand, if C = D, then we have 1 + θ + θ2
k = 0. Noting that m is odd, taking trace

on both sides, we have

0 = Trm1
(
1 + θ + θ2

k
)

= Trm1 (1) = 1,

which is a contradiction. Thus C �= D. So both L1(x) and L2(x) are permutations on F2n .
This shows that F(x) is linear equivalent to g(x). Clear g(x) is linear equivalent to the Gold
function x2

k−m+1. 	


4 Proof of Theorem 3

First recall the following lemma:

Lemma 4 [13] Let n, k be positive integers with gcd(n, k) = 1. For any a ∈ F2n , the equation
x2

k + x = a has either 0 or 2 solutions in F2n . Moreover, it has two solutions in F2n if and
only if Trn1(a) = 0.

Nowwe start the proof of Theorem 3. Let z = x+x , then the equation Lμ,ν(x) = 0 becomes

x2
k + x + μz + ν = 0. (4.1)

Taking 2m-th power on both sides of (4.1) and adding them together gives

z2
k + (1 + μ + μ)z + ν + ν = 0. (4.2)

Taking 2k-th power consecutively on both sides of (4.1), one can also obtain

x + x2
km = x + x =

m−1∑
i=0

(μz + ν)2
ki
.

Hence solving Lμ,ν(x) = 0 for x ∈ F2n is equivalent to solving the system of equations
(4.1), (4.2) and

m−1∑
i=0

(μz + ν)2
ki + z = 0 (4.3)

for x ∈ F2n and z ∈ F2m . Note that
∑m−1

i=0 (μz + ν)2
ki + z ∈ F2.

Without checking the solvability of (4.3), since gcd(n, k) = 1, for any μ and ν, (4.2) has
at most two solutions for z ∈ F2m , and for each such z, (4.1) has at most two solutions for
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Cryptographically strong permutations from the butterfly structure 273

x ∈ F2n , hence the equation Lμ,ν(x) = 0 has at most 4 solutions. Also observe that whenever
z ∈ F2m is a solution to (4.2) that satisfies (4.3), one always has

Trn1 (μz + ν) = Trm1
(
μz + ν + μz + ν

) = z + z = 0,

hence for such z, by Lemma 4, (4.1) is always solvable with two solutions x ∈ F2n . We
conclude that the number of solutions of Lμ,ν(x) = 0 equals two times the number of
z ∈ F2n satisfying (4.2) and (4.3).

Now we study in more details the solvability of (4.2) and (4.3).

Case 1 1 + μ + μ = 0.
In this case, (4.2) has a unique solution z such that z2

k = ν + ν, and (4.3) is equivalent to

m−1∑
i=0

(
μ2k z2

k + ν2
k
)2ki = z2

k
,

and this proves part (1) (i) of Theorem 3.

Case 2 1 + μ + μ �= 0.
Let ξ , � be defined by (1.5) and z = ξρ, then (4.2) becomes

ρ2k + ρ = � (4.4)

which has solutions for ρ ∈ F2m if and only if Trm1 (�) = 0.
We now assume that Trm1 (�) = 0. The two solutions z1, z2 ∈ F2m to (4.2) satisfy the

relation

z1 + z2 = ξ.

Using λ2
k + λ = μξ , we have

2∑
j=1

(
m−1∑
i=0

(
μz j + ν

)2ki + z j

)
=

m−1∑
i=0

(μξ)2
ki + ξ = λ + λ + ξ ∈ F2.

Subcase 2.1 λ + λ = ξ + 1. In this case it is easy to see that among z1 and z2, exactly one
element satisfies (4.3), hence the Eq. Lμ,ν(x) = 0 has two solutions. This proves part (1) (ii)
of Theorem 3.

Subcase 2.2 λ + λ = ξ . In this case, either both z1 and z2 satisfy (4.3) or neither satisfy
(4.3), hence the equation Lμ,ν(x) = 0 has either 4 or 0 solution. We will prove below that
these zi ’s satisfy (4.3) if and only if

Trn1

(
λ2

k
ν

ξ2
k

)
= 0,

hence verifying part (2) of Theorem 3.
Let z = ξρ be a solution to (4.2) where ρ ∈ F2m satisfies (4.4). Denote by h(z) the left

hand side of Eq. (4.3). We have

h(z) =
m−1∑
i=0

(μξρ + ν)2
ki + ξρ.
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The quantity h(z) can be simplified further: using (4.4) and the relation
∑m−1

i=0 (μξ)2
ki =

λ + λ = ξ we can obtain

m−1∑
i=0

(μξρ)2
ki =

m−1∑
i=1

(μξ)2
ki
ρ2ki + μξρ =

m−1∑
i=1

(μξ)2
ki

⎛
⎝ρ +

i−1∑
j=0

�2k j

⎞
⎠ + μξρ

= ρ

m−1∑
i=0

(μξ)2
ki +

m−1∑
i=1

(μξ)2
ki

i−1∑
j=0

�2k j

= ρξ +
m−1∑
i=1

(μξ)2
ki

i−1∑
j=0

�2k j . (4.5)

As for the second term on the right side of (4.5), using Trm1 (�) = ∑m−1
i=0 �2ki = 0, one

obtains

m−1∑
i=1

i−1∑
j=0

(μξ)2
ki
�2k j =

m−2∑
j=0

�2k j
m−1∑
i= j+1

(μξ)2
ki =

m−2∑
j=0

�2k j
m−1∑
i= j+1

(λ2
k + λ)2

ki

=
m−2∑
j=0

�2k j (λ2
k( j+1) + λ2

km
)

=
m−2∑
j=0

(λ2
k
�)2

k j + �2k(m−1)
λ2

km

=
m−1∑
j=0

(λ2
k
�)2

k j
. (4.6)

Combining (4.5) and (4.6) we can easily find

h(z) =
m−1∑
i=0

(
λ2

k
� + ν

)2ki
.

Observing that

λ2
k
� + ν = λ2

k

ξ2
k (ν + ν) + ν = λ2

k
ν + λ

2k
ν

ξ2
k ,

we obtain

h(z) = Trn1

(
λ2

k
ν

ξ2
k

)
.

Hence Eq. (4.3) is equivalent to

Trn1

(
λ2

k
ν

ξ2
k

)
= 0,

and in this case, the equation Lμ,ν(x) = 0 has 4 solutions. This completes the proof of part
(2) of Theorem 3.
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Case 3 ν = 0, 1 + μ + μ �= 0 and λ + λ = ξ . In this final case, Eq. (4.2) has two solutions
z1 = 0, z2 = ξ which both satisfy (4.3). Returning to (4.1), the corresponding four roots of
Lμ,ν(x) = 0 are given by 0, 1, λ, λ + 1. This proves part (3) of Theorem 3. Now Theorem
3 is proved.

5 Conclusion

In this note we further studied the cryptographically strong permutations obtained from the
closed butterfly function in [8]. We represented the conditions in [8] in a much simpler way
and showed that these cryptographically strong permutations are linear equivalent to Gold
functions. Moreover, we proved a criterion for solving a new type of equations over finite
fields, which is of independent interest.
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