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Abstract
This paper gives new methods of constructing symmetric self-dual codes over a finite field
GF(q) where q is a power of an odd prime. These methods are motivated by the well-
known Pless symmetry codes and quadratic double circulant codes. Using these methods,
we construct an amount of symmetric self-dual codes over GF(11), GF(19), and GF(23)
of every length less than 42. We also find 153 new self-dual codes up to equivalence: they are
[32, 16, 12], [36, 18, 13], and [40, 20, 14] codes over GF(11), [36, 18, 14] and [40, 20, 15]
codes overGF(19), and [32, 16, 12], [36, 18, 14], and [40, 20, 15] codes overGF(23). They
all have new parameters with respect to self-dual codes. Consequently, we improve bounds on
the highest minimum distance of self-dual codes, which have not been significantly updated
for almost two decades.
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1 Introduction

Coding theory, one of the most interesting areas of applied mathematics, was born almost
simultaneouslywith the invention ofmodern computers - the beginning of the error-correcting
code came from Claude Shannon’s paper “A mathematical theory of communication” in
1948, and Richard W. Hamming’s paper “Error detecting and error correcting codes” in
1950. These days, binary and nonbinary codes such as q-ary Hamming codes, the binary and
ternary Golay codes, and q-ary Reed-Solomon codes are used in internet communication,
GPS signals, mobile phones, and computer devices. It is well known that error-correcting
codes are closely related to cryptography [7,24]. Moreover, researchers have recently started
investigating the relation between error-correcting codes and deep learning [3,18].

On the other hand, self-dual codes have been the subject of much interest and are regarded
as one of the most important classes of error-correcting codes. This is because of both
theoretical reason and connections to various fields of mathematics such as designs [16],
lattices [2], sphere-packings [9], and modular forms [4].

Among various research topics of self-dual codes, it has attained an extensive research
effort to find a best code; here, best refers to having the greatest error correction ability as
possible. The error correction capability of a code depends on the minimum distance. Thus,
it is crucial to find a method to construct codes having the highest minimum distance. To
this end, various techniques were studied involving circulant and bordered circulant matrices
[5,14] and quadratic double circulant matrices [12]. Recently, families of codes over rings
have been used to construct self-dual codes over finite fields [10,19].

Despite these efforts, there remain many codes to be found, missed by previous con-
struction methods due to computational complexity. In particular, we hardly know about the
optimal minimum distances of self-dual codes over finite fields of order ≥ 5 and of lengths
≥ 22. In this case, only the possible bounds of highest minimum distances are known so far.
For example, in the case of codes over GF(11), the bounds of highest minimum distances of
lengths ≤ 40 are known, as we can see in Table 4. Moreover, there is no information about
the lower bound of the self-dual code of length 28.

In 1972, Vera Pless introduced Pless symmetry codes, as a generalization of ternary
extended Golay code [22,23]. Using this class of codes, Pless obtained many new opti-
mal self-dual codes over GF(3). Three decades later, Gaborit presented a generalization of
Pless symmetry codes to different fields, quadratic double circulant codes [12]. He also found
many new self-dual codes over GF(4), GF(5), GF(7), and GF(9). We want to remark two
things: one is that these two methods used particular symmetric matrices to construct self-
dual codes. The other is that these methods have a limitation of lengths; the possible lengths
of codes are limited to 2n + 2 or 2n where n is a power of an odd prime. Thus, there needs
a new method to fill the gap between these lengths. These are the main motivation of this
paper.

If a self-dual code of length 2n over GF(q) has a standard generator matrix G = (In | A)

where A is symmetric, it is called a symmetric self-dual code. In [8], we introduced a method
of symmetric building-up construction. This method was to construct symmetric self-dual
codes over GF(q) for q ≡ 1 (mod 4). In [8], we showed that this method provides an
efficient way to construct all symmetric self-dual codes over GF(q), increasing lengths by
two. Stimulated by this result, we have struggled to find a method when q ≡ 3 (mod 4).
However, it is not easy to generalize the method in [8]. In [8], the square root of -1 plays the
key role, but unfortunately, it is well-known that the square root of -1 does not exist inGF(q)

for q ≡ 3 (mod 4). Nevertheless, we find two novel construction methods as follows :

123



An improved upper bound on self-dual codes 2737

Table 1 The highest minimum
distance dsym of symmetric
self-dual codes vs. previously
best known minimum distance
dsd of self-dual codes
[5,8,11–13,15,25]

p 11 19 23
n dsym dsd dsym dsd dsym dsd

4 3 3 3 3 3 3

8 5 5 5 5 5 5

12 7 7 7 7 7 7

16 8 8 8 8 8 9

20 8 10 11 11 9 10

24 9 9 10 10 10 13

28 10 10 11 11 11 11

32 12 ? 12 14 12 ?

36 13 12 14 ? 14 12

40 14 13 15 ? 15 13

New parameters are written in bold

1. Construction A
Let (In | A) be a generator matrix of a symmetric self-dual code of length 2n overGF(q)

and assume that (xn, yn) is a codeword satisfying xn · yn = 0 and xn · xn = k such that

−1 ± k are squares in GF(q). And let B =
(

αxn + βyn
βxn − αyn

)
where α2 + β2 = −1,

E = 1
k (sx

T
n xn + tyTn yn − xTn yn − yTn xn) where s

2 = −1 + k and t2 = −1 − k and let
D = − 1

k2
B(A + E1)BT BBT . Then

(
I2 O D B
O In BT A + E

)

is a generator matrix of symmetric self-dual code of length 2n + 4.

2. Construction B
Let (In | A) be a generator matrix of a symmetric self-dual code of length 2n over

GF(q), let P =
(

α β
β −α

)
be a 2 × 2 matrix such that P2 = −I2, and let a matrix

M =
(

x
β−1x(A − α I )

)
for a vector x in GF(q)n . Assume that H is a 2× 2 symmetric

matrix satisfying (H + P)(H − P) = −MMT and H − P is non-singular. Then(
I2 O H M
O In MT A + MT (H − P)−1M

)

is a generator matrix of symmetric self-dual code of length 2n + 4.

Using these methods, we obtain many new self-dual codes. Consequently, we improve
the bounds on the minimum distances of self-dual codes. We revised these results in Table
1. In Table 1, new parameters are written in bold. Throughout this paper, dsym denotes the
highest minimum distance of a symmetric self-dual code over GF(p) and dsd denotes the
previously best-knownminimumdistance of self-dual codes overGF(p).More precisely, we
give new self-dual codes with highest minimum weights: they are [32, 16, 12], [36, 18, 13],
and [40, 20, 14] codes over GF(11), [36, 18, 14] and [40, 20, 15] codes over GF(19), and
[32, 16, 12], [36, 18, 14], and [40, 20, 15] codes over GF(23). We also provide numbers of
new symmetric self-dual codes, up to equivalence, in Table 2.

The paper is organized as follows. Section 2 gives preliminaries for self-dual codes over
finite fields. In Sect. 3, we present two construction methods for symmetric self-dual codes
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Table 2 Numbers of new
symmetric self-dual codes of
length 32, 36 and 40

p 11 19 23
n dsym # of codes dsym # of codes dsym # of codes

32 12 ≥ 44 12 ≥ 801 12 ≥ 52

36 13 ≥ 16 14 ≥ 3 14 ≥ 2

40 14 ≥ 42 15 ≥ 2 15 ≥ 1

over GF(q), where q is an odd prime power. In Sect. 4, we give the improved bounds of
highest minimum distances and the computational results of the best codes obtained using
our new methods. All computations in this paper have been done with the computer algebra
systemMagma [6]. We list all our codes with generator matrices in J.-L. Kim’s website [20].

We use the following notations throughout this paper.

Notations

q A power of an odd prime number
GF(q) Finite field of order q
dsym The highest minimum distance of symmetric self-dual codes
dsd The previous best known minimum distance of self-dual codes
In The identity matrix of degree n
[n, k, d]q code A linear code of length n and dimension k over GF(q) with minimum distance d
A−1 The inverse of a matrix A
AT The transpose of a matrix A

2 Preliminaries

Let n be a natural number, and GF(q) be the finite field of order q where q is a prime power.
A linear code C of length n and dimension k over GF(q) is a k-dimensional subspace of
GF(q)n . An element of C is called a codeword. A generator matrix of C is a matrix whose
rows form a basis of C; therefore, a generator matrix of a linear code C of length n and
dimension k over GF(q) is a k × n matrix over GF(q). For vectors x = (xi ) and y = (yi )
in GF(q)n , we define the inner product x · y = ∑n

i=1 xi yi . If vectors are identified with row
matrices, the inner product can also be written as a matrix multiplication x · y = xyT , where
yT denotes the transpose of y. For a linear code C, the dual code C⊥ is defined as a set of
orthogonal vectors of C, i.e.,

C⊥ = {x ∈ GF(q)n | x · c = 0 f or all c ∈ C}.
A linear code C is called self-dual if C = C⊥ and self-orthogonal if C ⊂ C⊥.
The weight of a codeword c is the number of non-zero symbols in the codeword and

denoted by wt(c). The Hamming distance between two codewords x and y is defined by
d(x, y) = wt(x−y). Theminimum distance of C, denoted by d(C), is the smallest Hamming
distance between distinct codewords in C. A measure for the error-correcting capability of a
code is the minimum distance; thus, the minimum distance is regarded as the most important
parameter of a code. If a code has the minimum distance that meets some upper bounds, it is
called an optimal code. It is well-known [17, chapter 2.4.] that a linear code of length n and
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Table 3 New quadratic double circulant codes over GF(q) obtained using methods in [12]

length q generator matrix d length q generator matrix d

28 11 S13(3, 0) 10 36 23 S17(11, 0) 12

28 17 S13(2, 0) 10 40 11 S19(3, 4) 13

28 19 S13(5, 0) 10 40 13 S19(2, 4) 13

28 29 S13(4, 0) 10 40 17 S19(7, 0) 13

36 11 S17(4, 0) 12 40 23 S19(2, 0) 13

36 13 S17(3, 0) 12 40 29 S19(1, 3) 13

dimension k satisfy the Singleton bound,

d(C) ≤ n − k + 1.

A code that achieves the equality in the Singleton bound is called a maximum distance
separable(MDS) code. Obviously, a self-dual code of length 2n over GF(q) is MDS if the
minimum distance equals n + 1. Although every MDS code is optimal, the MDS conjecture
shows that there exists an MDS self-dual code of length 2n over GF(q) only if 2n ≤ q + 1
for odd q [1]. Therefore, if 2n > q + 1, the minimum distance of self-dual code of length
2n over GF(q) is most likely upper bounded by n.

Let In be the identity matrix of order n and let AT denote the transpose of a matrix A. It
is well-known that a self-dual code C of length 2n over GF(q) is equivalent to a code with
a standard generator matrix (

In A
)
, (1)

where A is an n × n matrix satisfying AAT = −In .
A matrix A is called symmetric if AT = A. If a self-dual code of length 2n over GF(q)

has a standard generator matrix G = (In | A) where A is symmetric, it is called a symmetric
self-dual code. Since the class of symmetric self-dual codes is a subclass of general self-dual
codes, the bound on minimum distances of symmetric self-dual code may be different from
that of self-dual codes. However, if a symmetric self-dual code has the same parameter as an
optimal(resp. MDS) self-dual code, it is called an optimal (resp. MDS) symmetric self-dual
code. If the minimum distance of a symmetric self-dual code meets the best knownminimum
distance of a self-dual code, it is called the best symmetric self-dual code.

In [22], Pless introduced Pless symmetry codes as a generalization of ternary extended
Golay code and their constructionmethod. As a result, Pless obtained optimal self-dual codes
of length 24, 36, 48, and 60 over GF(3). Later in [12] Gaborit presented a generalization of
Pless symmetry codes to different fields, quadratic double circulant codes and their construc-
tion method. Gaborit obtained many new self-dual codes over GF(4), GF(5), GF(7) and
GF(9), and improved the bounds on the highest minimum distances. To use as a reference,
we additionally obtain quadratic double circulant codes of lengths ≤ 40 over various finite
fields, following the same construction method in [12]. We present these codes in Table 3,
following the same notations in [12].

We remark that a self-dual code in the class of Pless symmetry codes or quadratic double
circulant codes is equivalent to a symmetric self-dual code. In general, a pure double circulant
self-dual code is equivalent to a symmetric self-dual code, and a bordered double circulant
self-dual code is equivalent to a symmetric self-dual code under a certain condition. We
discuss the equivalence between these codes in the next.
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Let Sn be the symmetric group of order n and D
n be the set of diagonal matrices over

GF(q) of order n,

D
n = {diag(γi ) | γi ∈ GF(q), γ 2

i = 1}.
The group Mn of all γ -monomial transformations of length n is defined by

Mn = {pσ γ | γ ∈ D
n, σ ∈ Sn}

where pσ is the permutation matrix corresponding σ ∈ Sn . We note that a γ -monomial
transformation preserves the self-orthogonality of a code (see [17, Thm 1.7.6]). Let Cτ =
{cτ | c ∈ C} for an element τ in Mn and a code C of length n. If there exists an element
μ ∈ Mn such that Cμ = C′ for two distinct codes C and C′, then C and C′ are called equivalent
and denoted by C 	 C′ .

Proposition 1 Let G = (In | A) and G ′ = (In | B) be generator matrices of self-dual codes
C and C′ of length 2n, respectively. If A = μ1Bμ2 for some μ1, μ2 ∈ Mn, then C and C′ are
equivalent.

Proof For μ =
(

μ−1
1 O
O μ2

)
∈ M2n ,

(In | A) = (In | μ1Bμ2) = (μ−1
1 | Bμ2) = (In | B)μ.

Thus, C and C′ are equivalent.

Corollary 1 Let In be the identity matrix of order n, A be an n × n circulant matrix, B be an
(n − 1) × (n − 1) circulant matrix. Then,

(i) a pure double circulant code over GF(q) with a generator matrix of the form

(In | A)

is equivalent to a code with symmetric generator matrix, and
(ii) a bordered double circulant code over GF(q) with a generator matrix of the form⎛

⎝ α β · · · β
In γβ B

...
γβ

⎞
⎠ ,

where α and β are elements in GF(q) and γ 2 = 1, is equivalent to a code with symmetric
generator matrix.

Proof Let Rn be the n×n anti-diagonal matrix whose anti-diagonal elements are all 1. Then
it is clear that matrices ARn and BRn−1 are symmetric. Thus, the corollary follows directly
from Proposition 1.

Let S−1 be a set of solutions of the equation x2 + y2 = −1 over GF(q). Then the
cardinality of S−1 for an odd prime q is obtained in the next proposition.

Proposition 2 [21] Let GF(q) be a finite field of order q such that q is a power of an odd
prime. The cardinality of the set

S−1 = {(x, y) ∈ GF(q)2 | x2 + y2 + 1 = 0}
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An improved upper bound on self-dual codes 2741

is given by

|S−1| = q − (−1)(q−1)/2 =
{
q − 1, i f q ≡ 1 (mod 4),

q + 1, i f q ≡ 3 (mod 4).

Similarly, we define a set S−I2 of 2 × 2 symmetric matrices over GF(q) satisfying the
matrix equation X2+ I2 = 0.We also obtain the cardinality of S−I2 in the following corollary.

Corollary 2 Let K = GF(q) where q is a power of odd prime and let S−I2 be a set of 2 × 2
symmetric matrices over K such that

S−I2 = {P ∈ GL2(K ) | P2 = −I2}.
Then, the cardinality of S−I2 is given by

|S−I2 | = q − (−1)(q−1)/2 =
{
q − 1, i f q ≡ 1 (mod 4),

q + 1, i f q ≡ 3 (mod 4).

Proof The condition P2 = −I2 implies that P−1 = −P . Since we assumed that P is

symmetric, it is easy to show that matrix P is in the form
(

α β
β −α

)
, where (α, β) is a solution

of the equation x2 + y2 = −1. Thus, the result follows with Proposition 2.

3 Constructionmethod of symmetric self-dual codes

It is well-known that a self-dual over GF(q) of length n for q ≡ 1 (mod 4) exists if and
only if n ≡ 0 (mod 2), and a self-dual over GF(q) of length n for q ≡ 3 (mod 4) exists if
and only if n ≡ 0 (mod 4) [17, Theorem 9.1.3]. In [8], we have introduced a construction
method for symmetric self-dual codes over GF(q) for q ≡ 1 (mod 4). In this section, we
introduce two new constructionmethods for symmetric self-dual codes overGF(q) for q ≡ 3
(mod 4). These methods generate symmetric self-dual codes of lengths increased by four.

Theorem 1 (Construction method 1) Let G = (In | A) be a generator matrix of symmetric
self-dual code C of length 2n over GF(q) for an odd prime power q. Assume that there
exists a codeword (xn, yn) in C satisfying xn · yn = 0, xn · xn = k(
= 0), and −1 ± k

are squares in GF(q). Then, take an element (α, β) in S−1 and let B =
(

αxn + βyn
βxn − αyn

)
,

E = 1
k (sx

T
n xn + tyTn yn − xTn yn − yTn xn) where s2 = −1 + k and t2 = −1 − k, and let

D = − 1
k2
B(A + E)BT BBT . Then

G1 = (In+2 | A1) =
(
I2 O D B
O In BT A + E

)

is a generator matrix of a symmetric self-dual code of length 2n + 4.

Proof Since the code C has the generator matrix G = (In | A), the vector xnG = xn(In |
A) = (xn, yn) is a codeword in C for any xn in GF(q)n and yn = xn A. Hence,

xn · yn = 0 ⇔ xn(xn A)T = xn AxTn = 0.

Therefore, if there exists a vector xn which makes xn AxTn become zero for the matrix A,
then we let (xn, yn) = (xn, xn A) for the assumption in this theorem. If there is no vector xn
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satisfying xn AxTn = 0, then we cannot apply this theorem on C. It is obvious that the matrix
A1, A, D, and E are symmetric. Thus, we have to show that

A1A
T
1 =

(
D B
BT A + E

) (
DT B
BT AT + ET

)
= −In+2.

In other words, we have to show that following three identities hold :

D2 + BBT = −I2, (2)

DB + B(A + E) = O2×n, (3)

BT B + (A + E)2 = −In . (4)

Firstly, we verify the equality of (2). By the assumptions, we have that A2 = −In ,
α2 + β2 = −1 and xnxTn = k. Since (xn, yn) is a codeword of a self-dual code C, it is
also clear that xnxTn + ynyTn = 0 and (xn, yn)GT = xn + yn A = On . Thus, ynyTn = −k,
yn A = −xn and xn A = yn . By direct computations, we obtain that

BABT =
(

αxn A + βyn A
βxn A − αyn A

) (
αxn + βyn
βxn − αyn

)T

=
(

αyn − βxn
βyn + αxn

) (
αxTn + βyTn βxTn − αyTn

)

=
( −2kαβ k(α2 − β2)

k(α2 − β2) 2kαβ

)
,

and

BEBT = 1

k

(
αxn + βyn
βxn − αyn

)
(sxTn xn + tyTn yn − xTn yn − yTn xn)

(
αxn + βyn
βxn − αyn

)T

= 1

k

(
kαsxn − kαyn − kβtyn + kβxn
kβsxn − kβyn + kαtyn − kαxn

) (
αxTn + βyTn βxTn − αyTn

)

=
(

kα2s + 2kαβ + kβ2t kαβs + kβ2 − kα2 − kαβt
kαβs + kβ2 − kα2 − kαβt kα2t − 2kαβ + kβ2s

)
.

Therefore,

B(A + E)BT = BABT + BEBT =
(
kα2s + kβ2t kαβs − kαβt
kαβs − kαβt kα2t + kβ2s

)
,

and

D = − 1

k2
(B(A + E)BT )BBT

= −1

k

(
α2s + β2t αβs − αβt
αβs − αβt α2t + β2s

)
BBT .
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Since BBT = k

(
α2 − β2 2αβ

2αβ −α2 + β2

)
, we obtain

D = −
(

α2s + β2t αβs − αβt
αβs − αβt α2t + β2s

)(
α2 − β2 2αβ

2αβ −α2 + β2

)

=
(

α2s − β2t αβ(s + t)
αβ(s + t) −α2t + β2s

)
.

Hence,

D2 + BBT =
(

α2s − β2t −αβ(s + t)
−αβ(s + t) α2t − β2s

)2

+ k

(
α2 − β2 2αβ

2αβ −α2 + β2

)

=
(−α2s2 − β2t2 −αβ(s2 − t2)

−αβ(s2 − t2) −α2t2 − β2s2

)
+ k

(
α2 − β2 2αβ

2αβ −α2 + β2

)

=
(

α2(k − s2) − β2(k + t2) αβ(2k − s2 + t2)
αβ(2k − s2 + t2) −α2(k + t2) + β2(k − s2)

)
.

Since s2 = −1 + k and t2 = −1 − k, we have that k − s2 = 1, k + t2 = −1 and
−s2 + t2 = 2k. Therefore,

D2 + BBT =
(

α2 + β2 αβ(2k − 2k)
αβ(2k − 2k) α2 + β2

)

= −I2,

which is desired. The identities (3) and (4) are verified by similar computations.

We need following two lemmas to introduce the second construction method.

Lemma 1 Let P =
(

α β
β −α

)
be an element in S−I2 and A be a symmetric matrix satisfying

A2 = −In. For a vector x in GF(q)n, if we let the matrix M =
(

x
β−1x(A − α I )

)
, then

MA = PM .

Proof Let y = β−1x(A − α I ). Then βy = xA − αx and this implies that xA = αx + βy.
On the other hand,

y(A + α I ) = β−1x(A − α I )(A + α I )

= β−1x(A2 − α2 I )

= β−1x(−1 − α2)I

= βx, since α2 + β2 = −1

and this implies that yA = βx − αy. Therefore,

MA =
(
xA
yA

)
=

(
αx + βy
βx − αy

)
= PM .

Lemma 2 Assume that n × n matrices H and P are symmetric. If (H + P)(H − P) is also
symmetric, then H P = PH.
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Proof By the assumption, we have

(H − P)(H + P) = {(H − P)(H + P)}T
= (H + P)T (H − P)T

= (H + P)(H − P),

and by equating both sides, the result follows.

Now, we give the next theorem, which introduces the second construction method.

Theorem 2 (Construction 2) Let G = (In | A) be a generator matrix of a symmetric self-
dual code C of length 2n over GF(p) for an odd prime p and let S−I2 be the set defined in

Corollary 2, and let P =
(

α β
β −α

)
be an element in S−I2 . Let M =

(
x

β−1x(A − α I )

)
for a

vector x in GF(q)n. Assume that H is a 2 × 2 symmetric matrix satisfying the equation

(H + P)(H − P) = −MMT , (5)

and H − P is non-singular. Then

G2 = (In+2 | A2) =
(
I2 O H M
O In MT A + MT (H − P)−1M

)

is a generator matrix of a symmetric self-dual code of length 2n + 4.

Proof It is easy to check that A2 is symmetric. Therefore, we have only to show that A2 is
anti-orthogonal, i.e.,(

H M
MT A + MT (H − P)−1M

) (
H M
MT A + MT (H − P)−1M

)
= −In+2.

In other words, we have to show that following three identities are hold :

H2 + MMT = −I2, (6)

HM + M(A + MT (H − P)−1M) = O2×n, (7)

MT M + (A + MT (H − P)−1M)2 = −In . (8)

We note that, with the assumption, MA = PM and HP = PH by Lemmas 1 and 2.
First, it is easy to show that the identity (6) is true from the Eq. (5). For the identity (7),

we calculate that

HM + M(A + MT (H − P)−1M) = HM + MA + MMT (H − P)−1M

= (H + P)M + MMT (H − P)−1M

= ((H + P)(H − P) + MMT )(H − P)−1M

= O2(H − P)−1M

= O2×n

and the result follows.
Finally, for the identity (8), we expand the left hand side of (8):

MT M + (A + MT (H − P)−1M)2

= MT M + A2 + AMT (H − P)−1M + MT (H − P)−1MA

+ MT (H − P)−1MMT (H − P)−1M . (9)
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Note that A2, the second term of (9) equals −In . We compute the sum of (9) except the
last term:

MT M + A2 + AMT (H − P)−1M + MT (H − P)−1MA

= MT M − In + MT P(H − P)−1M + MT (H − P)−1PM

= −In + MT (In + P(H − P)−1 + (H − P)−1P)M

= −In + MT (H − P)−1((H − P)2 + (H − P)P + P(H − P))(H − P)−1M

= −In + MT (H − P)−1(H2 − P2)(H − P)−1M .

And we put MMT = −(H + P)(H − P) in the last term of (9) to calculate

MT (H − P)−1MMT (H − P)−1M

= −MT (H − P)−1(H + P)(H − P)(H − P)−1M

= −MT (H − P)−1(H2 − P2)(H − P)−1M .

Therefore, we obtain that

MT M + (A + MT (H − P)−1M)2 = −In,

and this is desired.

We illustrate these new construction methods in the following examples.

Example 1 Let C83 be a symmetric optimal self-dual [8,4,3] code over GF(3) with generator
matrix

G =
( 1 0 0 0 1 1 0 0

0 1 0 0 1 2 0 0
0 0 1 0 0 0 2 1
0 0 0 1 0 0 1 1

)
.

To apply construction method in Theorem 1, take (α, β) = (1, 1) and the codeword
(xn |yn) = (2, 1, 1, 1, 0, 1, 0, 2) in C83 . Then, we compute that B = (

2 2 1 0
2 0 1 2

)
, D = (

2 1
1 2

)
, and

E =
( 0 1 0 2

1 2 2 2
0 2 0 1
2 2 1 0

)
.

Finally, we find an optimal symmetric self-dual [12,6,6] over GF(3) code with generator
matrix

G1 =
⎛
⎝

1 0 0 0 0 0 2 1 2 2 1 0
0 1 0 0 0 0 1 2 2 0 1 2
0 0 1 0 0 0 2 2 1 2 0 2
0 0 0 1 0 0 2 0 2 1 2 2
0 0 0 0 1 0 1 1 0 2 2 2
0 0 0 0 0 1 0 2 2 2 2 1

⎞
⎠ .

Example 2 Let C819 be a symmetric self-dual [8,4,3] code overGF(19)with generator matrix

G =
( 1 0 0 0 18 13 0 0

0 1 0 0 13 1 0 0
0 0 1 0 0 0 1 6
0 0 0 1 0 0 6 18

)
.

To apply construction method in Theorem 2, take (α, β) = (18, 6) and x = (1, 6, 9, 6)
in GF(19)4. Then, M = (

1 6 9 6
13 1 9 9

)
and H = (

9 12
12 13

)
, and finally, we obtain a symmetric

[12,6,7] self-dual code over GF(19) of length 12 with generator matrix

G2 =
⎛
⎝

1 0 0 0 0 0 9 12 1 6 9 6
0 1 0 0 0 0 12 13 13 1 9 9
0 0 1 0 0 0 1 13 7 17 13 14
0 0 0 1 0 0 6 1 17 14 7 6
0 0 0 0 1 0 9 9 13 7 12 11
0 0 0 0 0 1 6 9 14 6 11 2

⎞
⎠ .
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4 Computational results

In this section, we discuss computational results of symmetric self-dual codes over GF(q)

for q = 11, 19, 23. Using construction methods in Theorems 1 and 2, we obtain many new
symmetric self-dual codes of lengths n ≤ 40whichmeet the best known bounds onminimum
distances of self-dual codes.

We find the best symmetric self-dual codes of length n over GF(q) for q = 11, 19, 23
and n ≤ 40 except for the case that q = 11 with n = 16 or 20, for the case that q = 19
with n = 32, and for the case that q = 23 with n = 20 or 24. Moreover, we also find more
than 151 self-dual codes with new parameters: 90 inequivalent self-dual codes of length 32,
36 and 40 over GF(11), 5 inequivalent self-dual codes of length 36 and 40 over GF(19)
and 56 inequivalent self-dual codes of length 32, 26 and 40 over GF(23). Among them, we
introduce five symmetric self-dual codes with their generator matrices in this section.

At the end of this section, we summarize the known bounds on the highest minimum
distances of self-dual codes in Table 7.

4.1 Symmetric self-dual codes over GF(11)

Proposition 3 There exist the best symmetric self-dual codes over GF(11) of length n =
4, 8, 12, 24, 28, 32, 36, 40. In particular, [4, 2, 3]11, [8, 4, 5]11 and [12, 6, 7]11 symmetric
self-dual codes are MDS. Moreover, [32, 16, 12]11, [36, 18, 13]11 and [40, 20, 14]11 codes
are new.

We give the highest minimum distance dsym of symmetric self-dual codes and the pre-
viously best known minimum distance dsd of self-dual codes in Table 4. In this table, new
parameters are written in bold. We present three symmetric self-dual codes having new
parameters:

– [32, 16, 12]11 code with a generator matrix (I16 | A32
11) where

A32
11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 7 7 1 2 8 5 9 9 8 1 6 4 7 10 6
7 9 7 8 0 8 4 8 6 10 2 6 9 7 8 10
7 7 6 0 8 2 4 9 1 6 8 7 6 9 0 4
1 8 0 7 0 7 10 2 1 9 9 3 3 2 8 0
2 0 8 0 10 10 8 10 3 0 10 8 0 8 10 0
8 8 2 7 10 7 10 2 9 7 7 0 6 1 0 3
5 4 4 10 8 10 10 7 8 5 2 5 4 8 3 9
9 8 9 2 10 2 7 0 3 2 8 10 7 8 4 6
9 6 1 1 3 9 8 3 0 1 5 10 7 7 8 10
8 10 6 9 0 7 5 2 1 9 9 1 1 9 4 4
1 2 8 9 10 7 2 8 5 9 3 7 7 2 9 4
6 6 7 3 8 0 5 10 10 1 7 7 2 6 8 2
4 9 6 3 0 6 4 7 7 1 7 2 5 7 7 6
7 7 9 2 8 1 8 8 7 9 2 6 7 4 1 5
10 8 0 8 10 0 3 4 8 4 9 8 7 1 7 2
6 10 4 0 0 3 9 6 10 4 4 2 6 5 2 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

– [36, 18, 13]11 code with a generator matrix (I18 | A36
11) where

A36
11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 10 6 7 5 4 7 1 9 4 4 7 7 8 1 8 8 8
10 10 8 7 6 4 5 8 9 7 10 1 3 0 5 8 9 9
6 8 10 6 4 2 4 6 10 0 1 5 6 9 1 9 5 1
7 7 6 3 4 3 4 2 1 10 4 1 5 3 7 8 4 6
5 6 4 4 6 3 7 4 8 9 9 9 9 10 0 4 5 9
4 4 2 3 3 1 7 2 2 0 3 7 6 6 5 1 1 4
7 5 4 4 7 7 6 4 10 7 1 2 9 1 4 0 6 7
1 8 6 2 4 2 4 3 7 8 4 1 1 1 2 2 1 4
9 9 10 1 8 2 10 7 3 8 7 6 9 9 3 3 1 7
4 7 0 10 9 0 7 8 8 0 5 0 0 8 0 4 8 10
4 10 1 4 9 3 1 4 7 5 2 10 3 3 2 0 1 3
7 1 5 1 9 7 2 1 6 0 10 0 0 8 6 5 0 0
7 3 6 5 9 6 9 1 9 0 3 0 9 7 6 7 5 0
8 0 9 3 10 6 1 1 9 8 3 8 7 8 8 1 5 10
1 5 1 7 0 5 4 2 3 0 2 6 6 8 10 0 8 7
8 8 9 8 4 1 0 2 3 4 0 5 7 1 0 2 9 2
8 9 5 4 5 1 6 1 1 8 1 0 5 5 8 9 4 10
8 9 1 6 9 4 7 4 7 10 3 0 0 10 7 2 10 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Table 4 The best known minimum distances of symmetric self-dual codes over GF(11)

[n, k, d]p dsym. dsd. Refs. [n, k, d]p dsym. dsd. Refs.

[4, 2, 3]11 3 3 [5] [24, 12, 9]11 9 9−12 [5]

[8, 4, 5]11 5 5 [5] [28, 14, 10]11 10 10−14 [25]

[12, 6, 7]11 7 7 [5] [32, 16, 12]11 12 ?−16 −
[16, 8, 8]11 8 8 [5] [36, 18, 13]11 13 12−18 Table 3

[20, 10, 8]11 8 10 [5] [40, 20, 14]11 14 13−20 Table 3

Bold values represent new parameters

– [40, 20, 14]11 code with a generator matrix (I20 | A40
11) where

A40
11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 4 6 1 7 10 5 5 8 8 10 4 9 5 9 5 8 3 9 6
4 2 6 3 1 2 1 2 5 8 2 4 5 9 1 7 5 7 3 4
6 6 2 9 4 4 9 5 1 8 6 2 6 9 10 5 6 0 5 0
1 3 9 5 3 10 2 4 10 3 1 10 9 7 8 9 10 7 0 0
7 1 4 3 7 3 8 0 1 7 7 6 0 5 7 10 9 6 5 0
10 2 4 10 3 6 0 9 3 9 4 8 9 0 3 4 6 8 0 5
5 1 9 2 8 0 4 6 1 2 4 8 6 3 8 5 5 4 3 3
5 2 5 4 0 9 6 3 4 7 8 8 3 2 10 3 2 3 3 7
8 5 1 10 1 3 1 4 0 7 9 3 2 9 9 2 9 9 1 6
8 8 8 3 7 9 2 7 7 5 3 9 3 0 5 8 5 6 8 8
10 2 6 1 7 4 4 8 9 3 6 6 1 5 7 10 2 3 8 6
4 4 2 10 6 8 8 8 3 9 6 6 10 5 2 6 7 6 6 1
9 5 6 9 0 9 6 3 2 3 1 10 4 9 4 7 3 2 8 10
5 9 9 7 5 0 3 2 9 0 5 5 9 2 6 8 2 10 8 0
9 1 10 8 7 3 8 10 9 5 7 2 4 6 1 3 6 1 7 4
5 7 5 9 10 4 5 3 2 8 10 6 7 8 3 4 9 2 5 3
8 5 6 10 9 6 5 2 9 5 2 7 3 2 6 9 4 9 3 6
3 7 0 7 6 8 4 3 9 6 3 6 2 10 1 2 9 6 7 1
9 3 5 0 5 0 3 3 1 8 8 6 8 8 7 5 3 7 3 10
6 4 0 0 0 5 3 7 6 8 6 1 10 0 4 3 6 1 10 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.2 Symmetric self-dual codes over GF(19)

Proposition 4 There exist the best symmetric self-dual codes over GF(19) of length
n = 4, 8, 12, 16, 20, 24, 28, 36, 40. Among them, [4, 2, 3]19, [8, 4, 5]19, [12, 6, 7]19, and
[20, 10, 11]19 codes are MDS. Moreover, [36, 18, 14]19 and [40, 20, 15]19 codes are new.

We give the highest minimum distance dsym of symmetric self-dual codes and the pre-
viously best known minimum distance dsd of self-dual codes in Table 5. In this table, new
parameters are written in bold.We present two symmetric self-dual codes having new param-
eters:

– [32, 16, 12]19 code with a generator matrix (I16 | A32
19) where

A32
19 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

15 16 3 3 5 6 5 11 8 15 10 16 1 2 2 11
16 0 10 17 2 1 15 3 5 3 8 5 10 1 8 9
3 10 3 15 14 12 16 6 5 0 6 12 18 7 0 2
3 17 15 2 12 14 3 3 4 16 12 15 14 7 10 3
5 2 14 12 7 15 14 16 2 16 8 3 4 14 12 1
6 1 12 14 15 4 18 3 0 15 8 0 16 9 13 18
5 15 16 3 14 18 9 10 2 0 5 5 10 3 0 11
11 3 6 3 16 3 10 7 17 17 0 6 16 3 8 5
8 5 5 4 2 0 2 17 8 14 12 18 16 7 2 6
15 3 0 16 16 15 0 17 14 7 1 16 13 3 9 12
10 8 6 12 8 8 5 0 12 1 8 12 13 16 16 11
16 5 12 15 3 0 5 6 18 16 12 8 8 6 16 4
1 10 18 14 4 16 10 16 16 13 13 8 4 3 2 18
2 1 7 7 14 9 3 3 7 3 16 6 3 14 13 13
2 8 0 10 12 13 0 8 2 9 16 16 2 13 4 6
11 9 2 3 1 18 11 5 6 12 11 4 18 13 6 14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Table 5 The best known minimum distances of self-dual codes over GF(19)

[n, k, d]p dsym dsd Refs. [n, k, d]p dsym dsd Refs.

[4, 2, 3]19 3 3 [5] [24, 12, 10]19 10 10−12 [25]

[8, 4, 5]19 5 5 [5] [28, 14, 11]19 11 11−14 [25]

[12, 6, 7]19 7 7 [5] [32, 16, 12]19 12 14−16 [8]

[16, 8, 8]19 8 8−9 [5] [36, 18, 14]19 14 ?−18 –

[20, 10, 11]19 11 11 [5] [40, 20, 15]19 15 ? − 20 –

Bold values represent new parameters

– [36, 18, 14]19 code with a generator matrix (I18 | A36
19) where

A36
19 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

16 14 4 15 10 15 17 7 4 16 16 14 3 7 5 2 5 12
14 13 18 11 15 17 11 5 5 11 16 16 12 4 17 0 16 4
4 18 18 12 18 12 2 6 12 18 14 1 10 16 10 6 13 6
15 11 12 7 1 8 1 3 1 12 11 5 5 7 7 2 10 8
10 15 18 1 7 9 14 14 7 12 13 16 16 2 16 9 16 4
15 17 12 8 9 2 7 15 5 12 2 9 2 10 14 18 12 9
17 11 2 1 14 7 11 13 16 1 16 17 4 11 4 11 9 18
7 5 6 3 14 15 13 9 0 16 3 3 8 7 10 14 4 7
4 5 12 1 7 5 16 0 12 17 1 7 4 0 9 0 17 18
16 11 18 12 12 12 1 16 17 3 1 17 12 12 16 12 9 11
16 16 14 11 13 2 16 3 1 1 15 17 4 12 10 0 7 4
14 16 1 5 16 9 17 3 7 17 17 8 7 6 18 1 11 18
3 12 10 5 16 2 4 8 4 12 4 7 14 0 9 9 6 15
7 4 16 7 2 10 11 7 0 12 12 6 0 18 5 13 13 4
5 17 10 7 16 14 4 10 9 16 10 18 9 5 13 7 0 7
2 0 6 2 9 18 11 14 0 12 0 1 9 13 7 12 17 3
5 16 13 10 16 12 9 4 17 9 7 11 6 13 0 17 2 17
12 4 6 8 4 9 18 7 18 11 4 18 15 4 7 3 17 10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

– [40, 20, 15]19 code with a generator matrix (I20 | A40
19) where

A40
19 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 7 12 5 0 13 15 11 16 6 17 14 6 6 6 4 18 14 13 14
7 16 13 4 13 3 1 13 4 11 5 12 6 4 13 16 11 6 6 16
12 13 5 6 13 11 12 12 16 9 3 0 16 17 2 8 6 14 6 9
5 4 6 1 7 15 0 4 16 14 1 8 0 9 12 9 10 5 16 2
0 13 13 7 17 17 18 17 16 16 8 0 1 13 14 3 11 6 9 14
13 3 11 15 17 9 0 0 11 2 11 1 11 13 15 16 16 15 0 0
15 1 12 0 18 0 0 14 4 15 13 8 14 17 17 9 0 5 15 0
11 13 12 4 17 0 14 6 12 5 18 18 12 8 3 13 15 10 11 18
16 4 16 16 16 11 4 12 7 2 10 3 4 16 1 13 16 8 12 17
6 11 9 14 16 2 15 5 2 12 12 12 8 5 14 3 5 1 17 9
17 5 3 1 8 11 13 18 10 12 18 0 16 8 11 18 5 17 10 10
14 12 0 8 0 1 8 18 3 12 0 16 1 11 14 10 14 7 7 17
6 6 16 0 1 11 14 12 4 8 16 1 6 10 7 13 9 6 4 0
6 4 17 9 13 13 17 8 16 5 8 11 10 5 5 9 11 7 13 4
6 13 2 12 14 15 17 3 1 14 11 14 7 5 6 13 10 15 14 8
4 16 8 9 3 16 9 13 13 3 18 10 13 9 13 13 15 17 0 17
18 11 6 10 11 16 0 15 16 5 5 14 9 11 10 15 8 6 18 17
14 6 14 5 6 15 5 10 8 1 17 7 6 7 15 17 6 7 11 17
13 6 6 16 9 0 15 11 12 17 10 7 4 13 14 0 18 11 13 5
14 16 9 2 14 0 0 18 17 9 10 17 0 4 8 17 17 17 5 17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.3 Symmetric self-dual codes over GF(23)

Proposition 5 There exist the best symmetric self-dual codes over GF(23) of length n =
4, 8, 12, 28, 32, 36, 40. Among them, [4, 2, 3]23, [8, 4, 5]23 and [12, 6, 7]23 codes are MDS.
Moreover, [32, 16, 12]23, [36, 18, 14]23 and [40, 20, 15]23 codes are new.

We give the highest minimum distance dsym of symmetric self-dual codes and the pre-
viously best known minimum distance dsd of self-dual codes in Table 6. In this table, new
parameters are written in bold. We present three symmetric self-dual codes having new
parameters:
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Table 6 Tne best known minimum distances of symmetric self-dual codes over GF(23)

[n, k, d]p dsym. dsd. Refs. [n, k, d]p dsym. dsd. Refs.

[4, 2, 3]23 3 3 [5] [24, 12, 10]23 10 13 [26]

[8, 4, 5]23 5 5 [5] [28, 14, 11]23 11 11−14 [25]

[12, 6, 7]23 7 7 [5] [32, 16, 12]23 12 ?−16 –

[16, 8, 8]23 8 9 [5] [36, 18, 14]23 14 13−18 Table 3

[20, 10, 9]23 9 10−11 [8] [40, 20, 15]23 15 14−20 Table 3

Bold values represent new parameters

– [32, 16, 12]23 code with a generator matrix (I16 | A32
23) where

A32
23 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

20 4 11 18 21 7 19 7 15 6 18 18 2 10 5 12
4 1 19 12 11 19 20 8 10 3 11 0 3 6 18 18
11 19 12 20 9 2 0 22 21 21 9 6 21 16 13 9
18 12 20 2 13 7 4 7 22 18 5 15 0 5 11 20
21 11 9 13 9 20 8 19 11 12 11 21 19 14 19 20
7 19 2 7 20 3 12 19 5 2 22 1 21 21 22 13
19 20 0 4 8 12 12 4 19 7 17 11 8 4 1 0
7 8 22 7 19 19 4 1 0 0 16 16 8 15 9 3
15 10 21 22 11 5 19 0 22 1 2 12 13 12 10 5
6 3 21 18 12 2 7 0 1 14 5 5 22 18 11 1
18 11 9 5 11 22 17 16 2 5 10 20 18 12 6 18
18 0 6 15 21 1 11 16 12 5 20 13 16 17 5 22
2 3 21 0 19 21 8 8 13 22 18 16 3 5 7 6
10 6 16 5 14 21 4 15 12 18 12 17 5 7 18 2
5 18 13 11 19 22 1 9 10 11 6 5 7 18 3 0
12 18 9 20 20 13 0 3 5 1 18 22 6 2 0 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

– [36, 18, 14]23 code with a generator matrix (I18 | A36
23) where

A36
23 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

14 8 18 22 3 17 6 3 2 7 14 2 22 12 6 8 12 19
8 18 5 14 21 10 12 16 15 0 18 16 0 20 3 1 2 6
18 5 3 13 8 0 20 1 13 12 22 19 14 9 14 15 22 18
22 14 13 9 7 1 1 17 10 9 22 14 1 11 11 15 19 12
3 21 8 7 20 9 0 2 10 19 7 5 16 0 16 3 15 19
17 10 0 1 9 22 1 13 4 13 5 10 14 0 14 17 2 8
6 12 20 1 0 1 3 13 20 13 1 19 2 6 12 12 2 0
3 16 1 17 2 13 13 21 13 16 17 4 6 6 5 12 9 1
2 15 13 10 10 4 20 13 22 2 6 5 14 14 13 16 13 8
7 0 12 9 19 13 13 16 2 17 9 21 17 4 2 7 20 7
14 18 22 22 7 5 1 17 6 9 20 15 4 22 13 0 17 14
2 16 19 14 5 10 19 4 5 21 15 13 2 15 20 20 3 18
22 0 14 1 16 14 2 6 14 17 4 2 0 2 9 0 11 1
12 20 9 11 0 0 6 6 14 4 22 15 2 1 7 7 5 15
6 3 14 11 16 14 12 5 13 2 13 20 9 7 13 1 9 20
8 1 15 15 3 17 12 12 16 7 0 20 0 7 1 1 4 9
12 2 22 19 15 2 2 9 13 20 17 3 11 5 9 4 18 15
19 6 18 12 19 8 0 1 8 7 14 18 1 15 20 9 15 15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

– [40, 20, 15]23 code with a generator matrix (I20 | A40
23) where

A40
23 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 3 17 18 20 7 20 7 8 12 14 0 8 22 18 0 0 8 9 19
3 8 11 22 1 4 11 4 4 9 8 20 7 21 19 16 13 9 22 10
17 11 8 10 0 11 3 6 20 11 3 20 15 1 14 4 11 8 19 6
18 22 10 1 0 6 14 2 1 15 22 19 11 1 2 3 5 12 12 16
20 1 0 0 12 5 0 15 0 5 20 1 13 16 21 14 8 21 10 3
7 4 11 6 5 15 2 7 9 0 22 15 1 16 22 2 8 13 16 7
20 11 3 14 0 2 17 4 17 6 0 6 14 5 19 8 11 11 17 5
7 4 6 2 15 7 4 5 9 19 16 19 7 12 12 14 11 15 22 3
8 4 20 1 0 9 17 9 12 10 13 18 5 6 19 10 21 5 5 10
12 9 11 15 5 0 6 19 10 5 2 16 14 13 5 6 5 9 20 14
14 8 3 22 20 22 0 16 13 2 0 14 10 9 10 19 7 12 7 21
0 20 20 19 1 15 6 19 18 16 14 13 18 4 9 10 4 11 2 9
8 7 15 11 13 1 14 7 5 14 10 18 15 19 6 20 20 12 15 22
22 21 1 1 16 16 5 12 6 13 9 4 19 9 16 6 17 20 8 12
18 19 14 2 21 22 19 12 19 5 10 9 6 16 17 14 13 15 3 13
0 16 4 3 14 2 8 14 10 6 19 10 20 6 14 15 4 1 9 12
0 13 11 5 8 8 11 11 21 5 7 4 20 17 13 4 12 22 18 19
8 9 8 12 21 13 11 15 5 9 12 11 12 20 15 1 22 18 14 8
9 22 19 12 10 16 17 22 5 20 7 2 15 8 3 9 18 14 20 5
19 10 6 16 3 7 5 3 10 14 21 9 22 12 13 12 19 8 5 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Table 7 Bounds on the highest minimum distances of self-dual codes over GF(p) for primes 5 ≤ p ≤ 23 up
to lengths 40

n\q 5 7 11 13 17 19 23

2 2∗ – – 2∗ 2∗ – –

4 2o 3∗ 3∗ 3∗ 3∗ 3∗ 3∗
6 4∗ – – 4∗ 4∗ – –

8 4o 5∗ 5∗ 5∗ 5∗ 5∗ 5∗
10 4o – – 6∗ 6∗ – –

12 6o 6o 7∗ 6o 7∗ 7∗ 7∗
14 6o – – 8∗ 7−8 – –

16 7o 7o 8o 8o 8−9 8−9 9∗
18 7o – – 8−9 10∗ – –

20 8o 9o 10o 10o 10o 11∗ 10−11

22 8o – – 10−11 10−11 – –

24 9−10 9−11 9−12 10−12 10−12 10−12 13∗
26 9−10 – – 10−13 10−13 – –

28 10−11 11−13 10−14 11−14 11−14 11−14 11−14

30 10−12 – – 11−15 12−15 – –

32 11−13 13−14 12−16 12−16 12−16 14−16 12−16

34 11−14 – – 12−17 13−17 – –

36 12−15 13−16 13−18 13−18 13−18 14−18 14−18

38 12−16 – – 13−19 14−19 – –

40 13−17 14−18 14−20 14−20 14−20 15−20 15−20

Bold values represent new parameters In this table, o denotes optimal code and ∗ denotes MDS code. [5,8,11–
13,15,25,26]

5 Conclusions

In this article, we introduced new construction methods of symmetric self-dual codes over
finite fields. Then we have constructed many new symmetric self-dual codes, including 153
self-dual codes with new parameters, up to equivalence. This paper contributes in two ways.
One is to provide new constructionmethods of symmetric self-dual codes overGF(q) for the
challenging case of q ≡ 3 (mod 4). The other is to improve bounds on the highest minimum
distance of self-dual codes, which have not been significantly updated for almost two decades
because of computational complexity. We believe that our methods can produce more results
for self-dual codes over larger finite fields and/or of longer lengths.

Acknowledgements The authors sincerely thank Dr. Markus Grassl for his helpful comments which was
crucial for the implementation.
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