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Abstract

This paper gives new methods of constructing symmetric self-dual codes over a finite field
GF(q) where g is a power of an odd prime. These methods are motivated by the well-
known Pless symmetry codes and quadratic double circulant codes. Using these methods,
we construct an amount of symmetric self-dual codes over G F(11), GF(19), and G F (23)
of every length less than 42. We also find 153 new self-dual codes up to equivalence: they are
[32, 16, 12], [36, 18, 13], and [40, 20, 14] codes over G F(11), [36, 18, 14] and [40, 20, 15]
codes over G F(19), and [32, 16, 12], [36, 18, 14], and [40, 20, 15] codes over G F'(23). They
all have new parameters with respect to self-dual codes. Consequently, we improve bounds on
the highest minimum distance of self-dual codes, which have not been significantly updated
for almost two decades.

Keywords Symmetric self-dual code - Optimal code - Self-dual code - Symmetric generator
matrix - Anti-orthogonal matrix

Mathematics Subject Classification Primary 94B05 - Secondary 11T71

The author (Whan-Hyuk Choi) is supported by the National Research Foundation of Korea (NRF) Grant
funded by the Korea Government (NRF-2019R111A1A01057755) and is supported by NRF under the
project code 2020K2A9A1A06108874. The author (Jon-Lark Kim) is supported by the National Research
Foundation of Korea (NRF) Grant funded by the Korea government (NRF-2019R1A2C1088676) and is
supported by NRF under the project code 2020K2A9A1A06108874.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue:
On Coding Theory and Combinatorics: In Memory of Vera Pless”.

B Jon Lark Kim
jlkim@sogang.ac.kr

‘Whan Hyuk Choi
choiwh@unist.ac.kr

1 Department of Biomedical Engineering, 50,UNIST-gil, Ulsan 44919, Republic of Korea
Department of Mathematics, Sogang University, Seoul 04107, Republic of Korea

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-021-00968-3&domain=pdf
http://orcid.org/0000-0002-0517-9359

2736 W.H. Choi, J.L. Kim

1 Introduction

Coding theory, one of the most interesting areas of applied mathematics, was born almost
simultaneously with the invention of modern computers - the beginning of the error-correcting
code came from Claude Shannon’s paper “A mathematical theory of communication” in
1948, and Richard W. Hamming’s paper “Error detecting and error correcting codes” in
1950. These days, binary and nonbinary codes such as g-ary Hamming codes, the binary and
ternary Golay codes, and g-ary Reed-Solomon codes are used in internet communication,
GPS signals, mobile phones, and computer devices. It is well known that error-correcting
codes are closely related to cryptography [7,24]. Moreover, researchers have recently started
investigating the relation between error-correcting codes and deep learning [3,18].

On the other hand, self-dual codes have been the subject of much interest and are regarded
as one of the most important classes of error-correcting codes. This is because of both
theoretical reason and connections to various fields of mathematics such as designs [16],
lattices [2], sphere-packings [9], and modular forms [4].

Among various research topics of self-dual codes, it has attained an extensive research
effort to find a best code; here, best refers to having the greatest error correction ability as
possible. The error correction capability of a code depends on the minimum distance. Thus,
it is crucial to find a method to construct codes having the highest minimum distance. To
this end, various techniques were studied involving circulant and bordered circulant matrices
[5,14] and quadratic double circulant matrices [12]. Recently, families of codes over rings
have been used to construct self-dual codes over finite fields [10,19].

Despite these efforts, there remain many codes to be found, missed by previous con-
struction methods due to computational complexity. In particular, we hardly know about the
optimal minimum distances of self-dual codes over finite fields of order > 5 and of lengths
> 22. In this case, only the possible bounds of highest minimum distances are known so far.
For example, in the case of codes over G F (11), the bounds of highest minimum distances of
lengths < 40 are known, as we can see in Table 4. Moreover, there is no information about
the lower bound of the self-dual code of length 28.

In 1972, Vera Pless introduced Pless symmetry codes, as a generalization of ternary
extended Golay code [22,23]. Using this class of codes, Pless obtained many new opti-
mal self-dual codes over G F (3). Three decades later, Gaborit presented a generalization of
Pless symmetry codes to different fields, quadratic double circulant codes [12]. He also found
many new self-dual codes over GF(4), GF(5), GF(7), and G F(9). We want to remark two
things: one is that these two methods used particular symmetric matrices to construct self-
dual codes. The other is that these methods have a limitation of lengths; the possible lengths
of codes are limited to 2n + 2 or 2n where 7 is a power of an odd prime. Thus, there needs
a new method to fill the gap between these lengths. These are the main motivation of this
paper.

If a self-dual code of length 2n over G F'(¢) has a standard generator matrix G = (I, | A)
where A is symmetric, it is called a symmetric self-dual code. In [8], we introduced a method
of symmetric building-up construction. This method was to construct symmetric self-dual
codes over GF(q) for ¢ = 1 (mod 4). In [8], we showed that this method provides an
efficient way to construct all symmetric self-dual codes over G F (g), increasing lengths by
two. Stimulated by this result, we have struggled to find a method when ¢ = 3 (mod 4).
However, it is not easy to generalize the method in [8]. In [8], the square root of -1 plays the
key role, but unfortunately, it is well-known that the square root of -1 does not exist in G F (q)
for ¢ = 3 (mod 4). Nevertheless, we find two novel construction methods as follows :
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T T e e, ; 23
sym n d d d d dsy d

self-dual codes vs. previously " sym sd sym sd sym sd

best known minimum distance 3 3 3 3 3 3

dyq of self-dual codes

[5.8,11-13,15,25] 8 3 5 3 3 3 3
12 7 7 7 7 7 7
16 8 8 8 8 8 9
20 8 10 11 11 9 10
24 9 9 10 10 10 13
28 10 10 11 11 11 11
32 12 ? 12 14 12 ?
36 13 12 14 ? 14 12
40 14 13 15 ? 15 13

1. Construction A

New parameters are written in bold

Let (1, | A) be a generator matrix of a symmetric self-dual code of length 2n over G F (¢)
and assume that (x,, y,) is a codeword satisfying x,, - y, = 0 and x,, - X, = k such that

—1 = k are squares in GF(q). And let B = <ax,, +/3Yn> where o + 2 = —1,
Bxy — ayy
E = 1 (sx!x, + tyly, —xI'y, — yI'x,) where s> = —1 + k and 1> = —1 — k and let
D =—%B(A+ E\)B"BB”. Then
L|O| D B
<OInBTA+E)

is a generator matrix of symmetric self-dual code of length 2n + 4.

. Construction B
Let (I, | A) be a generator matrix of a symmetric self-dual code of length 2n over
GF(q), let P = (g i) be a 2 x 2 matrix such that P2 = —1I>, and let a matrix
_ X . " . .
M = (,B_IX(A _ ozI)) for a vector x in G F (g)". Assume that H is a2 x 2 symmetric

matrix satisfying (H + P)(H — P) = —MMT and H — P is non-singular. Then

L0
o\,

H
MT

M
A+MT(H-P)'M

is a generator matrix of symmetric self-dual code of length 2n + 4.

Using these methods, we obtain many new self-dual codes. Consequently, we improve
the bounds on the minimum distances of self-dual codes. We revised these results in Table
1. In Table 1, new parameters are written in bold. Throughout this paper, dyy, denotes the
highest minimum distance of a symmetric self-dual code over G F(p) and dsq denotes the
previously best-known minimum distance of self-dual codes over G F (p). More precisely, we
give new self-dual codes with highest minimum weights: they are [32, 16, 12], [36, 18, 13],
and [40, 20, 14] codes over GF (11), [36, 18, 14] and [40, 20, 15] codes over G F (19), and
[32, 16, 12], [36, 18, 14], and [40, 20, 15] codes over G F(23). We also provide numbers of
new symmetric self-dual codes, up to equivalence, in Table 2.

The paper is organized as follows. Section 2 gives preliminaries for self-dual codes over
finite fields. In Sect. 3, we present two construction methods for symmetric self-dual codes
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Symmetric slf dualcodesof 2 11 19 2

lgngth 32, 36 and 40 n dgym  #ofcodes  dsy;m  #ofcodes  dsyy  #of codes
32 12 > 44 12 > 801 12 > 52
36 13 > 16 14 >3 14 >2
40 14 > 42 15 >2 15

over G F(q), where ¢ is an odd prime power. In Sect. 4, we give the improved bounds of

highest minimum distances and the computational results of the best codes obtained using

our new methods. All computations in this paper have been done with the computer algebra

system MAGMA [6]. We list all our codes with generator matrices in J.-L. Kim’s website [20].
We use the following notations throughout this paper.

Notations

q A power of an odd prime number

GF(q) Finite field of order ¢

dsym The highest minimum distance of symmetric self-dual codes

dsdq The previous best known minimum distance of self-dual codes

I The identity matrix of degree n

[n, k,d]g code A linear code of length n and dimension k over G F(g) with minimum distance d
Al The inverse of a matrix A

AT The transpose of a matrix A

2 Preliminaries

Let n be a natural number, and G F (¢g) be the finite field of order ¢ where ¢ is a prime power.
A linear code C of length n and dimension k over G F(g) is a k-dimensional subspace of
GF(q)". An element of C is called a codeword. A generator matrix of C is a matrix whose
rows form a basis of C; therefore, a generator matrix of a linear code C of length n and
dimension k over G F(q) is a k x n matrix over G F (q). For vectors x = (x;) and y = (y;)
in GF(g)", we define the inner productx -y = Y 7_, x;y;. If vectors are identified with row
matrices, the inner product can also be written as a matrix multiplication x - y = xy” , where
y! denotes the transpose of y. For a linear code C, the dual code C* is defined as a set of
orthogonal vectors of C, i.e.,

Ct={xeGF(@)" |x-¢c=0for all ¢ceC}.

A linear code C is called self-dual if C = C* and self-orthogonal if C C C*.

The weight of a codeword ¢ is the number of non-zero symbols in the codeword and
denoted by wt(c). The Hamming distance between two codewords x and y is defined by
d(x,y) = wt(x—Yy). The minimum distance of C, denoted by d(C), is the smallest Hamming
distance between distinct codewords in C. A measure for the error-correcting capability of a
code is the minimum distance; thus, the minimum distance is regarded as the most important
parameter of a code. If a code has the minimum distance that meets some upper bounds, it is
called an optimal code. It is well-known [17, chapter 2.4.] that a linear code of length n and
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Table 3 New quadratic double circulant codes over G F(g) obtained using methods in [12]

length q generator matrix d length q generator matrix d

28 11 713(3,0) 10 36 23 17(11,0) 12
28 17 713(2,0) 10 40 11 S19(3,4) 13
28 19 713(5,0) 10 40 13 S19(2,4) 13
28 29 S13(4,0) 10 40 17 S19(17,0) 13
36 11 S17(4,0) 12 40 23 S19(2,0) 13
36 13 7173, 0) 12 40 29 S19(1,3) 13

dimension k satisfy the Singleton bound,
diC) <n—k+1.

A code that achieves the equality in the Singleton bound is called a maximum distance
separable(MDS) code. Obviously, a self-dual code of length 2n over G F (q) is MDS if the
minimum distance equals n + 1. Although every MDS code is optimal, the MDS conjecture
shows that there exists an MDS self-dual code of length 2n over GF(g) only if 2n < g + 1
for odd ¢ [1]. Therefore, if 2n > g + 1, the minimum distance of self-dual code of length
2n over G F (g) is most likely upper bounded by #.

Let I, be the identity matrix of order n and let A7 denote the transpose of a matrix A. It
is well-known that a self-dual code C of length 2n over G F(q) is equivalent to a code with
a standard generator matrix

(1]A4). )

where A is an n x n matrix satisfying AAT = —1,.

A matrix A is called symmetric if AT = A. If a self-dual code of length 21 over GF(q)
has a standard generator matrix G = (I,, | A) where A is symmetric, it is called a symmetric
self-dual code. Since the class of symmetric self-dual codes is a subclass of general self-dual
codes, the bound on minimum distances of symmetric self-dual code may be different from
that of self-dual codes. However, if a symmetric self-dual code has the same parameter as an
optimal(resp. MDS) self-dual code, it is called an optimal (resp. MDS) symmetric self-dual
code. If the minimum distance of a symmetric self-dual code meets the best known minimum
distance of a self-dual code, it is called the best symmetric self-dual code.

In [22], Pless introduced Pless symmetry codes as a generalization of ternary extended
Golay code and their construction method. As aresult, Pless obtained optimal self-dual codes
of length 24, 36, 48, and 60 over G F (3). Later in [12] Gaborit presented a generalization of
Pless symmetry codes to different fields, quadratic double circulant codes and their construc-
tion method. Gaborit obtained many new self-dual codes over GF (4), GF (5), GF(7) and
G F(9), and improved the bounds on the highest minimum distances. To use as a reference,
we additionally obtain quadratic double circulant codes of lengths < 40 over various finite
fields, following the same construction method in [12]. We present these codes in Table 3,
following the same notations in [12].

We remark that a self-dual code in the class of Pless symmetry codes or quadratic double
circulant codes is equivalent to a symmetric self-dual code. In general, a pure double circulant
self-dual code is equivalent to a symmetric self-dual code, and a bordered double circulant
self-dual code is equivalent to a symmetric self-dual code under a certain condition. We
discuss the equivalence between these codes in the next.
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2740 W.H. Choi, J.L. Kim

Let S, be the symmetric group of order n and D" be the set of diagonal matrices over
G F(g) of order n,

D" = {diag(y;) | vi € GF(q), v} = 1}.
The group M" of all y-monomial transformations of length n is defined by
M ={psy |y eD", o €S,)

where p, is the permutation matrix corresponding o € §,. We note that a y-monomial
transformation preserves the self-orthogonality of a code (see [17, Thm 1.7.6]). Let Ct =
{ct | ¢ € C} for an element T in M”" and a code C of length n. If there exists an element
i € M" such that Cu = C’ for two distinct codes C and C’, then C and C’ are called equivalent
and denoted by C ~ (' .

Proposition 1 Let G = (I, | A) and G’ = (I, | B) be generator matrices of self-dual codes
C and C' of length 2n, respectively. If A = | Buy for some 11, uy € M", then C and C' are
equivalent.

—1
Proof For i = (Ml

o 2
e M,
o Mz)

(n | A) =y | p1Bua) = (uy" | Bua) = (In | B).

Thus, C and C’ are equivalent.

Corollary 1 Let I,, be the identity matrix of order n, A be an n X n circulant matrix, B be an
(n — 1) x (n — 1) circulant matrix. Then,

(i) a pure double circulant code over G F (q) with a generator matrix of the form
(In | A)

is equivalent to a code with symmetric generator matrix, and
(ii) a bordered double circulant code over G F (q) with a generator matrix of the form

a B---B
I,y8 B ,
vB

where a and B are elements in GF(q) and y* = 1, is equivalent to a code with symmetric
generator matrix.

Proof Let R, be the n x n anti-diagonal matrix whose anti-diagonal elements are all 1. Then
it is clear that matrices AR, and B R, are symmetric. Thus, the corollary follows directly
from Proposition 1.

Let S_; be a set of solutions of the equation x> 4+ y> = —1 over GF(g). Then the
cardinality of S_; for an odd prime ¢ is obtained in the next proposition.

Proposition 2 [21] Let GF (q) be a finite field of order q such that q is a power of an odd
prime. The cardinality of the set

So1={(x,y) € GF(@)?* | x> +y* + 1 =0}
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is given by

S| =g — (1D = qg—1, ifg=1 (mod 4),
qg+1, ifg=3 (mod 4).

Similarly, we define a set S_j, of 2 x 2 symmetric matrices over G F(q) satisfying the
matrix equation X2+ I, = 0. We also obtain the cardinality of S_ 1, in the following corollary.

Corollary 2 Let K = GF(q) where q is a power of odd prime and let S_p, be a set of 2 x 2
symmetric matrices over K such that

S_p, ={P € GLy(K) | P> = —I}.

Then, the cardinality of S—y, is given by

1S =q—(—Dab2 19~ 1, ifg=1 (mod 4),
2 g+ 1, ifg=3 (mod 4.

Proof The condition P2 = —I, implies that P~' = —P. Since we assumed that P is

symmetric, it is easy to show that matrix P is in the form (% _ﬂa ), where («, B) is a solution

of the equation X2+ y2 = —1. Thus, the result follows with Proposition 2.

3 Construction method of symmetric self-dual codes

It is well-known that a self-dual over G F(g) of length n for ¢ = 1 (mod 4) exists if and
only if » =0 (mod 2), and a self-dual over G F(g) of length n for g = 3 (mod 4) exists if
and only if n = 0 (mod 4) [17, Theorem 9.1.3]. In [8], we have introduced a construction
method for symmetric self-dual codes over G F(g) for ¢ = 1 (mod 4). In this section, we
introduce two new construction methods for symmetric self-dual codes over G F(¢) forg = 3
(mod 4). These methods generate symmetric self-dual codes of lengths increased by four.

Theorem 1 (Construction method 1) Let G = (I, | A) be a generator matrix of symmetric
self-dual code C of length 2n over G F(q) for an odd prime power q. Assume that there
exists a codeword (Xp,yn) in C satisfying X, -y, = 0, X, - X, = k(# 0), and —1 £ k
X, + BYn
ﬂxn — Qyn ’
E = %(sanxn +tyl'y, — xTy, — yI'x,) where s> = —1 4+ k and t* = —1 — k, and let
D =—%B(A+E)B"BB”. Then
B
A+ E

is a generator matrix of a symmetric self-dual code of length 2n + 4.

are squares in GF(q). Then, take an element («, B) in S_1 and let B = <

16}

G =Upp2 | A)) = <0

o|D
I,|BT

Proof Since the code C has the generator matrix G = (I, | A), the vector x,G = X, (I, |
A) = (Xp, ¥n) is a codeword in C for any x,, in GF(g)" and y, = x, A. Hence,

X, Y =0<% xn(an)T = x,,Ax,{ =0.

Therefore, if there exists a vector x,, which makes x;, Aan become zero for the matrix A,
then we let (X, y,) = (Xp, X, A) for the assumption in this theorem. If there is no vector x,,
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2742 W.H. Choi, J.L. Kim

satisfying x, Ax! = 0, then we cannot apply this theorem on C. It is obvious that the matrix
Ay, A, D, and E are symmetric. Thus, we have to show that

D| B DT
T _
A4 _< A+E>(BT

BT
In other words, we have to show that following three identities hold :

B
AT —I—ET = —Iyt2.

D>+ BBT = —1, )
DB + B(A+ E) = O2xx, 3)
BTB4+ (A4 E)? =—1I,. “)
Firstly, we verify the equality of (2). By the assumptions, we have that A2 = —I,,
o? + ,82 = —1 and xnx,{ = k. Since (X, y,) is a codeword of a self-dual code C, it is
also clear that x,x! +y,y! = 0and (x,,y,)G' = X, + y,A = O,. Thus, y,y!I = —k,
ynA = —X, and X, A =y, . By direct computations, we obtain that
T
BABT = (O{X,,A + BynA <05Xn + BYn
Bx, A —ay,A) \Bx, —ay,
ay, — BX
= (G B nd -+ it =)

[ —2kap  k(a*-p?)
“ \k@?®-B%  2kaB ’

and
I (ax, + By ax, + Byn )"
T _ ~ n n T Ty _ oI T n n
BEB" = X (ﬁxn ~ay, (5%, Xn + 1Y, Yn — X, Yn — ¥, Xn) Xy — ay,
_ 1 kO{SXn — kayn — kﬂtyn + k,BXn T T T T
- % (k/ssxn — kBy, + katy, — kax, (Oan + ﬁyn IBX” B ozyn)
_( kaPs+2kaf + kBt kaps + kB> — ka® — kapt
~ \kaBs + kp% — ka® — kaft  ka’t — 2kap + kB%s
Therefore,
T T v (ka?s + kB>t kaPs — kapt
B(A+E)B' =BAB" +BEB" = (kotﬁs — kapt ka’t +kp?s )’
and

D= —i(B(A + E)BT)BBT
-

1 (azs + B2t afs —cx,Bt) BET

Tk afs — aft ot + s
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a2 — B 2aB

: T _
Since BB —k< 2B —a? + B2

) , We obtain

D— als + B2t afs —aft) (a? — B2 20pB
~ \aBs —apt o%t + B%s 208 —a®+ B2

. als — ﬁzt aff(s +1)
“\aBs +1) —a?t+ B3 )

Hence,
2 2 2 2 2
2 r [ a‘s— Bt —af(s+1) at—p 208
b*+ BB = <—aﬂ(s+t) o’t — s tk 2af —a’+ B?

(st — B —af(st —1?) iy o — B2 208
T\ —aB(s? —12) —a?i? — p2s2 208 —a? 4+ p2
[Pk —s?) = Bk +17) aB 2k — 52 +12)
- afk —s2+12) =Pk +1)+ B2k —5>)"

Since s> = —1 + k and 1> = —1 — k, we have that k — s> = 1, k + 1> = —1 and

—s2 4+ 12 = 2k. Therefore,

D2+BBT=< o’ + B2 a,B(Zk—Zk))

a2k —2k) o+ B2

= - ]2 )
which is desired. The identities (3) and (4) are verified by similar computations.

We need following two lemmas to introduce the second construction method.

Lemma1l Let P = (z _a> be an element in S_j, and A be a symmetric matrix satisfying

, then

2 _ . n o . _ X
A% = —1I,. Foravectorxin GF(q)", if we let the matrix M = (,B‘lx(A —ozI))

MA=PM.

Proof Lety = B~!'x(A — ). Then By = XA — ax and this implies that XA = ax + By.
On the other hand,

YA+al)=B7'x(A —al)(A+al)
=B 'x(A% — &®I)
=B x(=1 —a?)I

= Bx, since o + % = —1

and this implies that yA = Bx — ay. Therefore,

_ (xA\ _ (ax+ By
wa= () = (238 <
Lemma 2 Assume that n x n matrices H and P are symmetric. If (H + P)(H — P) is also
symmetric, then HP = PH.
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2744 W.H. Choi, J.L. Kim

Proof By the assumption, we have
(H = P)(H + P)={(H — P)(H + P)}\
=H+P)'(H-P)
=(H+ P)(H - P),
and by equating both sides, the result follows.
Now, we give the next theorem, which introduces the second construction method.

Theorem 2 (Construction 2) Let G = (I, | A) be a generator matrix of a symmetric self-
dual code C of length 2n over G F (p) for an odd prime p and let S_, be the set defined in

—(« 8 . _ X
Corollary 2, and let P = ( ) be an element in S_y,. Let M = (ﬁflx(A _ a1)> fora

B —a
vector X in GF(q)". Assume that H is a2 x 2 symmetric matrix satisfying the equation
(H+P)(H—P)=-MM", &)

and H — P is non-singular. Then

I
Go = (2 | A2) = (5

O|H M
L MT|A+MTH-P)"'M
is a generator matrix of a symmetric self-dual code of length 2n + 4.

Proof 1t is easy to check that A, is symmetric. Therefore, we have only to show that A is
anti-orthogonal, i.e.,

H M H M
(MT A+MT(H - P)—IM) (MT A+MT(H -~ P)—1M> = ~Int2.
In other words, we have to show that following three identities are hold :
H*+MM" = -1, (6)
HM + M(A+M"(H — P)"'M) = Oz, )
M"M+ A+ M"(H— P 'M)* = —1,. (8)

We note that, with the assumption, MA = PM and HP = P H by Lemmas 1 and 2.
First, it is easy to show that the identity (6) is true from the Eq. (5). For the identity (7),
we calculate that

HM +MA+MT(H—-P)"'"M)=HM + MA+MM"(H — P)"'M
=H+PM+MM'(H-—P)"'M
=(H+P)H—-P)+MM"YH—-P)'M
=0,H—-P)'M
= O2x»n

and the result follows.
Finally, for the identity (8), we expand the left hand side of (8):

M'M+A+M'(H—-P)y"'M)?
=M"M+ A2+ AMTH-P) "M+ M"(H-P) 'MA
+MTH-P)'MMT(H - P)"'M. )

@ Springer



An improved upper bound on self-dual codes 2745

Note that A2, the second term of (9) equals —1,. We compute the sum of (9) except the
last term:

MM+ A2+ AMT(H - P) "M +M"(H - P)"'MA
=M"M—-1,+M"'P(H-—P)"'"M+M'(H-P)'PM
=—ILi+M" (I, + P(H—P)"" +(H—P)"' P)M
=—I,+MT(H—-P)"'(H-P)>+(H—-P)P+P(H—P)H-P)'M
=—1,+M'(H-P)""(H> - P*)(H - P)"'M.

And we put MMT = —(H + P)(H — P) in the last term of (9) to calculate
MT(H - Py 'MMT(H—-P)"'M
=-MT(H—-P)""(H+ P)(H—P)H—-P)"'M
=-M"(H - P)"Y(H? — P®>)(H — P)"'M.

Therefore, we obtain that

M"M+(A+M"(H—-P)"'M)* =—1,,

and this is desired.
We illustrate these new construction methods in the following examples.

Example 1 Let C§ be a symmetric optimal self-dual [8,4,3] code over G F (3) with generator
matrix
10001100
G = (01001200)
00100021 -
00010011

To apply construction method in Theorem 1, take (¢, 8) = (1
(Xnlyn) = (2,1,1,1,0,1,0,2) in C§. Then, we compute that B = (3

1293
E= (0201)-
2210

Finally, we find an optimal symmetric self-dual [12,6,6] over G F'(3) code with generator
matrix

, 1) and the codeword
210 — (21
019):D=(73).and

100000212210
010000122012
G = 001000221202
1=1000100202122
000010110222
000001022221
Example2 1etC §9 be a symmetric self-dual [8,4,3] code over G F (19) with generator matrix
100018130 0
G = 010013100
— V00100 016
00010 0618
To apply construction method in Theorem 2, take (o, 8) = (18,6) and x = (1, 6,9, 6)

in GF(19)*. Then, M = (5938) and H = (},

), and finally, we obtain a symmetric
[12,6,7] self-dual code over G F(19) of length 12 with

generator matrix

1000009121 6 9 6
010000121313 1 9 9
G, = | 00100071137 171314
2=10001006 117147 6
0000109 913 7 1211
0000016 914 6 11 2
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4 Computational results

In this section, we discuss computational results of symmetric self-dual codes over G F(q)
for g = 11, 19, 23. Using construction methods in Theorems 1 and 2, we obtain many new
symmetric self-dual codes of lengths n < 40 which meet the best known bounds on minimum
distances of self-dual codes.

We find the best symmetric self-dual codes of length n over G F(q) for ¢ = 11, 19,23
and n < 40 except for the case that ¢ = 11 with n = 16 or 20, for the case that ¢ = 19
with n = 32, and for the case that ¢ = 23 with n = 20 or 24. Moreover, we also find more
than 151 self-dual codes with new parameters: 90 inequivalent self-dual codes of length 32,
36 and 40 over GF(11), 5 inequivalent self-dual codes of length 36 and 40 over G F(19)
and 56 inequivalent self-dual codes of length 32, 26 and 40 over G F(23). Among them, we
introduce five symmetric self-dual codes with their generator matrices in this section.

At the end of this section, we summarize the known bounds on the highest minimum
distances of self-dual codes in Table 7.

4.1 Symmetric self-dual codes over GF(11)

Proposition 3 There exist the best symmetric self-dual codes over GF (11) of length n =
4,8,12,24,28,32,36,40. In particular, [4,2, 3111, [8, 4, 5]11 and [12, 6, 7]11 symmetric
self-dual codes are MDS. Moreover, [32, 16, 12]11, [36, 18, 13]11 and [40, 20, 14]1; codes
are new.

We give the highest minimum distance djy,, of symmetric self-dual codes and the pre-
viously best known minimum distance dy4 of self-dual codes in Table 4. In this table, new
parameters are written in bold. We present three symmetric self-dual codes having new
parameters:

- [32, 16, 12];; code with a generator matrix (/¢ | Aﬁ) where

6 771 2859981647106
797808486102 697810
77608 249163876904

1807 07102199 33280

2 08010108 103 010808100

8§ 827107102 97 7 0610 3
544108 10107 8 5 2 5483 9

A2 -] 9892102 70328100784 6
11 — 9611398301 51077810
81069 0752199 1194 4
1289107 285937729 4

6 67380510101 7 7268 2

4963 064771725776
7792818879267415
10808100 3 48 4987172
61040 0 3 96104 4 26529

— [36, 18, 13]1; code with a generator matrix (118|A??) where

5106 754719 4477818838
10108 7 64589 710130 589 9

6 8106 4246100 1 569 195 1

77 6 343421104 153 7846
564463748999910045 9

4 42 331722037665114
75447764107 1291406 7

1 8624243784 111221 4
A36_ 99101 821073 8 7 699 331 7
11— 4701090788 05008 04810
4101 493147 521033201 3
715197216 010008 6500
736596919030976750
8§09 310611983878 81510
15170542302 66381008 7

8§ 8984102340571 029 2
89545161181 05589410
8916 94747103 00107 2106
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Table 4 The best known minimum distances of symmetric self-dual codes over G F(11)

[n, k. dlp dsym. dgg. Refs. [n,k,d]p dsym. dsg. Refs.
[4,2,3]11 3 3 [5] [24, 12,9111 9 9—-12 [5]
[8,4,5]11 5 5 [5] [28, 14, 10]14 10 10—14 [25]
[12,6,7]11 7 7 [5] [32,16, 12]11 12 7—16 -

[16, 8, 8]11 8 8 [5] [36, 18, 13]11 13 12—18 Table 3
[20, 10, 8]11 8 10 [5] [40, 20, 14]11 14 13-20 Table 3

Bold values represent new parameters

— [40, 20, 14]11 code with a generator matrix (/29 | A‘]“l)) where

40 _
Apl =

NOWOUNONO B TRRNNSTI—A B

AL NIA—=ONHE NN = —LWAN &~

— —_
obo

CUOCONTORANNR—UNO A RONAR
— —_ - _

CONSOCRVNOT— WS ANSTWAOW—

CURNOSTTINORATIT—O 0L TW =

VNOHRNR WO ORROWOSAL

WA NNOLWARRIN—ANROONO—W

LWL WIIWRRILALAOS L UL

— oo
SRS

[=}

0000 NN 00 N D LI \D W N =111 \O ~J1 W 00 00 00
(=}

OV = OO0 O NI WO D s L —
QOWNZTTIN—ANAWOR A BEI—ANS
— AN UNZT AN OW 0N

SPNWIROR S—WNWAODORANO
SHOZNOAN NN ONWOUNIO 0L
AL—O W AR NUNO Z0WI0 S0

4.2 Symmetric self-dual codes over GF(19)

NPAWAOWEROANIOIW

o
SWNWUN00RN0—LWWOUNDOUNWO

LU0 B WOTRTONWUN A S OUNIUN
AWOEOANWINUNONUNRO T AN

—ONO N~

RS—OWhEOS—ONRAINNOOORA

Proposition 4 There exist the best symmetric self-dual codes over GF(19) of length
n = 4,8,12,16, 20,24, 28, 36, 40. Among them, [4,2, 3119, [8, 4, Sho, [12,6, 7l19, and
[20, 10, 11]19 codes are MDS. Moreover, [36, 18, 14]19 and [40, 20, 15]9 codes are new.

We give the highest minimum distance djy,, of symmetric self-dual codes and the pre-
viously best known minimum distance dg4 of self-dual codes in Table 5. In this table, new
parameters are written in bold. We present two symmetric self-dual codes having new param-

eters:

— [32, 16, 12]19 code with a generator matrix (/¢ | A?é) where

3
Ajy =

—_—
(o3 9]
w

—_ —_ ——

D O—= S NRWNW G =IN35 5
—_—
w1

RR—FSHO NN WL
—_— ————
RONRSOCUAR S ERWSW
i b i ——
WoNEGRAPRRELN
s S
TRRPERRGNG RGN ORDW

—_
—_

oo

—
O

— —

CHGOWHELEL—R

oW

5118151016 1 2 2 11
153538510189
166 50 612187 0 2
334161215147 10 3
1416 2 16 8 3 4 1412 1
183 0158 016 9 1318
9102 0 5 5103 0 11
10717170 6 16 3 8 5
217 8141218167 2 6
017147 116133 9 12
50121 81213161611
5 61816128 8 6 16 4
1016161313 8 4 3 2 18
3373166 3141313
082916162134 6
115 61211 4 1813 6 14
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Table 5 The best known minimum distances of self-dual codes over G F (19)

Refs.

dsq

[n, k, d]p dsym

dsq Refs.

ds ym

[n, k., d]p

10—-12 [25]

10

11

[24, 12, 10]19

(3]
(3]
(3]
(51
(51

[4.2,3]19

[25]
[8]

11-14

14—-16
7—-18
?7-20

[28, 14, 11]19

[8,4,5]19

12
14
15

[32, 16, 12]19

[12,6, 7119

[36, 18, 14119

(16,8, 819

[40, 20, 15]19

11

11

[20, 10, 11119

Bold values represent new parameters

— [36, 18, 14]19 code with a generator matrix (/;g | A?g) where

0 o0 ool
AtootanleB X 2t
N2l lNarTorolotal

et e

cacvaanX=YoVNo—an 20T

———

Nl tC oS Xonlror

===
crlraSirodYooBn s
N NCnCatotl+~Tooanwo?

) )
R R e

——

oo N0 %) S|

SO¥ Tl ——2Er N 2on
© —

hpmicia it h -t b hwia P b S

NV nP ol oo TR

7563MHB90M3387WM47
S D S-SRIt ToR
NN 2nTaona ST X Na
Sl L NERES
Voo~ —=A TS0
TXRARNN ORI S CD 000
pohtEmbtiminlleloimhhlab ity

oIt et ST nand

— e — —— —

36
A19

— [40, 20, 15]19 code with a generator matrix (/20 | A‘fg) where

Tloa¥ocoXTaSlotETnE:
RCICA-CNShimin bvisd ot IS Eomiutitel
ToFrolnCw—~Crom oD
LoD LolCnnIaZSlwoX:
L0l SRl ol
CONNTOE T F oS T o

—— v — —— — — v —

O+ 20 ZSinno =0«

—— —

oo~ ¥ 0t l—0S~Cavto

———
o 0 0 N

Ilowo—wEnAo L~ S D

S inen—o0 = MNRONR SO =0 OO

e et ot et ———

oI LAl na N onTnin—Ton

111
R e O -t e ecla

SO G o T NN XX N NS =X

111 11111111
L—doXooI+2lwIEEaonlo
O N oo TAS 0NV oo

v — e o o e o
CllnEERE e oo~ Do
nto—~ Lol —~voanlaSinea
Aol =V ComoBTawoe T oo
SO0 —=Ct Do D8 Tvwol
=Nl 2=l Tooosr XTI

———— — e —

40
Alg

4.3 Symmetric self-dual codes over GF(23)

Proposition 5 There exist the best symmetric self-dual codes over G F(23) of length n =
4, 8,12, 28, 32, 36, 40. Among them, [4, 2, 3123, [8, 4, 5]23 and [12, 6, T]23 codes are MDS.

Moreover, [32, 16, 12]3, [36, 18, 14],3 and [40, 20, 15]»3 codes are new.

We give the highest minimum distance djy,, of symmetric self-dual codes and the pre-
viously best known minimum distance dsq of self-dual codes in Table 6. In this table, new

parameters are written in bold. We present three symmetric self-dual codes having new

parameters:
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Table 6 Tne best known minimum distances of symmetric self-dual codes over G F(23)

Refs.

dsq.

Refs. [n, k,d]p dsym.

dsq.

dsym.

[n, k. d]p

[26]
[25]

13

10

11

[24, 12, 10123

[5]
[5]
[5]
[5]
[8]

3

[4.2,3]23
(8.4, 5123

11-14
7-16
13—-18

[28, 14, 11123

12
14
15

32,16, 12153

(12,6, 7I»3

Table 3

[36, 18, 1413

[16, 8, 8123

Table 3

[40, 20, 15]53 14-20

9 10—11

[20, 10, 9123

Bold values represent new parameters

— [32, 16, 12],3 code with a generator matrix (/¢ | A%) where

AXaE{Conn—XJvaco

NBOTA]—~a ST one=XRno
CoCnI S+ NN RN~
NNGoDT[we ARG nine-o
Lol —Z2Idn{TSEny
EoonI N Can SRR o®
cnGBlaro—~TnnlX =~

o — —
eRATNRoN NNy

==
o2t —co 8w 2o
PR+ D~T ot —o
NS TSt NPT I\ Erbdpafat]

jalbui ittt et
RAKAC=+ YR Con =g
iSHSFSTe SIS TN baepafcNV=brhoiattoN
+—2UZAQw 2 TomoX X

STTRTI 2ol RaSnd

32
AE

— [36, 18, 14]>3 code with a generator matrix (/;g | Agg) where

wsmuwso1s7mmlwm9ww
a2 laca T Tnas B2
0= AN oo~~~
CnIZ oI ANTalRonl—ag
AQoZcocvcoIrlC2a—~rr=nl
QoI —CFacITtaocaaoc i~

zmwmsmw4smwnzwmm3m
TR n—CoaS T 0o Y
~ofla R0l o gt asg~

ANNOO LN GEonTTNON 4,

RERSISAA PSRN ===
O S—Dall5l e yoonTo—
VIR~ 2R0~ Tl Uao
T T s
nQerfocalAmntoln e
Qo ——=EC2aQI~oZ22d

o0 o o e}

LinenDooJ—~RAYRT T 2QX
e} el 0\

0ZInI LSV RoXCoF[n—ao

ToXATomanTalTowedD

— [40, 20, 15]»3 code with a generator matrix (/9 | A‘z‘g) where

Q2SI AN Rooiney

—_— D A —

B e T P AT

0onoo NN =10 [ G N =AW _ 0O o

—N——— ———QeT A= —
Shtimieletoimimps el SRl Sa S RSN
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8942129295m966743533

—_— e N A — — et et e et €
QR——22ntolo 20 2ot el
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o LTI ISR 22T ]I

CRED—LeRXEICErET T
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Table 7 Bounds on the highest minimum distances of self-dual codes over G F (p) for primes 5 < p < 23 up
to lengths 40

n\q 5 7 11 13 17 19 23

2 2% - - 2% 2% - -

4 20 3% 3% 3 3 3 3*

6 4% - - 4% 4 - -

8 40 5% 5% 5 5* 5 5%

10 40 - - 6* 6* - -

12 6° 6° 7* 6° 7* 7* 7*

14 6° - - g* 7-8 - -

16 70 70 80 8o 8—9 8—9 9*

18 70 - - 8—9 10* - -

20 80 90 10° 10° 10° 1% 10—11
2 80 - - 10—11 1011 - -

24 9-10 9-11 9-12 10-12 10-12 10-12 13*
26 9-10 - - 10-13 10-13 - -

28 10—11 11-13 10—14 11-14 11-14 11-14 11-14
30 10-12 - - 11-15 1215 - -

32 11-13 13—14 12-16 12-16 12-16 14-16 12-16
34 11-14 - - 12-17 13-17 - -

36 1215 13-16 13-18 13-18 1318 14-18 14-18
38 1216 - - 13-19 14-19 - -

40 13-17 14-18 14-20 14—20 14-20 15-20 15-20

Bold values represent new parameters In this table, ¢ denotes optimal code and * denotes MDS code. [5,8,11—
13,15,25,26]

5 Conclusions

In this article, we introduced new construction methods of symmetric self-dual codes over
finite fields. Then we have constructed many new symmetric self-dual codes, including 153
self-dual codes with new parameters, up to equivalence. This paper contributes in two ways.
One is to provide new construction methods of symmetric self-dual codes over G F (g) for the
challenging case of ¢ = 3 (mod 4). The other is to improve bounds on the highest minimum
distance of self-dual codes, which have not been significantly updated for almost two decades
because of computational complexity. We believe that our methods can produce more results
for self-dual codes over larger finite fields and/or of longer lengths.
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crucial for the implementation.
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