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Abstract
The weight distribution and weight hierarchy of a linear code are two important research
topics in coding theory. In this paper, by choosing proper defining sets from inhomogeneous
quadratic functions over F

2
q , we construct a family of three-weight p-ary linear codes and

determine their weight distributions and weight hierarchies. Most of the codes can be used
in secret sharing schemes.

Keywords Linear code · Quadratic form · Weight distribution · Weight hierarchy ·
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1 Introduction

For an odd prime number p and a positive integer e, let Fq be the finite field with q = pe

elements and F
∗
q be its multiplicative group.

An [n, k, d] p-ary linear code C is a k-dimensional subspace of F
n
p with minimum

(Hamming) distance d . For 0 ≤ i ≤ n, let Ai denote the number of codewords with
Hamming weight i in a code C of length n. The weight enumerator of C is defined by

Communicated by V. A. Zinoviev.

The research was supported by Anhui Provincial Natural Science Foundation No. 1908085MA02 and the
National Science Foundation of China Grant Nos. 12001312 and 11701001.

B Xiumei Li
lxiumei2013@qfnu.edu.cn

Fei Li
cczxlf@163.com

1 Faculty of School of Statistics and Applied Mathematics, Anhui University of Finance and
Economics, Bengbu 233041, Anhui, People’s Republic of China

2 School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, People’s Republic
of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-021-00962-9&domain=pdf


50 F. Li, X. Li

1+ A1z+ A2z2+· · ·+ Anzn . The sequence (1, A1, . . . , An) is called the weight distribution
of C . A code C is said to be a t-weight code if the number of nonzero Ai in the sequence
(A1, . . . , An) is equal to t . The weight distribution can give the minimum distance of the
code. Moreover, it allows the computation of the error probability of error detection and
correction [23].

The weight distribution of a linear code is an important research topic in coding theory.
Some researchers devoted themselves to calculating the weight distributions of linear codes
[8,14,15,37,49]. Linear codes with a few weights can be applied to secret sharing [50],
association schemes [5], combinatorial designs [38], authentication codes [13] and strongly
regular graphs [6]. There are some studies about linear codes with a few weights, for which
the reader is referred to [22,24,26,33,34,36].

The weight hierarchy of a linear code is another important research topic in coding theory
[4,7,16,17,20,45,46,48]. We recall the definition of the generalized Hamming weights of
linear codes [45]. For an [n, k, d] code C and 1 ≤ r ≤ k, denote by [C, r ]p the set of all its
Fp-vector subspaces with dimension r . For H ∈ [C, r ]p , define Supp(H) = ⋃

c∈H Supp(c),
where Supp(c) is the set of coordinates where c is nonzero, that is,

Supp(H) =
{
i : 1 ≤ i ≤ n, ci �= 0 for some c = (c1, c2, . . . , cn) ∈ H

}
.

The r -th generalized Hamming weight (GHW) dr (C) of C is defined to be

dr (C) = min
{
|Supp(H)| : H ∈ [C, r ]p

}
, 1 ≤ r ≤ k.

It is easy to see that d1(C) is the minimum distance d . The weight hierarchy of C is defined
as the sequence

(
d1(C), d2(C), . . . , dk(C)

)
. For more details, one is referred to [18]. There

are some results about the weight hierarchies of linear codes [3,21,27–29,31,35,47].
Let Tr denote the trace function from Fq onto Fp throughout this paper. For D ={

d1, d2, . . . , dn
}

⊆ F
∗
q , a p-ary linear code CD of length n is defined by

CD =
{

(Tr(xd1),Tr(xd2), . . . ,Tr(xdn)) : x ∈ Fq

}
. (1)

Here D is called the defining set of CD and CD can be called a trace code. This construction
technique is called the defining-set construction of linear codes, which was first proposed by
Ding et al. [10]. The defining-set construction is generic in the sense that many classes of
known codes can be produced by selecting some proper defining sets. It has attracted a lot
of attention, and a huge amount of linear codes with good parameters have been obtained
[9,11,12,14,44,49,52].

In recent years, Shi et al. [39–43] refined the technique of the study of trace codes by using
ring extensions of a finite field coupled with a linear Gray map and obtained many families
of p-ary codes with few weights over different finite rings. Most of their obtained codes are
optimal and minimal codes, which can be applied to secret sharing schemes (SSS).

Li et al. [25] extended Ding’s defining-set construction as follows. Recall that the ordinary
inner product of vectors x = (x1, x2, . . . , xs), y = (y1, y2, . . . , ys) ∈ F

s
q is

x · y = x1y1 + x2y2 + · · · + xs ys .

A p-ary linear code CD with length n can be defined by

CD =
{(
Tr(x · d1),Tr(x · d2), . . . ,Tr(x · dn)

) : x ∈ F
s
q

}
, (2)
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where D =
{
d1, d2, . . . , dn

}
⊆ F

s
q\
{
(0, 0, . . . , 0)} is also called the defining set of CD.

Using this construction, some classes of linear codes with few weights have been constructed
[2,22,26,30,31].

Tang et al. [44] constructed a p-ary linear code CD in (1) with at most five nonzero

weights from inhomogeneous quadratic function and their defining set is D =
{
x ∈ F

∗
q :

f (x) − Tr(αx) = 0
}
, where α ∈ F

∗
q and f (x) is a homogeneous quadratic function from

Fq onto Fp defined by

f (x) =
e−1∑

i=0

Tr(ai x
pi+1), ai ∈ Fq . (3)

In this paper, inspired by the works of [28,44], we choose a defining set contained in F
2
q

as follows. For α ∈ F
∗
q , set

D = Dα =
{
(x, y) ∈ F

2
q \ {(0, 0)} : f (x) + Tr(αy) = 0

}
=
{
d1, . . . , dn

}
, (4)

where f (x) is defined in (3) and non-degenerate. So, the corresponding p-ary linear codes
CD in (2) is

CD =
{(
Tr(x · d1),Tr(x · d2), . . . ,Tr(x · dn)

) : x ∈ F
2
q

}
. (5)

We mainly determine their weight distributions and weight hierarchies.
The remainder of this paper is organized as follows. Section 2 introduces some basic

notation and results about quadratic forms. Section 3 presents the linear codes with three
nonzero weights and determines their weight distributions and weight hierarchies. Section 4
summarizes this paper.

2 Preliminaries

In this section, we state some notation and basic facts on quadratic forms and f defined in
(3). These results will be used in the rest of the paper.

2.1 Some notation fixed throughout this paper

For convenience, we fix the following notation. For basic results on cyclotomic field Q(ζp),
one is referred to [19].

– Let Tr be the trace function from Fq to Fp . Namely, for each x ∈ Fq ,

Tr(x) = x + x p + · · · + x pe−1
.

– p∗ = (−1)
p−1
2 p.

– ζp = exp( 2π ip ) is a primitive p-th root of unity.
– η̄ is the quadratic character of F

∗
p . It is extended by letting η̄(0) = 0.

– LetZ be the rational integer ring andQ be the rational field. LetK be the cyclotomic field
Q(ζp). The field extensionK/Q is Galois of degree p−1. TheGalois groupGal(K/Q) ={
σz : z ∈ (Z/pZ)∗

}
, where the automorphism σz is defined by σz(ζp) = ζ z

p .

123



52 F. Li, X. Li

– σz(
√
p∗) = η̄(z)

√
p∗, for 1 ≤ z ≤ p − 1.

– Let
〈
α1, α2, . . . , αr

〉
denote a space spanned by α1, α2, . . . , αr .

2.2 Quadratic form

Viewing Fq as an Fp-linear space and fixing υ1, υ2, . . . , υe ∈ Fq as its Fp-basis, then for
any x = x1υ1 + x2υ2 + · · · + xeυe ∈ Fq with xi ∈ Fp, i = 1, 2, . . . , e, there is an Fp-linear
isomorphism Fq � F

e
p defined as:

x = x1υ1 + x2υ2 + · · · + xeυe 	→ X = (x1, x2, . . . , xe),

where X = (x1, x2, . . . , xe) is called the coordinate vector of x under the basis v1, v2, . . . , ve
of Fq .

A quadratic form g over Fq with values in Fp can be represented by

g(x) = g(X) = g(x1, x2, . . . , xe) =
∑

1≤i, j≤e

ai j xi x j

= X AXT ,

where A = (ai j )n×n, ai j ∈ Fp, ai j = a ji and XT is the transposition of X . Denote by
Rg = Rank A the rank of g, there exists an invertible matrix M over Fp such that

MAMT = diag(λ1, λ2, . . . , λRg , 0, . . . , 0)

is a diagonal matrix, where λ1, λ2, . . . , λRg ∈ F
∗
p . Let Δg = λ1λ2 · · · λRg , and Δg = 1 if

Rg = 0.Wecall η̄(Δg) the sign εg of the quadratic form g. It is an invariant under nonsingular
linear transformations in matrix.

Let

F(x, y) = 1

2

(
g(x + y) − g(x) − g(y)

)
.

For an r -dimensional subspace H of Fq , its dual space H⊥g is defined by

H⊥g =
{
x ∈ Fq : F(x, y) = 0, for any y ∈ H

}
.

Restricting the quadratic form g to H , it becomes a quadratic form denoted by g|H over H in
r variables. In this situation, we denote by RH and εH the rank and sign of g|H , respectively.

In the following, we suppose Rg = e, i.e., g is a non-degenerate quadratic form. For
β ∈ Fp , set

Dβ =
{
x ∈ Fq |g(x) = β

}
, (6)

we shall give some lemmas, which are essential to prove our main results.

Lemma 1 [28, Proposition 1] Let g be a non-degenerate quadratic form and H be an r-
dimensional nonzero subspace of Fq , then

|H ∩ Dβ | =
{
pr−1 + v(β)η((−1)

RH
2 )εH pr−

RH+2
2 , if RH ≡ 0 (mod 2),

pr−1 + η((−1)
RH−1

2 β)εH pr−
RH+1

2 , if RH ≡ 1 (mod 2),

where v(β) = p − 1 if β = 0, otherwise v(β) = −1.
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Lemma 2 [28, Proposition 2] Let g be a non-degenerate quadratic form. For each r (0 <

2r < e), there exists an r-dimensional subspace H ⊆ Fpe (e > 2) such that H ⊆ H⊥g .

Lemma 3 [28, Proposition 3] Let g be a non-degenerate quadratic form and e = 2s > 2.

There exists an s-dimensional subspace Hs ⊂ Fpe such that Hs = H
⊥g
s if and only if

εg = (−1)
e(p−1)

4 .

Lemma 4 [28, Theorem 1] Let g be a non-degenerate quadratic form and β be a nonzero
element in Fp. If e(e > 2) is even, then for the linear codes CDβ

in (1) with defining sets Dβ

defined in (6), we have

dr (CDβ
) =

⎧
⎪⎪⎨

⎪⎪⎩

pe−1 − pe−r−1 −
(
(−1)

e(p−1)
4 εg + 1

)
p

e−2
2 , if 1 ≤ r ≤ e

2 ,

pe−1 − 2pe−r−1 − (−1)
e(p−1)

4 εg p
e−2
2 , if e

2 < r < e,

pe−1 − (−1)
e(p−1)

4 εg p
e−2
2 , if r = e.

Lemma 5 [28, Theorem 2] Let g be a non-degenerate quadratic form and β be a nonzero

element in Fp. If η̄(β) = (−1)
(e−1)(p−1)

4 εg and e (e ≥ 3) is odd, then for the linear codes
CDβ

in (1) with defining sets Dβ defined in (6), we have

dr (CDβ
) =

⎧
⎪⎨

⎪⎩

pe−1 − pe−r−1, if 1 ≤ r < e
2 ,

pe−1 + p
e−1
2 − 2pe−r−1, if e

2 < r < e,

pe−1 + p
e−1
2 , if r = e.

In the following, we present some auxiliary results about f defined in (3), which will play
important roles in settling the weight distributions and weight hierarchies. For more details,
one is referred to [44].

For any x ∈ Fq , x can be uniquely expressed as x = x1υ1 + x2υ2 + · · · + xeυe with
xi ∈ Fp . Hence, we have

f (x) =
e−1∑

i=0

Tr
(
ai x

pi+1) =
e−1∑

i=0

Tr

⎛

⎜
⎝ai

⎛

⎝
e∑

j=1

x jυ j

⎞

⎠

pi+1
⎞

⎟
⎠

=
e−1∑

i=0

Tr

⎛

⎝ai

⎛

⎝
e∑

j=1

x jυ
pi

j

⎞

⎠

(
e∑

k=1

xkυk

)⎞

⎠

=
e∑

j=1

e∑

k=1

(
e−1∑

i=0

Tr
(
aiv

pi

j vk

)
)

x j xk = XBXT ,

where X = (x1, x2, . . . , xe) and B =
(
1
2

∑e−1
i=0 Tr

(
ai (v

pi

j vk + v jv
pi

k )
))

e×e
. Thus, f is a

quadratic form and for any x, y ∈ Fq , we have

F(x, y) = 1

2

(
f (x + y) − f (x) − f (y)

) = 1

2

e−1∑

i=0

Tr
(
ai (x

pi y + xy p
i
)
)

= 1

2

e−1∑

i=0

Tr
(
ai x

pi y
)

+ 1

2

e−1∑

i=0

Tr
((

a p−i

i x p−i
y
)pi)
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= 1

2

e−1∑

i=0

Tr
(
ai x

pi y
)

+ 1

2

e−1∑

i=0

Tr
(
a pe−i

i x pe−i
y
)

= Tr

((

a0x + 1

2

e−1∑

i=1

(
ai + a pi

e−i

)
x pi

)

y

)

= Tr
(
yL f (x)

)
,

where L f is a linearized polynomial over Fq defined as

L f (x) = a0x + 1

2

e−1∑

i=1

(
ai + a pi

e−i

)
x pi . (7)

Let Im(L f ) =
{
L f (x) : x ∈ Fq

}
, Ker(L f ) =

{
x ∈ Fq : L f (x) = 0

}
denote the

image and kernel of L f , respectively. Noticing that f (x) is non-degenerate, we have R f =
e,Ker(L f ) = {0} and Im(L f ) = Fq . If L f (a) = − b

2 , we denote a by xb.
The following two lemmas are essential to prove our main results.

Lemma 6 [44, Lemma 5] Let the symbols and notation be as above and f be defined in (3)
and b ∈ Fq . Then

(1)
∑

x∈Fq
ζ
f (x)
p = ε f (p∗)

R f
2 pe−R f .

(2)
∑

x∈Fq
ζ
f (x)−Tr(bx)
p =

{
0, if b /∈ Im(L f ),

ε f (p∗)
R f
2 pe−R f ζ

− f (xb)
p , if b ∈ Im(L f ).

where xb satisfies L f (xb) = − b
2 .

Lemma 7 [44, Lemma 4]With the symbols and notation above, we have the following.

(1)
∑

y∈F∗
p

σy((p∗) r
2 ) =

{
0, if r is odd ,

pr (p∗)− r
2 (p − 1), if r is even .

(2) For any z ∈ F
∗
p, then

∑

y∈F∗
p

σy((p
∗)

r
2 ζ z

p) =
{

η̄(−z)pr (p∗)− r−1
2 , if r is odd ,

−pr (p∗)− r
2 , if r is even .

3 Linear codes from inhomogeneous quadratic functions

In this section, we study the weight distribution and weight hierarchy of CD in (5), where its
defining set is

D = Dα =
{
(x, y) ∈ F

2
q \ {(0, 0)} : f (x) + Tr(αy) = 0

}
,

with α ∈ F
∗
q and f (x) is defined in (3) and non-degenerate.
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3.1 The weight distribution of the presented linear code

In this subsection, we first calculate the length of CD defined in (5) and the Hamming weight
of nonzero codewords of CD.

Lemma 8 Let α ∈ F
∗
q and D be defined in (4) and CD be defined in (5). Define n = |D|.

Then,

n = p2e−1 − 1.

Proof By the orthogonal property of additive characters, we have

n = 1

p

∑

x,y∈Fq

∑

z∈Fp

ζ
z
(
f (x)+Tr(αy)

)

p − 1

= 1

p

∑

x,y∈Fq

⎛

⎝1 +
∑

z∈F∗
p

ζ
z
(
f (x)+Tr(αy)

)

p

⎞

⎠ − 1

= p2e−1 + 1

p

∑

z∈F∗
p

∑

y∈Fq
ζ
Tr(zαy)
p

∑

x∈Fq
ζ
z f (x)
p − 1.

The desired conclusion then follows from α �= 0 and
∑

y∈Fq ζ
Tr(zαy)
p = 0. ��

Lemma 9 Let α ∈ F
∗
q and D be defined in (4) and CD be defined in (5). Let c(u,v) be the

corresponding codeword in CD with (u, v) ∈ F
2
q . We have the following.

(1) When v ∈ Fq \ F
∗
pα, we have wt(c(u,v)) = p2e−2(p − 1).

(2) When v ∈ F
∗
pα, we have the following three cases.

(2.1) If u = 0, then

wt(c(u,v)) =
{
p2e−2(p − 1), if e is odd ,

p2e−2(p − 1)
(
1 − ε f (p∗)− e

2

)
, if e is even .

(2.2) If u �= 0 and f (xu) = 0, then

wt(c(u,v)) =
{
p2e−2(p − 1), if e is odd ,

p2e−2(p − 1)
(
1 − ε f (p∗)− e

2

)
, if e is even .

(2.3) If u �= 0 and f (xu) �= 0, then

wt(c(u,v)) =
⎧
⎨

⎩

p2e−2
(
p − 1 − ε f η̄( f (xu))(p∗)− e−1

2

)
, if e is odd ,

p2e−2
(
p − 1 + ε f (p∗)− e

2

)
, if e is even .

Proof Put N (u, v) =
{
(x, y) ∈ F

2
q : f (x) + Tr(αy) = 0,Tr(ux + vy) = 0

}
, then the

Hamming weight of c(u,v) is n − |N (u, v)| + 1, where n is given in Lemma 8. Thus, we just
need to evaluate the value of |N (u, v)|.

123



56 F. Li, X. Li

By the orthogonal property of additive characters, we have

|N (u, v)| = 1

p2
∑

x,y∈Fq

⎛

⎝
∑

z1∈Fp

ζ
z1 f (x)+Tr(z1αy)
p

∑

z2∈Fp

ζ
Tr(z2(ux+vy))
p

⎞

⎠

= 1

p2
∑

x,y∈Fq

⎛

⎝

⎛

⎝1 +
∑

z1∈F∗
p

ζ
z1 f (x)+Tr(z1αy)
p

⎞

⎠

⎛

⎝1 +
∑

z2∈F∗
p

ζ
Tr(z2(ux+vy))
p

⎞

⎠

⎞

⎠

= p2e−2 + 1

p2
∑

z1∈F∗
p

∑

x,y∈Fq
ζ
z1 f (x)+Tr(z1αy)
p + 1

p2
∑

z2∈F∗
p

∑

x,y∈Fq
ζ
Tr(z2(ux+vy))
p

+ 1

p2
∑

z1∈F∗
p

∑

z2∈F∗
p

∑

x,y∈Fq
ζ
z1 f (x)+Tr(z2ux+z2vy+z1αy)
p

= p2e−2 + p−2
∑

z1∈F∗
p

∑

z2∈F∗
p

∑

y∈Fq
ζ
Tr(z2vy+z1αy)
p

∑

x∈Fq
ζ
z1 f (x)+Tr(z2ux)
p . (8)

(1) When v ∈ Fq \ F
∗
pα, the desired conclusion then follows from

∑

y∈Fq
ζ
Tr(z2vy+z1αy)
p = 0.

(2) When v ∈ F
∗
pα, i.e., α = zv for some z ∈ F

∗
p , (8) becomes

|N (u, v)| = p2e−2 + pe−2
∑

z1∈F∗
p

∑

x∈Fq
ζ
z1 f (x)−z1Tr(zux)
p

= p2e−2 + pe−2
∑

z1∈F∗
p

σz1

⎛

⎝
∑

x∈Fq
ζ
f (x)−Tr(zux)
p

⎞

⎠ . (9)

If u = 0, by Lemmas 6 and 7, we have

|N (u, v)| = p2e−2 + pe−2
∑

z1∈F∗
p

σz1

(
ε f (p

∗)
R f
2 pe−R f

)

= p2e−2 + pe−2ε f

∑

z1∈F∗
p

σz1
(
(p∗)

e
2
)

=
{
p2e−2, if e is odd ,

p2e−2
(
1 + ε f (p∗)− e

2 (p − 1)
)
, if e is even .

The desired conclusion of (2.1) is obtained.
If u �= 0, define c = zu, we have xc = zxu . By Lemma 6, (9) becomes

|N (u, v)| = p2e−2 + pe−2
∑

z1∈F∗
p

σz1

(
ε f (p

∗)
R f
2 pe−R f ζ

− f (xc)
p

)

= p2e−2 + pe−2ε f

∑

z1∈F∗
p

σz1

(
(p∗)

e
2 ζ

− f (xc)
p

)
.

The last two conclusions follow directly from Lemma 7. ��
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Table 1 The weight distribution
of CD of Theorem 1 when e is
odd

Weight ω Multiplicity Aω

0 1

p2e−2(p − 1) p2e − (p − 1)2 pe−1 − 1

p2e−2
(
p − 1 − p− e−1

2
)

1
2 (p − 1)2 pe−1(1 + p− e−1

2 )

p2e−2
(
p − 1 + p− e−1

2
)

1
2 (p − 1)2 pe−1(1 − p− e−1

2 )

Table 2 The weight distribution of CD of Theorem 1 when e is even

Weight ω Multiplicity Aω

0 1

p2e−2(p − 1) p2e − pe(p − 1) − 1

p2e−2(p − 1)
(
1 − ε f (p

∗)
− e

2
)

(p − 1)pe−1
(
1 + ε f (p − 1)(p∗)

− e
2
)

p2e−2(p − 1) + ε f p
2e−2(p∗)

− e
2 (p − 1)2 pe−1

(
1 − ε f (p

∗)
− e

2
)

Remark 1 By Lemma 9, we know that, for (u, v)(�= (0, 0)) ∈ F
2
q , we have wt(c(u,v)) > 0.

So, the map: F
2
q → CD defined by (u, v) 	→ c(u,v) is an isomorphism in linear spaces over

Fp . Hence, the dimension of the code CD in (5) is equal to 2e.

Lemma 10 Let CD be defined in (5). Then, the minimal distance of the dual code C⊥
D is at

least 2.

Proof We prove it by contradiction. If the minimal distance of the dual code C⊥
D is less than

2, then there exists a coordinate i such that the i-th entry of all of the codewords of CD is 0,
that is, Tr(ux + vy) = 0 for all (u, v) ∈ F

2
q , where (x, y) ∈ D. Thus, by the properties of

the trace function, we have (x, y) = (0, 0). It contradicts with (x, y) �= (0, 0). ��
Theorem 1 Let α ∈ F

∗
q and f be a non-degenerate homogeneous quadratic function defined

in (3). Let D be defined in (4) and the code CD be defined in (5). Then the code CD is a
[p2e−1 − 1, 2e] linear code over Fp with the weight distribution in Tables 1 and 2.

Proof By Lemma 8 and Remark 1, the code CD is a [p2e−1 − 1, 2e] linear code over Fp .
Now we shall prove the multiplicities Aωi of codewords with weight ωi in CD. Let us give
the proofs of two cases, respectively.
(1) The case that e is odd.

For each (u, v) ∈ F
2
q and (u, v) �= (0, 0). By Lemmas 8 and 9, wt(c(u,v)) has only three

values, that is,
⎧
⎪⎪⎨

⎪⎪⎩

ω1 = (p − 1)p2e−2,

ω2 = p2e−2
(
p − 1 − p− e−1

2

)
,

ω3 = p2e−2
(
p − 1 + p− e−1

2

)
.
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By Lemma 9, we have

Aω1 =
∣
∣
∣
{
(u, v) ∈ F

2
q |wt(c(u,v)) = (p − 1)p2e−2

}∣
∣
∣

=
∣
∣
∣
{
(u, v) ∈ F

2
q \ {(0, 0)}|u ∈ Fq , v ∈ Fq \ F

∗
pα
}∣
∣
∣

+
∣
∣
∣
{
(0, v) ∈ F

2
q |v ∈ F

∗
pα
}∣
∣
∣ +

∣
∣
∣
{
(u, v) ∈ F

2
q |v ∈ F

∗
pα, u �= 0, f (xu) = 0

}∣
∣
∣

= q
(
q − (p − 1)

)
− 1 + (p − 1) + (p − 1)(pe−1 − 1)

= p2e − (p − 1)2 pe−1 − 1,

where we use the fact that the number of nonzero solutions of the equation f (x) = 0 in Fq

is pe−1 − 1 (see [32, Theorem 6.27]).
By Lemma 10 and the first two Pless power moments [18, p. 259], we obtain the system

of linear equations as follows:
⎧
⎨

⎩

Aω1 = p2e − (p − 1)2 pe−1 − 1,
Aω2 + Aω3 = (p − 1)2 pe−1,

ω1Aω1 + ω2Aω2 + ω3Aω3 = p2e−1(p2e−1 − 1)(p − 1).

Solving the system, we get

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Aω1 = p2e − (p − 1)2 pe−1 − 1,

Aω2 = 1
2 (p − 1)2 pe−1

(
1 + p− e−1

2

)
,

Aω3 = 1
2 (p − 1)2 pe−1

(
1 − p− e−1

2

)
.

This completes the proof of the weight distribution of Table 1.
(2) The case that e is even.

The proof is similar to that of Case (1) and we omit it here. The desired conclusion then
follows from Lemmas 8 and 9 and the first two Pless power moments. ��

Example 1 Let (p, e, α) = (5, 3, 1) and f (x) = Tr(x2). Then, the corresponding code CD

has parameters [3124, 6, 2375] and the weight enumerator 1 + 240x2375 + 15224x2500 +
160x2625, which is verified by a Magma program.

Example 2 Let (p, e, α) = (3, 4, 1) and f (x) = Tr(θx2), where θ is a primitive element of
Fq . By Corollary 1 in [44], we have ε f = 1. Then, the corresponding codeCD has parameters
[2186, 8, 1296] and the weight enumerator 1 + 66x1296 + 6398x1458 + 96x1539, which is
verified by a Magma program.

Example 3 Let (p, e, α) = (3, 4, θ) and f (x) = Tr(x2), where θ is a primitive element
of Fq . By Corollary 1 in [44], we have ε f = −1. Then, the corresponding code CD has
parameters [2186, 8, 1377] and the weight enumerator 1+120x1377 +6398x1458 +42x1620,
which is verified by a Magma program.

3.2 The weight hierarchy of the presented linear code

In this subsection, we give the weight hierarchy of CD in (5).
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By Remark 1, we know that the dimension of the code CD defined in (5) is 2e. So, by [31,
Proposition 2.1], we give a general formula, that is

dr (CD) = n − max
{
|H⊥

r ∩ D| : Hr ∈ [F2
q , r ]p

}
(10)

= n − max
{
|H2e−r ∩ D| : H2e−r ∈ [F2

q , 2e − r ]p
}
, (11)

which will be employed to calculate the generalized Hamming weight dr (CD). Here H⊥
r ={

x ∈ F
2
q : Tr(x · y) = 0, for any y ∈ Hr

}
.

Let Hr be an r -dimensional subspace of F
2
q and β1, . . . , βr be an Fp-basis of Hr . Set

N (Hr ) =
{
x = (x, y) ∈ F

2
q : f (x) + Tr(αy) = 0,Tr(x · βi ) = 0, 1 ≤ i ≤ r

}
.

Then, N (Hr ) = (H⊥
r ∩D)∪{(0, 0)}, which concludes that |N (Hr )| = |H⊥

r ∩D|+1. Hence,
we have

dr (CD) = n + 1 − max
{
|N (Hr )| : Hr ∈ [F2

q , r ]p
}
. (12)

Lemma 11 Let α ∈ F
∗
q and f be a non-degenerate homogeneous quadratic function defined

in (3) with the sign ε f . Hr and N (Hr ) are defined as above. We have the following.

(1) If α /∈ Prj2(Hr ), then |N (Hr )| = p2e−(r+1).
(2) If α ∈ Prj2(Hr ), then

|N (Hr )| = pe−(r+1)

⎛

⎝q + ε f

∑

(y1,−u)∈Hr

∑

z∈F∗
p

σz

(
(p∗)

e
2 ζ

f (xy1 )
p

)
⎞

⎠ .

Here Prj2 is the second projection from F
2
q to Fq defined by (x, y) 	→ y.

Proof By the orthogonal property of additive characters, we have

pr+1|N (Hr )| =
∑

x=(x,y)∈F2q

∑

z∈Fp

ζ
z f (x)+Tr(zαy)
p

r∏

i=1

∑

xi∈Fp

ζTr(xi (x·βi ))
p

=
∑

x=(x,y)∈F2q

∑

z∈Fp

ζ
z f (x)+Tr(z(αy))
p

∑

y∈Hr

ζ
Tr(x·y)
p

=
∑

x=(x,y)∈F2q

∑

y∈Hr

ζ
Tr(x·y)
p +

∑

x=(x,y)∈F2q

∑

z∈F∗
p

∑

y∈Hr

ζ
z f (x)+Tr(x·y+zαy)
p

= q2 +
∑

x=(x,y)∈F2q

∑

z∈F∗
p

∑

y∈Hr

ζ
z f (x)+Tr(x·y+zαy)
p ,

where the last equation comes from
∑

x=(x,y)∈F2q

∑

y∈Hr

ζ
Tr(y·x)
p =

∑

x=(x,y)∈F2q
1 +

∑

x=(x,y)∈F2q

∑

(0,0)�=y∈Hr

ζ
Tr(y·x)
p

= q2 +
∑

(0,0)�=y∈Hr

∑

x=(x,y)∈F2q
ζ
Tr(y·x)
p = q2.
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Denote BHr = ∑

x=(x,y)∈F2q

∑

z∈F∗
p

∑

y∈Hr

ζ
z f (x)+Tr(x·y+zαy)
p , then we have

pr+1|N (Hr )| = q2 + BHr

and

BHr =
∑

x=(x,y)∈F2q

∑

z∈F∗
p

∑

y∈Hr

ζ
z f (x)+Tr(x·y+zαy)
p

=
∑

(x,y)∈F2q

∑

z∈F∗
p

∑

(y1,y2)∈Hr

ζ
z f (x)+Tr(y1x+y2 y+zαy)
p

=
∑

(y1,y2)∈Hr

∑

z∈F∗
p

∑

x∈Fq
ζ
z f (x)+Tr(y1x)
p

∑

y∈Fq
ζ
Tr(y2 y+zαy)
p

=
∑

(y1,y2)∈Hr

∑

z∈F∗
p

∑

x∈Fq
ζ
z f (x)+zTr( y1

z x)
p

∑

y∈Fq
ζ
zTr( y2

z y+αy)
p

=
∑

(y1,y2)∈Hr

∑

z∈F∗
p

∑

x∈Fq
ζ
z f (x)+zTr(y1x)
p

∑

y∈Fq
ζ
zTr(y2 y+αy)
p .

If α /∈ Prj2(Hr ), then BHr = 0, which follows from
∑

y∈Fq ζ
zTr(y2 y+αy)
p = 0.

If α ∈ Prj2(Hr ), by Lemma 6, we have

BHr = q
∑

(y1,−α)∈Hr

∑

z∈F∗
p

∑

x∈Fq
ζ
z f (x)+zTr(y1x)
p

= q
∑

(y1,−α)∈Hr

∑

z∈F∗
p

σz

( ∑

x∈Fq
ζ
f (x)+Tr(y1x)
p

)

= q
∑

(y1,−α)∈Hr

∑

z∈F∗
p

σz

(
ε f (p

∗)
R f
2 pe−R f ζ

f (xy1 )
p

)

= ε f q
∑

(y1,−α)∈Hr

∑

z∈F∗
p

σz

(
(p∗)

e
2 ζ

f (xy1 )
p

)
.

So, the desired result is obtained. Thus, we complete the proof. ��
In the following, we shall determine the weight hierarchy of CD in (5) by calculating

|N (Hr )| in Lemma 11 and |H2e−r ∩ D| in (11).

Theorem 2 Let e ≥ 3 and α ∈ F
∗
q and f be a non-degenerate homogeneous quadratic

function defined in (3) with the sign ε f . Let D be defined in (4) and the code CD be defined
in (5). Define

e0 =

⎧
⎪⎨

⎪⎩

e−1
2 , if e is odd,

e
2 , if e is even and ε f = (−1)

e(p−1)
4 ,

e−2
2 , if e is even and ε f = −(−1)

e(p−1)
4 .

Then we have the following.

(1) When e − e0 + 1 ≤ r ≤ 2e, we have

dr (CD) = p2e−1 − p2e−r .
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(2) When 0 < r ≤ e − e0, we have

dr (CD) =

⎧
⎪⎨

⎪⎩

p2e−1 − p2e−r−1 − p
3e−3
2 , if 2 � e},

p2e−1 − p2e−r−1 − (p − 1)p
3e−4
2 , if 2 | e and ε f = (−1)

e(p−1)
4 ,

p2e−1 − p2e−r−1 − p
3e−4
2 , if 2 | e and ε f = −(−1)

e(p−1)
4 .

Proof (1) When e − e0 + 1 ≤ r ≤ 2e, then 0 ≤ 2e − r ≤ e0 + e − 1. Let Tα =
{
x ∈ Fq :

Tr(αx) = 0
}
. It is easy to know that dim(Tα) = e − 1. By Lemmas 2 and 3, there exists

an e0-dimensional subspace Je0 of Fq such that f (x) = 0 for any x ∈ Je0 . Note that the
dimension of the subspace Je0 × Tα is e0 + e − 1. Let H2e−r be a (2e − r)-dimensional
subspace of Je0 × Tα , then, |H2e−r ∩ D| = p2e−r − 1. Hence, by (11), we have

dr (CD) = n − max
{
|D ∩ H | : H ∈ [

F
2
pe , 2e − r

]
p

}
= p2e−1 − p2e−r .

Thus, it remains to determine dr (CD) when 0 < r ≤ e − e0.
(2) When 0 < r ≤ e − e0, we discuss case by case.

Case 1 e(e ≥ 3) is odd. In this case, e0 = e−1
2 and e − e0 = e+1

2 , that is, 0 < r ≤ e+1
2 .

When 0 < r < e+1
2 , let Hr be an r -dimensional subspace of F

2
q . If α ∈ Prj2(Hr ), by

Lemmas 7 and 11, we have

|N (Hr )| = p2e−(r+1)

⎛

⎝1 + (−1)
(e−1)(p−1)

4 ε f η̄(−1)p− e−1
2

∑

(y1,−α)∈Hr

η̄
(
f (xy1)

)
⎞

⎠ .

Now we want to construct Hr such that |N (Hr )| reaches its maximum, that is, the
number of such as (y1,−α) is maximal in Hr and for any (y1,−α) ∈ Hr , η̄( f (xy1)) =
(−1)

(e−1)(p−1)
4 ε f η̄(−1). The constructing method is as follows.

Taking an element a ∈ F
∗
p satisfying η(a) = (−1)

(e−1)(p−1)
4 ε f η̄(−1), then, by Lemma 1

(or [32, Theorem 6.27]), we know that the length and the dimension of CDa
in (1) are

pe−1 + η̄(−1)p
e−1
2 and e, respectively. Combining formula (11) with Lemma 5 ( or [28,

Theorem 3] ), we have

de−r (CDa
) = pe−1 + η̄(−1)p

e−1
2 − max

{
|Da ∩ H | : H ∈ [Fq , r ]p

}

= pe−1 + η̄(−1)p
e−1
2 − 2pe−(e−r)−1,

which follows that max
{
|Da ∩ H | : H ∈ [Fq , r ]p

}
= 2pr−1. Thus, there exists an

r -dimensional subspace Jr of Fq such that |Da ∩ Jr | = 2pr−1. By Lemma 1, we know
that RJr = 1 and εJr = η(a), which concludes that there exists an (r − 1)-dimensional

subspace Jr−1 of Jr satisfying f (Jr−1) = 0 and η( f (x)) = (−1)
(e−1)(p−1)

4 ε f η̄(−1),
for each x ∈ Jr \ Jr−1. Let α1, α2, . . . , αr−1 be an Fp-basis of Jr−1. Take an element
αr ∈ Jr \ Jr−1 and set

μ1 = α1 + αr , μ2 = α2 + αr , . . . , μr−1 = αr−1 + αr , μr = αr ,

clearly, μ1, μ2, . . . , μr−1, μr is an Fp-basis of Jr . Define

λ1 = (μ1,−α), λ2 = (μ2,−α), . . . , λr−1 = (μr−1,−α), λr = (μr ,−α)
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and Vr =
〈
λ1, λ2, . . . , λr−1, λr

〉
, then Vr is an r -dimensional subspace of F

2
q . Set

S(−α) =
{
(y, z) ∈ Vr : z = −α

}
, it is easy to know that the cardinal number of

S(−α) is pr−1. We assert that f (y) = f (αr ) for any (y,−α) ∈ S(−α). In fact, (y,−α)

has the following unique representation:

(y,−α) = x1λ1 + x2λ2 + · · · + xr−1λr−1 + xrλr ,

= (x1α1 + x2α2 + · · · + xr−1αr−1 + αr ,−α), xi ∈ Fp,

thus, we have y = x1α1 + x2α2 + · · · + xr−1αr−1 + αr , which concludes that f (y) =
f (αr ). Take

Hr =
〈
(L f (μ1),−α), (L f (μ2),−α), . . . , (L f (μr−1),−α), (L f (μr ),−α)

〉
,

it is easily seen that Hr is our desired r -dimensional subspace of F
2
q and its |N (Hr )|

reaches the maximum

|N (Hr )| = p2e−(r+1)
(
1 + pr−1− e−1

2

)
= p2e−r−1 + p

3e−3
2 .

So, for 0 < r < e+1
2 , the desired result is obtained by Lemma 11 and (12).

When r = e+1
2 , let Hr be an r -dimensional subspace of F

2
q . By Lemmas 7 and 11, we

have |N (Hr )| ≤ 2p
3(e−1)

2 , which concludes that

dr (CD) ≥ p2e−1 − 2p
3(e−1)

2

by formula (12). On the other hand, by formula (11), we have

dr (CD) = p2e−1 − 1 − max

{
∣
∣
∣H 3e−1

2
∩ D

∣
∣
∣ : H 3e−1

2
∈
[

F
2
q ,

3e − 1

2

]

p

}

.

Nowwe want to construct a 3e−1
2 -dimensional subspace H 3e−1

2
of F

2
q such that |H 3e−1

2
∩D| ≥

2p
3(e−1)

2 − 1, which concludes that

dr (CD) ≤ p2e−1 − 2p
3(e−1)

2 .

In fact, by the proof of (1), we know that the dimension of J e−1
2

is e−1
2 , then the dimension

of J
⊥ f
e−1
2

is e+1
2 . Taking (u, v) ∈ D, where u ∈ J

⊥ f
e−1
2

and f (u) �= 0, define H 3e−1
2

= (J e−1
2

×
Tα) ⊕

〈
(u, v)

〉
, then H 3e−1

2
is our desired subspace of F

2
q . So, for r = e+1

2 , we have

dr (CD) = p2e−1 − 2p
3(e−1)

2 .

Case 2 e(e ≥ 3) is even and ε f = (−1)
e(p−1)

4 . In this case, e0 = e
2 and e − e0 = e

2 , that
is, 0 < r ≤ e

2 .
Suppose Hr is an r -dimensional subspace ofF2

q andα ∈ Prj2(Hr ). Recall that v(0) = p−1
and v(x) = −1 for x ∈ F

∗
p defined in Lemma 1. By Lemmas 7 and 11, we have

|N (Hr )| = pe−(r+1)

⎛

⎝q + ε f

∑

(y1,−u)∈Hr

∑

z∈F∗
p

σz

(
(p∗)

e
2 ζ

f (xy1 )
p

)
⎞

⎠
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= p2e−(r+1)

⎛

⎝1 + p− e
2

∑

(y1,−α)∈Hr

v( f (xy1)

⎞

⎠ .

Let Jr be a subspace of J e
2
with a basis μ1, μ2, . . . , μr . Take

Hr =
〈
(L f (μ1),−α), (L f (μ2),−α), . . . , (L f (μr−1),−α), (L f (μr ),−α)

〉
,

then |N (Hr )| reaches its maximum

|N (Hr )| = p2e−(r+1)
(
1 + (p − 1)pr−1− e

2

)
= p2e−r−1 + (p − 1)p

3e−4
2 .

So, for 0 < r ≤ e
2 , the desired result is obtained by Lemma 11 and (12).

Case 3 e(e ≥ 3) is even and ε f = −(−1)
e(p−1)

4 . In this case, e0 = e−2
2 and e−e0 = e

2 +1,
that is, 0 < r ≤ e

2 + 1.
Suppose Hr is an r -dimensional subspace of F

2
q and α ∈ Prj2(Hr ). By Lemmas 7 and 11,

we have

|N (Hr )| = p2e−(r+1)
(
1 − p− e

2
∑

(y1,−α)∈Hr

v( f (xy1)
)
.

Taking an element a ∈ F
∗
p , then, by Lemma 1 (or [32, Theorem 6.26]), we know that the

length and the dimension of CDa
in (1) are pe−1 + p

e−2
2 and e, respectively.

When 0 < r ≤ e
2 , combining formula (11) with Lemma 4, we have

de−r (CDa
) = pe−1 + p

e−2
2 − max

{
|Da ∩ H | : H ∈ [Fq , r ]p

}

= pe−1 − 2pe−(e−r)−1 + p
e−2
2 ,

which follows that max
{
|Da ∩ H | : H ∈ [Fq , r ]p

}
= 2pr−1. Thus, there exists an r -

dimensional subspace Jr of Fq such that |Da ∩ Jr | = 2pr−1. By Lemma 1, we know that
RJr = 1 and εJr = η(a), which concludes that there exists an (r − 1)-dimensional subspace

Jr−1 of Jr satisfying f (Jr−1) = 0 and η( f (x)) = (−1)
(e−1)(p−1)

4 ε f , for each x ∈ Jr \ Jr−1.
Let α1, α2, . . . , αr−1 be an Fp-basis of Jr−1. Take an element αr ∈ Jr \ Jr−1 and set

μ1 = α1 + αr , μ2 = α2 + αr , . . . , μr−1 = αr−1 + αr , μr = αr ,

it’s obvious that μ1, μ2, . . . , μr−1, μr is an Fp-basis of Jr . Take

Hr =
〈
(L f (μ1),−α), (L f (μ2),−α), . . . , (L f (μr−1),−α), (L f (μr ),−α)

〉
,

then |N (Hr )| reaches its maximum

|N (Hr )| = p2e−(r+1)
(
1 + pr−1− e

2

)
= p2e−r−1 + p

3e−4
2 .

So, for 0 < r ≤ e
2 , the desired result is obtained by Lemma 11 and (12).

When r = e
2 + 1, combining formula (11) with Lemma 4, we have

de−r (CDa
) = pe−1 + p

e−2
2 − max

{
|Da ∩ H | : H ∈ [Fq , r ]p

}

= pe−1 − pe−(e−r)−1,
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which follows that max
{
|Da ∩ H | : H ∈ [Fq ,

e
2 + 1]p

}
= p

e
2 + p

e−2
2 . Thus, there exists an

r -dimensional subspace Jr of Fq such that |Da ∩ Jr | = p
e−2
2 + p

e
2 . By the proof of Lemma 4

(or [28, Theorem 1]), we know that RJr = 2 and εJr = η̄((−1)
e
2−1)ε f . So, there exists an

(r − 2)-dimensional subspace Jr−2 of Jr satisfying f (Jr−2) = 0. Let α1, α2, . . . , αr−2 be
an Fp-basis of Jr−2. Choose two elements γ1, γ2 ∈ Jr \ Jr−2 such that α1, . . . , αr−2, γ1, γ2
is an Fp-basis of Jr . Set

μ1 = α1 + γ2, . . . , μr−2 = αr−2 + γ2, μr−1 = γ1 + γ2, μr = γ2,

it’s easy to see that μ1, μ2, . . . , μr−1, μr is an Fp-basis of Jr . Take Hr =
〈
(L f (μ1),−α),

(L f (μ2),−α), . . . , (L f (μr−1),−α), (L f (μr ),−α)
〉
, then |N (Hr )| reaches its maximum

|N (Hr )| = p2e−(r+1)
(
1 + pr−1− e

2

)
= 2p

3e−4
2 = p2e−r−1 + p

3e−4
2 .

So, for r = e
2 + 1, the desired result is obtained. ��

4 Concluding remarks

In this paper, inspired by the works of [28,44], we constructed a family of three-weight
linear codes using a special inhomogeneous quadratic function, and determined their weight
distributions andweight hierarchies. Compared with the codes Tang et al. constructed in [44],
the obtained codes in this paper have different weight distributions. They are also different
from the weight distributions in the classical families in [11,51,52]. In our case, we note that
the quadratic form f defined in (3) is non-degenerate. It is an open problem to determine the
weight hierarchy of the code when f is degenerate.

Let wmin and wmax denote the minimum and maximum nonzero weight of our obtained
code CD defined in (5), respectively. If e ≥ 3, then it can be easily checked that

wmin

wmax
>

p − 1

p
.

By the results in [1] and [50], we know that every nonzero codeword of CD is minimal and
most of the codes we constructed are suitable for constructing secret sharing schemes with
interesting properties.
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