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Abstract
There is a local ring E of order 4,without identity for themultiplication, defined by generators
and relations as E = 〈a, b | 2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b〉. We study a
special construction of self-orthogonal codes over E, based on combinatorialmatrices related
to two-class association schemes, Strongly Regular Graphs (SRG), and Doubly Regular
Tournaments (DRT). We construct quasi self-dual codes over E, and Type IV codes, that is,
quasi self-dual codes whose codewords all have even Hamming weight. All these codes can
be represented as formally self-dual additive codes over F4. The classical invariant theory
bound for the weight enumerators of this class of codes improves the known bound on the
minimum distance of Type IV codes over E .

Keywords Rings · Codes · Formally self-dual codes · Type IV codes

Mathematics Subject Classification Primary 94 B05 · Secondary 16 A10, 05E30

This research is supported by National Natural Science Foundation of China (12071001), Excellent Youth
Foundation of Natural Science Foundation of Anhui Province (1808085J20).

B Minjia Shi
smjwcl.good@163.com

Shukai Wang
wangshukai_2017@163.com

Jon-Lark Kim
jlkim@sogang.ac.kr

Patrick Solé
sole@enst.fr

1 Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School
of Mathematical Sciences, Anhui University, Hefei 230601, China

2 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese
Academy of Sciences, Beijing 100093, China

3 School of Mathematical Sciences, Anhui University, Hefei 230601, China

4 Department of Mathematics, Sogang University, Seoul, South Korea

5 Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseilles, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-021-00948-7&domain=pdf


678 M. Shi et al.

1 Introduction

Since the celebrated theorem of Gleason and Prange [2], formally self-dual codes over F4

with even weights, also known as Type IV codes have been studied extensively [11, Chap.
19], [12]. In [4], this notion was extended over the three rings of order four that are not a field,
namely Z4, F2 + uF2, and F2 + vF2. Recently, a further extension was accomplished over a
non commutative non-unital ring in [1]. The concept of a self-dual code is replaced there by
a quasi self-dual (QSD) code that is self-orthogonal of length n, with 2n codewords. Type
IV codes are then defined as QSD codes, whose codewords all have even Hamming weights.
With every linear E-code is attached an additive F4-code obtained by forgetting the ring
structure; this allows to use the additive codes package of [3] for numerical computations.
Kim and Ohk [10] showed that quasi self-dual codes over that ring E can be applied to DNA
codes in the sense that the GC-content concept can be described by a multiple of an element
in the ring. They also improved the classification of QSD codes over E up to lengths 8. The
Lee weight defined below is based on this DNA application.

In this paper, we study a special construction of QSD codes over E, based on combina-
torial matrices related to two-class association schemes, Strongly Regular Graphs (SRG),
and Doubly Regular Tournaments (DRT). This is a generalization from fields to rings of the
approach of [5]. We construct QSD codes and Type IV codes over E . Along the way, we
improve the upper bound on the minimum distance of Type IV codes from [1] by a multi-
plicative factor, by an application of the classical invariant bound for the minimum distance
of extremal Type IV codes over F4. Some numerical results validate our approach.

The material is arranged in the following way. Section 2 collects the notions and notations
required for the rest of the paper. Section 3 studies our special construction. Section 4 devel-
ops the needed theory of combinatorial matrices from designs, SRGs and DRTs. Section 5
concludes the article.

2 Background

2.1 Association schemes

An association scheme on a set X with s classes is a partition of the cartesian product
X × X = ∪s

i=0Ri with the following properties:

1. R0 = {(x, x) | x ∈ X},
2. (x, y) ∈ Rk, if and only if (y, x) ∈ Rk,

3. Rt
i = {(y, x) | (x, y) ∈ Ri } = R j for some j ,

4. if (x, y) ∈ Rk, the number of z ∈ X such that (x, z) ∈ Ri , and (z, y) ∈ R j , is an
integer pki j that depends on i, j, k but not on the special choice of x and y.

Such a scheme is called an s-class association scheme. Let Ak denote the adjacencymatrix
of the relations Rk . Concretely Ak is indexed by X , and defined by

Ak(x, y) =
{
1 if (x, y) ∈ Rk,

0 else.

It can be shown that the adjacency matrices Ak span a commutative algebra over the complex
numbers [11, Chap. 21].

If s = 2 two cases may occur.
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Self-orthogonal codes over a non-unital ring and combinatorial matrices 679

• A1 = AT
1 and A2 = AT

2 . The undirected graph (X , R1) is then strongly regular (SRG).
• A1 = AT

2 . The directed graph (X , R1) is then a doubly regular tournament (DRT).

For future use, we denote by I the identity matrix, and by J the all-one matrix, both of
order |X |.

2.2 Binary codes

Denote by wt(x) the Hamming weight of x ∈ F
n
2 . The dual of a binary linear code C is

denoted by C⊥ and defined as

C⊥ = {y ∈ F
n
2 | ∀x ∈ C, (x, y) = 0},

where (x, y) = ∑n
i=1 xi yi , denotes the standard inner product. A code C is self-orthogonal

if it is included in its dual:C ⊆ C⊥.Two binary codes are equivalent if there is a permutation
of coordinates that maps one to the other.

2.3 Quaternary codes

An additive code of length n over F4 is an additive subgroup of Fn
4. It is a free F2 module

with 4k elements for some k ≤ n (here 2k is an integer, but k may be half-integral). Using a
generator matrix G, such a code can be represented as the F2-span of its rows. Every linear
E-code C is associated with an additive F4 code φ(C) by the substitution

0 → 0, a → ω, b → ω2, c → 1,

where F4 = F2[ω]. Note that the reverse substitution attaches to every additive F4 code an
additive subgroup of En, which may or may not be linear.

Besides the Hamming weight of a vector, we might consider its Lee weight as follows:

wtL(0) = 0, wtL(a) = wtL(b) = 1, wtL(c) = 2.

2.4 Ring theory

Consider the ring of order 4 defined by two generators a and b by the relations

E = 〈a, b | 2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b〉.
The ring E is a non unital, non-commutative ring of order 4, of characteristic two [1,6]. Thus,
E consists of four elements E = {0, a, b, c}, with c = a + b. Its multiplication table is as
follows.

× 0 a b c
0 0 0 0 0
a 0 a a 0
b 0 b b 0
c 0 c c 0

From this table, we deduce that this ring is not commutative, and non-unital. It is local with
maximal ideal J = {0, c}, and residue field E/J = F2 = {0, 1}, the finite field of order 2.

Denote by α : E → E/J = F2, the map of reduction modulo J . Thus α(0) = α(c) = 0,
and α(a) = α(b) = 1. This map is extended in the natural way in a map from En to F

n
2.
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680 M. Shi et al.

2.5 Codes over E

A linear E-code of length n is a one-sided E-submodule of En . Let C be a code of length
n over E . With that code we associate two binary codes of length n :
(1) the residue code defined by res(C) = {α(y) | y ∈ C},
(2) the torsion code defined by tor(C) = {x ∈ F

n
2 | cx ∈ C}.

We equip En with the inner product (x, y) of x, y ∈ En defined by the relation

(x, y) =
n∑

i=1

xi yi .

The right dual C⊥R of C is the right module defined by

C⊥R = {y ∈ En | ∀x ∈ C, (x, y) = 0}.
The left dual C⊥L of C is the left module defined by

C⊥L = {y ∈ En | ∀x ∈ C, (y, x) = 0}.
An E-code C is self-orthogonal if

∀x, y ∈ C, (x, y) = 0.

Clearly, C is self-orthogonal if and only if C ⊆ C⊥L . Likewise, C is self-orthogonal if and
only if C ⊆ C⊥R . Thus, for a self-orthogonal code C, we always have C ⊆ C⊥L ∩C⊥R . An
E-code of length n isQuasi Self-Dual (QSD for short) if it is self-orthogonal and of size 2n .
A QSD code is Type IV if all its codewords have even weight.

The following result went unnoticed in [1], and improves on the previously known upper
bound d ≤ 2� n+2

4 
 for the minimum Hamming distance d of a Type IV E-code of length n.

Theorem 1 If C is a Type IV E-code of length n, then it is formally self-dual for the Hamming
weight enumerator, and its minimum distance is ≤ 2(� n

6 
 + 1).

Proof The first statement follows by specialization of variables in the MacWilliams relation
for the joint weight enumerator of the residue and torsion code [1, Prop. 2]. The second
statement follows by the standard argument used to prove the same bound for Type IV codes
over F4 [11, Chap. 19, (69)]. Note that the Hamming weight enumerator of a Type IV code
over E belongs to the same ring of invariants as that of a Type IV code over F4. ��

Theorem 1 gives a construction of additive formally self-dual even codes over F4.

Corollary 1 If C is Type IV then φ(C) is an additive formally self-dual even code.

Proof The results follow by the fact that C and φ(C) have the same Hamming weight
enumerator. ��

We now study the residue and torsion code of a QSD code over E .

Theorem 2 [1] For any QSD E-linear code C, we have
(1) res(C) ⊆ res(C)⊥,
(2) tor(C) = res(C)⊥,
(3) dim(C) = dim(res(C)) + dim(tor(C)).
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Self-orthogonal codes over a non-unital ring and combinatorial matrices 681

Table 1 Conditions of
self-orthogonal codes

y ∈ {0, c} x ∈ {0, c}

y ∈ {a, b} λ = μ = ν = 0 and x ∈ {0, c}
λ = 1, μ = ν = 0 and x = y

We can characterize QSD codes over E amongst linear codes over E as a function of their
residue code in the following theorem.

Theorem 3 ([1]) Let B be a self-orthogonal binary [n, k1] code, where 0 ≤ k1 ≤ n/2. The
code C over the ring E defined by the relation

C = aB + cB⊥

is a QSD code. Its residue code is B and its torsion code is B⊥. Conversely, any QSD code
C can be built in that way by taking for B the residue code of C .

By Theorem 3, we know that the classification of QSD E-codes is equivalent to the
classification of their residue codes. Moreover, the following result is straightforward, but
useful. The easy proof is ommitted.

Theorem 4 The minimum distance d(C) of a QSD code C defined by C = aB + cB⊥, where
B is a self-orthogonal binary code, is less than or equal to min{d(B), d(B⊥)}. If B is a
self-dual binary code, then d(C) = d(B).

3 Construction

Consider the code C(M) of length 2n with a generator matrix of the form

G = (x I , yM),

where x, y ∈ E, I is the identity matrix, and M is a binary matrix satisfying

MMT = λI + μJ + νM (mod 2),

where λ,μ, ν ∈ F2, and J is the all-one matrix.

Theorem 5 The code C(M) is self-orthogonal if and only if either x, y ∈ {0, c}, or y ∈ {a, b}
and the three parameters λ,μ, ν are as in Table 1.

Proof The code C(M) is self-orthogonal if and only if GGT = 0.
If y ∈ {0, c}, GGT = 0 implies x ∈ {0, c}. It is trivial because the code only has a zero

codeword. (In fact, it may not be a code.)
If y ∈ {a, b}, then

GGT = x2 I + y2MMT

= x2 I + y(λI + μJ + νM)

= x2 I + yλI + yμJ + yνM .

Therefore, GGT = 0 if and only if −yνM = x2 I + yλI + yμJ .

Two cases are as follows.
(1) If ν = 0, then (x2 + yλ)I + yμJ = 0. Since y ∈ {a, b} and J is all-one matrix,

μ = 0. In this case, we have
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682 M. Shi et al.

• λ = 0 and x ∈ {0, c};
• λ = 1 and x = y.

(2) If ν = 1, then −yM = x2 I + yλI + yμJ . So,

(−yM)(−yM)T = yMMT,

[(x2 + yλ)I + yμJ ][(x2 + yλ)I + yμJ ]T = y(λI + μJ + M).

Expand and simplify this equation according to the operation over E , then

(x2 + yλ)2 I + nyμJ = yλI + (y + x2y + yx2)μJ + yM,

(x2 + x2yλ + yx2λ + yλ)I + nyμJ = yλI + (y + x2y + yx2)μJ − (x2 I + yλI + yμJ ),

(x2y + yx2 + y)λI + (ny + x2y + yx2)μJ = 0.

In this case, we have

• μ = 0. If λ = 1, then x2y + yx2 + y = 0. So, if x ∈ {0, c}, then y = 0. It is a
contradiction because y ∈ {a, b}. If x = a, then ay + ya + y = a+ a + a = a �= 0 with
y = a, and a + b + b = a �= 0 with y = b. Thus, x �= a. Similarly, x �= b. Therefore,
λ �= 1 and λ = 0.
Check λ,μ, ν, then x = y and M = I are obtained. This case is covered by the case
λ = 1, μ = ν = 0.

• μ = 1. Then (x2y + yx2 + y)λI + (ny + x2y + yx2)J = 0. It is easy to check that n is
even and λ = 0. Then, we have two cases:
(i) If x ∈ {0, c}, then yνM = y J . Since y ∈ {a, b}, we have M = J , ν = 1. So,
MMT = J + M = J + J = 0. This case is covered by the case λ = μ = ν = 0.
(i i) If x = y, then M = I + J . This case is covered by the case λ = 1, μ = ν = 0.

Thus, λ,μ, ν ∈ F2 are as in Table 1. ��
The next two results give conditions for C(M) to be QSD (resp. Type IV).

Theorem 6 A self-orthogonal code C(M) is QSD if and only if x ∈ {a, b}.
Proof A self-orthogonal code C is QSD if and only if G has n linearly independent rows. If
x ∈ {a, b}, C is QSD because of the form of G.

If x ∈ {0, c}, then we must let the determinant |yM | �= 0 to make sure there are n linearly
independent rows in G. From the proof of Theorem 5, y ∈ {a, b} and −yνM = yλI + yμJ .
Then, λ = μ = ν = 0, and M is a binary matrix such that{ |M | �= 0,

MMT = 0.
(1)

It is impossible for these two formulas to hold together. This completes the proof. ��
Theorem 7 A QSD code C(M) is Type IV if x ∈ {a, b} and the case λ = 1, μ = v = 0 in
Table 1 holds.

Proof It is easy to check that a QSD code C(M) is Type IV if its generator matrix G =
(x I , yM) consists only of rows of even weight. Note that x /∈ {0, c} because of Theorem 6.

If x ∈ {a, b}, we just prove that M has all the rows of odd weights with λ = 1, μ = ν = 0.
Now we have {

MMT = λI + μJ + νM,

yνM = (x + yλ)I + yμJ .
(2)
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Self-orthogonal codes over a non-unital ring and combinatorial matrices 683

If λ = 1, μ = ν = 0, then {
MMT = I ,
(x + y)I = 0.

Therefore, x = y and M has all rows of odd weights.
By the proof of Theorem 5, two cases λ = μ = 0, ν = 1 and λ = 0, μ = 1, ν = 1 can

also get Type IV codes, and these two special cases can be covered by λ = 1, μ = ν = 0.
This completes the proof. ��

Example 8 We describe the above constructions with two examples.

• If M =

⎛
⎜⎜⎝
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠, then MMT = 1I + 0J + 0M (mod 2), that is, λ = 1, μ = 0, ν =

0. It follows from Table 1 of Theorem 5 that for y ∈ {a, b} and x = y, the matrix
G = (x I , yM) generates a self-orthogonal code. In particular, this code is both QSD
and Type IV with minimum distance 4.

• If M =
⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠, then MMT = 0I + 0J + 1M (mod 2) and MMT = 1I + 0J + 0M

(mod 2), that is, λ = 0, μ = 0, ν = 1 or λ = 1, μ = 0, ν = 0. By Theorem 5, both
of these two cases can generate self-orthogonal codes by using the matrix G. And if
x = a or b, then G = (x I , xM) generates a Type IV code with minimum distance 2
from Theorem 7.

We now investigate the residue and torsion codes of C(M).
From [1, Thm. 1], we write the generator matrix in the form

G =
(
aIk1 X Y
0 cIk2 cZ

)
.

For x �= 0, we have the following cases depending on the values of x ∈ E .

• If x = a or x = b, then k1 = n, k2 = 0, (X , Y ) = yM . The generator matrix of the
residue code is (I , M) if y = a, b and (I , 0) if y = c.

• If x = c, then, k1 = 0, k2 = n, y = c, Z = M . The generator matrix of the torsion code
is G2 = (I , M).

The (additive) generator matrix of the corresponding additive F4 code is

G ′ =
(

φ(aG)

φ(bG)

)
,

where φ is as defined in the preceding section.

Remarks:

• If y = c, then C(M) has minimum distance 1. In the examples, we shall assume that
y = a, or y = b.

• If x = c, then we find that φ(M) is a linear code over F4 given by φ(M) = 〈(0, M)〉.
We will avoid this case as well.

• Now if both x, y are in {a, b}, then we find that φ(M) is a linear code over F4 given by
φ(M) = 〈(I , M)〉.
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4 Combinatorial matrices

4.1 Two-class association schemes

From now on, we can discuss two-class association schemes which will play an important
role in M .

There are two kinds of two-class association schemes. One is a Strongly Regular Graph
(SRG), where the two adjacency matrices satisfy Ai = AT

i for i = 1, 2. Here, A2 satisfies
A2 = J − I − A1 := A1. An important database of SRGs is [15].

A classical construction of a SRG is the Paley graph. It is constructed from quadratic
residues in Fq , where q ≡ 1 (mod 4) and A = Q = N . The parameters are
(q,

q−1
2 ,

q−3
4 ,

q+1
4 ). An example of q = 5 is the pentagon graph.

Another class is a Doubly Regular Tournament (DRT), which is equivalent to a skew
Hadamard matrix [13]. The adjacency matrix A2 satisfies A2 = J − I − A1 := A1. Note
that AT

1 = A1.
From now on, let A = A1.

Lemma 1 [5] If G is an SRG, then we have

AAT = A2 = κ I + ΛA + MA.

If G is a DRT, then we have

AAT = κ I + (κ − 1 − Λ)A + (κ − M)A.

Using the same parameters in the above lemma, both of them satisfy the equation

AJ = J A = κ J ,

and for SRGs, we have
A2 = κ I + ΛA + M(J − I − A), (3)

for DRTs, we have
A2 = ΛA + M(J − I − A). (4)

We connect these parameters to that of the matrix M of the preceding section. The trivial
proof is omitted.

Proposition 1 Using the notation of Lemma 1, if M is the adjacency matrix of G with param-
eters (n, κ,Λ,M) then

• in the SRG case λ = κ − M, μ = M, ν = Λ − M,
• in the DRT case λ = M, μ = κ − M, ν = M − Λ − 1.

We can use the database of two class association schemes from Hanaki and Miyamoto’s
database [8]. In particular there is a classification of DRT of sizes up to 40.

4.2 The pure and the bordered circulant codes from two-class association schemes

Wecan also follow the pure and the bordered constructionmethod from [5]. Let QE (r , s, t) =
r I + s A + t A, where r , s, t ∈ E , where A is an adjacency matrix of a SRG or a DRT. Let
C(QE (r , s, t)) be a code of length 2n with a generator matrix of the form

G = (aI , QE (r , s, t)) = (aI , r I + s A + t A).
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This construction can be called the pure construction.
First we consider r = 0 and s, t ∈ {a, b}. The code C(QE (0, s, t)) of length 2n has

generator matrix of the form

G = (aI , QE (0, s, t)) = (aI , s A + t A),

where A is an adjacency matrix of a SRG or a DRT.

Theorem 9 Suppose A is an adjacency matrix of a SRG or a DRT.

(1) If n = 3, then the minimum distance of C(QE (0, s, t)) is exactly 3.
(2) If n ≥ 4, then the minimum distance of C(QE (0, s, t)) is 4.

Proof Due to the symmetry between A and A,wemay assume s = a and t = b, or s = t = a.
We only consider the case s = a and t = b because the other case s = t = a can be done
similarly. Note that aG = a(aI , aA + bA) = (aI , aA + aA) = (aI , a(A + A)). Since
A + A = J − I , aG = (aI , a(J − I )). It is easy to check that the minimum distance of
the code generated by (aI , a(J − I )) is 3 if n = 3. Hence the first statement of the theorem
follows. Add any two adjacent rows in aG, we can get a codeword of weight 4 if n ≥ 4.
Hence the second statement follows. ��

Similarly, we have the following theorem.

Theorem 10 Suppose A is an adjacencymatrix of a SRGor aDRT. If r �= 0, and s, t ∈ {a, b},
then the following statements hold.

(1) If n ≥ 4 and r = c, then the minimum distance of C(QE (r , s, t)) is exactly 4.
(2) If r is either a or b, then the minimum distance of C(QE (r , s, t)) is 2.

Therefore if n ≥ 4, it is reasonable to consider the following three constructions (i)
C(QE (0, a, 0)), (ii) C(QE (a, a, 0)), or (iii) C(QE (c, a, 0)), where replacing a into b gives
the same result.

Note that Case (i) and Case (ii) are the same construction as C(M) with x = a and y = a
in Sect. 3 by taking M = A and M = A + I , respectively. Therefore, we can apply these
two cases to various SRGs and DRTs.

Next we can consider the bordered construction as follows.

BE (r , s, t) =

⎛
⎜⎜⎜⎝
a 0 . . . 0 0 a . . . a
0 a
... aI

... QE (r , s, t)
0 a

⎞
⎟⎟⎟⎠ .

Just like for the pure construction, we can distinguish three cases (i) QE (0, a, 0), (ii)
QE (a, a, 0), or (iii) QE (c, a, 0).

Lemma 2 The codes in these two constructions with Case (i) and Case (iii) are the same.

Proof In Case (i), QE (0, a, 0) = aA, and the generator matrix G(i) = (aI |aA) in pure
construction. So, the code C(i) = {xG(i)|x ∈ En}. In Case (iii), QE (c, a, 0) = cI + aA,
and the generator matrix G(iii) = (aI |cI + aA) in pure construction. So, the code C(iii) =
{xG(iii)|x ∈ En}. Since

xG(iii) = x(G(i) + (0|cI ))
= xG(i) + x(0|cI )
= xG(i),
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686 M. Shi et al.

we have C(i) = C(iii).
For the bordered construction in Case (i), we have C ′

(i) = {yG ′
(i)|y ∈ En+1}, where

G ′
(i) =

⎛
⎜⎜⎜⎝
a 0 . . . 0 0 a . . . a
0 a
... aI

... aA
0 a

⎞
⎟⎟⎟⎠ ,

and in Case (iii), we have C ′
(iii) = {yG ′

(iii)|y ∈ En+1}, where

G ′
(iii) =

⎛
⎜⎜⎜⎝
a 0 . . . 0 0 a . . . a
0 a
... aI

... cI + aA
0 a

⎞
⎟⎟⎟⎠ .

Let

A′ =

⎛
⎜⎜⎜⎝
0 0 . . . 0 0 0 . . . 0
0 0
... 0

... cI
0 0

⎞
⎟⎟⎟⎠ ,

then

yG ′
(iii) = y(G ′

(i) + A′)
= yG ′

(i) + yA′

= yG ′
(i).

Therefore, C ′
(i) = C ′

(iii). ��

Example 11 It is well known that there is a unique DRT of order 11. The pure construction
with QE (0, a, 0) gives a QSD [22, 11, 6] code over E . The bordered construction with
QE (a, a, 0) gives a QSD [24, 12, 8] code over E . The minimum distances of these codes are
justified by Theorem 4.

Lemma 3 (1) For SRGs we have

QE (r , s, t)QE (r , s, t)T = ω1 I + ω2A + ω3A,

where ω1 = (r2 + s2κ − t2 − t2κ + t2v), ω2 = (rs + sr + s2Λ − st − ts − stΛ −
tsΛ+ t2Λ+ stκ + tsκ + t2v −2t2κ), ω3 = (r t + tr + s2M− stM− tsM+ t2M+
stκ + tsκ + t2v).

(2) For DRTs we have

QE (r , s, t)QE (r , s, t)T = ω′
1 I + ω′

2A + ω′
3A,

whereω′
1 = (r2+(s2+t2)κ),ω′

2 = (r t+sr+s2(κ−1−Λ)+t2(κ−M)+stΛ+stM),
ω′
3 = (tr + rs + s2(κ − M) + t2(κ − 1 − Λ) + stM + stΛ).

Proof It is straightforward by Eqs. (3) and (4) and Lemma 1. ��
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We will discuss the weight of rows of generator matrices in Case (i) and Case (ii). Then,
the conditions of QSD and Type IV can be confirmed. By the form of generator matrices in
pure construction and bordered construction, the code is QSD if it is self-orthogonal. The
following remark gives when the code is self-orthogonal and Type IV.

Remark 1 For Cases (i) and (ii), we have the following observations.

• Pure construction with SRGs
For the code PE (r , s, t) to be self-orthogonal, we need

(aI |QE (r , s, t))(aI |QE (r , s, t))T = 0.

That is, we need QE (r , s, t)QE (r , s, t)T = −aI . By Lemma 3 (1), we compute the
parameters κ,Λ,M of self-orthogonal (QSD) codes in Table 2.
The weight of any row of QE (r , s, t) is related to the coefficient of I , where I is in
Lemma 3 (1). So, the weight of any row of (aI |QE (r , s, t)) is

1 + α(r2) + α(s2)κ + α(t2)(n − κ − 1),

that is, 1 + κ in Case (i) and 2 + κ in Case (ii). Therefore, a QSD code is Type IV if

1 + α(r2) + α(s2)κ + α(t2)(n − κ − 1) = 0 (mod 2),

that is, 1+ κ = 0 (mod 2) in Case (i) and 2+ κ = 0 (mod 2) in Case (ii). Then we have
the conditions of Type IV in Table 2.

• Bordered construction with SRGs
Similar to the pure construction, we need

BE (r , s, t)BE (r , s, t)T = 0.

Then we have

a(1 + n) = 0

a(r + sκ + t(n − κ − 1)) = 0

aI + a J + QE (r , s, t)QE (r , s, t)T = 0.

The first equation is the product of the top row with itself. The second equation is the
product of the top row with any other row, and the third equation ensures that the other
rows are orthogonal to each other. The results of the calculation by Lemma 3 (1) are in
Table 2.
And this code is Type IV if

α(a)(1 + n) = 0 (mod 2),

α(r) + α(s)κ + α(t)(n − κ − 1) = 0 (mod 2).

We also have the results in Table 2.
• Pure and bordered construction with DRTs

By using the same arguments as these two constructions with SRGs and Lemma 3 (2),
we have the results in Table 3.

We computed the Hamming weight and Lee weight of some codes. These examples are
from [8,15] and MAGMA database of SRGs [3].

Theorem 12 There are QSD codes over E with the following parameters.
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Table 2 Conditions of QSD and Type IV with SRGs

r s t Pure Pure Bordered Bordered

QSD Type IV QSD Type IV

0 a 0 κ = 1,Λ = M = 0 Always Not exist Not exist

a a 0 κ = Λ = M = 0 Always Not exist Not exist

Table 3 Conditions of QSD and Type IV with DRTs

r s t Pure Pure Bordered Bordered

QSD Type IV QSD Type IV

0 a 0 κ = M = 1,Λ = 0 Always Not exist Not exist

a a 0 Not exist Not exist n = M = κ = 1,Λ = 0 Always

Table 4 Weights of some QSD codes of SRGs

Construction Cases (n − κ − Λ − M) Code Length Hamming Lee

Pure (i) (36 − 15 − 6 − 6) 72 12 12

(ii) (16 − 6 − 2 − 2) 32 8 8

(28 − 12 − 6 − 4) 56 8 8

(35 − 16 − 6 − 8) 70 10 10

(36 − 14 − 4 − 6) 72 12 12

(40 − 12 − 2 − 4) 80 12 12

Table 5 Weights of QSD some codes of DRTs

Construction n Length Hamming Lee Hamming Lee

Pure 11 22
Case (i)

6 6
Case (ii)

None None

19 38 8 8 None None

Bordered 11 24
Case (i)

None None
Case (ii)

8 8

19 40 None None 8 8

(1) Based on SRGs, there are QSD codes with parameters (2n, d), where 2n is the length
of the code, and d is the minimum distance:

(32, 8), (56, 8), (70, 10), (72, 12), (80, 12), (92, 12).

(2) Based on DRTs, there are QSD codes with parameters (2n, d), where 2n is the length
of the code, and d is the minimum distance:

(22, 7), (24, 8), (38, 8), (40, 8).

We display these results in Tables 4 and 5. The images by φ of these codes are formally
self-dual additive codes over F4 in [7].
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5 Conclusion

In this work, we have constructed QSD and Type IV codes over the ring E in the sense of
[1]. The construction method is based on the adjacency matrices of two-class association
schemes, in an analogue over E of [5] over finite fields. Formally self-dual additive codes
over F4 were introduced in [7]. This little-known class of codes deserves further exploration.
In another direction, the construction methods we used can be explored over the rings H and
I of the classification [6].
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