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Abstract
We consider the boomerang uniformity of an infinite class of (locally-APN) power maps
and show that their boomerang uniformity over the finite field F2n is 2 and 4, when n ≡ 0
(mod 4) and n ≡ 2 (mod 4), respectively. As a consequence, we show that for this class of
power maps, the differential uniformity is strictly greater than their boomerang uniformity.

Keywords Finite fields · Differential uniformity · Boomerang uniformity · Locally-APN
functions
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1 Introduction

Let Fq be the finite field with q = 2n elements, where n is a positive integer. We denote the
multiplicative group of nonzero elements of Fq by F

∗
q . Let f be a function from the finite

field Fq to itself. It is well-known that any function from the finite field Fq to itself can be
uniquely represented by a polynomial in Fq [x] of degree at most q − 1.

Substitution boxes play a very crucial role in the design of secure cryptographic primitives,
such as block ciphers. The differential attack, introduced by Biham and Shamir [1] is one of
the most efficient attacks on block ciphers. To quantify the degree of security of a substitution
box, used in a block cipher, against the differential attacks, Nyberg [12] introduced the notion
of differential uniformity. For any ε ∈ Fq , the derivative of f in the direction of ε is given by
Dε f (x) = f (x + ε) + f (x) for all x ∈ Fq . For any a, b ∈ Fq , the Difference Distribution
Table (DDT) entry at the point (a, b) of f is given by
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� f (a, b) = |{x ∈ Fq | Da f (x) = b}|, (1.1)

and the differential uniformity is � f = max{� f (a, b) | a, b ∈ Fq , a �= 0}. When � f =
1, 2, then the function f is called perfect nonlinear (PN) function, almost perfect nonlinear
(APN) function, respectively. It is easy to see that over finite fields of even characteristic,� f

is always even and hence APN functions give the optimal resistance against the differential
attack.

Wagner [14] introduced a new cryptanalysis method against block ciphers, which became
known as the boomerang attack. This attack may be thought of as an extension of the differ-
ential attack [1]. In order to analyze the boomerang attack in a better way, and analogously to
the Difference Distribution Table (DDT) concerning differential attack, Cid et al. [7] intro-
duced the notion of Boomerang Connectivity Table (BCT). Further, to quantify the resistance
of a function against the boomerang attack, Boura and Canteaut [3] introduced the concept
of boomerang uniformity, which is the maximum value in the BCT excluding the first row
and first column. For effectively computing the entries in the BCT, Li et al. [8] proposed an
equivalent formulation as described below. For any a, b ∈ Fq , the Boomerang Connectivity
Table (BCT) entry of the function f at point (a, b), denoted by B f (a, b), is the number of
solutions in Fq × Fq of the following system of equations{

f (x) + f (y) = b,

f (x + a) + f (y + a) = b.
(1.2)

The boomerang uniformity of the function f , denoted by B f , is given by

B f = max{B f (a, b) | a, b ∈ F
∗
q}.

For any permutation f , Cid et al. [7, Lemma 1] showed that B f (a, b) ≥ � f (a, b) for
all (a, b) ∈ Fq × Fq . Later, Mesnager et al. [11] showed that it holds for non-permutation
functions as well. Cid et al. [7, Lemma 4] showed that for APN permutations, the BCT is the
same as theDDT, except for the first rowand the first column.ThusAPNpermutations offer an
optimal resistance to both differential and boomerang attacks. However, over finite fields F2n

with n even, which is the most interesting case in cryptography, the only known example of
APN permutation is due to Dillon [4] over F26 . The existence of APN permutations over F2n ,
n ≥ 8 even, is an open problem and often referred to as the Big APN Problem. Therefore,
over F2n , n even, the functions with differential and boomerang uniformity four offer the
best (known) resistance to differential and boomerang attacks. So far, there are six classes of
permutations over F2n , n ≡ 2 (mod 4) with boomerang uniformity 4 (see [3,8–11,13]).

In this paper, we consider the boomerang uniformity of an infinite class of locally-APN
(see Definition 2.1) functions f (x) = x2

m−1 over the finite field F2n , where n = 2m with
m > 1. In Sect. 2,we recall some results concerning the differential uniformity of f . Section 3
will be devoted to the boomerang uniformity of this power map and we shall show that the
power map f is boomerang 2-uniform when n ≡ 0 (mod 4) (i.e. when m is even) and
boomerang 4-uniform when n ≡ 2 (mod 4) (i.e. when m is odd), respectively.

Cid et al. [7] (see also [11, Theorem 1]) showed that for permutation functions f , B f ≥
� f . However, perhaps, due to lack of any explicit example in the case of non-permutations,
in several follow up papers of Ref. [7] such as Ref. [5,6,9], the term “permutation" was
not emphasized and it has been stated that for any function f , the differential uniformity is
less than the boomerang uniformity. In this paper, we shall show that for non-permutations,
the differential uniformity is not necessarily smaller than the boomerang uniformity. To the
best of our knowledge, this is the first such example. Finally, we end with some concluding
remarks in Sect. 4.
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Boomerang uniformity of a class of power maps 2629

While one might wonder if investigating non-permutation is worthy, and we believe that
these questions and their answers may reveal results of interests that do have applications
to cryptography. With one exception [4], all APN functions on even dimension are non-
permutations. In fact, even the known example from Ref. [4] is an APN permutation that is
CCZ-equivalent to the known Kim (non-permutation) APN function. Moreover, it is known
that the boomerang uniformity is not invariant under the CCZ or even extended affine equiv-
alence, while the differential uniformity is invariant. There are many open questions asking
whether by adding a linearized polynomial (or even monomial) to an APN non-permutation
function might render a permutation (surely, APN) function. If we know exactly how the
boomerang uniformity behaves under such small perturbations, then we can possibly answer
some of these questions. For example, a simple consequence of our main results is that
there is no permutation in the CCZ-equivalent class of x2

m−1 over F22m that has boomerang
uniformity smaller than 2m − 2.

2 Differential uniformity of x → x2
m−1

The differential properties of the power maps of the form x2
t−1 over F2n , 1 < t < n, have

been considered in Ref. [2] where authors computed DDT entries � f (1, b) by determining
roots of linearized polynomials of the form x2

t + bx2 + (b + 1)x = 0. In fact, in Ref. [2]
authors introduced a new type of functions, called locally-APN functions, defined as follows.

Definition 2.1 Let f be a power map from F2n to itself. Then the function f is said to be
locally-APN if

� f (1, b) ≤ 2, for all b ∈ F2n\F2.

In Ref. [2] authors gave an infinite class of locally-APN functions by showing that the
power map x2

m−1 over F22m is locally-APN.
The following lemma concerning the DDT entries of the power map x2

m−1 over F22m has
already been proved in Ref. [2, Theorem 7]. However, we reproduce its proof here for the
sake of convenience of the readers, as it will be used in computing the BCT entries in Sect. 3.

Lemma 2.2 Let f (x) = x2
m−1 be a power map defined on the finite field F22m . Then

� f (1, 0) = 2m − 2, � f (1, b) ≤ 2 for all b ∈ F22m\F2 and

� f (1, 1) =
{
2 if m is even,

4 if m is odd.

Proof For any b ∈ F22m , consider the DDT entry at point (1, b), which is given by the number
of solutions in F22m of the following equation

(x + 1)2
m−1 + x2

m−1 = b. (2.1)

We shall now split the analysis to find the number of solutions of the above equation in
the following cases.

Case 1 Let b = 0. It is easy to observe that x = 0, 1 are not solutions of the above
Eq. (2.1). For x �= 0, 1, Eq. (2.1) reduces to(

x + 1

x

)2m−1

= 1.

123



2630 S. U. Hasan et al.

If we let y = 1 + x−1, then the above equation reduces to y2
m−1 = 1. Since gcd(2m −

1, 22m − 1) = 2m − 1, this equation has exactly 2m − 2 solutions in F22m\F2 and hence
� f (1, 0) = 2m − 2.

Case 2 Let b = 1. Notice that in this case x = 0 and x = 1 are solutions of Eq. (2.1). For
x �= 0, 1, Eq. (2.1) is equivalent to

x2
m + 1

x + 1
+ x2

m

x
= 1 ⇐⇒ x2

m + x2 = 0.

With x2 = y, the above equation becomes

y(y2
m−1−1 + 1) = 0. (2.2)

Notice that whenm > 1 is odd then gcd(m−1, 2m) = 2 and the above Eq. (2.2) can have
at most 4 solutions, namely 0, 1, ω, ω2, where ω is a primitive cubic root of unity. Hence
� f (1, 1) = 4. When m > 1 is even then gcd(m − 1, 2m) = 1, thus 0, 1 are only solutions
of the Eq. (2.2). Hence in this case � f (1, 1) = 2.

Case 3Let b ∈ F22m\F2. It is easy to see that in this case x = 0 and x = 1 are not solutions
of Eq. (2.1). Therefore, the DDT entry at (1, b) is the number of solutions in F22m\F2 of the
following equivalent equation

x2
m + bx2 + (b + 1)x = 0. (2.3)

Now, raising the above equation to the power 2m , we have

x2
2m + b2

m
x2

m+1 + (b2
m + 1)x2

m = 0. (2.4)

Combining (2.3) and (2.4), we have

b2
m+2x4 + (b2

m+2 + b2
m+1 + b2

m + b)x2 + (b2
m+1 + b2

m + b)x = 0.

We note that the above equation can have at most 4 solutions in F22m , two of which are
0 and 1 and thus it can have at most two solutions in F22m\F2. Therefore for b ∈ F22m\F2,
� f (1, b) ≤ 2. This completes the proof. 
�

3 Boomerang uniformity of x → x2
m−1

In this section, we shall discuss the boomerang uniformity of the locally-APN functions given
in the previous section. The boomerang uniformity of the power maps of the type x2

t−1 over
F2n has been considered in Ref. [15], where the authors give bounds on the boomerang
uniformity in terms of the differential uniformity under the condition gcd(n, t) = 1 and also
show that the power permutation x7 has boomerang uniformity 10 over F2n , where n ≥ 8
is even and gcd(3, n) = 1. The following theorem gives the boomerang uniformity of the
power map f (x) = x2

m−1 over F22m where m > 1 is odd.

Theorem 3.1 Let f (x) = x2
m−1, m > 1 odd, be a power map from the finite field F22m to

itself. Then, the boomerang uniformity of f is 4.

Proof Recall that for any b ∈ F
∗
q , q = 22m , the BCT entry B f (1, b) at point (1, b) of f , is

given by the number of solutions in Fq × Fq of the following system of equations{
x2

m−1 + y2
m−1 = b,

(x + 1)2
m−1 + (y + 1)2

m−1 = b.
(3.1)
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Notice that the above system (3.1) cannot have solutions of the form (x1, y1)with x1 = y1
as b �= 0. Also it is easy to observe that if (x1, y1) is a solution of the above system (3.1),
then so are (y1, x1), (x1 + 1, y1 + 1) and (y1 + 1, x1 + 1). We shall split the analysis of the
solutions of the system (3.1) in the following five cases.

Case 1 Let x = 0. In this case, the system (3.1) reduces to{
y2

m−1 = b,

(y + 1)2
m−1 + y2

m−1 = 1.
(3.2)

FromLemma2.2,we know that the second equation of the above systemhas four solutions,
namely y = 0, 1, ω and ω2. Also sincem is odd, we have 2m −1 ≡ 1 (mod 3). Since b �= 0,
y = 0 cannot be a solution of the system (3.2) and y = 1, ω and ω2 will be a solution of
the system (3.2) when b = 1, ω and ω2, respectively. Equivalently, when b = 1, ω, ω2 then
(0, 1), (0, ω), (0, ω2) are solutions of the system (3.1), respectively. When b ∈ Fq\F22 then
there is no solution of the system (3.1) of the form (0, y).

Case 2 Let x = 1. In this case, the system (3.1) reduces to{
y2

m−1 = b + 1,

(y + 1)2
m−1 + y2

m−1 = 1.
(3.3)

Similar to the previous case, the second equation of the above system (3.3) has four
solutions, namely y = 0, 1, ω and ω2. Since b �= 0, y = 1 cannot be a solution of (3.3) and
y = 0, ω andω2 will be a solution of (3.3), when b = 1, ω2 andω, respectively. Equivalently,
when b = 1, ω, ω2 then (1, 0), (1, ω2), (1, ω) are solutions of the system (3.1), respectively.
When b ∈ Fq\F22 then there is no solution of the system (3.1) of the form (1, y).

Case 3 Let y = 0. Since the system (3.1) is symmetric in the variables x and y, this
case directly follows from Case 1. That is, when b = 1, ω, ω2 then (1, 0), (ω, 0), (ω2, 0)
are solutions of the system (3.1), respectively. When b ∈ Fq\F22 then there is no solution
for (3.1) of the form (x, 0).

Case 4 Let y = 1. This case directly follows from Case 2. That is, when b = 1, ω, ω2

then (0, 1), (ω2, 1), (ω, 1) are solutions of the system (3.1), respectively. When b ∈ Fq\F22

then there is no solution for (3.1) of the form (x, 1).
Case 5 Let x, y �= 0, 1. In this case system (3.1) reduces to{

x2
m
y + xy2

m = bxy,

(x + y)2
m + (b + 1)(x + y) + b = 0.

(3.4)

Let y = x + z. Then, the above system becomes{
x2

m
z + xz2

m = bx(x + z),

z2
m + (b + 1)z + b = 0.

(3.5)

Now, raising the second equation of the above system to the power 2m , we have

(b2
m + 1)z2

m + z + b2
m = 0. (3.6)

Combining the second equation of (3.5) and (3.6), we obtain

((b + 1)2
m+1 + 1)(z + 1) = 0. (3.7)
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Therefore, the system (3.5) reduces to{
x2

m
z + xz2

m = bx(x + z),

((b + 1)2
m+1 + 1)(z + 1) = 0.

(3.8)

Now, we shall consider following two cases.

Subcase 5.1 Let (b + 1)2
m+1 �= 1. In this case, the first equation of (3.8) reduces to

x2
m + bx2 + (b + 1)x = 0,

which is equivalent to

b2
m+2x4 + (b2

m+2 + b2
m+1 + b2

m + b)x2 + (b2
m+1 + b2

m + b)x = 0. (3.9)

When b = 1, the above equation becomes x4 + x = 0, which has four solutions x =
0, 1, ω, ω2. Since we assumed x, y �= 0, the only solutions we consider are x = ω and ω2.
Thus for b = 1, (ω, ω2) and (ω2, ω) are solutions of the system (3.5). When b ∈ Fq\F2 with
(b + 1)2

m+1 �= 1, by Lemma 2.2, Eq. (3.9) can have at most two solutions.

Subcase 5.2 Let (b+1)2
m+1 = 1. It is more convenient, now, to work with (3.4). We then

raise the first equation of the system (3.4) to the 2m-th power obtaining

x2
2m
y2

m + y2
2m
x2

m = b2
m
x2

m
y2

m
,

which is equivalent to

xy2
m + yx2

m = b2
m
x2

m
y2

m
.

Combining this with the first equation of (3.4), we infer that

b2
m
x2

m
y2

m = bxy,

and so, bxy = α ∈ F
∗
2m . Using y = α

bx in the first equation of (3.4), we obtain

x2
m−1 1

b
+ x1−2m 1

b2m
= 1. (3.10)

Label T = x2
m−1. Then the above equation reduces to

T

b
+ T−1

b2m
= 1

⇐⇒ T 2

b
+ 1

b2m
= T

⇐⇒ T 2b2
m + b = Tb2

m+1.

Since, (b + 1)2
m+1 = 1, by expansion, we get b2

m+1 + b2
m + b = 0, and so, b2

m+1 =
b2

m + b. The previous equation becomes

T 2b2
m + b = Tb2

m + Tb ⇐⇒ (Tb2
m + b)(T + 1) = 0.

If T = 1, then x ∈ F2m and so, by ∈ F2m . Taking this back into (3.4), we then obtain{
y2

m + (b + 1)y = 0,

y2
m + (b + 1)y = (x + 1)b,
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which is inconsistent with x �= 1 and b ∈ F
∗
q . If Tb

2m + b = 0, then we have

Tb2
m + b = 0

⇐⇒ Tb2
m−1 + 1 = 0

⇐⇒ (bx)2
m−1 = 1.

Therefore bx ∈ F2m and hence α
bx = y ∈ F2m . Taking this back into (3.4), we then obtain{

x2
m + (b + 1)x = 0,

x2
m + (b + 1)x = (y + 1)b,

which is inconsistent with y �= 1 and b ∈ F
∗
q . This completes the proof. 
�

Example 3.2 As an example, we checked by SageMath that the differential uniformity of the
non-permutation power map x7 over F26 is 6, whereas its boomerang uniformity is 4.

The following theorem gives the boomerang uniformity of the power map f (x) = x2
m−1

over F22m , where m > 1 is even.

Theorem 3.3 Let f (x) = x2
m−1, m > 1 even, be a power map from the finite field F22m to

itself. Then, the boomerang uniformity of f is 2.

Proof Following similar arguments as in the proof of Theorem 3.1, it is straightforward to
see that when b = 1, (0, 1) and (1, 0) are the only solutions of the system (3.1) with either of
the coordinates x, y being 0 or 1. On the other hand, when b ∈ F22m\F2, there is no solution
of the system (3.1) with either of the coordinates x, y ∈ {0, 1}.

We now consider the case when x, y �= 0, 1. In this case, the system (3.1) reduces to{
x2

m
y + xy2

m = bxy,

(x + y)2
m + (1 + b)(x + y) + b = 0.

(3.11)

Let y = x + z. Now, raising the second equation of the above system to the power 2m and
adding it to the second equation of the above system, we have{

x2
m
z + xz2

m = bx(x + z),

((b + 1)2
m+1 + 1)(z + 1) = 0.

(3.12)

Now, we shall consider the following two cases.
Case 1 Let (b + 1)2

m+1 �= 1. In this case, the system (3.12) reduces to

x2
m + bx2 + (b + 1)x = 0,

which is equivalent to

b2
m+2x4 + (b2

m+2 + b2
m+1 + b2

m + b)x2 + (b2
m+1 + b2

m + b)x = 0. (3.13)

When b = 1, the above equation becomes x4 + x = 0, which has two solutions x = 0, 1,
as m is even. Since we assumed x, y �= 0, 1, we do not get any solution of the system (3.13)
in this case. When b ∈ F22m\F2 with (b + 1)2

m+1 �= 1, by Lemma 2.2, Eq. (3.13) can have
at most two solutions.

Case 2 Let (b + 1)2
m+1 = 1, the argument is similar to Subcase 5.2 of Theorem 3.1 and

in this case the system (3.1) will have no solution. 
�
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Example 3.4 The differential uniformity of the non-permutation power map x15 over F28 is
14, whereas its boomerang uniformity is 2.

In the following we shall focus on APN functions. First, we recall two lemmas which
give a connection between the DDT and BCT entries of arbitrary permutation functions,
respectively, APN permutations.

Lemma 3.5 [7, Lemma 1] If f is a permutation function on Fq , then � f (a, b) ≤ B f (a, b),
for all (a, b) ∈ Fq × Fq .

Lemma 3.6 [7, Lemma 4] For any permutation with 2-uniform DDT, the BCT entries equal
the DDT entries, except for the first row and the first column.

From Lemmas 3.5 and 3.6, we can deduce (surely, known) that APN permutations have
boomerang uniformity 2. Of course, it is rather easy to see that the converse is also true.

Proposition 3.7 Let f be a permutation on Fq . If the boomerang uniformity of f is 2, then
it is APN.

Proof Since the boomerang uniformity of the permutation f is 2, we have

� f (a, b) ≤ B f (a, b) ≤ 2,

for all (a, b) ∈ F
∗
q × F

∗
q . Also notice that for any a ∈ F

∗
q ,

� f (a, 0) = |{x ∈ Fq | f (x + a) + f (x) = 0}|
= 0.

Thus � f (a, b) ≤ 2 for all (a, b) ∈ F
∗
q × Fq and hence f is APN. 
�

By providing an extension of the boomerang uniformity to the case of arbitrary functions,
Mesnager et al. [11] observed that for any arbitrary function f , � f (a, b) ≤ B f (a, b), for
all (a, b) ∈ Fq × Fq . In the following, we shall show that the boomerang uniformity of any
arbitrary APN function f is 2.

Theorem 3.8 Let f be an arbitrary APN function over Fq . Then the boomerang uniformity
of f is 2.

Proof Recall that the BCT entry B f (a, b) of f at ponint (a, b) is given by

B f (a, b) =
∣∣∣∣∣
{

(x, y) ∈ Fq × Fq |
{
f (x) + f (y) = b

f (x + a) + f (y + a) = b

}∣∣∣∣∣ .
Let y = x + γ , then the above equation becomes

B f (a, b) =
∣∣∣∣∣
{

(x, γ ) ∈ Fq × Fq |
{
f (x + γ ) + f (x) = b

f (x + a + γ ) + f (x + a) = b

}∣∣∣∣∣
=

∑
γ∈Fq

∣∣∣∣∣
{
x ∈ Fq |

{
f (x + γ ) + f (x) = b

f (x + a + γ ) + f (x + a) = b

}∣∣∣∣∣ .
Also observe that for any (a, b) ∈ F

∗
q × F

∗
q , we have

B f (a, b) =
∑
γ∈F∗

q

∣∣∣∣∣
{
x ∈ Fq |

{
f (x + γ ) + f (x) = b

f (x + a + γ ) + f (x + a) = b

}∣∣∣∣∣ .
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Boomerang uniformity of a class of power maps 2635

Since f is an APN function, therefore, for any (a, b) ∈ F
∗
q × F

∗
q , the quantity under

summation will contribute only if a = γ . Now for γ = a, B f (a, b) = � f (a, b) ≤ 2 and
hence the boomerang uniformity of f is 2. 
�
Remark 3.9 The converse of the above Theorem 3.8 is not necessarily true and counterex-
amples can be easily constructed. For instance, the boomerang uniformity of the power map
x15 over F28 is 2, though it is not an APN function.

4 Concluding remarks

In this note we compute the boomerang uniformity of the power map x2
m−1 over F22m .

As an immediate consequence, we find that the differential uniformity is not necessarily
smaller than the boomerang uniformity (for non-permutations), as it was previously shown
for permutations. The presented class is not just an isolated example. Our computer programs
reveal quickly some other like-functions, for instance, x �→ x45 on F28 , which is locally-
APN, has differential uniformity 14, and boomerang uniformity 2. We could not extrapolate
an infinite class out of all these examples, though. It would be interesting to construct some
new (infinite) classes of functions for which the boomerang uniformity is strictly smaller
than the differential uniformity.
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