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Abstract
It is proved that a code L(q) which is monomially equivalent to the Pless symmetry code
C(q) of length 2q + 2 contains the (0,1)-incidence matrix of a Hadamard 3-(2q + 2, q +
1, (q − 1)/2) design D(q) associated with a Paley–Hadamard matrix of type II. Similarly,
any ternary extended quadratic residue code contains the incidence matrix of a Hadamard
3-design associated with a Paley–Hadamard matrix of type I. If q = 5, 11, 17, 23, then the
full permutation automorphism group of L(q) coincides with the full automorphism group of
D(q), and a similar result holds for the ternary extended quadratic residue codes of lengths 24
and 48. All Hadamard matrices of order 36 formed by codewords of the Pless symmetry code
C(17) are enumerated and classified up to equivalence. There are two equivalence classes of
such matrices: the Paley–Hadamard matrix H of type I with a full automorphism group of
order 19584, and a second regular Hadamardmatrix H ′ such that the symmetric 2-(36, 15, 6)
design D associated with H ′ has trivial full automorphism group, and the incidence matrix
of D spans a ternary code equivalent to C(17).

Keywords Pless symmetry code · Hadamard matrix · Hadamard 3-design · Hadamard
2-design · Paley–Hadamard matrix

Mathematics Subject Classification 05B05 · 05B20 · 94B05

1 Introduction

We assume familiarity with the basic facts and notions from error-correcting codes and
combinatorial designs and Hadamard matrices [1,4,9,12]. All codes in this paper are ternary.
A monomial matrix with entries from GF(3) is a square matrix such that every row and
every column contains exactly one nonzero entry. By an automorphism group of a ternary
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code we mean monomial automorphism group, unless specified otherwise. The permutation
automorphism group of a code is the subgroup of its monomial automorphism group that
consists of coordinate permutations only.

A Hadamard matrix of order n is an n×n matrix H of 1’s and−1’s such that HHT = nI ,
where I is the identity matrix. It follows that n = 1, 2, or n = 4t for some integer t ≥ 1. An
automorphism of a Hadamard matrix H is a pair of {0, 1,−1}-monomial matrices L , R such
that LH R = H . Two Hadamard matrices H1, H2 of the same order are equivalent if there
are monomial matrices L , R such that LH1R = H2. A Hadamard matrix H is normalized
with respect to its i th row and j th column if all entries in row i and column j are equal to
1. If H is a Hadamard matrix of order n = 4t that is normalized with respect to row i and
column j , deleting the i th row and the j th column and replacing all−1’s with zeros gives the
(0, 1)-incidence matrix of a symmetric 2-(4t −1, 2t −1, t −1) design D called a Hadamard
2-design, while deleting the j th column of H and the j th column of −H from the matrix
(H ,−H) gives the point-by-block (±1)-incidence matrix of a 3-(4t, 2t, t − 1) design D∗,
called a Hadamard 3-design obtained from H with respect to column j . The design D is the
derived design of D∗ with respect to its i th point. A Hadamard matrix H of order n = 4t
is regular if all rows of H contain the same number k of −1’s. It follows that t = m2 for
some integer m, k = 2m2 ± m, and replacing all −1’s with zeros gives the (0, 1)-incidence
matrix of a symmetric 2-(4m2, 2m2 ± t,m2 ± m) design. For more on Hadamard matrices
and related designs, see, for example, [1, Chapter 7], [9, Chapter 14], [12, Sect. 8.9].

Let q be an odd prime power such that q ≡ −1 (mod 3). The Pless symmetry code C(q)

[22,23] of length n = 2q + 2 is a ternary self-dual code with a generator matrix

G = (Iq+1, Sq), (1)

where Iq+1 is the identity matrix of order q + 1, and Sq = (si, j ) is a (q + 1) × (q + 1)
matrix defined as follows. The rows and columns of Sq are labeled by ∞ and the q elements
of the finite field GF(q) of order q , where s∞,∞ = 0, sa,a = 0, s∞,a = 1 for a ∈ GF(q),
sa,∞ = 1 if −1 is a square in GF(q), and sa,∞ = −1 if −1 is not a square in GF(q) for
a ∈ GF(q), and sa,b = 1 for a, b ∈ GF(q) such that a �= b and a− b is a square in GF(q),
and sa,b = −1 for a, b ∈ GF(q) such that a �= b and a − b is not a square in GF(q). For
example, if q = 5, the rows and columns of S5 are labeled by ∞, 0, 1, 2, 3, 4, and

S5 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1
1 0 1 −1 −1 1
1 1 0 1 −1 −1
1 −1 1 0 1 −1
1 −1 −1 1 0 1
1 1 −1 −1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The main property of Sq is that Sq STq = q Iq+1, which implies Sq STq ≡ −Iq+1 (mod 3);
hence C(q) is self-dual. The symmetry codes C(5)1 , C(11), C(17), C(23) and C(29) are
extremal self-dual codes of length n divisible by 12 and minimum distance d meeting the
Mallows-Sloane upper bound d ≤ 3[n/12]+3 [16]; hence these codes support 5-designs by
the Assmus–Mattson Theorem [3].

Pless [23] proved that in addition to the trivial monomial automorphism of order 2 corre-
sponding to the negation of all code coordinates, the monomial automorphism group ofC(q)

contains a subgroup of order q(q2 − 1) isomorphic to PGL2(q). In addition, it was proved
in [23, Theorem 4.2] that the symmetry code C(q) contains a set of 2q + 2 codewords of

1 The symmetry code for q = 5 is equivalent to the extended ternary Golay code.
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weight 2q + 2 that form a Hadamard matrix of order 2q + 2. Specifically, if q ≡ 1 (mod 4)
the Hadamard matrix formed by codewords of weight 2q + 2 is

H1(q) =
(

I + Sq −I + Sq
−I + Sq −I − Sq

)
, (2)

while if q ≡ −3 (mod 4) the Hadamard matrix is

H3(q) =
(
I + Sq I + Sq
I − Sq −I + Sq

)
, (3)

where I is the identity matrix of order q + 1.
The Hadamard matrices (2), (3) are known in the combinatorial literature as Paley–

Hadamard matrices of type II [7,9,21, 14.1]. If q ≡ 3 (mod 4), the (q + 1)× (q + 1) matrix
obtained by bordering the matrix Sq − I with one all-one row and one all-one column is a
Hadamard matrix of order q + 1, known as a Paley–Hadamard matrix, or a Paley–Hadamard
matrix of type I [9, 14.1], [7,21]. The unique (up to equivalence) Hadamard matrix of order
12 is both a Paley–Hadamard matrix of type I for q = 11 and a Paley–Hadamard matrix
of type II for q = 5, and its full automorphism group modulo its center of order 2 is the
Mathieu group M12 (Hall [8]). The full automorphism group of a Paley–Hadamard matrix
of type I for q > 11 was determined by Kantor [13] and is of order q(q2 − 1), while the full
automorphism group of a Paley–Hadamard matrix of type II for q > 5 was determined by
de Launey and Stafford [7], and is of order 4 f q(q2 − 1) if q = p f , where p is prime.

If q = 5, 11, or 23, the number of all codewords of full weight 2q + 2 in the symmetry
code C(q) is exactly 4q + 4 [23]. These codewords span the code and consist of the rows
of the Hadamard matrix H1(q) from (2) (resp. H3(q) from (3)) and its negative, or 2H1(q)

(resp. 2H2(q)); hence the full monomial automorphism group of C(q) coincides with the
full automorphism group of H1(q) (resp. H3(q)) [23].

The symmetry code C(17) of length 36 contains 888 codewords of weight 36; hence it
is not clear whether the automorphism group of the Hadamard matrix H1(17) (2) is the full
automorphismgroup ofC(17). In Sect. 2,we prove that the full automorphismgroup ofC(17)
coincides with the full automorphism group of H1(17), the latter being a Paley–Hadamard
matrix of type II; hence its order is 4 · 17(172 − 1) = 19584. In addition, we classify all
Hadamard matrices of order 36 having as rows codewords of C(17) of weight 36, and show
that up to equivalence, there are exactly two such matrices: H1(17), and a second Hadamard
matrix H ′ having the property that all Hadamard 3-(36, 18, 8) designs associated with H ′
are isomorphic and have trivial full automorphism group of order 1. The full automorphism
group of H ′ is of order 72 and is transitive on the set of 72 rows (as well as the set of 72
columns) of H ′ and −H ′. The 3-rank of H ′ is 18; thus C(17) is the row space of H ′. The
Hadamard matrix H ′ is regular, and the symmetric 2-(36, 15, 6) design with ± 1-incidence
matrix H ′ has trivial full automorphism group.

In Sect. 3 we discuss Paley–Hadamard matrices of Type I and Hadamard 3-designs arising
from extended ternary quadratic residue codes.

2 Hadamardmatrices and designs arising from symmetry codes

The sum (over GF(3)) of all rows of the generator matrix (1) of the symmetry code C(q)

is a vector v of full Hamming weight 2q + 2, with all components equal to 1 if −1 is not a
square in GF(q), (that is, v is the constant all-one vector 1̄ = (1, . . . , 1)), and v has 2q + 1
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components equal to 1, and the position labeled by∞ is equal to−1 whenever−1 is a square
in GF(q).

Next, we consider a code which is monomially equivalent to the Pless symmetry code
C(q), and always contains the all-one vector, namely the code L(q) with a generator matrix
G ′ given by

G ′ = (Iq+1,Uq), (4)

where Uq is a (q + 1) × (q + 1) matrix obtained from Sq by replacing every nonzero entry
in the column labeled by ∞ with −1. Clearly, the generator matrix G ′ (4) is identical with
the generator matrix G (1) if −1 is not a square in GF(q), and is obtained by negating one
column of G if−1 is a square in GF(q). Thus, the matrices (1) and (4) generate monomially
equivalent ternary codes.

Using (4), we obtain a parity check P matrix of L(q) given by

P = (−UT
q , Iq+1). (5)

Note that since L(q) is self-dual, the rows of P are codewords of L(q). It is easy to check
that the matrix H given by

H =
(
G ′ + P
G ′ − P

)
=

(
Iq+1 −UT

q Uq + Iq+1

Iq+1 +UT
q Uq − Iq+1

)
(6)

is a Hadamard matrix of order 2q + 2, with rows being codewords of L(q).

Theorem 2.1 The code L(q) contains a set of 4q + 2 (0,1)-codewords of weight q + 1 that
form the block-by-point incidence matrix of a Hadamard 3-(2q+2, q+1, (q−1)/2) design
D(q) associated with a Paley–Hadamard matrix of type II.

Proof All entries in the first row of the Hadamard matrix H (6) are equal to 1; that is, H is
normalized with respect to its first row, and consequently, all entries in the first row of −H
are equal to −1. Adding the constant codeword 2̄ = (2, . . . , 2) with all entries equal to 2 to
every row of the matrix

(
H

−H

)

gives a (0, 1)-matrix M with all-zero first row, and all-one row labeled by the first row of
−H . Deleting the all-zero row and the all-one row from M gives a (4q+2)×(2q+2) (0, 1)-
matrix A, being the block-by-point incidence matrix of a Hadamard 3-(2q + 2, q + 1, (q −
1)/2) design associated with the first row of H . Clearly, H is equivalent to the corresponding
matrix (2) or (3); hence H is equivalent to a Paley–Hadamard matrix of type II. 
�
Theorem 2.2 If q = 5, 11, 17, 23, the code L(q) contains exactly 4q + 2 (0,1)-codewords of
weight q + 1, and every such codeword is the incidence vector of a block of the Hadamard
3-design D(q) from Theorem 2.1.

Proof Letm denote the total number of (0,1)-codewords of weight q+1 in L(q). By Theorem
2.1, m ≥ 4q + 2. If v ∈ L(q) is a (0,1)-codeword of weight q + 1 then v + 1̄ is a codeword
of full weight 2q + 2, having q + 1 components equal to 1, and q + 1 components equal to
2. Adding the codewords 1̄ and 2̄ = 2 · 1̄ gives m + 2 ≥ 4q + 4 codewords of weight 2q + 2.
Since C(q) contains exactly 4q + 4 codewords of weight 2q + 2 for q = 5, 11, 23 [23], the
statement is true in these cases.
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The caseq = 17 needs additional analysis because the symmetry codeC(17) , aswell as its
equivalent code L(17), contains 888 codewords of weight 36 [23]. The set of all codewords of
weight 36 is easily computedwithMagma [5]. This set comprises of the following codewords:

• the 36 rows of the Hadamard matrix H (6), one of the rows being 1̄, and 35 rows with 18
components equal to 1, and 18 components equal to −1 (note that −1 ≡ 2 (mod 3));

• the 36 rows of 2H that include 2̄ and 35 rows with 18 components equal to 1, and 18
components equal to 2;

• a set T of 408 codewords having 15 components equal to 1 and 21 components equal to
2;

• a set 2T of 408 codewords obtained by multiplying every codeword from T by 2.

Note that adding 2̄ to any (0, 1)-codeword ofweight 18 gives a codeword ofweight 36with
18 1’s and 18 2’s; hence the code L(17) contains exactly 70 (0, 1)-codewords of weight 18
obtained by adding the codeword 2̄ to the rows of H and 2H , and these 70 (0, 1)-codewords
form the incidence matrix of the 3-design D(17) from Theorem 2.1. 
�
Note 1 The code L(29) contains 19606 (0,1)-codewords of weight 30. It is an open question
whether this set contains the incidence matrices of any Hadamard 3-(60, 30, 14) designs
that are not isomorphic to D(29). The number of codewords of weight 60 in L(29) is 41184.
It seems likely that there may be Hadamard matrices of order 60 formed by codewords of
weight 60 that are not equivalent to the Paley–Hadamard matrix of type II.

Corollary 2.3 If q = 5, 11, 17, 23, the full permutation automorphism group of L(q) coin-
cides with the full automorphism group of the Hadamard 3-design D(q) from Theorem 2.1.

Proof The results of De Launey and Stafford [7] and Norman [20] imply that the full auto-
morphism group of D(q) has order q(q −1) if q > 5 is prime. The full automorphism group
of D(5) has order 7920.

Any derived design with respect to a point of a Hadamard 3-(2q + 2, q + 1, (q − 1)/2)
design D is a symmetricHadamard 2-(2q+1, q, (q−1)/2) design D′ of orderq−(q−1)/2 =
(q+1)/2. Since q ≡ −1 (mod 3), 3 divides (q+1)/2. If 9 does not divide the order (q+1)/2
(which is true if q = 5, 11, or 23), the rank of the incidence matrix if D′ over GF(3) (or the
3-rank of D′) is equal to q + 1 (see, for example, Assmus and Key [1,2]), hence the 3-rank
of D is q + 1 and the code L(q) is spanned by the incidence matrix of D. If q = 17, a direct
computation shows that the 3-rank of D(17) is 18, hence D(17) spans the code L(17). 
�
Theorem 2.4 (i) The code L(17) contains two equivalence classes of Hadamard matrices of
order 36 having as rows codewords of weight 36, with representatives the Hadamard matrix
H (6), which is equivalent to a Paley–Hadamard matrix of type II and has full automorphism
group of order 19584, and a second Hadamard matrix H ′, being a regular Hadamard matrix
such that the symmetric 2-(36, 15, 6) design D′ with (0, 1)-incidence matrix (H ′ + J )/2,
where J is the 36 × 36 all-one matrix, has a trivial automorphism group.

(ii) The row span of the incidence matrix of the 2-(36, 15, 6) design D′ is an extremal
ternary [36, 18, 12] code equivalent to the symmetry code C(17).

(iii) The full automorphism group of the code L(17) coincides with the full automorphism
group H.

Proof (i) In the context of Hadamard matrices, we consider the element 2 of GF(3) as −1.
Using the notation from the proof of Theorem 2.2, we define a graph � having as vertices the
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408 codewords from T , where two codewords u, v ∈ T are adjacent in � if and only if the
Hamming distance between u and v is 18, or equivalently, the intersection of the supports
of the (0,1)-vectors 2̄ − u and 2̄ − v is of size 6. Replacing all entries equal to 2 by zero in
every vector from T gives a set T (0, 1) of (0,1)-vectors of weight 15. Using the restricted
Johnson bound, it is easy to verify that the maximum number codewords in a binary constant
weight code of length 36 with codewords of weight 15 and minimum distance 18, is 36.
Every set K of 36 vectors from T (0, 1) that meets the Johnson bound corresponds to a clique
of size 36 in �, and the 36 × 36 matrix having as rows the vectors from K is the incidence
matrix N of a symmetric 2-(36, 15, 6) design (see [30, Theorem 2.4.12, p. 99] or [31, Sect.
3]). Replacing all zeros in N with −1’s gives a regular Hadamard matrix of order 36. Using
the clique finding algorithm Cliquer [19], a quick computer search shows that the graph �

contains exactly 272 cliques of size 36, or in other words, there are 272 collections of 36
codewords from T that form a Hadamard matrix of order 36. Further analysis with Magma
shows that all 272 Hadamard matrices are equivalent to a matrix H ′ with a full monomial
automorphism group of order 72 that acts transitively on the set of size 72 being the union
of the rows of H ′ and the rows of −H ′.

The incidence matrix of the symmetric 2-(36, 15, 6) design D′ obtained by replacing
all −1-entries of H ′ with zeros is listed in the Appendix. The design D′ has a trivial full
automorphism group of order 1.

(ii) The 3-rank of the incidence matrix of D′ is 18, and its row span over GF(3) is a
ternary [36, 18, 12] code equivalent to the Pless symmetry code.

Parts (iii) was verified by computer using Magma. The full automorphism group of L(17)
partitions the set of the 888 codewords of weight 36 into two orbits, of length 72 and 816
respectively, the orbit of length 72 comprised of the rows of H (6) and −H . Thus, the full
automorphism group of the code L(17) coincides with the full automorphism group of H ,
and is of order2 19584 = 27 · 32 · 17. 
�

Note 2 Up to equivalence, there are exactly 11 Hadamardmatrices of order 36 with automor-
phism groups of order divisible by 17 (Tonchev [28]). Each of these matrices spans a ternary
self-dual code of length 36, but only the symmetry codeC(17) spanned the Paley–Hadamard
matrix of type II is extremal, that is, has minimum distance 12, and supports 5-designs. A
stronger characterization of the Pless symmetry code C(17) was proved by Huffman [11],
namely that up to equivalence, C(17) is the only extremal ternary self-dual code of length
36 that admits a monomial automorphism of order 17.

Note 3 Hadamard matrices and designs are used for the construction of self-orthogonal and
self-dual codes over other finite fields. A classical example is the extended binary Golay code
generated by a bordered incidence matrix of a symmetric Hadamard 2-(23, 11, 5) design
associated with a Paley–Hadamard matrix of type I. Hadamard matrices of order 28 with an
automorphism of order 7 [27] were used by Pless and Tonchev [24] for the classification of
self-orthogonal codes over GF(7). The Paley–Hadamard matrix of type II of order 28 is the
only Hadamard matrix of this order that admits an automorphism of order 13 and yields an
extremal binary self-dual code of length 56 [26,29]. More extremal binary self-dual codes
derived from Hadamard matrices of order 28 were found in [6].

2 This is the order of the Paley–Hadamard matrix of Type II for q = 17 [7].
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3 Hadamardmatrices and designs arising from ternary QR codes

The symmetry codes C(11), C(23), and C(29) have siblings with the same parameters and
weight distribution, being ternary extended quadratic-residue codes that support 5-designs
by the Assmus-Mattson theorem. If q ≡ 3 (mod 4) is a prime power, a quadratic residue
(QR) code of length q is a code spanned by the (0,1)-incidence matrix A of a symmetric
Hadamard 2-(q, (q − 1)/2, (q − 3)/4) design obtained from the Paley–Hadamard matrix of
type I, and its extended code is spanned by a matrix obtained by adding one all-one column
to A. If, in addition, q ≡ −1 (mod 3), that is, q is of the form q = 12s+11 for some integer
s ≥ 0, the ternary extended QR code is self-dual.

Theorem 3.1 Let q = 12s + 11 be a prime power, and let QRq be the ternary extended QR
code of length q + 1.

(i) QRq contains a Paley–Hadamard matrix of type I having as rows codewords of weight
q + 1.

(ii) QRq contains a set of 2q (0,1)-codewords of weight (q +1)/2 that form the incidence
matrix of a Hadamard 3-(q + 1, (q + 1)/2, (q − 3)/4) design associated with the Paley–
Hadamard matrix of type I of order q + 1.

(iii) If q = 11, 23 or 47, QRq contains exactly 2q (0,1)-codewords of weight (q + 1)/2,
and the permutation automorphism group of the code coincides with the full automorphism
group of the Hadamard 3-(q + 1, (q + 1)/2, (q − 3)/4) design from part (ii).

Proof (i) The statement (i) is implicit in [3]. The column sum of the (0,1)-incidence A of the
Hadamard 2-(q, (q − 1)/2, (q − 3)/4) design obtained from the Paley–Hadamard matrix of
type I is

(q − 1)/2 = (12s + 10)/2 ≡ −1 (mod 3),

and the sum of all q entries of the all-one column is q ≡ −1 (mod 3), hence the sum over
GF(3) of all rows of the q × (q + 1)-matrix B obtained by bordering A with one all-one
column, is equal to the constant vector 2̄. Since QRq is the row span of B, the constant
vectors 1̄ and 2̄ belong to the code. Let E be the (q +1)× (q +1)matrix obtained from B by
adding one extra all-one row. The matrix Hq+1 = 2J − E , where J is the (q + 1) × (q + 1)
all-one matrix, is a Paley–Hadamard matrix of type I. Every row of Hq+1 is the difference
of the codeword 2̄ and a row of B, hence the rows of Hq+1 belong to the code QRq .

(ii) Adding the codeword 2̄ to every row of

(
Hq+1

−Hq+1

)
(7)

gives a (2q+2)×(q+1)matrixwith one all-zero row, one all-one row, and 2q (0,1)-rows of
weight (q+1)/2 that form the incidencematrix of aHadamard 3-(q+1, (q+1)/2, (q−3)/4)
design associated with Hq+1.

(iii) The proof is similar to that of Corollary 2.3. 
�

Note 4 The number of codewords of weight 60 in QR59 is 41184. It seems likely that there
may be Hadamard matrices of order 60 formed by codewords of weight 60 that are not
equivalent to the Paley–Hadamard matrux of type I from Theorem 3.1.
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4 Concluding remarks

The extended ternary Golay code of length 12, the Pless symmetry codes C(q) (q =
11, 17, 23 and 29), of lengths 24, 36, 48 and 60, the extended ternary QR codes of lengths
24, 48 and 60, and an extremal code of length 60 discovered by Nebe and Villard [18] as an
analogue of the Pless symmetry code C(29), are the only known extremal ternary self-dual
codes of length divisible by 12 that support 5-designs. It is known that the symmetry code
of length 84 (q = 41), as well as the extended QR code of this length are not extremal.
Extremal ternary self-dual codes of length n divisible by 12 do not exist for n = 72, 96, 120,
and all n ≥ 144, because then the extremal Hamming weight enumerator contains a negative
coefficient [25].

All ternary self-dual codes of length 24 have been classified up to equivalence (Harada
and Munemasa [10]), and the symmetry code C(11) and the extended QR code are the only
extremal codes of this length. Nine of the self-dual ternary codes of length 24 are spanned
by Hadamard matrices of order 24 [14,15], but only two codes, QR23 and C(11), that are
spanned by the Paley–Hadamard matrices of type I and II respectively, are extremal.

It is an interesting open question whether the Pless symmetry codes of length 36, 48, and
60, the extended QR codes of lengths 48 and 60, and the extremal code of length 60 found
by Nebe and Villard [18] are the only extremal self-dual codes of these lengths. The results
from Sect. 2 show that the symmetry code of length 36 can be obtained from a Hadamard
matrix that is not a Paley–Hadamard matrix of type II, and a natural question that arises is
whether any other extremal codes of length 36, 48, or 60 can be obtained form Hadamard
matrices that are not of Paley type.

The extremal ternary self-dual codes of lengths n ≥ 36 have not been classified up to
equivalence. A partial classification of such codes of length n ≤ 40 admitting automorphisms
of prime order p ≥ 5 was given by Huffman [11]. In addition, it was proved by Nebe [17]
that, up to equivalence, the only extremal ternary self-dual codes of length 48 that admit an
automorphism of a prime order p ≥ 5, are the Pless symmetry code and the extended QR
code.

Acknowledgements The author thanks Cary Huffman for reading a preliminary version of this paper and
making several useful suggestions that led to an improvement of the text.

Appendix

110110001101001100001010100000110001

000010101000001100100111001011001101

011000100010001100011001110011010010

010010000000010011110100110010110101

001011110100100010011111100000000001

011111000110011000000110000110000110

000000001111110000110110100001011010

000010010111101001000000111111000001

010001000101111110010001001001100100

100011000110000110111000001110011000

123



On Pless symmetry codes, ternary QR codes, and related Hadamard... 2761

000111111000000000010000101101110110

000111101011110000101001010010100000

010100110010101110100100100100101000

100101000000101001011100000011101011

101001001001001010101100110101000100

001001100011001011100010001000110011

010001111100011001001100011000011000

100100010010011001111011101000000100

100010101000111111010010010100000010

000100010001100110001110011010010110

111110001010100011000101001001010000

001010000001010101001101101100101010

111001011000110100100000101010000011

110100100101000000110101011100000011

000101001110000111000001110000001111

101000111111000101010100000010100100

010000011100000011101011000111100010

001100100100110101101000000101010101

001100011001011010010001000110011001

011000001010100000011010011100101101

100001010010010100000111010101110001

101010010100101000100001010000111110

011111010001000101110010010001001000

101100100100010010000010111011101000

110010110011010010001000000001001111

110001100001100001000011100110011100

A 2-(36, 15, 6) design associated with the Pless symmetry code of length 36
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